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What is causal inference? 

“First, for what reason we pronounce it necessary, that everything 
whose existence has a beginning, should also have a cause? 
Secondly, why we conclude, that such particular causes must 

necessarily have such particular effects; and what is the nature of 
that inference we draw from the one to the other, and of the belief 

we repose in it?” 

 

David Hume, Treatise on Human Nature (1739-40), Book I (Of The 
Understanding), Part III (Of Knowledge and Probability) 

 

“…statisticians must find a sound philosophical basis for causality and 
be able to express in some mathematical form the knowledge and 

assumptions needed for causal inference.”  

Stone (1993) 



A brief history of causal inference (1) 

• Neyman (1923) and Fisher 
(1925) discussed the 
potential yield to be gained 
from agricultural plots under 
different experimental 
exposures. 

 

• First introduction of the 
concept of random allocation 
as an experimental design. 

 

 

Jerzy 
Neyman 

(1894-1981) 

Ronald 
Fisher 

(1890-1962) 



A brief history of causal inference (2) 

• This was formalised statistically for both 
randomised and non-randomised studies 
many years later. 

 Potential outcomes 

 Rubin Causal Model (Holland 1986) 

 

• Rubin DB (1974). Estimating causal 
effects of treatments in randomized and 
nonrandomized studies. Journal of 
Educational Psychology 66(5), 688-701. 

 1031 citations on Web of Science. 

 

• Rosenbaum PR and Rubin DB (1983). 
The central role of the propensity score 
in observational studies for causal 
effects. Biometrika 70(1), pp41-55.   

 3825 WoS citations. 

 

Don Rubin 



The general principle of causal inference 

• We often compare an outcome after an action has occurred with 
what would have happened had the action not occurred, assuming 
all other things would have remained equal. 

 

• This is often done mentally (and sometimes unconsciously). 

 

• If the two outcomes differ, we say the action has had a causal 
effect. 

 

• Can this be modelled statistically? 



• Statistical models can only tell us about association between two 
variables (say X and Y). 

 

• The aim of causal inference is to infer whether this association can 
be given a causal interpretation (e.g. X causes Y) by: 

 defining the causal estimands 

 being explicit about the assumptions being made 

 thinking about other possible explanations for observed 
effects, especially confounding. 

 

• There are now many, many methods purporting to give causally 
valid solutions to this problem; this session only gives an 
overview of some of these. 

 

The general principle of causal inference 



• Illustrated using the potential outcomes/counterfactual approach. 

 

• It is a comparison between what is and what might have been. 

 

• We wish to estimate the difference between a patient’s observed 
outcome and the outcome that would have been observed if, 
contrary to fact, the patient’s treatment or care had been different 
(Neyman, 1923; Rubin, 1974). 

 

• Without the possibility of comparison the treatment effect is not 
well defined e.g. gender as a cause. 

How do we formally define a causal effect? 



Causal inference is a comparison 

Receive treatment 

 

 

 

 

 

 

Measure outcome 

Receive control 

 

 

 

 

 

 

Measure outcome 

Comparison of outcomes gives an 
individual treatment effect 



Causal inference is a comparison 

Receive treatment 

 

 

 

 

 

 

Measure outcome 

Receive control 

 

 

 

 

 

 

Measure outcome 

Comparison of these outcomes will not 
give an individual treatment effect 



Causal inference is a comparison 

Receive treatment 

 

 

 

 

 

 

Measure outcome 

Receive control 

 

 

 

 

 

 

Measure outcome 

Comparison of average outcomes gives an 
average treatment effect 



Treatment effect heterogeneity 

• The definition does not require that individual treatment effect is 
equal for everyone. 

Positive  
individual effect 

Detrimental 
individual effect 

Receive 
treatment 

Receive 
control 



Individual treatment effects 

• Consider a randomised controlled trial with two arms: treatment 
(Z=T) versus control (Z=C) and a continuous outcome Y 

  

• Prior to randomisation we can envisage two potential outcomes 
for each participant in the trial: 

 the outcome after an active treatment, Y(Z=T)=Y(T) 

 the outcome after receiving the placebo, Y(Z=C)=Y(C) 

 

• For a given individual, the effect of treatment is the difference: 

ITE(Y)= Y(T)–Y(C) 

 

• As a result of the allocation, however, it is only ever possible to 
observe one of them (the other is a counterfactual).  



Potential outcomes 

Individual Treatment Assignment Individual 
effect 

Y(T)–Y(C) 

Treatment  
Y(T) 

Control  
Y(C) 

1 6 3 3 

2 4 6 -2 

3 5 1 4 

4 8 8 0 

5 5 3 2 

6 7 6 1 

7 3 5 -2 

8 9 4 5 

9 4 2 2 



Observed outcomes 

Individual Treatment Assignment Individual 
effect 

Y(T)–Y(C) 

Treatment 
Y(T)=Y 

Control  
Y(C)=Y 

1 6 - ? 

2 - 6 ? 

3 5 - ? 

4 8 - ? 

5 - 3 ? 

6 7 6 ? 

7 - 5 ? 

8 9 - ? 

9 4 - ? 



The average treatment effect is given by: 
 
ACE=Ave(ITE)= Ave[Y(T) − Y(C)] 
    = Ave[Y(T)] − Ave[Y(C)] 
 
If allocation to treatment is random, and there is perfect  
compliance with the allocation, then 
 
     = Ave[Y(T)|Z=T] − Ave[Y(C)|Z=C] 
 
    = Ave[Y|Z=T] − Ave[Y|Z=C] 
        
This can be estimated by the difference between the mean 
outcome for those receiving treatment and the mean outcome for  
those in the control condition.   

The statistical solution - averages 



Association and Causation 

• We are still suffering from the ‘fundamental problem’ and what we 
actually observe are conditional effects. 

 

• The association is the different risk observed in two disjoint 
subsets of the population, defined by the actual exposure. 

 

 

 

• Causation is the different risk in the entire population under the 
possible exposures. 

Treat Control 

Treat Control 

Treat 



• The difference Ave[Y|Z=T] − Ave[Y|Z=C] is usually not a valid 
(unbiased) measure of the average causal effect. 
 

• We infer that there are variables (confounders) which account for  
 these biases. They can be either measured(X) or unmeasured (U). 
 
• No confounding for the average causal effect if both 

 
Ave[Y(C)|Z=T] = Ave[Y(C)|Z=C]  

 
Ave[Y(T)|Z=T] = Ave[Y(T)|Z=C] 

 
• In words, the mean of potential outcomes for the control condition 

is not dependent on whether the participant actually receives 
treatment. Similarly the potential outcomes for the treatment 
condition are not influenced by treatment actually received.  

The problem of confounding 



Treatment assignment mechanism 

• If we have measurements on covariates, X, treatment assignment 
is said to be ignorable or exchangeable if (Y(C),Y(T)) ┴ Z | X 
where “┴” means statistically independent of”.  

 

• In words, treatment assignment (receipt) is ignorable if the two 
potential outcomes are jointly independent of Z given X. 

 

• If we allow for the covariates, X, in an appropriate way then we 
can obtain unbiased (unconfounded) estimates of the treatment 
effects. 

 

• So the key question is “why do people receive the treatment or 
exposure they receive?” 

 



Does Association = Causation? 

• In general, this does not hold. 

 

• In randomised experiments, the groups are exchangeable since 
we assume an equal distribution of characteristics, and we 
assume there are no confounders. 

 

• Then under randomisation, the associational measures are equal 
to the causal effect measures. 

 

• This exchangeability does not hold when we have non-compliance, 
due to the non-random selection effects involved. 

 



A ‘perfect’ randomised controlled trial 

Recruit 

Randomise 

Treatment (Z=1) 

Get 
Treatment 

Measure outcome 

Control (Z=0) 

Get 
Control 

Measure outcome 



There could not be worse experimental animals on earth than  

human beings; they complain, they go on vacations, they take  

things they are not supposed to take, they lead incredibly  

complicated lives, and, sometimes, they do not take their  

Medicine. 

 

Efron B. Foreword. Statistics in Medicine 

1998; 17: 249–50. 

An ‘imperfect’ RCT 



A more realistic RCT 

Recruit 

Randomise 

Treatment (Z=1) 

Get T 
 

Measure outcome 

Control (Z=0) 

Get C 
 

Measure outcome 

Get C  
 

Get T 
 

Switches 

? ?? ?? ??? ??? ? 

Get ? 
 

Get ?  
 

Changes to other or non-trial 
treatment 



http://www.consort-statement.org/resources/glossary: 

 

• “A strategy for analyzing data in which all participants are 
included in the group to which they were assigned, whether or not 
they completed the intervention given to the group. 

 

• “Intention-to-treat analysis prevents bias caused by the loss of 
participants, which may disrupt the baseline equivalence 
established by random assignment and which may reflect non-
adherence to the protocol.” 

 

• Compare subjects as randomised, regardless of what they actually 
received. 

 

 

 

What is intention to treat (ITT)? 



• May be interested in these other questions, e.g. effectiveness of 
“being invited for screening” rather than the effect of being 
screened on those who are screened. 

 

• Switching in particular makes ITT analysis conservative but for an 
equivalence trial makes ITT anti-conservative. 

 

• Differences between trials (effect heterogeneity) may be the 
result of varying levels of compliance rather than heterogeneity in 
efficacy – problem for meta-analysis. 

 

• Treatment by time interactions may be explained by increasing 
noncompliance/switching etc. 

 

• Treatment-severity interactions may appear if switching 
associated with severity. 

Problems in only focussing on ITT effects 



The Complier Average Causal Effect (CACE) 

Randomised to treatment Randomised to control 

Treatment 
taken 

 
outcome 

 
Compliers 

Treatment not 
taken 

 
Outcome 

 
Non-compliers 

Treatment 
not taken 

 
Outcome 

 
Compliers 

Treatment not 
taken 

 
Outcome 

 
Non-compliers 

• The Complier-Average Causal Effect (CACE) estimate is the 
comparison of the average outcome of the compliers in the treatment arm 
with the average outcome of the comparable group of would-be compliers 
in the control arm. 

 

• This is a randomisation-respecting estimate.  

 

• It is the ITT effect in the sub-group of participants who would always 
comply with their treatment allocation. It is not subject to confounding. 



Exposure 

Mediator 

Outcomes 

Total effect = direct effect + indirect effect 

Simple mediation/mechanism diagram 

α β 

γ 



Mediation analysis and causal inference… 

“Mediation analysis is a form of causal 
analysis…all too often persons 

conducting mediational analysis 
either do not realize that they are 
conducting causal analyses or they 
fail to justify the assumptions that 

they have made in their casual 
model.” 

 

 David Kenny (2008), Reflections on Mediation, Organizational 
Research Methods. 



Confounded mediation: estimating valid 
causal effects 

Exposure 

Mediator 

Outcomes 

U 

α 
β 

γ 

U 

U 

error 

U – the unmeasured confounders 
error 

error 



The basic underlying problem: estimating 
valid causal effects 

Random 
allocation 

Mediator 

Outcomes 

U 

U – the unmeasured confounders 

Covariates 

error 

error 



Statistical mediation analysis 

• Large literature on statistical mediation analysis, arising from Baron 
and Kenny (1986) and summarised by the recent monograph by 
David MacKinnon (2008). 

 

• Extensive use of structural equation modelling including examples. 

David  
Kenny 

Dave 
MacKinnon 



• The Baron and Kenny procedure and subsequent estimation of the 
indirect effect can be appropriate, provided: 

 Continuous outcome and continuous mediator 

 All relevant confounders are included in all the models and 
there are no unmeasured confounders (e.g. excluding 
covariates) 

 Correct functional form (e.g. linearity) 

 There are no interactions between treatment and mediator on 
outcome. 

 

• Using the bootstrap option is probably recommended for 
estimating the standard error of the indirect effect. 

 

• This applies for the use of structural equation modelling more 
generally too. 

Statistical mediation analysis 



• Statistical mediation (B&K) has three main problems: 

1. Unmeasured confounding between mediator and outcome 

2. No interactions between exposure and mediator on outcome 

3. Doesn’t easily extend to non-linear models 

4. Assumes the models are correctly specified. 

 

• Causal mediation analysis has arisen from the causal inference 
literature, and addressed these problems. 

 

• Large amount of methodological expertise on this topic at 
Manchester. 

Causal mediation analysis 



Causal mediation definitions:  
direct and indirect effects 

• (Pure) natural direct effect: Yi(T,Mi(C))–Yi(C,Mi(C)) 

 The direct effect of random allocation given M(0), the ‘natural’ 
level of the mediator 

 

• (Total) natural indirect effect: Yi(T,Mi(T))–Yi(T,Mi(C)) 

 The effect of the change in mediator if randomised to receive 
treatment (i.e. Z=T).   

 

• Controlled direct effect: Yi(T,m)-Yi(C,m) 

 Direct effect of randomisation on outcome at mediator level m. 

 

• Total Effect = Natural direct effect + Natural indirect effect 

 

(Pearl 2001;Robins & Greenland 1992). 



A brief history of causal inference (3) 

• Director of Program on Causal 
Inference at HSPH 

 

• Extended the potential outcomes 
framework to longitudinal setting 
(repeated measures). 

 

• This required a new methodology for 
estimating parameters using semi-
parametric theory: the “G-family” 

 

• Uses terminology ‘counterfactuals’ 
rather than potential outcomes. 

 

Jamie Robins 



A brief history of causal inference (4) 

• Current and past members of 
the HSPH CI program. 

 

• Developing estimation 
methods for lots of practical 
questions within the “G-
Family”  

 G-estimation 

 G-formula 

 G-computation 

 

• The most widely-cited and 
published group in CI. From top left: Stijn Vansteelandt, 

Andrea Rotnitzky, Miguel Hernán, 
Tyler VanderWeele, Eric Tchetgen 

Tchetgen, Els Goetghebeur 



Confounding adjustment 

• Standard Approach:  Model the probability of disease, taking 
into account the past exposure and past history of possible 
confounders using methods such as logistic or proportion 
hazards regression. 

 

• These approaches may be biased when: 

 1.  There exists a time-dependent covariate that is a risk factor 
for, or predictor of, the event of interest and also predicts 
future exposure.  

 2.  Past exposure history predicts the subsequent level of 
covariate. 

 

• These conditions will be true in many observational studies, and 
will always hold when there are time-dependent covariates that 
are simultaneously confounders and intermediate variables. 

 

 



Jamie Robins (1986) –  
his first causal inference paper 

 286 WoS citations 



Healthy Worker Survivor Effect 

• “In occupational mortality studies date of termination of employment is 
both a determinant of future exposure (since terminated individuals 
receive no further exposure) and an independent risk factor for death 
(since disabled individuals tend to leave employment). 

 

• When current risk factor status determines subsequent exposure  and is 
determined by previous exposure, standard analyses that estimate age-
specific mortality rates as a function of cumulative exposure may 
underestimate the true effect of exposure on mortality whether or not one 
adjusts for the risk factor in the analysis. 

 

• This observation raises the question, which if any population parameters 
can be given a causal interpretation in observational mortality studies?” 

 

• Abstract from Robins (1986) 



Healthy Worker Survivor Effect 

• This was first observed by Ogle (1885) 

 “the more vigorous occupations had relatively lower mortality 

rate as compared with the death-rates in occupations of an 
easier character or the unemployed”. 

 

• The term “healthy worker effect” was first used by McMichael et al 
(1974). 

 

• Robins (1986) was the first to derive mathematically the concept 
of HWSE and propose a statistical solution. 

 Introduces concept of time-varying confounding 



• Confounders could be fixed (usually at baseline) or time-varying. 

 

• A variable is a time-dependent confounder if it predicts 

 1. future treatment and 

 2. future outcome, conditional on past treatment. 

 

 

Time varying confounding 

Treatment 
at time 1 

Treatment 
at time 2 

Variable at 
time 1 

Variable at 
time 2 

Death 
 



Classic example: LDL count in HIV 

• Time-dependent confounding of CD4 lymphocyte count affected 
by previous treatment on risk of mortality from zidovudine (AZT). 

 

• So CD4 count predicts HAART and HAART raises CD4 counts. 

AZT  
at time 1 

AZT  
at time 2 

CD4  
at time 1 

CD4  
at time 2 

Death 
 



Example: Obesity and mortality 

• Time-dependent confounding of respiratory disease affected by 
previous treatment on risk of mortality from some obesity 
measure. 

  

  

Obesity  
at time 1 

Obesity  
at time 2 

Respiratory 
disease 

 at time 1 

Respiratory 
disease 

 at time 2 

Death 
 



Unmeasured confounding between variable 
and outcome 

Treatment 
at time 1 

Treatment 
at time 2 

Variable at 
time 1 

Variable at 
time 2 

Death 
 

Unmeasured 
confounder 



Unmeasured confounding between variable 
treatment and outcome 

Treatment 
at time 1 

Treatment 
at time 2 

Variable at 
time 1 

Variable at 
time 2 

Death 
 

Unmeasured 
confounder 



Controlling for a variable affected by 
treatment 

 

• In standard regression methods, we would adjust for covariates 
by including them as covariates.  This adjustment may fail 
when adjusting for confounding due to measured 
confounders and when the treatment is time varying 
because: 

  

 1. The confounder may be a confounder for later 
 treatment and should be adjusted for, but 

 2. The confounder may be affected by earlier treatment, and 
 so should not be adjusted for, according to the standard 
 methods. 

 

• The solution suggested is to adjust for time dependent 
covariates by using them to calculate inverse probability 
weights rather than including them as covariates. 



• Confounders could be fixed (usually at baseline) or time-varying. 

 

• A variable is a time-dependent confounder if it predicts 

 1. future treatment and 

 2. future outcome, conditional on past treatment. 

 

 

Time varying confounding 

Treatment 
at time 1 

Treatment 
at time 2 

Variable at 
time 1 

Variable at 
time 2 

Death 
 



Marginal structural models: original article 

Epidemiology: September 2000 - Volume 11 - Issue 5 - pp 550-560 
 
715 WoS citations. 

 



Marginal structural models: basic idea 

• Suppose that at each timepoint t, we could create an identical 
copy of each patient. 

 

• Then if the real patient received treatment, we would give the 
copy control and vice versa. 

 

• We could then compare the patient to its copy. 

 

• This solves confounding by matching: the patient is matched with 
the copy. 

 

• Obviously this is impossible but we can use the idea to define the 
counterfactuals for each patient to be the outcomes for each of 
imaginary copies. 

 

 



Marginal structural models: basic idea 

• Idea: treat the counterfactuals as missing data and use inverse 
probability weighting. 

 

• MSMs use inverse-probability weighting to deal with the 
unobserved (“missing”) counterfactuals. 

 

• We cannot adjust for confounders but using IPW, can re-weight 
the dataset so that treatment and covariates are unconfounded. 

 i.e. that the mean covariate levels are the same between treated 
and untreated patients. 

 

• So we can do a simple marginal analysis. 

 

• Gives an average causal effect, but can be used to estimate 
average treatment effect on treated, average treatment effect on 
untreated. 



Key assumption:  
Conditional Exchangeability 

• In observational studies, if there exists a confounder X, we can 
stratify by this to create exchangeability within levels of X.  This in 
effect creates a randomised experiment within the levels of X, i.e. 

 

Y(Z) ┴ Z | X=x for all z 

 

• However, this assumption cannot be tested. 

 

• We can weight our population to produce this conditional 
exchangeability, thereby producing a randomised pseudo-
population which allows us to use the association=causation 
argument from previously. 



Where can MSMs be used? 

• Comparative effectiveness research 

 

• Mediation analysis 

 

• Time-varying treatments  

 Non-compliance in randomised trials 

Randomisation 
 

Treatment 
at time 2 

Side effects 
at time 1 

Side effects  
at time 2 

Outcome 
 



A brief history of causal inference (5) 

• Developed a theory of causal and 
counterfactual inference based on 
graphical models and probabilistic 
reasoning. 

 

• Derived a new method  
for determining relations 
between variables, known 
as ‘do-calculus’. 

 

• Explores the link between 
counterfactuals and  
non-parametric structural 
equation models. 

 

Judea Pearl 



• Observed variables in squares, unobserved (latent) variables in 
circles. 

• An arrow (directed link) between variables represents a causal 
effect. 

• X is a measured confounder, U is an unmeasured confounder. 

• Use the graph to read of conditional independencies: 

  Y ┴ R | D,X,U 

Path diagrams/Directed Acyclic Graphs 

Y D 

X 

U 

R 



ITE = δi = Yi|do(Zi=1)-Yi|do(Zi=0) 

 

 where ‘do(Zi=1)’ means that the Zi is set to one by the 
investigator. 

 

• This is mathematically equivalent to the description in terms of 
potential outcomes but has the advantage of emphasising the 
importance of experimental manipulation. 

 

• “Doing” rather than just “Seeing”. 

 

• It emphasises the role of intervening on variables, i.e. removing 
all arrows into the variable in the DAG. 

Link with Pearl’s do operator 



A brief history of causal inference (6) 

• There is a group who argue 
against using the counterfactuals or  
potential outcomes framework. 

 

• Dawid and colleagues propose 
for methods for causal inference  
without counterfactuals,  
mainly using decision theory,  
graphical models and 
stochastic modelling. 

 

 

 

L-R: Carlo 
Berzuini, 

Phil Dawid, 
Vanessa 
Didelez 



• The concepts are deterministic rather than stochastic – the 
potential outcomes are fixed for each subject, and just waiting to 
be revealed according to the assignment mechanism. 

 

• We can never learn anything about the joint distribution of Yi(1) 
and Yi(0) when they can never be observed together.  In 
particular we can never learn anything about the covariance 
(correlation) of Yi(1) and Yi(0).  Although we can in principal 
estimate the average of the individual treatment effects, we 
cannot estimate their variance. 

 

Objections to counterfactuals (Dawid, 2000) 



Is the terminology important? 

 

“Personally I see the different formalisms as 
different ‘languages’.  The French 

language may be best for making love 
whereas the Italian may be suitable for 
singing, but both are indeed possible…” 

 
Lauritzen: Scandinavian Journal of Statistics  2004 Vol. 31 

p189 



Some recent volumes on causal inference 

• Plus forthcoming volumes: 

 ‘Causal Inference’ by Robins and Hernán. 

 ‘Causal Inference in Statistics and Social Sciences’ by Imbens 
and Rubin. 



New Journal of Causal Inference 

• Journal of Causal Inference (JCI) 
publishes papers on theoretical and 
applied causal research across the 
range of academic disciplines that 
use quantitative tools to study 
causality. 

 

• Journal of Causal Inference aims to 
provide a common venue for 
researchers working on causal 
inference in biostatistics and 
epidemiology, economics, political 
science and public policy, cognitive 
science and formal logic, and any 
field that aims to understand 
causality.  



Expertise at the Centre for Biostatistics 

http://www.population-health.manchester.ac.uk/biostatistics  



UK-Causal Inference Meeting (UK-CIM) 
 

• https://sites.google.com/site/ukcausalinferencemeeting/ 

 

• First UK wide meeting on causal inference, organised by the 
Centre for Biostatistics. 

 

• Tuesday 14th May - Wednesday 15th May 2013 at The University 
of Manchester. 

 

• Theme: “Causal Inference in Health and Social Sciences”. 

 

• Stijn Vansteelandt confirmed as Keynote Speaker 

 

• Registration now open: £60 academics, £30 students. 


