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Statistical Properties of R-indicators 
 

1. Introduction  
 
One of the most important factors affecting the quality of surveys of households 

or enterprises is nonresponse. The impact of nonresponse on survey quality is 
typically measured by the response rate. The response rate alone, however, is not 
sufficient as a quality indicator to capture the potential impact of nonresponse. The 
bias of estimates resulting from nonresponse also depends on the contrast between 
respondents and nonrespondents  with respect to a target variable. The more they 
differ, the larger the bias will be. Good indicators that measure the degree to which 
the group of respondents of a survey still resembles the complete sample are currently 
lacking. 

 
RISQ (Representativity Indicators for Survey Quality), a project funded from the 

7th EU Framework Programme (FP7), was set up in order to fill the gap of indicators 
for nonresponse. The main objectives of the project are to elaborate and develop 
indicators for the representativity of survey response, to explore the characteristics of 
these indicators, and to show how to implement them in a practical data collection 
environment. With these indicators the project attempts to support the comparison of 
the quality of different surveys and to facilitate the efficient allocation of data 
collection resources. We call the indicators Representativity indicators or R-indicators. 

 
This report is the first technical deliverable of RISQ and develops and discusses 

statistical theory for R-indicators. The paper concentrates on the statistical properties, 
i.e. bias and variance, of two potential R-indicators. Due to the missing data character 
of nonresponse, no statement about the representativeness of response is possible 
without information that is external to the survey. The availability and form of this 
auxiliary information strongly influences the use and interpretation of potential 
indicators. Furthermore, it is intuitively evident that the size of the survey sample is 
influential as well. In very small samples there is insufficient information contained in 
the response to make strong statements about the nature of the nonresponse. Both 
issues, auxiliary information and sample size, will not be discussed in this report, but 
are the topics of a forthcoming RISQ report. Here, we elaborate on the properties of 
R-indicators given a fixed, available set of auxiliary variables and given an unknown 
sample size. 

 
One of the main objectives of the R-indicators we construct, is to enable the 

comparison of the representativeness of different surveys that contain the same sets of 
auxiliary variables. By doing so we disconnect the representativeness of the survey 
response from the survey topic(s). Or in other words the R-indicators view 
representativeness as a function of fully observed auxiliary information only. This 
way we can compare responses to surveys with different topics. It must be noted, 
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however, that the lack of representativeness, as we propose to measure it,  may be 
more harmful for some survey topics than for other survey topics. 

 
Our construction of R-indicators is not designed to provide an adjustment for 

nonresponse nor to provide guidance in the selection of weighting variables. The R-
indicators do, however, show the extent to which we need to rely on nonresponse 
adjustment methods. Nonresponse adjustment methods may remove part of the bias 
that is due to nonresponse under the assumption that nonrespondents resemble 
respondents with approximately the same values of the weighting variables. Lower 
values of R-indicators indicate that this assumption may be less likely. 
 

In order to construct R-indicators for comparing different surveys, data sets were 
assembled from the participating countries in the RISQ research project: Belgium, 
The Netherlands, Norway, Slovenia and the UK. In this paper we illustrate the two R-
indicators for a number of country data sets given auxiliary variables that are shared 
by all countries. The country data sets consist of both household and business surveys. 
 

The report will focus on the following two R-indicators: 

1. a measure based upon the variance of estimated response probabilities, as 
discussed in the papers by Cobben and Schouten (2005, 2007) which provided the 
basis of the original application, and as discussed  in Schouten et al. (2008). 

2. a related measure proposed by Särndal and Lundström (2008), in the context 
of selecting auxiliary variables for weighting adjustment. 

 
We have selected the Cobben and Schouten (2005) indicator as it is directly based 

on a definition of representative response. They call response strongly representative 
when individual response probabilities are the same for all population units. Response 
is weakly representative with respect to some stratification variable when response 
propensities of the corresponding strata are equal. Cobben and Schouten propose the 
indicator as a natural measure for the deviation from weakly representative response. 
Also, their indicator conveniently appears in bounds for the nonresponse of survey 
estimators like the weighted response mean and the generalised regression estimator. 

 
Särndal and Lundström (2008) propose a measure that enables the selection of 

variables in calibration estimators. Variables in weighting models ideally relate both 
to nonresponse and to the main survey items. Särndal and Lundström derive their 
measure from approximations to the bias of calibration estimators and argue that for 
many possible survey items a large value of the measure will correspond to a small 
bias of the calibration estimator for those items. This measure was selected because, 
as for the Cobben and Schouten measure, it can be computed using auxiliary 
information only and as it is based on a clear underlying goal, i.e. the minimisation of 
nonresponse bias. 

 



4

The definition of both R-indicators will be presented in this report together with a 
discussion of their theoretical foundations and properties as well as a report on 
empirical results obtained from a simulation study and estimates from selected 
country data sets.  We will focus on theoretical aspects of the R-indicators in the 
context of a single survey, where the aim is to estimate each R-indicator. For the 
practical motivation and potential uses of these indicators, see  Cobben and Schouten 
(2005, 2007),  Schouten et al. (2008) and Särndal and Lundström (2008).  

 
The estimation of the R-indicators is very much dependent on the type of 

available auxiliary information. In this report, we shall assume that auxiliary 
information is available at the sample level. A quite different set of methods is 
available if the only auxiliary information available is in aggregated form at the 
population level – these methods will be discussed in a later RISQ deliverable.  
 

In this report, we shall first formulate the theoretical framework in section 2. In 
particular, we shall discuss the notion of response propensities. A more detailed 
discussion of some of the issues arising in the definition of response propensities is 
given in Annex 1. The two R-indicators are defined formally at the population level in 
section 3. The estimation of these population-level R-indicators using sample data is 
then discussed in section 4. The theoretical properties of these point estimators are 
discussed in section 5. Since the estimators are subject to potentially non-negligible 
bias, we introduce bias-corrected estimators. We also consider the variances of the 
estimators and potential variance estimators and confidence intervals. Section 6 
includes some discussion of the theoretical relationship between the R-indicators and 
nonresponse bias. A simulation study and results of that study are described in Section 
7. Finally, illustrative findings from applications to the country data sets are given in 
Section 8. 
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2. Theoretical Framework 
 
2.1 General notation and nature of available information 

 
We suppose that a sample survey is undertaken, where a sample s is selected 

from a finite population U . The sizes of s and U are denoted n and N , respectively. 
The units in U are labelled 1,2, ,i N= K . The sample is assumed to be drawn by a 
probability sampling design (.)p , where the sample s is selected with probability ( )p s .

The first order inclusion probability of unit i is denoted iπ and 1−= iid π is the 
design weight. In some cases, we shall assume simple random sampling without 
replacement.  

 
We suppose that the survey is subject to unit nonresponse. The set of responding 

units is denoted . Thus, we have r s U⊂ ⊂ . We denote summation over the 
respondents,  sample and population by rΣ , sΣ and UΣ , respectively.  We let  iR be 

the response indicator variable so that 1iR = if unit i responds and 0iR = , otherwise. 

Hence, { ; 1}ir i s R= ∈ = .

We shall suppose that the typical target of inference is a population mean 
1

iUY N y−= ∑ of a vector of survey variables, taking value iy for unit i .

We suppose that the data available for estimation purposes consists first of the 
values };),,,({ .,2,1 riyyyy T

iLiii ∈= K of the survey variables, observed only for 
respondents. Secondly, we suppose that information is available on the values of 

T
iKiii xxxx ),,,( ,,2,1 K= , a vector of auxiliary variables. We shall usually suppose each 

,k ix is a binary indicator variable, where ix represents one or more categorical 

variables, since this will be the case in the applications we consider, but our 
presentation allows for general ,k ix values.  We assume that values of ix are observed 

for all respondents. For the majority of this document we shall also assume that ix is 
known for all sample units, i.e. for both respondents and non-respondents. We refer to 
this as sample-based auxiliary information. This is a natural assumption if, for 
example, the variables making up ix are available on a register. However, in many 
countries and survey settings the availability of auxiliary information on non-
respondents may be very limited, e.g. because of the absence of a register. In such 
circumstances, aggregate population-based auxiliary information may be available. 
This might take the form of a (finite) population total and/or mean and/or covariance 
matrix of ix . We shall refer briefly to the use of such information for estimation in 
this document. However, we shall postpone considering this possibility in detail until 
the Deliverable 2 of this workpackage (WP3). Of course, it is also possible that there 
exists some combination of sample-based and population-based auxiliary information, 
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with the combination perhaps varying between the different variables constituting ix .
For simplicity, this document will focus just on the case of sample-based information 
on the whole of ix .

2.2 Response propensities 
 
We first assume for simplicity that nonresponse is what Rubin (1987) refers to as 

‘stable’, that is that the response indicator variable iR is defined for each population 
unit i U∈ . We shall further assume that the sampling design and the nonresponse 
process are ‘unconfounded’ (Rubin, 1987) so that the probability of selecting s U⊂
remains ( )p s , whatever the values of the ,iR i U∈ . Thus, it is assumed that 
nonresponse does not depend on the configuration of the sample.  

 
We define the response propensity as a conditional expectation of the response 

indicator variable iR given the values of specified variables and survey conditions 
(Little, 1986, 1988). In other words, the response propensity is the probability of 
response conditional on the specified variables and conditions. For example, we may 
write ( , ) ( | , )YX i i i i iy x E R y xρ = as the response propensity, if the probability is 

conditional on iy and ix . Here, the subscript YX indicates the conditioning variables. 
We use the term ‘response propensity’ to indicate that the definition is specific to the 
conditioning variables and that we are not referring to any assumed ‘true response 
probability’ that exists for each unit, whatever the nature of the auxiliary variables. 
We might seek to interpret the probabilistic nature of the response propensity (i.e. the 
source of the expectation  (.)E in our definition) as being with respect to the 
nonresponse process. However, since the definition is conditional on arbitrary 
conditioning variables, it will implicitly also usually refer to some underlying 
superpopulation model. To illustrate this, let ( ) ( | )Y i i iy E R yρ = . Then, since 

( | ) [ ( | , ) | ]i i i i i iE R y E E R y x y= , we may write: 
 

( ) [ ( , ) | ]Y i YX i i iy E y x yρ ρ= . (2.1) 
 
Here, we are treating ( , )YX i iy xρ as a random variable, where the randomness derives 

from a superpopulation distribution for ix and the expectation is taken across this 

distribution. Hence, if ( , )YX i iy xρ were interpreted as reflecting the response process 

then ( )Y iyρ needs to be interpreted as reflecting a combination of this response 

process and the superpopulation model for ix .

Note also that we implicitly assume that iR depends only on values of survey or 
auxiliary variables for unit i and not for other units in the population. 



7

We argue in Annex 1 (section A1.3) that an ideal definition of the response 
propensity would be the probability of response conditional on iy , which in the 
general case would be a vector of all survey variables of interest. In this case, we 
would write ( ) ( | )Y i i iy E R yρ = . The attraction of this definition is that it would 
capture all aspects of the response process relevant to bias in estimation of population 
parameters defined in terms of iy . However, under this definition, ( )Y iyρ would in 

general not be directly estimable because, by assumption, iy is missing for 
nonrespondents. An alternative definition, and the one we adopt, is to take the 
response propensity as ( ) ( | )X i i ix E R xρ = , where the vector of auxiliary variables is 

defined as in section 2.1.  For simplicity, we shall usually write ( )i X ixρ ρ= and 

hence denote the response propensity just by iρ .

An important condition, in this case when the response propensity is defined as 
( ) ( | )X i i ix E R xρ = , is whether nonresponse is missing at random, denoted MAR 

(Little and Rubin, 2002), that is whether nonresponse is conditionally independent of 

iy given ix . Under the MAR condition, we may write ( | , ) ( | )i i i i iE R y x E R x= or, 

alternatively, ( , ) ( )YX i i X iy x xρ ρ= . It follows from (2.1) that we may write: 
 

( ) [ ( ) | ]Y i X i iy E x yρ ρ= (2.2) 
 
If this is the case, it follows that ( )Y iyρ can, in principle, be determined from 

( )i X ixρ ρ= and so all aspects of the response process relevant to nonresponse bias 

are captured by the iρ . In fact, if MAR holds, the definition ( )i X ixρ ρ= might be 
viewed as conservative since we have: 

 
var( ) var[ ( )] var{ [ ( ) | ]} {var[ ( ) | ]}i X i X i i X i ix E x y E x yρ ρ ρ ρ= = +  

var[ ( )] {var[ ( ) | ]}Y i X i iy E x yρ ρ= +  (2.3) 
 

Note that again, we are treating iρ as random with respect to the superpopulation 

model for ix . The first term on the right hand side of (2.3) represents the variation of 

the conditional probabilities ( )Y iyρ , which we should ideally like to use. The second 
term represents additional variation which is unrelated to nonresponse bias and may 
be viewed as redundant variability, i.e. noise, in the iρ relative to what we are 
interested in.  

 
One special case occurs when nonresponse is missing completely at random 

(MCAR) so that it is independent of  both ix and iy . In this case, both ( )X ixρ
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and ( )Y iyρ are constant so that both terms on the right hand side of (2.3) are zero. 

Hence, there is no variability in the iρ and this does, albeit in a degenerate way, 
capture the fact that there is nothing in the nonresponse process that will lead to 
nonresponse bias for estimation related to iy .

If nonresponse is NMAR then (2.3) no longer holds. Instead, ( )i X ixρ ρ= will 

represent a smoothed version of ( , )YX i iy xρ and it is not necessarily the case that 

var( )iρ will be at least as large as var[ ( )]Y iyρ . Thus, we may fail to capture relevant 

features of the nonresponse process in the iρ . In particular, if iR is conditionally 

independent of ix given iy then var[ ( )]Y iyρ will necessarily be at least as large 

as var( )iρ , i.e. var[ ( )]X ixρ (following a parallel argument to the MAR case).  It may 

be argued therefore that it is desirable to select the auxiliary variables constituting ix
in such a way that the MAR assumption holds as closely as possible.  In any case, it 
must be emphasized that our definition of  ( )i X ixρ ρ= relates to a specific choice of 

auxiliary variables ix . A different choice would generally result in a different iρ .

We noted at the beginning of this section that we define the response propensity 
conditional on the survey conditions that apply when the data (described in section 2.1) 
are collected. We do not make this conditioning explicit in our notation, but it is 
crucial to recognize this conditioning since, as we noted in section 1, one of the main 
objectives of constructing R-indicators is to be able to compare the representativeness 
of different surveys. And such comparisons becomes challenging when the definition 
of the response propensity for any one survey is dependent on the conditions with 
which that survey has been implemented, for example upon the modes of data 
collection, the choice of interviewers, the way these interviewers were trained and 
work and  the contact strategy. Even for a single survey repeated at different points in 
time, such conditions may well not remain constant.  

 
See Annex 1 for a fuller discussion of some of the above points and the 

assumptions underlying our definition of response propensities.  
 

2.3 Nonresponse models 
 
In order to estimate R-indicators, we shall first estimate the response propensities, 

where these are defined as ( | )i i iE R xρ = , as discussed in the previous section. To 
enable these probabilities to be estimated we shall make certain parametric modelling 
assumptions about how iρ depends on ix . In this section, we first discuss alternative 
parametric models and then provide some supplementary discussion of non-
parametric models and some implications of the complexity of the model for the 
variability of the iρ .
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A general class of models representing the dependence of iρ on ix may be 
expressed in the form:  

 
g( ) 'i ixρ β= , (2.4) 

 
where g(.) is a specified link function, β is a vector of unknown parameters to be 
estimated, and ix may involve the transformation of the original auxiliary variables 
(e.g. by including interaction terms) for the purpose of model specification. For 
simplicity, we assume equal inclusion probabilities for all population units. A 
standard choice of link function is the logit function, leading to the logistic regression 
model:  

 
log[ /(1 )] 'i i ixρ ρ β− = (2.5) 

 
Another link function with similar behaviour to the logit is the probit function. 

We shall also consider the use of the identity link function, which gives the ‘linear 
probability model’: 

 
'i ixρ β= , (2.6) 

 
since this will offer particular simplifications in the case of population-based auxiliary 
information.  

 
Särndal and Lundström (2008) consider the reciprocal link function, which gives:  
 

1 'i ixρ λ− = , (2.7) 
 

and they refer to  1
iρ
− as the influence and denote it iφ . They assume that the 

vector ix is defined in such a way that there exists a constant vector c such that 

' 1ic x = for all i U∈ . This restriction will in most practical situations be met and is 
effectively equivalent to assuming that a constant intercept term is included in the 
auxiliary information. 

 
Särndal and Lundström (2008) view (2.7) as a hypothetical model which will not 

hold in practice and they instead focus on a finite population approximation to this 
model. This approximation is obtained by first defining a value Uλ of λ which 
achieves the best fit of model (2.7) in the finite population. For mathematical 
convenience, they define the fit as the weighted sum of squared differences 

1 2( ' )i i iU xρ ρ λ− −∑ and this is minimised when: 
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1( ')U i i i iU Ux x xλ ρ −= ∑ ∑ , (2.8) 

 
provided ix is defined so that the inverted matrix in (2.8) is non-singular. This implies 

that a finite population approximation to  iφ is given by: 
 

1'( ')Ui i i i i iU Ux x x xφ ρ −= ∑ ∑ . (2.9) 

 
We refer to these quantities as the approximate influences.

All the above approaches employ global parametric models. We could also 
consider the dependence of iρ on ix in more nonparametric or local way. The 

simplest case is when the variables in ix are categorical and define a fixed number of 

classes. In this case, we take iρ to be constant within classes and define these 
constant values as the limits, as the population size increases, of the response rates 
within the classes. In more general cases, we might imagine a nonparametric 
model ( )xρ , which is a smooth function of x , where ( )i ixρ ρ= may be interpreted as 
the limiting response rate for a small neighbourhood consisting of population units 
with values of  x close to ix in some sense.  Such a representation reveals a further 
modelling issue. We have already emphasized in section 2.2. the strong dependence 
of iρ on the choice of the auxiliary variables constituting ix . In cases where an 
auxiliary variable is continuous or detailed, for example age in years or location by 
spatial coordinates, there is an additional potential dependence of the definition of iρ
on the degree of detail of the auxiliary variable in the model. In the nonparametric set-
up this corresponds to the size of the classes or small neighbourhoods or equivalently 
on the smoothness of the function (.)ρ . The smaller the neighbourhoods, the less the 
degree of smoothing and the greater the potential variation of iρ . For example, if the 

auxiliary variable is location then values of iρ representing response rates in areas of 

10,000 inhabitants are likely to be more variable than values of iρ representing 
response rates in areas of 100,000 inhabitants. This corresponds to the impact of 
degree of complexity in a parametric model. The more complex the model becomes, 
for example via the introduction of additional auxiliary variables, including  
polynomial terms in a continuous auxiliary variable or more interaction terms, the 
more variable are the corresponding iρ values likely to be.  

 
2.4 The selection of auxiliary information 

 
We make a brief intermezzo to address the selection of auxiliary variables ix , as 

it is important to stress that the availability and the choice of ix have a strong 
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influence on the values of ( )i X ixρ ρ= . As a consequence, also the values of R-

indicators may depend on  ix .

First, it is evident that when no auxiliary information is available, it is impossible 
to make any statement about the representativeness of the survey response. Moreover, 
the representativeness of different surveys can only be compared in relation to 
auxiliary information which is available in every survey. With the same information 
we mean auxiliary variables that have the same definitions and categories. 

 
Second, the nonresponse model itself may be of influence even when the 

auxiliary information is the same. Different models may lead to different estimates for 
response propensities and, hence, potentially to different values of R-indicators. For 
this reason, ideally the nonresponse models should be the same when R-indicators are 
computed. 
When the auxiliary information and nonresponse models are the same for different 
surveys, then one may still wonder which auxiliary variables to include in the models 
and which not. One may either fix a model beforehand or employ a variable selection 
algorithm based on some significance level or stopping rule. In this report we fix the 
auxiliary variables beforehand and do not select models. 

 
In a forthcoming RISQ paper we will elaborate extensively on the relation 

between auxiliary information, nonresponse models and measures for representativity. 
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3. Definition of R-Indicators at the population level 

Let 1 2( , ,..., ) 'Nρ ρ ρ=ρ denote the vector of response propensities in the 
population. Following Schouten et al. (2009), the representativity of the response 
mechanism may be measured by the variation between the iρ and in particular by the 
standard deviation of the response propensities given by:  

 

21( ) ( )
1 i UUS

N
ρ ρ= −

−
∑ρ , (3.1) 

 
where      /U iU Nρ ρ=∑ . (3.2) 

 
It may be shown that: 

1( ) (1 )
2U US ρ ρ≤ − ≤ρ .

Hence, transforming ( )S ρ to:  
( ) 1 2 ( )R S= −ρ ρ (3.3) 

ensures that 0 ( ) 1R≤ ≤ρ and, as discussed by Schouten et al. (2009), ( )R ρ defines an 
R-indicator which takes values on the interval [0,1] with the value 1 indicating  the 
most representative response, where the iρ display no variation, and the value 0 

indicating the least representative response, where the iρ display maximum variation. 
 
Note that the minimum value of ( )R ρ depends on the response rate. For 1 2Uρ = ,

the minimum value of ( )R ρ is 0. For 0Uρ = or 1Uρ = , no variation in iρ is possible 
and the minimum value of ( )R ρ is 1. In general, the minimum value which ( )R ρ may 

take is given by 1 2 (1 )U Uρ ρ− − .

Särndal and Lundström (2008) define the following R-indicator: 
 

2 1 2( ) [ ] [ ( ) ]i i Ui UU UQ ρρ ρ φ φ−= −∑ ∑ρ (3.4) 

 
where Uρφ is the iρ - weighted mean of the Uiφ given by 

 
1( ) ( )U i i UiU Uρφ ρ ρ φ−= ∑ ∑ . (3.5) 

 
This quantity is a weighted variance of the approximate influences. We may 

expect its magnitude to be inversely related to the magnitude of  ( )R ρ . Thus, in very 
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rough terms, we expect ( )R ρ to decrease and 2 ( )Q ρ to increase as the variability of 
the iρ increases.  

 
It is important to emphasize again (see section 2.2) that the definitions of the R-

indicators depend very much on the choice of auxiliary variables ix . Furthermore, as 
discussed at the end of section 2, the definitions depend upon the smoothness of the 
modelled dependence of iρ on ix . We may expect that the smoother the model, the 

less heterogeneous will be the iρ and hence, for example, the larger ( )R ρ will be. 
 



14

4. Estimation 
 
4.1 Estimation of population totals from sample and respondent data 
 

In the following sections, we shall use the fact that, for a given variable iz , the 

design-weighted sample total i is d z∑ is a design-unbiased estimator of the population 

total iU z∑ and the design-weighted respondent total i ir d z∑ is an unbiased estimator 

of the iρ - weighted population total i iU zρ∑ . By design-weights we mean the 

sample inclusion weights, i.e. the reciprocals of the sample selection probabilities. 
 

4.2 Estimation of nonresponse models 
 
The estimation of the models in section 2.3 depends on the nature of the auxiliary 

information (see section 2.1). Here, we assume sample-based auxiliary information. In 
this case the model in (2.4) can be estimated from the data on respondents and 
nonrespondents by maximum pseudo likelihood (Skinner, 1989) i.e. the parameter 
vector β in this model may be estimated by the value β̂ , which solves: 

 
1[ ( ' )] 0i i i is d R g x xβ−− =∑ (4.1) 

 
where 1(.)g− is the inverse of the link function. One reason for using the design 
weights here is because the objective is to estimate an R-indicator which provides a 
descriptive measure for the population.  
 
The linear probability model in (2.6) can be estimated in closed form by ordinary least 
squares or by weighted least squares, where the weights are the design weights. 

 
For the reciprocal link function model in (2.7), Särndal and Lundström (2008) 

approximate the model by  Uii x λρ ′≈−1 , where Uλ is defined in (2.8) and estimate this 

approximate model by estimating Uλ from the sample data by: 
 

1ˆ ( ')U i i i i ir sd x x d xλ −= ∑ ∑ . (4.2) 

 
Note that this estimation follows the strategy in section 4.1 and that it also 

assumes sample-based auxiliary information. 
 
In the case of a nonparametric model with constant values of iρ within classes 

defined by x , there are various ways of determining the classes. We consider a 
classification tree method based on the CART algorithm. This algorithm is 
implemented in the SPSS computing package. CART is a method that builds classes 
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which are homogenous with respect to the response rate by carrying out successive 
binary splits of the sample according to the values of ix . The splitting is continued 

until a further split does not enhance the prediction of iR or a stopping rule is met 
based on a minimum sample size within the classes. For each of the final classes 
determined by the algorithm, iρ for units i within that class is estimated by the 
number of respondents in the class divided by the sample size in the class. 

 
4.3 Estimation of response propensities 

 
For the generalized linear model in (2.4), the usual estimator of the response 

propensity iρ is: 
 

1 ˆˆ ( ' )i ig xρ β−= , (4.3) 
 
where β̂ is the estimator of β obtained as discussed in the previous section.  
 

In the case of the linear probability model in (2.6), if β is estimated by (design-) 
weighted least squares, the implied estimator of iρ is given by:  

1ˆ '( ')OLS
i i i i i i i is sx d x x d x Rρ −= ∑ ∑ , (4.4) 

 
which may also be expressed as: 
 

1ˆ '( ')OLS
i i i i i i is rx d x x d xρ −= ∑ ∑ . (4.5) 

 
In the approach of Särndal and Lundström (2008) with the reciprocal link 

function, iφ is estimated by:  
 

ˆ ˆ'i i Uxφ λ= , (4.6) 
 
where Ûλ is defined in (4.2), so that:  
 

1ˆ '( ')i i i i i i ir sx d x x d xφ −= ∑ ∑  (4.7) 

 
and the resulting estimator of  iρ is 1

îφ
− .

For the logit or probit link function, the estimator ˆiρ obtained from (4.3) must fall 
in the feasible interval [0,1].  This is not necessarily the case for either the estimator 
based on the linear probability model in (4.5) or the estimator 1

îφ
− of iρ based on (4.7). 
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All the estimators above assume that sample-based auxiliary information is 
available. In deliverable 2 for this Workpackage, we shall explore what is feasible in 
the case of population-based auxiliary information. In particular, we note that i is d x∑
and 'i i is d x x∑ are unbiased for iU x∑ and 'i iU x x∑ , respectively and that in large 

samples we may expect that ∑ ∑≈s U iii xxd and ∑ ∑ ′≈′
s U iiiii xxxxd . It follows 

from (4.5) that we may approximate ˆ OLS
iρ by: 

 
1'( ')OLS

i i i i i iU rx x x d xρ −= ∑ ∑% , (4.8)  

 
and from (4.7) that we may approximate îφ by: 
 

1'( ')i i i i i ir Ux d x x xφ −= ∑ ∑% . (4.9) 

 
Expressions (4.8) and (4.9) provide estimators of the response propensity for 

respondents when ix is not available for individual nonrespondents but aggregate 
population-level information  is available. The estimator in (4.8) requires knowledge 
of the population sums of squares and cross-products 'i iU x x∑ of the elements of ix .

The estimator in (4.9) only requires knowledge of the population total of each of the 
elements of ix .

4.4 Estimation of R-indicators 
 
Let iρ̂ be an estimator of the response probability iρ , as discussed in the 

previous section. Assuming that sample-based auxiliary information is available,  iρ̂

may be computed for each i s∈ . An estimator of Uρ is then given by 
 

ˆ ˆ( ) /U i is d Nρ ρ= ∑ . (4.10) 

 
Alternatively, we could replace N in the denominator by is d∑ . We estimate the 

R-indicator ( )R ρ by: 
 

21ˆ ˆˆ( ) 1 2 ( )
1 i i UsR d

N
ρ ρ= − −

−
∑ρ (4.11) 

 
Again, we could replace 1N − in this expression by is d∑ . We shall consider 

bias-adjusted versions of ˆ ( )R ρ in section 5.1 
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If iρ̂ is only available for respondents ( i∈ ), as in the case of aggregated 
population-level auxiliary information described at the end of the previous section, a 
possible estimator of ( )R ρ is:  

1 21ˆ ˆˆ ˆ( ) 1 2 ( )
1r i i i rrR d

N
ρ ρ ρ−= − −

−
∑ρ

where ˆ ( ) /r ir d Nρ = ∑ . This corrects for nonresponse bias using 1ˆiρ
− - weighting. The 

validity of this correction depends on the validity of the estimates iρ̂ .

We now turn to the estimation of 2 ( )Q ρ in (3.4). Särndal and Lundström (2008) 
propose the following estimator: 

 
2 1 2ˆ[ ] [ ( ) ]i i i rr rq d d φ φ−= −∑ ∑ , (4.12) 

 
where îφ is defined in (4.7) and ˆ( ) /( )r i i ir rd dφ φ= ∑ ∑ . They note that in fact φ can 

be reexpressed as ( ) /( )r i is rd dφ = ∑ ∑ .

The estimator in (4.12) is based only upon respondent data. However, îφ in (4.6) does 

depend on i is d x∑ which may not be available in the case of aggregated population 

level information. In such cases, we may replace îφ in (4.12) by iφ% from (4.9). 
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5. Bias and confidence intervals 
 
5.1 Bias and bias adjustment 

We may expect the estimator ˆ ( )R ρ defined in (4.11) to be biased downwards 
for ( )R ρ , defined in (3.3), because of the sampling variation in the estimated values ˆiρ .
We approximate the bias as follows. We write  

 
1ˆ ˆ( ) 1 2

1
R

N
= − ∆

−
ρ ,

where 2ˆ ˆˆ( )i i U
i s

d ρ ρ
∈

∆ = −∑ and ˆ
Uρ is defined in (4.10). We derive in Appendix 4 the 

following approximation: 
 

21)ˆ( λλ ++∆=∆E ,

where  2( )i UU ρ ρ∆ = −∑ ,

1 ˆ{ ( | )}i isE d V sλ ρ= ∑ ,

2
ˆvar ( ) 2 cov( , )p s U s sN Nλ ρ ρ ρ= − + ,

ˆ
s isN d=∑ and 1

s i isN dρ ρ−= ∑ .

An estimator of  1λ is 1̂
ˆ ˆ( | )i is d V sλ ρ=∑ , where ˆ ˆ( | )iV sρ is the estimator of 

ˆ( | )iV sρ given in Annex 2. In the case of constant weights /id N n= we have  
 

2 1
1̂

ˆ ˆ( / ) ( ' ) '[ ( ' ) ']i i j j j is
j s

N n h x x h x x x xλ β β −

∈
= ∇ ∇∑ ∑ ,

where 2ˆ ˆ ˆ( ' ) exp( ' ) /[1 exp( ' )]i i ih x x xβ β β∇ = + . In the case of constant weights we also 
have 2 var ( )p sNλ ρ= − . Under simple random sampling we may write 

1 1
2 ( )n Nλ − −= − − ∆ . It follows that a bias corrected estimator of ∆ in the case of 

simple random sampling is: 
 

1 1 2 1
1 2
ˆ ˆ ˆ ˆˆ ˆ(1 ) ( / ) ( ' ) '[ ( ' ) ']i i j j j is

j s
n N N n h x x h x x x xλ λ β β− − −

∈
∆ = ∆ − − = + − ∆ − ∇ ∇∑ ∑% .(5.1) 

 
A bias-corrected estimator of ( )R ρ in this case is given by: 
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1( ) 1 2
1

R
N

= − ∆
−

ρ% % . (5.2) 

 
We may also expect the estimated R-indicator 2q to be biased upwards for the 

same reason. We do not have as extensive an analysis of the bias of 2q . A simple  
bias correction is obtained by estimating the bias as: 

 
2 1 ˆˆ ˆ( ) [ ] [ ( )]i i ir rB q d d V φ−= ∑ ∑ , (5.3) 

 
where ˆˆ( )iV φ is an estimator of the variance of îφ . An expression for such a variance 
estimator is given in Annex 5. 
 
5.2 Standard errors and confidence intervals 

 
A linearization variance estimator for ˆ ( )R ρ is derived in Annex 4. It depends on 

two components. The first treats β̂ as fixed and may be expressed as a linearization 
estimator in a fairly straightforward way. The second term allows for the variance of 
β̂ . The expression in Annex 4 assumes that a logistic regression model is fitted.  

 
A linearization variance estimator for 2q is derived in Annex 5. This estimator 

follows the approach of Shao and Steel (1999), where the variance is estimated with 
respect to the sampling design treating the response indicators as fixed (given our 
assumption that the sampling and response processes are unfounded). Then, provided 
the sampling fraction is small, this variance estimator should be approximately 
unbiased for estimating the variance of 2q with respect to both the sampling design 
and the response process. 

 
An alternative approach would be to use a replication variance estimation method, 

such as the bootstrap or jackknife (Wolter, 2007; Shao and Tu, 1995). This would 

generally involve recomputing  the estimated R-indicator as ˆ
bR for B replicate 

samples 1, 2,...,b B= and then forming the appropriate variance estimator. For 
example, the bootstrap estimator for the standard error of the R-indicator is: 

 

( )2

1

1 ˆˆ
1

BBT BT BT
R bbs R R

B == −
−
∑

where 1

1ˆ ˆBBT BT
bbR R

B == ∑ .
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Confidence intervals for an R-indicator can be constructed from a variance 
estimator ˆ[ ]v R in the usual way by assuming R̂ is normally distributed. Thus, a  

)%1(100 α− confidence interval is given by 0.5
1 / 2

ˆ ˆ[ ]R v Rαξ −± , where αξ −1 is the α−1

quantile of the standard normal distribution. 
 
In the case of the bootstrap, it is also possible to obtain a  100 (1 )α− % confidence 

interval estimates directly, by ordering the estimates R̂ for the different replicates and 
defining the confidence interval in terms of the / 2α and  1 / 2α− quantiles.  

 
The bootstrap or jackknife may also be used to bias-correct R̂ . For the bootstrap, 

ˆˆ2 BTR R− is a bias-corrected estimate of the R-indicator (e.g. Efron and Tibshirani, 
1993, sect 10.6). 

 
In this paper we do not provide confidence intervals, but merely restrict ourselves 

to bias-adjusted estimates. This is mostly for practical reasons. In the forthcoming 
paper we will address confidence intervals extensively. 
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6. Relation of R-indicators to nonresponse bias 
 

Suppose that iy denotes a vector of survey variables of interest and consider 

estimation of the population mean  /i
i U

Y y N
∈

=∑ . A standard design-weighted 

estimator of hθ which does not weight for nonresponse is: 
 

/dr i i i i i
i s i s

y d R y d R
∈ ∈

=∑ ∑

where id is the design weight. We evaluate the bias of dy as an estimator of Y by 

taking its expectation with respect to the random sampling mechanism, denoted sE ,

and with respect to the conditional distribution of  iR given iy , denoted  ( | )i iE R y .

We allow here for a general MNAR mechanism and write ( ) ( | )Y i iy E R y yρ = = (see 
discussion in section 2.2. We have: 

 

∑∑∑∑
∈∈∈∈

≈







=

Ui
iY

Ui
iiY

si
ii

si
iiisdrs yyyRdyRdEEyEE )(/)(/)( ρρ , (6.1) 

 
where the approximation is for large samples and we have used the assumption that 
the sampling and response mechanisms are unconfounded. Hence the bias of dy

depends on nonresponse only via ( )Y yρ . It follows from (6.1) that  
 

∑ ∑
∈ ∈

−≈
Ui Ui

iYiiYdr yYyyyBias )(/])[()( ρρ

( ) /y y Ucorr S Sρ ρ= ρ , (6.2) 

 
where 1( 1) [ ( ) ][ ] /y Y i U i h y

i U
corr N y y Y S Sρ ρρ ρ−

∈
= − − −∑ , 2 1 2( 1) ( )y i

i U
S N y Y−

∈
= − −∑

and  ( )S ρ and Uρ are defined in (3.1) and (3.2). 
 

Expression (6.2)  is also obtained in e.g. Bethlehem (1988) and Särndal and 
Lundström (2005). Using (3.3) and the fact that 1ycorrρ ≤ , an upper bound for the 

bias is given by  
 

U

y
Uydr

SR
SSyBias

ρ
ρ

ρρ
2

))(1(
/)(|)(|

−
=≤ (6.3) 

 
The upper bound depends upon the survey item y . If  y is binary, the maximum 
possible value for yS is 0.5. Hence, in his case we also have the following bound: 
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1 ( )( )
4dr

U

RBias y
ρ

−
≤

ρ .
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7. Simulation studies of the properties of the estimated R-indicators  
 
7.1 Design of simulation studies 
 

In this section, we carry out simulation studies to assess the sampling properties of 
the two R-indicators:

• ˆ( )R ρ , defined in (4.11); 

• 2q , defined in (4.12). 
 

The simulation studies are based on samples drawn from Census data. The sample 
designs are similar to some standard household and individual surveys carried out at 
National Statistics Institutes. The Census data is based on the 1995 20% Israel Census 
Sample containing 753,711 individuals aged 15 and over in 322,411 households. We 
used the following sample designs in the simulations:   
 
• Household Survey  – similar to a Labour Force Survey where the sample units are 

households and all persons over the age of 15 in the sampled households are 
interviewed. Typically a proxy questionnaire is used and therefore there is no 
individual nonresponse within the household. In addition, we assume that every 
household has an equal probability to be included in the sample.  

 
• Individual Survey - similar to a Social Survey where the sample units are 

individuals over the age of 15. We consider both a survey with equal inclusion 
probabilities and a survey with different inclusion probabilities within strata.  

 
For each type of survey, we carried out a two-step design to define response 

probabilities in the Census data. In the first step, we determined probabilities of 
response based on explanatory variables that typically lead to differential non- 
response based on our experiences of working with survey data collection. A response 
indicator was then generated for each unit in the Census from these probabilities. In 
the second step, we fitted a logistic regression model, as in (2.5), to these Census data 
and thus determined a ‘true’ response propensity for each unit as predicted by this 
model fitted to the population. The dependent variable of the model is the response 
indicator and the independent variables of the model the explanatory variables used in 
the first step. This two-step design ensures that we have a known model generating 
the response propensities and therefore can assess model misspecification besides the 
sampling properties of the indicators.   

 
The explanatory variables used to generate the response probabilities are the 

following:  
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• Household Survey – Type of locality  (3 categories), number of persons in 
household (1,2,3,4,5,6+),  children in the household indicator (yes, no).  

 
• Individual Survey – Type of locality (3 categories), number of persons in 

household (1,2,3,4,5,6+),  children in the household indicator (yes, no), income 
group (15 groups), sex (male, female)  and age group (9 groups).  

 
Samples of size n were drawn from the Census population of size N at different 

sampling fractions 1:50, 1:100, and 1:200. For each sample drawn, a sample response 
indicator was generated from the ‘true’ population response probability. The overall 
response rate was 82% for the household survey and 78% for the individual survey. 
Response propensities and R-indicators were then estimated from the sample. 
 
7.2 Results 
 

Response probabilities are estimated for each sample drawn from the population. 
The smaller the sample size, the more difficult it is to obtain the correct model. For 
example, assuming that we know the correct logistic regression model that was used 
to generate the ‘true’ response probabilities in the population, applying this model to 
samples at different sampling rates results in higher variance for the coefficients as 
the samples get smaller. Figures 1 to 3 present histograms of the intercept coefficient 
under the correct logistic regression model for 1000 samples drawn according to the 
sampling rates:  1:50, 1:100 and 1:200.  The true value is -1.926.   
 

Figure 1:  Histogram of Estimated Intercept for ‘True’ Logistic Regression Model   
(1000 samples  drawn at 1:50).  ‘True’ Intercept=-1.926 
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Figure 2:  Histogram of Estimated Intercept for ‘True’ Logistic Regression Model  
(1000 samples drawn at 1:100)   ‘True’ Intercept=-1.926 

 

Figure 3:  Histogram of  Estimated Intercept for ‘True’ Logistic Regression  Model 
(1000 samples drawn at 1:200)    ‘True’ Intercept=-1.926 

 

The figures show that the smaller the sample size, the more difficult it is to 
obtain the ‘true’ model in the sample. Figure 3 in particular shows the skewed 
distribution that is obtained for the intercept of the logistic model.  

 
Throughout these simulations we examine the sampling properties of the R-

indicators as well as the impact of model misspecification on their properties. 
Because smaller sample sizes generally lead to the selection of a less complex model, 
we shall consider that misspecification is represented by a simpler model.  
 

In Table 1, we examine samples drawn for a Household Survey at different 
sampling rates, estimate response probabilities for each sample and calculate the 
measure  ˆ ( )R ρ (defined in (4.11) and its bias corrected version ( )R ρ% (defined in (5.2).  
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We present results both when the true model is fitted and when a less complex model 
is fitted. In Table 2, we present results for the Individual Survey.  
 

Table 1:  Household Survey  -  Simulation Means of ˆ( )R ρ and  its bias-corrected 
version, ( )R ρ% for 500 Samples     ‘True’ R-Indicator = 0.8780 

 
‘True’ Logistic Model 
(Number of Persons, 
Locality Type, Child 
Indicator) 

Less Complex Logistic 
Model (Number of 
Persons) 

Sampling 
Fraction 
 

ˆ ( )R ρ ( )R ρ% ˆ( )R ρ ( )R ρ%

1:200 
(n=1,612) 

0.8713 0.8831 0.8788 0.8868 

1:100 
(n=3,224) 

0.8724 0.8781 0.8792 0.8831 

1:50 
(n=6,448) 

0.8751 0.8779 0.8812 0.8831 

Table 2:  Individual Survey - Simulation Means of ˆ( )R ρ and  its bias-corrected 
version, ( )R ρ% for 500 Samples      ‘True’ R-Indicator = 0.8767 

 
‘True’ Logistic Model 
(Number of Persons, Sex,  
Age Groups, Income 
Groups, Locality Type, 
Child Indicator) 

Less Complex Logistic 
Model (Number of 
Persons, Sex and Age 
Groups)  

Sampling 
Fraction 

ˆ( )R ρ ( )R ρ% ˆ( )R ρ ( )R ρ%

1:200 
(n=3,769) 

 0.8537 0.8775 0.8944 0.9079 

1:100 
(n=7,537) 

0.8652 0.8776 0.9009 0.9079 

1:50 
(n=15,074) 

0.8705 0.8768 0.9028 0.9063 

Tables 1 and 2 show that the estimator ˆ( )R ρ performs well in terms of 
explaining the bias. If the specified model is correct, there is some downward bias and 
this tends to increase  as the sample size increases. This is as expected. Sampling error 
tends to lead to overestimation of the variability of the estimated response 
propensities and this leads to underestimation of the R-indicator. The degree of 
underestimation is, however, small in Tables 1 and 2.  We observe that the bias 
correction is, however, very effective when the true model holds.  The bias correction 
decreases with the increase in sample sizes and hence we obtain a stabilizing of ( )R ρ% .
Using a less complex logistic model to estimate   response probabilities results in a 
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‘smoothing’ of the probabilities and hence an overestimation in ˆ( )R ρ and the bias 
correction can exacerbate the overestimation.  
 

In Table 3, we present results of an Individual  Survey that has  a survey design 
based on differential inclusion probabilities within strata. The aim is to see the impact 
of a more complex survey design on ˆ( )R ρ and ( )R ρ% . The logistic regression model 
used for estimating response probabilities in the samples is the ‘true’ model. The 
sample was stratified by three household sizes (1 person, 2 persons and 3 and over 
persons) and within each strata a different inclusion probability was defined. We 
observe that the estimators continue to be approximately unbiased.     
 

Table 3:  Individual Survey  – Simulation Means of ˆ( )R ρ and ( )R ρ% for 500 Samples 
with Differential Inclusion Probabilities -   

‘True’ R-Indicator = 0.8767 
 

ˆ( )R ρ ( )R ρ%

Inclusion Probabilities (1:200 
for  1 Person Households, 
1:100  for 2 Person 
Households and 1:50 for 3 
and over Person Households 
(n=10,966) 

0.8670 0.8776 

Besides using a logistic regression model to estimate response probabilities, we 
also used a non-parametric classification tree based on the CART algorithm. The 
variables used to carry out splits  for the Household Survey  were: number of persons, 
extended type of locality, child indicator, region, sex and age group of the  head of 
household. For each terminal node, a response probability is estimated by the number 
of respondents in the node divided by the sample size in the node. This procedure is 
based on the saturated model.   
 

We implemented   CART classification tree algorithm on the Household Survey 
using two methods:  the first based on one tree that was used for all samples  which 
was calculated  according to the ‘true’ response indicator in the population; and the 
second based on calculating a tree for each separate sample based on the sample 
response indicator. In each terminal node of the tree, response probabilities were 
estimated  and R-indicators  calculated. The results are presented in Table 4. 
 



28

Table 4:  Household Survey  –  Simulation Means of ˆ( )R ρ for 500 Samples Based on 
a Classification Tree (CART)    -     ‘True’ R-Indicator = 0.8780 

 
1:200 1:100 1:50 

One tree for all 
Samples 

0.8245 0.8572 0.8767 

Different tree 
for each 
sample 

0.7828 0.8146 0.8406 

From Table 4,  as the sample sizes increase,  ˆ ( )R ρ increases, i.e. the variance of 
the response probabilities decrease denoting a ‘smoothing’ of the response 
probabilities. The increase in ˆ( )R ρ is not as severe when using one tree for all 
possible sample sizes based on the ‘true’ population response propensities. Further 
work would need to apply a bias correction to this saturated model.   
 

In Tables 5 and 6  we examine the properties of  2q based on the variance of the 
response influences. For this indicator, we expect low values to reflect good quality 
and  small nonresponse bias.  We compare the full set of explanatory variables in the 
model used in this simulation to a less complex model as before.  
 

Table 5:  Household Survey -  Simulation Means of 2q for 500 Samples 
 

Full Model 
(Number of Persons, 

Locality Type, 
Child Indicator) 

‘True’ R-
indicator=0.0087 

Less Complex   
Model (Number 

of Persons) 
 

‘True’ R-
Indicator=0.0082

Sampling Fraction 

2q 2q
1:200 (n=1,612) 0.0103 0.0091 
1:100 (n=3,224) 0.0096 0.0087 
1:50 (n=6,448) 0.0089 0.0084 
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Table 6:  Individual Survey -  Simulation Means  of 2q for 500 Samples 
 

Full Model 
(Number of Persons, 

Locality Type, 
Child Indicator, 

Income Group, Sex 
and Age Group) 

‘True’ R-
indicator=0.0072 

Less Complex   
Model (Number 
of Persons, Sex 
and Age Group) 

 

‘True’ R-
Indicator=0.0057 

Sampling Fraction 

2q 2q
1:200 (n=3,769 ) 0.0083 0.0066 
1:100 (n=7,537 ) 0.0071 0.0061 
1:50 (n=15,074 ) 0.0065 0.0057 

Results from Tables 5 and 6 show the decrease in 2q as the sample sizes 

increase. Further work would be to apply a bias correction for 2q . In addition, 
Workpackage WP4 will include calculation of confidence intervals for the R-
indicators. 



30

8. Country studies 
 

One of the main objectives for constructing R-indicators is to enable the 
comparison of the representativeness of different surveys for given sets of auxiliary 
variables. In order to do so data sets were assembled from the participating countries 
in the RISQ research project: Belgium, The Netherlands, Norway, Slovenia and the 
UK. In this section the two R-indicators are estimated for these data sets given 
auxiliary variables that are shared by all countries. 
 

Below is a short description of the data sets used. Note that more detailed 
information about the data sets can be found in RISQ Deliverable 1. 
 
The Dutch Health Survey 2005 
The Dutch Health Survey is a continuous survey of individuals with questions about 
health, life style and use of medical care. It consists of three questionnaires; a CAPI 
base module, a CAPI topical module about health and a supplementary paper 
questionnaire. The number of cases in the file is 15,411. The response rate was 67.3%. 
 
Dutch Consumer Satisfaction survey 2005 
The Consumer Confidence Survey is a continuous survey of households with 
questions about general economic development, and the financial situation of the 
household. The survey is meant to provide insight into short term economic 
development, and early indicators of differences in consumer trends. The number of 
cases in the file is 17,908. The response rate was 66.9%. 
 
Dutch Short Term Statistic on Industry 2007 
The Dutch Short Term Statistics on Industry is a monthly survey for Eurostat. It 
measures turnover for businesses in The Netherlands. The number of cases in the file 
is 64,413. The response rate was 92.5% 
 
Dutch Short Term Statistic on Retail 2007 
The Dutch Short Term Statistics on Retail is a monthly survey for Eurostat. It 
measures turnover for businesses in The Netherlands. The number of cases in the file 
is 93,799. The response rate was 92.3%. 
 
UK 2001 Census Link File 
The UK 2001 Census Link Study contains the response outcome of six major UK 
government household surveys linked to 2001 UK census data on a range of 
household and individual characteristics, interviewer observations about the 
household and extensive information about the interviewer and area information. The 
number of cases varies between surveys. For this report, we provide the R-indicators 
for the Labour Force Survey from May-June 2001, including all households that had a 
successful link with the Census data. The number of households in the dataset is 7,830 
and the response rate about 80%. 
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Norwegian European Social Survey 2006 
ESS is a biennial multi-country survey of individuals covering over 30 nations. It is 
an academically-driven social survey designed to chart and explain the interaction 
between Europe's changing institutions and the attitudes, beliefs and behaviour 
patterns of its diverse populations. The data set only contains the survey data of 
Norway. The number of cases in the file is 2,673. The response rate was 65.5%. 
 
Norwegian Survey of Level of Living 2004 
The survey of living conditions has two main purposes. One is to throw light on the 
main aspects of the living conditions in general and for various groups of people. 
Another purpose is to monitor development in living conditions, both level and 
distribution. Over a three-year period the cross-sectional survey of living conditions 
will cover all main areas of the living conditions. The survey topics change during a 
three-year cycle. Housing conditions, participation in organisations, leisure activities, 
offences and fear of crime were topics in 2004.  It is a survey of individuals. The 
number of cases in the file is 4,837. The response rate was 69.1%. 
 
Belgium European Social Survey 2006 
As described for the Norwegian dataset, the ESS is an EU harmonized social survey. 
The data set contains the survey data of Belgium. The number of cases in the file is 
2,927. The response rate was 61.4%. 
 
Slovenian Labour Force Survey 2007 
 The Slovenian Labour Force Survey is an EU harmonized rotating panel survey 
conducted continuously through the year. The data contains employment related 
characteristics and demographic characteristics of all individuals 15 years or older 
living in selected households. The number of households varies between 7,010 and 
7,160 households which is around 16,900 responding individuals. The response rate is 
around 80%. 
 
Slovenian Survey on usage of information-communication technologies (ICT) in 
enterprises 2007 
The Slovenian survey is an  EU harmonized annual survey on the usage of ICT and 
provides information on whether the enterprises use computers, the internet, 
electronic commerce and other ICTs. The number of cases in the file is 1,998. The 
response rate is 87.6%. 
 

We considered the following choices of auxiliary variables:  

• Small fixed set. Selected variables are gender, age, interaction with degree of 
urbanization and region for household surveys, and size of business and business 
type for business surveys. In modelling response influences or response 
probabilities, the set is fixed and all variables included. 
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• Large fixed set. This is the small fixed set extended with a selection with relevant 
variables. The selection may be different for each country, however, all variables 
are included in models. 

• Best fit using full set. All variables are candidate for inclusion in models. Only 
those variables are included that are significant according to pre-scribed level. 
 
Table 7 presents initial results on some country datasets for the small fixed set of 

variables only. As can be seen from the table:  
- there is consistency between the two indicators ( )R ρ% and 2q where a  high ( )R ρ%

reflects in a low 2q ,
- there is a correspondence between the response rates (and sample sizes)  to the 

values of the indicators. 
 

There are three business surveys in Table 7. For these business surveys, higher  
response rates generally produced a higher ( )R ρ% . The Netherlands Short Term 
Statistic on Retail is clearly showing less representatitivity than the Short Term 
Statistic on IB Industry in spite of having approximately the same response rate. 
 

Table 7 does not contain confidence intervals. The estimates for the standard 
errors have not yet been implemented in software. In subsequent RISQ papers we will 
include approximate confidence intervals. Cobben and Schouten (2008) approximated 
95% intervals using a naïve bootstrap estimator. They find standard errors of 2% for 
sample sizes close to 2000 and of 0.5% for sample sizes close to 30000. This would 
imply, for instance, that the Slovenian LFS values for ( )R ρ% are not significantly 
different. 
 

Note that for table 7 we fixed models beforehand. We did not select auxiliary 
variables but included all variables even when they gave no significant contribution. 
In such a setting model diagnostics are not relevant as long as numerical 
approximations of the estimates have converged. The R-indicator by itself is a 
measure for the lack of association between response and the selected auxiliary 
variables. 

 
For the social surveys (households and individuals), Figures 4 and 5 provide a 

scatter-plot of each of the indicators ( )R ρ% and 2q against the response rates. As can 
be seen in the figures, the patterns are similar for both indicators, i.e. higher response 
rates reflect in higher ( )R ρ% and lower 2q . The variability between the indicators, for 
example for surveys between 65% to 70% response rates, demonstrate that the 
response rate alone is not a sufficient quality indicator and that they should be 
combined with   R-Indicators to assess the bias that might incur from nonresponse. In 
Workpackage WP4 we will assess the R-indicators under different choices of  
auxiliary variables for all of the country datasets and how they can  be used in practice. 
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Table 7: R-Indicators for Small Fixed Set of Variables for Country Datasets 
 

Sample 
Size 

Response 
Rate 

( )R ρ% 2q

Norway: 
European Social Survey  
2006 (Individuals) 

2,673 65.6% 0.762 0.044

Survey on Level of Living 
2004  (Individuals) 

4,837 69.1% 0.872 0.027 

Slovania: 
LFS q3/2007 (Individuals) 2,219 70.1% 0.854 0.034 
LFS q4/2007 (Individuals) 2,215 69.3% 0.807 0.057
LFS q1/2008 (Individuals) 2,247 68.2% 0.897 0.025
LFS q4/2007-q1/2008 
(Households) 

3,710 87.7% 0.951 0.002

ICT Survey 2007 
(Enterprises) 

1,998 87.6% 0.854 0.011

Netherlands: 
Short Term Statistic on IB 
Industry 2007 
(Enterprises) 

64,413 92.5% 0.933 -

Short Term Statistic on 
Retail 2007 (Enterprises) 

93,799 92.3% 0.879 -

Health Survey 2005 
(Individuals) 

15,411 67.3% 0.832 0.029

Consumer Satisfaction 
Survey  2005 
(Households) 

17,908 66.9% 0.833 0.039

Belgium:  
European Social Survey 
2006 (Individuals) 

2,927 61.4% 0.807 0.074

UK: 
LFS May-June 2001 
(Households) 

7,830 80.5% 0.928 0.004 



34

Figure 4: Scatterplot of ( )R ρ% vs. Response Rates for Social Surveys in Table 7 
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Figure 5: Scatterplot of 2q vs. Response Rates for Social Surveys in Table 7 
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Annex 1. More detailed discussion of definition of response probabilities 
 
In this Annex, we provide a more detailed discussion of the definition of the 

response propensities introduced in section 2.2. We first outline, in section A1.1, two 
approaches to setting up statistical frameworks within which nonresponse can be 
postulated to arise in a stochastic way. This section describes sufficient conditions for 
it to be feasible to postulate the existence of response probabilities. Such conditions 
are not, however, sufficient to ensure that the definition of response probability is 
unique. In section A1.2, we discuss whether uniqueness can be achieved conceptually 
via consideration of the survey process. Our broad conclusion is negative. In section 
A1.3, we discuss how uniqueness can be achieved instead via some considerations of 
nonresponse bias. We argue, on the basis of bias considerations, that it is reasonable 
to define response probabilities as conditional probabilities of response given 
specified variables, which may either be auxiliary or survey variables. Given this 
specific definition, we refer to these conditional probabilities as response propensities.
Given the discussion in section A1.2, we prefer to avoid assuming that unique ‘true’ 
response probabilities have an existence, separate from the specification of any 
variables upon which the probability is conditioned. 

 
A1.1 Basic Approaches to Defining Response Propensities

The representation of nonresponse as a stochastic outcome has been postulated in 
the survey methodology literature on a number of occasions. For example, Platek et al. 
(1977) and Cassell et al. (1983) each provide formal introductions to the idea that 
each unit i in the population has a response probability iρ (when it is sampled) and 

different units respond independently.  The definition of iρ can proceed in at least 
two ways.  

 
Two-phase approach
Cassel et al. (1983) define iρ via the ‘two-phase’ model for nonresponse in which 

the response process is viewed as a second phase of sampling, where r is selected 
from s by a mechanism (. | )q s , so that the probability that the set of respondents 
consists of r conditional on s is given by ( | )q r s . Oh and Scheuren (1983) refer to 
this as the ‘quasi-randomization’ approach to unit nonreesponse. If follows that the 
response propensity for a unit i s∈ is given by the inclusion probability of i with 
respect to (. | )q s , which may be denoted |i sρ to emphasise that this probability may be 

conditional on s . If it can be assumed that this probability does not depend upon 
which sample was selected, then one can write |i s iρ ρ= for all s U⊂ , where iρ is 

defined for all i U∈ .

Cassel et al. (1983) also suppose that units respond independently of each other so 
that: 
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( | ) (1 )i i
i r i s r

q r s ρ ρ
∈ ∈ −

= −∏ ∏ .

This assumption can easily be extended, however, for example to the case where 
nonresponse is clustered, such as when all members of a household either respond or 
do not respond. 

 
‘Census’ nonresponse approach
An alternative approach to defining iρ involves first postulating the existence of 

the  response indicator variable iR for each unit i in the population so that 

{ | 1}ir i s R= ∈ = , i.e. 1iR = if unit i responds (when it is sampled) and 0iR = if not, 
where i U∈ . This is called the ‘stable response’ assumption by Rubin (1987, p.30). 
Fay (1991) (see also Shao and Steel, 1999) conceives of iR as the outcome of a 
census, which would have been obtained from extending the survey to all the 
population. It is further assumed that the sampling mechanism is ‘unconfounded’  
with the iR (Rubin, 1987, p.36) so that the probability of selecting s U⊂ remains 

( )p s , whatever the values of the ,iR i U∈ . Conversely, the iR are the same whatever 
sample s is selected (of course, this cannot be checked since only one sample is 
observed). Given the existence of the response indicator variable iR , if it is also 
assumed that these are random then the response propensity may be defined directly 
as ( )i iE R ρ= .

The key assumption in either approach is that nonresponse does not depend on the 
‘configuration’ of the sample. To give an example where this assumption might fail, 
consider a multi-stage sampling design which, for large households, only selects a 
fixed number (say three) individuals at random within the household to control costs. 
Whether one member of the household responds might depend upon which other 
members of the household are also selected and so |i sρ might vary for different 

choices of s . In this case iR is not well-defined since whether unit i responds 
depends not just on the condition that unit i is sampled, but also on which other units 
are sampled. Indeed the ‘census’ interpretation of Fay (1991) becomes problematic 
because an individual’s nonresponse behaviour when all members of the household 
are selected might differ from the individual’s behaviour for the actual sampling 
design. 

 
Such an example seems unusual, however. In many surveys, sampled units will 

not know which other units have been asked to take part in the survey. And even in 
household surveys, it is usual either to select one person or all eligible persons from 
the household. Thus, the assumption that nonresponse does not depend on the 
configuration of the sample seems a fairly uncontentious assumption compared to 
other assumptions that may need to be made about the pattern of nonresponse.   
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A1.2 Can uniqueness be achieved conceptually via consideration of the survey 
process? 

 
The previous section described sufficient conditions for it to be feasible to define 

a response probability. Even if such conditions apply, there still remains the question 
of whether further conditions are needed for iρ to be uniquely defined. In this section 
we address this question via consideration of the survey process.  

 
It is clear that iρ (and indeed iR ) will depend upon the survey strategy employed 

and that its interpretation must therefore take account of this dependence. For 
example, if nonresponse includes non-contact then iρ will depend upon the number 
of contact attempts. Dalenius (1983) argues, however, that this dependence 
undermines the usefulness of the concept of response probability. He writes: ‘it 
appears utterly unrealistic to postulate fixed “response probabilities” which are 
independent of the varying circumstances under which an effort is made to elicit a 
response. Whether an individual selected for a survey will respond or not may in 
many circumstances be determined by factors external to the individual”. As 
illustration, he refers to the possible dependence of nonresponse upon the 
characteristics of the interviewer. 

 
This dependence on circumstances may be unproblematic in relation to broad 

aspects of the survey strategy, such as the number of contact attempts. It seems more 
challenging, however, as the circumstances become more detailed. For example, it 
does not seem difficult to imagine that the probability of both non-contact and refusal 
may depend upon time of day or day of the week, as recognized in the case of non-
contact by Politz and Simmons (1949).  But, as Dalenius (1983) suggests, this implies 
that it may be more realistic to postulate a series of different values of iρ for an 
individual according to the survey circumstances than to postulate a unique value. 
And as the circumstances become more detailed, the greater the number of values of  

iρ that might be anticipated. Indeed, if one considers the potential dependence of iρ
on the interviewer and one conceives of the interviewer as drawn from an effectively 
infinite population of possible interviewers, then one might imagine a distribution of 
possible values of iρ .

The question of whether iρ is uniquely defined also arises in debates (see e.g. 
Lessler and Kalsbeek, 1992, Ch. 7) about the  choice between the ‘random model’ of 
nonresponse in which the indicators iR are random with expectation iρ and the ‘fixed 
model’ where the indicators are treated as fixed,  so that the population divides into 
one stratum of responders and one stratum of non-responders (e.g. Cochran, 1977, 
sect 13.2).  The notion of a response probability clearly refers to the random model, 
but without further consideration of how the model is to be used, it does not seem 
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possible to say that the random model is correct and the fixed model is false. Not only 
does the fixed model perfectly fit the nonresponse outcomes (i.e. the values of iR for 
i s∈ ) but it might be argued, as above, that it arises as a special case of the random 
model (with i iRρ = ) as a consequence of conditioning on more and more detailed 
aspects of the survey circumstances.  

 
One might seek to object to the fixed model on the grounds that it is 

inconceivable that a unit would respond in exactly the same way on repeated 
occasions and this argument might be extended to seek to define iρ as some kind of 
‘long run’ proportion of times in which unit i would respond. However, this line of 
argument does not seem very promising. As noted earlier, response behaviour is likely 
to be very time-dependent and not adequately represented by a sequence of Bernoulli 
trials. And, if one has to define response indicators itR for different times t then the 
problem simply multiplies. Moreover, in most practical survey contexts, it would 
appear very difficult to see how empirical evidence on the ‘randomness’ of responses 
could be obtained. 

 
If one does not reject the fixed model, then one might argue that there exists a 

range of models which are equally valid in the sense that they all fit the data just as 
well (assuming that the data just consist of the values of iR for i s∈ ) , but which vary 
according to their interpretation in terms of the degree to which they condition on the 
survey circumstances experienced by unit i . Thus the fixed model represents the most 
extreme degree of conditioning. A model which assigns a fixed response probability 
(matching the overall response rate) conditions least. The problem with this argument 
for the R-index is that it will vary considerably across this range of models, in fact 
across the whole range of its possible values. 

 
In summary, the nature of the survey process does not appear to provide 

conceptual grounds upon which one can argue that a ‘true’ iρ is uniquely defined.  In 
other words, without making further assumptions, such as about the relation between 

iρ and other variables, or setting further specific requirements for the R-index, the  

iρ do not appear to be identified (in an inferential sense) and so further assumptions 
are needed if they are to be estimated.   

 
A1.3 Achieving Uniqueness via consideration of nonresponse bias 

 
Now consider how a unique definition of iρ may be achieved by consideration of 

nonresponse bias. Suppose that iy denotes a vector of survey variables of interest and 
we are concerned about the possible bias induced by nonresponse in the estimation of 
population parameters defined in terms of the ,iy i U∈ . We argue: (1) that it suffices 
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to define iρ as ( | )i iE R y , i.e. the conditional probability of response given iy , for 

this purpose and (2)  ( | )i iE R y can be viewed as uniquely defined (subject to some 
caveats). 

 
To make argument (1), suppose that we are interested in parameters which may 

be expressed as smooth functions of totals of the form ( )iU h y∑ , where (.)h is an 

arbitrary function. This class of parameters includes most of those considered in 
official statistics. Typical estimators of such parameters consist of the corresponding 
smooth function of estimated totals of the form ( )i i is w R h y∑ , where iw is a survey 

weight. And the bias of such an estimator can generally be expressed as a function of 
terms ( | ) ( )i i i is w E R y h y∑ (i.e. the expectation of ( )i i is w R h y∑ with respect to the 

response process conditional on  iy and s , assuming iw is fixed under this 
distribution). Hence the nonresponse bias will depend upon nonresponse only via the 
conditional expectation ( | )i iE R y , i.e. the conditional probability of response given iy .

Any stochastic variation in iR which is not dependent upon iy might contribute to 
variance but to not to bias. This is also illustrated in Section 6. Thus, by defining a 
response propensity iρ as ( | )i iE R y , we may ensure that the definition includes any 
component of a response probability relevant to nonresponse bias for estimates based 
upon iy . To emphasise the dependence on iy , we write ( ) ( | )Y i iy E R y yρ = = .

Let us now turn to argument (2) and consider whether ( ) ( | )Y i iy E R y yρ = = is 

uniquely defined. We can, in principle, imagine that iy might be observed for both 

respondents and nonrespondents and conceive of the estimation of ( )Y yρ from such 

data. The simplest case is when the variables in iy are categorical and define a fixed 
number of ‘classes’ in the population. In this case, for a large enough sample size, it 
should be possible (subject to a suitable sampling design and estimation method) to be 
able to estimate the population response rate in each class (i.e. the mean value of iR
among population units in this class) to any given precision. As the population size 
increases, we might define ( )Y yρ as the limit of the response rate, where y is the 

value of iy for units in that class. In this case, ( )Y yρ is uniquely defined as, at least in 
principle, an estimable quantity.   

 
This argument may be extended to cases when the iy do not define a fixed 

number of classes, e.g. when one or more variables in iy is continuous. In this case 

we might define ( )Y yρ as the limit of the population response rate, as the population 

size increases, within a fixed ‘small neighbourhood’ of y . For example, if iy is the 

(continuous) age of individual i then ( )Y yρ might be defined as the response rate of 
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individuals in the population within one year of age of y . Again, we might define iρ

as ( )Y iyρ and again this quantity should be estimable. As discussed at the end of 
section 2.3, there is a certain arbitrariness in the specification of what ‘small’ means 
in a small neighbourhood.  Hence the uniqueness of iρ , if it is defined as ( | )i iE R y ,
is subject to this degree of smoothness of the model being given. 
 
A1.4 Defining Response Propensities which are Estimable 

We argued in the previous section that ( ) ( | )Y i iy E R y yρ = = provides a means of 
defining a response probability uniquely in a way which is relevant to considerations 
of nonresponse bias. A basic problem with this definition, however, is that ( )Y yρ is 

generally only estimable in a direct way if iy is observable for both respondents and 
nonrespondents. And, we are precisely interested in the situation when this assumption 
does not hold, i.e. when iy is missing for nonrespondents. We propose instead to 

consider a vector ix of auxiliary variables, which are observed for both respondents 

and nonrespondents (see section 2.1). In this case, ( ) ( | )X i ix E R x xρ = = is directly 
estimable. Moreover, a critical condition is whether 

 
( | , ) ( | )i i i i iE R x y E R x= . (A1.1) 

 
If condition (A1.1) holds, nonresponse is said to be missing at random (MAR). 

Otherwise, nonresponse is said to be not missing at random (NMAR). If (A1.1) holds 
then we may write  
 

( ) ( | ) [ ( | ) | ] [ ( ) | ]Y i i i i i i X i iy E R y E E R x y E x yρ ρ= = =  (A1.2) 
 
It follows that ( )Y yρ becomes estimable under the MAR condition.  
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Annex 2. Variance of ˆiρ for logistic regression model 
 

The estimating equations in (4.1) may be expressed as: 
 

[ ( ' )] 0i i i is d R h x xβ− =∑ (A2.1) 

where ( ) exp( ) /[1 exp( )]h η η η= + .

Let β̂ solve (A2.1). Then in large samples we may approximate the distribution 

of β̂ (c.f. Skinner, 1989) by: 
 

])~([)~(~ˆ 1
is iii xxhRdI ββββ ∑ ′−+≈ −

(A2.2) 
 

where ˆlim( )pβ β=% and ( ) ( ' ) 'i i i isI d h x x xβ β= ∇∑ is the information matrix and 

( ) ( ) / ( )[1 ( )]h h h hη η η η η∇ = ∂ ∂ = − . In particular, we have 
 

∑ −− ′−≈
s iiii IxxhRdI 11 )~(})]~([var{)~()ˆvar( ββββ (A2.3) 

 
and, since  ˆˆ ( ' )i ih xρ β= from (4.3), we have  

 

∑
∈

−− ′−′′∇=′′∇≈
sj

ijjjjiiiiii xIsxxhRdIxxhxxxhs 1122 )~(}|)]~([var{)~()~()ˆvar()~()|ˆvar( ββββββρ

(A2.4) 
 
The above large sample argument may be applied within different inferential 

frameworks.  
 
First, it may be applied in a purely design-based framework, where distributions 

are based only on the sampling design and β% is the limiting value of β̂ with respect 
to the design, as both the size of the sample and the finite population increase. In this 
case, the population values of iR are treated as fixed.  

 
Second, this argument may be applied in a model-based framework, where the 

distributions are based only on the nonresponse model for a sequence of fixed 
samples with increasing size.  In the latter case, β% is the limiting value of β̂ with 
respect to the nonresponse model as the sample size increases. In particular, if the 
nonresponse model in (2.4) is assumed to be true then β% is the true value of β . If 
nonresponse is independent between different units we may write  
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2var{ [ ( ' )] | } ( ' ) 'i i i i i i i is sd R h x x s d h x x xβ β− = ∇∑ ∑% (A2.5) 

 
where the expression var{. | }s is used to emphasise that this variance is with respect 
to the nonresponse process and is conditional on the choice of sample s . If the survey 
weights are constant so that id d= , the right hand side of (A2.5) is equal to ( )dI β
and it follows from (A2.4) that we may write: 
 

ijj
sj

jiii xxxxhxxhs 12 ])([)()|ˆvar( −

∈

′′∇′′∇≈ ∑ ββρ . (A2.6) 
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Annex 3. Derivation of bias adjustment 
 

Let 2ˆ ˆˆ( )i i U
i s

d ρ ρ
∈

∆ = −∑ where ˆ
Uρ is defined in (4.10). Write: 

 
ˆ ˆˆ ˆ( ) ( ) ( ) ( )i U i i i U U s s Uρ ρ ρ ρ ρ ρ ρ ρ ρ ρ− = − + − + − + −

where 1
s i isN dρ ρ−= ∑ and Uρ is defined in (3.2). Hence we have 

 
2 2 2 2 2ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )

ˆˆ ˆ ˆ2 ( )( ) 2( )( ) 2( )( )
ˆ ˆ2( )( ) 2( )( ) 2( )( ).

i U i i i U U s s U

i i i U i i U s i i s U

i U U s i U s U U s s U

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

− = − + − + − + −

+ − − + − − + − −

+ − − + − − + − −

 

We assume the estimator iρ̂ is such that ˆ( | )i iE sρ ρ= , where (. | )E s denotes 
expectation with respect to the response mechanism (holding the sample s fixed) . It 
follows that ˆ( | )U sE sρ ρ= and further that: 

 
2 2 2

2 2

ˆ ˆˆ ˆ(( ) | , , ) ( | ) ( ) ( ) ( | )
ˆˆ2 ( , | ) 2( )( )

ˆˆ( ) ( | ) ( ) 2( )( )

i U s s i i U s U U

i U i U s U

i U i U s U i U s U

E s y x V s V s

Cov s

V s

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

− = + − + − +

− − − −

= − + − + − − − −
 

It follows that  
 

2

2

ˆ ˆˆ( | ) ( ) ( | )
ˆ ˆ( ) 2( )( )

i i U i i Us s

s s U s U s s U

E s d d V s

N N N

ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

∆ = − + −

+ − − − −

∑ ∑  (A3.1) 

where ˆ
s isN d=∑ .

Taking expectation with respect to the sampling design, we obtain: 
 

1 2
ˆ( )E λ λ∆ = ∆ + + (A3.2) 

 
where  2( )i UU ρ ρ∆ = −∑

1
ˆˆ{ ( | )}i i UsE d V sλ ρ ρ= −∑ (A3.3) 

 
2

2
ˆ ˆ{ ( ) 2( )( )}s s U s U s s UE N N Nλ ρ ρ ρ ρ ρ ρ= − − − −  
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where 1λ and 2λ represent the bias in the estimation of ∆ by ∆̂ . We may consider 

approximating these terms using asymptotic arguments. If we treat id as of 

asymptotic order /N n , we see that both 1λ and 2λ are also of order /N n . We now 
consider simplifying these expressions by dropping lower order terms. 

 
Starting with 1λ , note that ˆ( | )UV sρ only generates a term of order 2/N n . Hence, 

we shall drop this term and write approximately: 
 

1 ˆ{ ( | )}i isE d V sλ ρ= ∑

Using the results in Annex 2 and assuming the nonresponse model is true, we 
may write : 

 
2

1
ˆ{ ( ' ) ' var( | ) }i i i isE d h x x s xλ β β= ∇∑ .

Turning to the term 2λ , we may write  
 

ˆ ˆ( ) ( )s s U s U s UN N N N Nρ ρ ρ ρ ρ− = − − −  

Hence 
 

2 2ˆ ˆ ˆ ˆ( ) 2( )( ) { 2 }( ) 2( )( )s s U s U s s U s s U s s U UN N N N N N Nρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ− − − − = − − + − −
 

and, ignoring terms of order less than /N n , we may write  
 

2
2

ˆ{( ) } 2 {( )( )}s U U s s UNE E N Nλ ρ ρ ρ ρ ρ= − − + − −  
ˆvar ( ) 2 cov( , )p s U s sN Nρ ρ ρ= − + ,

where the subscript p refers to the sampling design. 
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Annex 4. Variance of estimated R-indicator ˆ( )R ρ and variance estimation 
 
As in section 5.1 we write 

 
1ˆ ˆ( ) 1 2

1
R

N
= − ∆

−
ρ ,

where 2ˆ ˆˆ( )i i U
i s

d ρ ρ
∈

∆ = −∑ . As a linear approximation we have 

)ˆvar()ˆ()](ˆvar[ 11 ∆∆≈ −− ENR ρ (A4.1.) 
 

To approximate ˆvar( )∆ we shall decompose the distribution of ∆̂ into the part 

induced by the sampling design for a fixed value of β̂ and the part induced by the 

distribution of β̂ . We take the latter to be ),(ˆ Σ≈ ββ N , where:  
 

1 1( ) var{ [ ( ' )] } ( )i i i isJ d R h x x Jβ β β− −Σ = −∑% % % (A4.2) 

 
and ( ) { ( )}J E Iβ β= is the expected information rather than the observed information 
in (A2.3). These two choices of information are asymptotically equivalent (to first 
order) but the expected information has the advantage that Σ does not depend on s .

We write 
 

ˆ ˆ
ˆ ˆ ˆvar( ) [var ( )] var [ ( )]p pE E

β β
∆ = ∆ + ∆ (A4.3) 

 
where the subscript p refers to the distribution induced by the sampling design and 

the subscript β̂ denotes the distribution induced by ),(ˆ Σ≈ ββ N , which may be 
interpreted as arising from the response process. Following usual linearization 
arguments we obtain: 
 

ββ

ρρ
ˆ

2 ])([var)ˆ(var
=∈

−≈∆ ∑ Ui
si

ipp d .

And, given the consistency of β̂ for β (and for standard kinds of sampling designs), 
we have approximately: 
 

])([var)]ˆ([var 2
ˆ Ui

si
ipp dE ρρβ −≈∆ ∑

∈

. (A4.4) 
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Turning to the second component in (A4.3), we may write: 
 

ββ

ρρ
ˆ

2)()ˆ(
=∈

∑ −≈∆
Ui

UipE

As a linear approximation we have 
 

)~ˆ(ˆ ββρρ −′+≈ iii z

where ( ' )i i iz h x xβ=∇ % . Hence 
 

)()~ˆ()~ˆ()(

)~ˆ())((2)()( 2

ˆ

2

Ui
Ui

Ui

Ui
UiUi

Ui
Ui

Ui
Ui

zzzz

zz

−′−−′−+

−′−−+−≈−

∑

∑∑∑

∈

∈∈=∈

ββββ

ββρρρρρρ
ββ

where 1
U iUz N z−= ∑ .

In large samples, we assume that β̂ is normally distributed so that ˆ( )β β− % is 

uncorrelated with ˆ ˆ( )( ) 'β β β β− −% % . Hence, we have 
 

]})~ˆ)(~ˆ([{var4)]ˆ([var ˆˆ ′−−+Σ′≈∆ ββββββ BtrAAE p (A4.5) 

 
The sond term in (A4.5) can be further evaluated to 

ˆ
ˆ ˆ ˆ ˆvar { [ ( )( ) ]} var{ ( ) ( ) }ij i j

i j
tr B B

β
β β β β β β β β′− − = − −∑∑% % % %

ˆ ˆ ˆ ˆcov[ ( ) ( ) , ( ) ( ) ]ij i j kl k l
i j k l

B Bβ β β β β β β β= − − − −∑∑ ∑∑% % % %

[ ]ij kl ik jl il jk
i j k l

B B= Σ Σ +Σ Σ∑∑∑∑
2 [ ]tr B B= Σ Σ (A4.6) 

 
where ( )( )i U i U

i U
A z zρ ρ

∈
= − −∑ , ( )( ) 'i U i U

i U
B z z z z

∈
= − −∑ and Σ is defined in (A4.2). 

The second term involves the fourth moments of β̂ which may also be expressed in 

terms of Σ since β̂ is assumed normally distributed. 
 
The variance of ∆̂ may be estimated by the sum of the estimated components of 

(A4.3). The first of these appears in (A4.4) and may be estimated by a standard 
design-based estimator of 2var [ ( ) ]p i i U

i s
d ρ ρ

∈
−∑ , where this is treated as the variance 
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of a linear statistic var [ ]p i
i s

u
∈
∑ and iu is replaced by 2ˆˆ( )i i Ud ρ ρ− in the expression for 

the variance estimator. The second component of the variance appears in (A4.5) and 
(A4.6). To estimate this term requires estimating A , B and Σ . First, iz may be 

estimated by ˆˆ ( ' )i i iz h x xβ=∇ . Then A may be estimated by 
ˆ ˆ ˆˆ ˆ( )( )i i U i U

i s
A d z zρ ρ

∈
= − −∑ , B may be estimated by ˆ ˆ ˆˆ ˆ( )( ) 'i i U i U

i s
B d z z z z

∈
= − −∑ ,

where 1ˆ ˆU i isz N d z−= ∑ , and Σ may be estimated by a standard estimator of the 

covariance matrix of β̂ .

Finally, the variance matrix of ˆ ( )R ρ may be estimated by plugging the estimated 

variance of  ∆̂ into (A4.1) and replacing ˆ( )E ∆ by ∆̂ .
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Annex 5. Variance of estimated R-indicator 2q and variance estimation 
 
The estimated R-indicator 2q was defined in (4.12). Särndal and Lundström (2008) 
show that it may be expressed alternatively as:  
 

2
; ; ;( )r d s d r dq m m m= − ,

where ; /r d i is r
m d d=∑ ∑ , ;

ˆ /s d i i is s
m d dφ=∑ ∑ and  îφ is defined in (4.7). It 

follows that we can write 2 ( )q g u= , where 1 2 3 4( , , , )u u u u u= , k i kis
u d u=∑ ,

1, 2,3,4k = , 1 1iu = , 2i iu R= , 3i iu x= , 4 'i i i iu R x x= and  
 

1 1 2 2
2 3 4 3 1 2( ) 'g u u u u u u u− − −= − .

Note that we abuse notation slightly by stacking two scalars, a vector and a matrix 
into u . We then linearize ( )g u to obtain: 
 

][)()( µµ −∇+≈ ugug g

where ( )sE uµ = , ( ) /g g u u∇ = ∂ ∂ , evaluated at u µ= and sE denotes expectation 

with respect to the sampling design. Hence 1 Nµ = , 2 U iRµ = ∑ , 3 U ixµ = ∑ ,

4 'U i i iR x xµ = ∑ . We then obtain: 
 

2
1 2 1 1[ ] 2 ( )g u uµ µ µ µ−∇ − = − −  

2 1 2 3
2 3 4 3 1 2 2 2( ' 2 )( )uµ µ µ µ µ µ µ− − −+ − + −

1 1
2 3 4 3 3(2 ' )( )uµ µ µ µ− −+ −

1 1 1
2 3 4 4 4 4 3' ( )uµ µ µ µ µ µ− − −− −  (A5.1) 

 
Thus, we can approximate 2var ( )s q by var ( )s i is

d z∑ , where 
2

1 2 12i iz uµ µ −= − 2 1 2 3
2 3 4 3 1 2 2( ' 2 ) iuµ µ µ µ µ µ− − −+ − +

1 1
2 3 4 32 ' iuµ µ µ− −+ 1 1 1

2 3 4 4 4 3' iuµ µ µ µ µ− − −−

We then estimate 2var ( )s q by a conventional estimator of the variance of this 
linear statistic, with the values of µ replaced by u . Provided the sampling fraction is 

small this will also provide a suitable estimator of the variance of 2q with respect to 
both the sampling design and the response process (Shao and Steel, 1999) 
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Finally, we provide an expression for an estimator ˆˆ( )iV φ of the variance of îφ for use 

in (5.3).  We write 1
3 4

ˆ 'i iu u xφ −= and following a similar argument to above we  

approximate the variance of îφ by the variance of 1 1 1
3 4 3 4 4 4( ' ' ) iu u xµ µ µ µ− − −− which 

may be expressed as ( )s j j id z x∑ , where  

 
1 1 1

4 3 4 4' ' 'i i i i iz x R x xµ µ µ µ− − −= −

We then set ˆˆ ˆ( ) ' ( )i i i i isV x V d z xφ = ∑ , where ˆ( )i isV d z∑ is a standard design-based 

estimator of the variance of the linear statistic i is d z∑ , where we plug in 3u and 4u

for 3µ and 4µ respectively.  Note that this results in iz being replaced by 
1 ˆˆ '( ') (1 )i i i i i i irz x d x x Rφ−= −∑ in the variance estimator. 
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