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1 THE  BASICS – UNDERSTANDING LINEAR REGRESSION 

Linear regression is a modelling technique for analysing data to make predictions.  In simple 

linear regression, a bivariate model is built to predict a response variable (𝑦) from an 

explanatory variable (𝑥)1.  In multiple linear regression the model is extended to include 

more than one explanatory variable (x1,x2,….,xp) producing a multivariate model. 

This primer presents the necessary theory and gives a practical outline of the technique for 

bivariate and multivariate linear regression models. We discuss model building, assumptions 

for regression modelling and interpreting the results to gain meaningful understanding from 

data.  Complex algebra is avoided as far as is possible and we have provided a reading list 

for more in-depth learning and reference. 

1.1 SIMPLE LINEAR REGRESSION – ESTIMATING A BIVARIATE MODEL 

 

A simple linear regression estimates the relationship between a response variable 𝑦, and a 

single explanatory variable 𝑥, given a set of data that includes observations for both of these 

variables for a particular sample.  

For example, we might be interested to know if exam performance at age 16 – the response 

variable – can be predicted from exam results at age 11 – the explanatory variable. 

Table 1  Sample of exam results at ages 11 and 16 (n = 17) 

Results at age 16 
(Variable name: Exam16)   

Results at age 11 
(Variable name: Exam11)   

45 55 

67 77 

55 66 

39 50 

72 55 

47 56 

49 56 

81 90 

                                                      

1 The terms response and explanatory variables are the general terms to describe predictive relationships. You 

will also see the terms dependent and independent used. Formally, this latter pair only applies to experimental 

designs but are sometimes used more generally.  Some statistical software (e.g. SPSS) uses 

dependent/independent by default. 
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Table 1 contains exam results at ages 11 and 16 for a sample of 17 students.  Before we use 

linear regression to predict a student’s result at 16 from the age 11 score, we can plot the 

data (Figure 1). 

Figure 1  Scatterplot of exam score at age 16, against score at age 11 

  

We are interested in the relationship between age 11 and age 16 scores – or how they are 

correlated.  In this case, the correlation coefficient is 0.87 – demonstrating that the two 

variables are indeed highly positively correlated. 

To fit a straight line to the points on this scatterplot, we use linear regression – the equation 

of this line, is what we use to make predictions. The equation for the line in regression 

modelling takes the form: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 

We refer to this as our model.  For the mathematical theory underlying the estimation and 

calculation of correlation coefficients, see Appendix A. 
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β0 is the intercept also called the constant– this is where the line crosses the 𝑦 axis of the 

graph.  For this example, this would be the predicted age 16 score, for someone who has 

scored nil in their age 11 exam.   

β1 is the slope of the line – this is how much the value of 𝑦 increases, for a one-unit increase 

in 𝑥, or for each additional mark gained in the age 11 exam, how much the student scores in 

the age 16 exam.  

 𝑒𝑖 is the error term for the 𝑖𝑡ℎstudent.  The error is the amount by which the predicted 

value is different to the actual value.  In linear regression we assume that if we calculate the 

error terms for every person in the sample, and take the mean, the mean value will be zero.  

The error term is also referred to as the residual (see 1.3 for more detail on residuals). 

1.2 HYPOTHESIS TESTING 

 

Our hypothesis is that the age 16 score can be predicted from the age 11 score that is to say 

that there is an association between the two.  We can write this out as null and alternative 

hypotheses: 

 

𝐻0:  𝛽1 = 0 

𝐻1:  𝛽1 ≠ 0 

 

The null hypothesis is that there is no association – it doesn’t matter what the age 11 score 

is for a student when predicting their age 16 score, so the slope of the line, denoted 𝛽1, 

would be zero. 

If there is a relationship, then the slope is not zero – our alternative hypothesis. 

The relationship between x and y is then estimated by carrying out a simple linear 

regression analysis.  SPSS estimates the equation of the line of best fit by minimising the 

sum of the squares of the differences between the actual values, and the values predicted 

by the equation (the residuals) for each observation.  This method is often referred to as the 

ordinary least squares approach; there are other methods for estimating parameters but 

the technical details of this are beyond this primer.   

For this example: 

β0 = -3.984 

β1 = 0.939 
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This gives us a regression equation of: 

�̂�𝑖 =  −3.984 + 0.939𝑥𝑖 

where xi  is the value of EXAM11 for the ith student.  The ^ symbol over the 𝑦𝑖 is used to 

show that this is a predicted value. 

So, if a student has an EXAM11 score of 55 we can predict the EXAM16 score as follows: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑋𝐴𝑀16 𝑠𝑐𝑜𝑟𝑒 =  −3.984 + (0.939 × 55)

= 47.7 

If we draw this line on the scatter plot, as shown in Figure 2, it is referred to as the line of 

best fit of y on x, because we are trying to predict y using the information provided by x.  

1.3 RESIDUALS 

The predicted EXAM16 score of the student with an EXAM11 score of 55 is 47.7;; however, if 

we refer to the original data, we can see that the first student in the table scored 55 at age 

11, but their actual score at age 16 was 45.  The difference between the actual or observed 

value, and the predicted value is called the error or residual. 

𝑒𝑖 = 𝑦𝑖 − �̂�𝑖  

Remember that  �̂� means predicted, and 𝑦 means actual or observed. 

The residual for the first student is therefore 45 – 47.7 = -2.7.  The residual is the distance of 

each data point away from the regression line.  In Figure 2 the prediction equation is plotted 

on the scatter plot of exam scores.  We can see that very few if any of the actual values fall 

on the prediction line. 
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Figure 2  Plotting the regression line for age 11 and age 16 exam scores 

 

If we calculate the predicted value using the regression equation for every student in the 

sample, we can then calculate all the residuals.  For a model which meets the assumptions 

for linear regression, the mean of these residuals is zero.  More about assumptions and 

testing data to make sure they are suitable for modelling using linear regression later! 

Our model has allowed us to predict the values of EXAM16, however it is important to 

distinguish between correlation and causation.  The EXAM11 score value, has not caused 

the EXAM16 score value, they are simply correlated – there may be other variables through 

which the relationship is mediated: base intellect, educational environment, parental 

support, student effort and so on and these could be causing the score, rather than the 

explanatory variable itself.  To illustrate this further, statistically speaking, we would have 

just as good a model if we used EXAM16 to predict the values of EXAM11. Clearly one would 

not expect a student’s EXAM scores at age 16 to be causing in any sense their exam scores 

at age 11! So a good model does not mean a causal relationship.  

Our analysis has investigated how an explanatory variable is associated with a response 

variable of interest, but the equation itself is not grounds for causal inference. 

1.4 MULTIPLE LINEAR REGRESSION – A MULTIVARIATE MODEL 

Multiple linear regression extends simple linear regression to include more than one 

explanatory variable.  In both cases, we still use the term ‘linear’ because we assume that 

the response variable is directly related to a linear combination of the explanatory variables. 
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The equation for multiple linear regression has the same form as that for simple linear 

regression but has more terms: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖 + 𝑒𝑖  

As for the simple case, β0 is the constant – which will be the predicted value of y when all 

explanatory variables are 0.  In a model with 𝑝 explanatory variables, each explanatory 

variable has its own  β_coefficient. 

Again, the analysis does not allow us to make causal inferences, but it does allow us to 

investigate how a set of explanatory variables is associated with a response variable of 

interest. 
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2 BASIC ANALYSIS USING SPSS  

 

Multiple linear regression is a widely used method within social sciences research and 

practice. Examples of suitable problems to which this method could be applied include: 

 Prediction of an individual’s income given several socio-economic characteristics. 

 Prediction of the overall examination performance of pupils in ‘A’ levels, given the 

values of a set of exam scores at age 16. 

 Estimation of systolic or diastolic blood pressure, given a variety of socio-economic 

and behavioural characteristics (occupation, drinking smoking, age etc.). 

This section shows how to use the IBM program SPSS to build a multiple linear regression 

model to investigate the variation between different areas in the percentage of residents 

reporting a life limiting long-term illness. 

The data are taken from the 2001 UK Census and are restricted to the council wards in the 

North West of England (n = 1006). 

2.1 VARIABLES IN THE ANALYSIS 

We will consider five variables in this analysis (See Table 2). 

Table 2  Variables in the analysis 

Variable Name Description 

Response variable 

% LLTI The percentage of people in each ward who consider themselves to 
have a limiting long-term illness 

Explanatory variables 

A60P The percentage of people in each ward that are aged 60 and over 

FEMALE The percentage of people in each ward that are female 

UNEM The percentage of people in each ward that are unemployed (of those 
Economically active) 

% Social Rented The percentage of people in each ward that are ‘social renters’ (i.e. rent 
from the local authority) 

 

In this example, we need to consider: 

 Does the model make sense in real world terms? 

 Are the assumptions of linear regression met? 

 How well do these four explanatory variables explain the variation in the outcome 

variable? 
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 Which explanatory variables make the most difference to the outcome variable? 

 Are there any areas that have higher or lower than expected values for the 

outcome? 

 

2.2 EXPLORATORY DATA ANALYSIS 

The first task in any data analysis is to explore and understand the data using descriptive 

statistics and useful visualisations. This has two purposes: 

1. It will help you to get a feel for the data you are working with;  

2. It will inform decisions you make when you carry out more complex analyses (such 

as regression modelling). 

2.2.1 DESCRIPTIVE STATISTICS  

SPSS uses a point and click menu-based interface to allow the user to explore the data.  

These screen shots show the menu selections required and are followed by outputs to show 

what to expect from an exploratory analysis within SPSS2. In the first example, we want 

descriptive statistics for the variables we are going to use in our model. 

 

                                                      

2 Here we are using SPSS version 23. If you are using a different version then the look and 

feel may be a little different. 
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This selection opens the following dioalog box. 

 

Clicking on OK at this dialog box will prompt SPSS to open an output window in which the 

following output will appear (Table 3).3   

Table 3  An example of descriptive statistics output in SPSS 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

% llti 1006 9.26 33.26 20.0436 4.13001 

% aged 60 and over 1006 7.24 46.60 21.4374 4.95659 

% female 1006 35.18 56.77 51.4180 1.45675 

% unemp of econ act. 1006 1.15 24.63 5.3712 3.54237 

% social rented 1006 .13 73.89 15.6315 13.90675 

Valid N (listwise) 1006     

For the purposes of decision-making, we expect to find  a reasonable amount of variability 

in both our explanatory and response variables. A response variable with a low standard 

deviation would mean there is little to explain; an explanatory variable with little variability 

                                                      

3 Note that using the Paste button in a dialog box above allows the syntax to be pasted into a script window 

from which it can be directly edited, saved and run again later.  There are numerous online sources for SPSS 

syntax and it is not intended that this primer covers the writing of syntax. 
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is unlikely to add value to a model. In this case, the variables all look to have sufficient 

variability with the possible exception of the %female variable.  

2.2.2 PRODUCING UNIVARIATE BOX PLOTS 

A box-plot can be a useful tool for visualising the distribution of a number of variables side 

by side.  To produce these, the simplest approach is as shown below:  
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Here we plot the values for each variable.  You can see in  

Figure 3 that the distribution for each variable is quite different – for example, there are 

much greater differences between the wards in the %social renters, than in %females.  This 

is in line with our expectations – we would expect most wards to have a similar gender split, 

but that poorer areas would have a much higher incidence of social renting.  
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Figure 3  Box plot of univariate distributions 

 

2.2.3 BIVARIATE CORRELATIONS 

SPSS will calculate the Pearson correlation for all pairs of specified variables.  Select Analyze 

> Correlate > Bivariate to reach the dialogue box: 

 

Table 4 shows the SPSS output where the five variables above are selected.  The output 

shows that N = 1006 for all correlations.  This tells us that the data are complete and there 
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are no missing values – in a real life data scenario it is likely that N will differ for each 

calculated correlation as not all cases will have complete values for every field.  Missing 

data is an area for research within itself and there are many methods for dealing with 

missing data such that a sample remains representative and/or any results are unbiased.  

For the purposes of this example, all cases with missing data have been excluded – a 

somewhat heavy-handed approach but which works well for a worked example and may 

indeed be appropriate in many analyses. 

The two values of the bivariate correlation table:  

1. The correlations between your hypothesised explanatory variables and your 

response variables should be reasonable sized (as a rule of thumb, ignoring the sign 

of the correlation, they should be >0.15) and statistically significant.  

2. The correlations between your explanatory variable should not be too high. We 

cover this more detail in section 3.5. 
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Table 4  Pearson Correlations 

Correlations 

 % llti % female 

% aged 

60 and 

over 

% unemp 

of econ 

act. 

% social 

rented 

% llti Pearson Correlation 1 .370** .166** .693** .599** 

Sig. (2-tailed)  .000 .000 .000 .000 

N 1006 1006 1006 1006 1006 

% female Pearson Correlation .370** 1 .259** .162** .211** 

Sig. (2-tailed) .000  .000 .000 .000 

N 1006 1006 1006 1006 1006 

% aged 60 and over Pearson Correlation .166** .259** 1 -.320** -.321** 

Sig. (2-tailed) .000 .000  .000 .000 

N 1006 1006 1006 1006 1006 

% unemp of econ act. Pearson Correlation .693** .162** -.320** 1 .797** 

Sig. (2-tailed) .000 .000 .000  .000 

N 1006 1006 1006 1006 1006 

% social rented Pearson Correlation .599** .211** -.321** .797** 1 

Sig. (2-tailed) .000 .000 .000 .000  

N 1006 1006 1006 1006 1006 

**. Correlation is significant at the 0.01 level (2-tailed). 

In this case, the correlations of the explanatory variables with the response variable, apart 

from age 60 look good enough (according to the criteria set above). We will leave this in 

consideration now, but will watch out for issues with this variable later. Similarly, the 

correlation between social rented and unemployment is quite high but not high enough for 

rejection at this stage. 

2.2.4 PRODUCING SCATTERPLOTS (IN SPSS) 

SPSS will produce scatterplots for pairs of variables.  This example shows a scatter plot of 

the percentage of residents reporting a life limiting illness, against the percentage of 

residents residing in rented social housing (for example housing association or local 

authority homes).  Use the Graphs > Chartbuilder menu path to access the chart builder 

dialogue box.  You may see a warning about setting the measurement level – in this example 

all of our variables are continuous – that is to say they are numerical and can take any value.  

Dealing with nominal or categorical variables will be discussed in section 4. 

The dialog box is shown below. Select Scatter/Dot and then the top left hand option (simple 

scatter). 
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To generate the graph you need to drag the variable names from the list on the left onto the 

pane on the right and then click OK: 
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The output should look like Figure 4. 

Figure 4  Scatter plot of % llti against % social rented 

 

 

Double clicking on the graph from the output page will open the graph editor and allow a 

straight line to be fitted and plotted on the scatterplot as shown in Figure 5.   

Choose – Elements, Fit line, Linear to fit a simple linear regression line of % LLTI on % social 

rented. 
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Figure 5  Simple linear regression of %llti by % social rented using graph editor 

 

The simple linear regression line plot in Figure 5 shows an 𝑅2 value of 0.359 at the top right 

hand side of the plot.  This means that the variable % social rented explains 35.9% of the 

ward level variation in % LLTI.  This is a measure of how well our model fits the data – we 

can use 𝑅2 to compare models, the more variance a model explains, the higher the 𝑅2 

value. 

 

2.3 SIMPLE LINEAR REGRESSION 

 

The linear regression line plotted in Figure 5 through the graph editor interface can be 

specified as a model. 

Our response variable is %llti and for a simple linear regression we specify one explanatory 

variable, % social rented.  These are selected using the Analyze > Regression > Linear menu 

path. 
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25 

 

 

2.3.1 REGRESSION OUTPUTS 

The output for a model within SPSS contains four tables.  These are shown as separate 

Tables here with an explanation of the content for this example. 

Table 5  Variables entered 

 

Table 5 confirms that the response variable is % llti and the explanatory variable here is % 

social rented.  The model selection ‘method’ is stated as ‘Enter’.  This is the default and is 

most appropriate here.  More about “methods” later! 

Variables Entered/Removedb

% social

rented
a . Enter

Model

1

Variables

Entered

Variables

Removed Method

All requested variables entered.a.  

Dependent Variable: % lltib.  



 

 
26 

Table 6  Model Summary 

 

Table 6 is a summary of the model fit details.  The adjusted 𝑅2 figure 4is 0.359 – the same as 

we saw in Figure 5 showing that the model explains 35.9% of the variance in the % of life 

limiting illness reported at a ward level. 

Table 7  ANOVA table 

 

ANOVA stands for Analysis of Variance; SPSS produces an ANOVA table as part of the 

regression output as shown in Table 7.  The variance in the data is divided into a set of 

components.  The technical background to an ANOVA table is beyond the scope of this 

primer. We look mainly at the Sig. column, which tells us the p-value for the 𝑅2 statistic. If 

this is greater than 0.05 then the whole model is not statistically significant and we need to 

stop our analysis here. The value here is below 0.05 and so we can say that the fit of the 

model as a whole is statistically significant. 

                                                      

4 In SPSS, both 𝑅2 and “adjusted” 𝑅2 are quoted.  For large sample sizes, these two figures 

are usually very close.  For small values of n, the figure is adjusted to take account of the 

small sample size and the number of explanatory variables and so there may be a 

difference.  The technical details of the adjustment are beyond the scope of this primer.  

The adjusted figure should be used in all instances. 

Model Summary

.599a .359 .359 3.30724

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors : (Constant), % social renteda. 

ANOVAb

6160.641 1 6160.641 563.240 .000a

10981.604 1004 10.938

17142.244 1005

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predic tors : (Constant),  % social renteda. 

Dependent Variable: % lltib. 
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Table 8  Model parameters 

 

The estimated model parameters are shown in the Coefficients table (Table 8).  The B 

column gives us the 𝛽 coefficients for the prediction equation. 

To best understand this table it helps to write out the model equation.  Remember: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 

Substituting the variables and results of our regression analysis gives: 

% 𝑙𝑙𝑡𝑖̂ = 𝛽0 + 𝛽1(% 𝑠𝑜𝑐𝑖𝑎𝑙 𝑟𝑒𝑛𝑡𝑒𝑑) 

So: 

% 𝑙𝑙𝑡𝑖̂ = 17.261 + 0.178(% 𝑠𝑜𝑐𝑖𝑎𝑙 𝑟𝑒𝑛𝑡𝑒𝑑) 

 

The ^ over the %lltii indicates that this is a predicted value rather than the actual value (and 

therefore we don’t need the error term). 

2.3.1.1 INTERPRETING THE RESULTS 

 

In our example, for every 1% increase in the percentage of people living in social rented 

housing in a ward, we expect a 0.178% increase in the percentage of people living with a life 

limiting illness in that same ward.  The relationship is positive – areas with more social 

tenants have greater levels of long-term illness.  

For a ward with no social tenants, we expect 17.261% illness as this is the intercept – where 

the line of best fit crosses the y-axis. 

Again, we must be careful to remember that this statistically significant model describes a 

relationship but does not tell us that living in socially rented accommodation, causes life 

limiting illnesses.  In fact, those people reporting illness in each ward may not even be the 

same people who report living in social housing as the data are held at a ward, rather than 

person level.  Instead, an increase in social tenants may indicate that a ward has higher 

levels of people with lower incomes and higher levels of poverty.  There is a significant body 

of literature that links poverty with illness, so this does make substantive sense. 

Coefficientsa

17.261 .157 109.999 .000

.178 .008 .599 23.733 .000

(Constant)

% social rented

Model

1

B Std. Error

Unstandardized

Coeffic ients

Beta

Standardized

Coeffic ients

t Sig.

Dependent Variable: % lltia. 
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2.3.2 STANDARDISED COEFFICIENTS 

The unstandardised coefficients shown in Table 8 can be substituted straight into the 

theoretical model.  The issue with these is that they are dependent on the scale of 

measurement of the explanatory variables and therefore cannot be used for comparison – 

bigger does not necessarily mean more important. The standardised coefficients get round 

this problem and relate to a version of the model where the variables have been 

standardised to fit a normal distribution with a mean of zero and a standard deviation of 1.  

We interpret the standardised coefficients in terms of standard deviations. 

For this model, for one standard deviation change in the % of social renters in a ward, there 

is a 0.599 standard deviation change in the % of people reporting a life limiting illness. 

The descriptives table we produced in SPSS (Table 3) tells us that the standard deviation of 

social tenancy is 13.9% and the standard deviation of the outcome variable is 4.13%.  So for 

a 13.9% change in social tenancy, there is a (4.13*0.599) change in illness – 2.47%.  This is 

the same as a change of 0.178% for a 1% increase in social tenancy5. 

2.3.3 STATISTICAL SIGNIFICANCE 

The table of the coefficients (Table 8) shows that both intercept and slope (𝛽0 and 𝛽1) are 

statistically significant. 

The parameters are estimates drawn from a distribution of possible values generated by 

SPSS when computing the model – the true value for each parameter could in fact fall 

anywhere within its distribution.  The standard error of the estimate shows us the spread of 

this distribution, and the Sig. column tells us whether or not these values are statistically 

different from zero. 

If these values are not statistically different from zero, then the true value sits within a 

distribution which includes zero within the 95% confidence bounds.  If the estimate for the 

parameter could be zero, then it could be that there is in fact no relationship – a zero 

coefficient and a flat line of best fit. 

A value which is not statistically significant is indicated by a p-value greater than 0.05 (the 

Sig. column).  For this model, p <0.05 and so we can say that the estimates of the 

parameters are statistically significant and we can infer that there is an association between 

the variables. 

                                                      

5 2.47% / 13.9 % = 0.178, the unstandardised value for 𝛽1 
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2.4 MULTIPLE LINEAR REGRESSION ANALYSIS 

Adding additional explanatory variables to a simple linear regression model builds a multiple 

linear regression model.  The process is identical within SPSS – including additional variables 

in the specification stages. This example includes the percentage of females, the percentage 

of over 60s and the percentage of unemployed economically active residents as additional 

explanatory variables, over the simple regression using just the percentage of social tenants. 

 

 

 

2.4.1 MORE ON METHODS – ‘ENTER’  

This worked example is a case of a deductive model.  A deductive model is one that is built 

on real world understanding of the problem to be modelled and is grounded in theory – 

often drawn from existing understanding or published literature.   

Here we are interested in the levels of life limiting illness in different areas.  We have a 

theory that poverty is linked with life limiting illnesses, and that differences in age and 

gender may play a part.  We have a dataset that contains variables which are related to this 

theory and so we build a model that reflects our theory. 
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For the default method is ‘Enter’, the order of the explanatory variables is not important. 

The method uses all the specified explanatory variables, regardless of whether or not they 

turn out to be statistically significant.  

Other methods are covered later in this primer. 

 

2.4.2 REGRESSION OUTPUTS 

Including the extra variables has increased the adjusted 𝑅2 value from 0.395 to 0.675.  This 

means 67.5 % of the variation in percentage LLTI is now explained by the model – a large 

improvement.  The ANOVA table (Table 11) shows that the model is a statistically significant 

fit to the data. 

Table 9  Variables 

 

Table 10  Model Summary 

 

Variables Entered/Removedb

% aged 60

and over,

% female,

% unemp

of econ

act., %

social

rented
a

. Enter

Model
1

Variables

Entered

Variables

Removed Method

All requested variables entered.a.  

Dependent Variable: % lltib.  

Model Summary

.823a .677 .675 2.35344

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors : (Constant), % aged 60 and over, % female,

% unemp of econ act., % social rented

a. 
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Table 11  ANOVA 

 

Table 12  Tables of coefficients (sometimes called Model parameter values) 

 

2.4.3 INTERPRETING THE RESULTS 

 

From Table 12 we can see that all of the explanatory variables are statistically significant. So 

our theory that these variables are related to long-term limiting illness rates is supported by 

the evidence. 

All the 𝛽 coefficients are positive – which tells us that an increase in the value of any of the 

variables leads to an increase in long term limiting illness rates.  

From the information in Table 12, we can now make a prediction of the long term limiting 

illness rates for a hypothetical ward, where we know the values of the explanatory variables 

but don’t know the long term limiting illness rate. 

Say that in our hypothetical ward that the unemployment rate is 18%, females are 45% of 

the population, social tenancy is at 20%, and 20% of the population are aged 60 and over. 

The general form of the model is: 

ANOVAb

11598.023 4 2899.506 523.501 .000a

5544.221 1001 5.539

17142.244 1005

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), % aged 60 and over, % female, % unemp of econ act., %

social rented

a. 

Dependent Variable: % lltib. 

Coefficientsa

-9.832 2.734 -3.596 .000

.774 .035 .664 22.147 .000

.344 .056 .121 6.176 .000

.052 .009 .175 5.728 .000

.336 .017 .404 19.762 .000

(Constant)

% unemp of econ act.

% female

% social rented

% aged 60 and over

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: % lltia. 
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% 𝑙𝑙𝑡𝑖 =  𝛽0 + 𝛽1(% 𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑)

+ 𝛽2(% 𝑓𝑒𝑚𝑎𝑙𝑒)

+ 𝛽3(% 𝑠𝑜𝑐𝑖𝑎𝑙 𝑟𝑒𝑛𝑡𝑒𝑑)

+ 𝛽4(% 𝑎𝑔𝑒 60 𝑎𝑛𝑑 𝑜𝑣𝑒𝑟)

+ 𝜀𝑖 

Substituting the values from Table 12 gives us: 

 %𝑙𝑙𝑡�̂� =  −9.832 + 0.774 × (% 𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑)

+ 0.344 × (% 𝑓𝑒𝑚𝑎𝑙𝑒)

+ 0.052 × (% 𝑠𝑜𝑐𝑖𝑎𝑙 𝑟𝑒𝑛𝑡𝑒𝑑)

+ 0.336 × (% 𝑎𝑔𝑒 60 𝑎𝑛𝑑 𝑜𝑣𝑒𝑟) 

This would give a predicted value for our hypothetical ward of 27.3%: 

%𝑙𝑙𝑡�̂� =  −9.832 + 0.774 × 18

+ 0.344 × 45

+ 0.052 × 20

+ 0.336 × 20 = 27.3  

 

We can also use Table 12 to examine the impact of an older population in a ward as a single 

variable. If we leave all other variables the same (sometimes called “holding all other 

variables constant”), then we can see that an increase of 1% in the proportion of the 

population that is over 60 leads to a 0.336% increase in the predicted value of long term 

limiting illness rate (i.e. the precise value of the B coefficient). Another way of saying this is 

to say this is “controlling for employment, gender and social tenancy rates, a 1 unit increase 

in the percentage of people over sixty leads to 0.336 unit increase in long term limiting 

illness rates”. This simple interpretability is one of the strengths of linear regression.  

3 THE ASSUMPTIONS OF LINEAR REGRESSION 

OK so we have just shown the basics of linear regression and how it is implemented in SPSS. 

Now we are going to go a bit deeper. In this section we will consider some of the 

assumptions of linear regression and how they affect the models that you might produce. 

To interpret a model and its limitations, it is important to understand the underlying 

assumptions of the method and how these affect the treatment of the data and modelling 

choices made. 

When we use linear regression to build a model, we assume that: 

 The response variable is continuous and the explanatory variables are either 

continuous or binary.  

 The relationship between outcome and explanatory variables is linear 

 The residuals are homoscedastic 
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 The residuals are normally distributed 

 There is no more than limited multicollinearity 

 There are no external variables – that is variable that are not included in the model 

that have strong relationships with the response variable (after controlling for the 

variables that are in the model). 

 Independent errors  

 Independent observations. 

For most of these assumptions, if they are violated then it does not necessarily mean we 

cannot use a linear regression method, simply that we may need to acknowledge some 

limitations, adapt the interpretation or transform the data to make it more suitable for 

modelling. 

3.1 ASSUMPTION 1: VARIABLE TYPES 

The most basic assumption of a linear regression is that the response variable is continuous. 

The normal definition of continuous is that it can take any value between its minimum and 

its maximum. Two useful tests for continuity are: 

1. Can you perform meaningful arithmetic on the numbers on the scale? 

2. Can you meaningfully continuously subdivide the numbers on the scale into infinitely   

small parts? 

In many cases these two tests are clear cut but there is  a certain class of variables called 

count variables which pass test 1 but the result of test 2 is ambiguous and depends in part 

on the meaning of the variable. For example, number of cigarettes smoked is usually OK to 

treat as continuous whereas number of cars in a household is not.  

Binary variables are indicators of whether feature is present or whether something is true or 

false not they are usually coded as 1 – the feature is present/true and 0 the feature 

absent/false.  

Variables which are not binary or continuous can be used in a regression model if there are 

first converted into Dummy variables (see section 4.1) 

3.2 ASSUMPTION 2:  LINEARITY 
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Linear regression modelling assumes that the relationship between outcome and each of 

the explanatory variables is linear6, however this may not always be the case. 

3.2.1 CHECKING FOR NON-LINEAR RELATIONSHIPS 

Non-linear relationships can be difficult to spot.  If there are just two variables, then a curve 

in the data when looking at a two-way scatter plot may indicate a non-linear relationship. 

However, non-linear relationships can be hidden, perhaps because of complex 

dependencies in the data; a curve or even a cubic shape, in the scatter plot of residuals may 

also indicate that there are non-linear effects.   

3.2.2 MODELLING A NON-LINEAR RELATIONSHIP, USING LINEAR REGRESSION 

We can take account of a non-linear relationship into a linear regression model through a 

neat trick. By transforming the explanatory variable into something that does have a linear 

relationship with the outcome and entering that transformed variable into our model we 

can maintain the assumption of linearity.7  

For example, there may be a curve in the data, which is better represented by a quadratic 

rather than a linear relationship. 

Figure 6 shows the log of hourly wage by age for a sample of respondents.  In the left hand 

plot a straight line of best fit is plotted.  In the right hand plot, we can see that a curved line 

looks to the naked eye to be a much more sensible fit.  We, therefore, propose that there is 

a quadratic relationship between the log of pay per hour, and age.  This means that the log 

of pay per hour and age squared are linearly related. 

                                                      

6 i.e. in the sense that it conforms to a straight line. It might seem slightly odd as a curve is also a line but when 

statisticians refer to “linear”, they mean straight, everything else is “non-linear”. See 

https://study.com/academy/lesson/how-to-recognize-linear-functions-vs-non-linear-functions.html 

for further discussion. 

7 This may seem a little confusing; since we have added in non-linear predictors why is the model still referred 

to as a linear regression model? The reason is that the linearity here refers to the model not the data. The 

term linear regression denotes an equation in which the effect of each parameter in the model is simply 

additive (but the parameters themselves could represent non-linear relationships in the data). See: 

https://blog.minitab.com/blog/adventures-in-statistics-2/what-is-the-difference-between-linear-and-

nonlinear-equations-in-regression-analysis for more details.  

https://study.com/academy/lesson/how-to-recognize-linear-functions-vs-non-linear-functions.html
https://blog.minitab.com/blog/adventures-in-statistics-2/what-is-the-difference-between-linear-and-nonlinear-equations-in-regression-analysis
https://blog.minitab.com/blog/adventures-in-statistics-2/what-is-the-difference-between-linear-and-nonlinear-equations-in-regression-analysis
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Figure 6  Scatterplots of log of hourly wage, by age 

 

To account for this non-linear relationship in our linear model, we need to compute a new 

variable – the square of age (here called agesq where agesq = age2).  If there is a statistically 

significant quadratic relationship between hourly wage and age, then the model should 

contain a statistically significant linear coefficient for age squared which we can then use to 

make better predictions. 

The general form of model for the linear relationship would be: 

𝐿𝑛(𝐻𝑜𝑢𝑟𝑙𝑦 𝑊𝑎𝑔𝑒)𝑖 = 𝛽0 + 𝛽1𝑎𝑔𝑒𝑖 + 𝜀𝑖  

The model for the quadratic relationship would be: 

𝐿𝑛(𝐻𝑜𝑢𝑟𝑙𝑦 𝑊𝑎𝑔𝑒)𝑖 = 𝛽0 + 𝛽1𝑎𝑔𝑒𝑖 + 𝛽2𝑎𝑔𝑒𝑠𝑞𝑖 + 𝜀𝑖 

Note that we have retained the linear component in the model. This is generally regarded as 

best practice regardless of the significance of the linear component. In this case the left 

hand graph in Figure 6 does indicate that there is a linear component. 

3.3 ASSUMPTION 3:  NORMAL DISTRIBUTION OF RESIDUALS 

3.3.1 P-P PLOTS 

We can assess the assumption that the residuals are normally distributed by producing a P-P 

plot8through the regression dialogue box. 

                                                      

8 This is sometimes referred to as a normal probability plot or a quantile-quantile or q-q plot. 
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The ordered values of the standardised residuals are plotted against the expected values 

from the standard normal distribution. If the residuals are normally distributed, they should 

lie, approximately, on the diagonal.  

Figure 7  P-P plots for the simple linear regression (left – Table 8) and multiple linear 

regression (right Table 12) examples 

 

In Figure 7, the left hand example shows the plot for the simple linear regression and the 

right hand plot shows the multiple linear regression.  We can see that the line deviates from 

the diagonal on the left plot, whereas in the right hand example the line stays more closely 

to the diagonal. 

This makes substantive sense – our multiple linear regression example explains much more 

of the variance and therefore there are no substantively interesting patterns left within the 

residuals and they are normally distributed.  In our simple linear regression, we are missing 

some important explanatory variables – there is unexplained variance and this shows in the 

residuals where the distribution deviates from normal.9 

3.3.2 HISTOGRAMS OF RESIDUALS 

If we plot the standardised residuals for our two regression examples with histograms we 

can see that both examples follow approximately a normal distribution (Figure 8).  The left 

                                                      

9 Note that the reverse is not necessarily true. Normally distributed residuals does not imply that you have no 

missing (or extraneous) variables. 
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hand example is our simple linear regression and the right hand example is the multiple 

linear regression.  The multiple linear regression example here has residuals that follow the 

normal distribution more closely. 

We could use technical tests for normality such as the Shapiro-Wilk or Kolmogorov-Smirov 

statistics; however, these are beyond the scope of this primer.10 

Figure 8  Histogram of standardised residuals for simple regression (left, Table 8) and 

multiple regression (right, Table 12) 

 

3.4 ASSUMPTION 4:  HOMOSCEDASTICITY 

 

Homoscedasticity refers to the distribution of the residuals or error terms.  If this 

assumption holds then the error terms have constant variance – in other words, the error 

for each observation does not depend on any variable within the model.  Another way of 

saying this is that the standard deviation of the error terms are constant and do not depend 

on the explanatory variable values. 

3.4.1 CHECKING FOR HOMOSCEDASTICITY OF THE RESIDUALS 

Plotting the residuals against the explanatory variables is a useful method for visually 

checking whether or not the residuals are homoscedastic.  The scatter plot should look like 

random noise – no patterns should be visible. 

                                                      

10 See Field (2017) for more details. 
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Figure 9 shows a plot of the standardised residuals against the standardised predicted 

values for the response variable measuring long term illness from our ward level multiple 

linear regression (right) and the simple linear regression (left) examples. 

Also, we should plot the saved residuals against any of the other variables in the analysis to 

assess on a variable-by-variable basis wherever there is any dependency in the residuals on 

the variables in the analysis (there should not be). 

 

 

  

 

The left hand plot shows a clear cone shape typical of heteroscedasticity.  The right hand 

plot shows a more random noise type pattern, indicating homoscedastic residuals. 

In this case, the left hand plot refers to a simple linear regression with only one explanatory 

variable.  There are still patterns in the variance which have not been explained and this is 

seen in the residuals.11   

The right hand plot includes more variables and there are no discernible patterns within the 

variance: these residuals look to be meeting the assumption of homoscedasticity.  

 

3.4.2 WHAT TO DO IF THE RESIDUALS ARE NOT HOMOSCEDASTIC AND WHY DOES IT 

MATTER 

                                                      

11 Another way to think about this is that the model is only addressing part of the distribution of the response 

variable. 

Figure 9  Plotting residuals to check homoscedasticity for simple regression (left) and 

multiple regression (right) 
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Some models are more prone to displaying heteroscedasticity, for example if a data set has 

extreme values.  A model of data collected over a period of time can often have 

heteroscedasticity if there is a significant change in the outcome variable from the 

beginning to the end of the collection period.   

Heteroscedasticity therefore arises in two forms.  The model may be correct, but there is a 

feature of the data that causes the error terms to have non-constant variance such as a 

large range in values.  Alternatively, the model may be incorrectly specified so there is some 

unexplained variance due to the omission of an important explanatory variable and this 

variance is being included in the error terms. 

When the problem is the underlying data, the 𝛽 coefficients will be less precise as a result 

and the model fit may be overstated.  

For an incorrectly specified model, introducing additional explanatory variables may solve 

the problem.  For an underlying data issue, removing outliers may help, or it may be 

appropriate to transform the outcome variable – possibly using a standardised form of the 

variable to reduce the range of possible values.   

3.5 ASSUMPTION 5:  MULTICOLINEARITY 

When two of the explanatory variables in a model are highly correlated (and could therefore 

be used to predict one another), we say that they are collinear.   

In our model, it may be that these variables are actually representing the same societal 

factors which influence rates of illness - we can investigate this by removing one of the 

variables and producing an alternative model. 

When there are collinear variables, the model can become unstable – this is often indicated 

by the standard error around the estimation of the 𝛽 coefficients being large and the 

coefficients being subject to large changes when variables are added or deleted form the 

model.  The model cannot distinguish between the strength of the different effects and one 

of the assumptions of linear regression is violated. 

Signs that there is multicollinearity include: 

 𝛽 coefficients which are not significant, even though the explanatory variable is 

highly correlated with the outcome variable. 

 𝛽 coefficients which change radically when you add or remove a variable from the 

model. 

 𝛽 coefficients which are in the opposite direction to your expectation based on 

theory –a negative coefficient when you expect a positive relationship. 
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 High pairwise correlation between explanatory variables. 

3.5.1 TESTING FOR COLINEARITY - CORRELATIONS 

By carrying out a correlation analysis before we fit the regression equations, we can see 

which, if any, of the explanatory variables are very highly correlated and identify any 

potential problems with collinearity. 

 

If we refer back to the Pearson correlations that we produced in Error! Reference source 

not found. we note that the unemployment and social tenancy variables were correlated 

with a Pearson coefficient of 0.797.  What is meant by a “high level of correlation” is 

somewhat subjective, here we apply a rule of thumb that any correlation over |0.7| is 

considered high.  Where a pair of variables are highly correlated, it may be worth 

considering removing one of them from the analysis. 

We can remove one of the variables and investigate the effect.  Using the same example, we 

remove the unemployment variable and check the model fit. 

Table 12:  Model summary 

 

Removing the unemployment variable produces a model that explains 51.5% of the variance 

in illness rates.  This is 16% less than for when the variable is included so we can conclude 

that this variable is useful for the model – despite being highly correlated with social 

tenancy.  The parameters of the model are given in Table 13. 

Model Summary

.720a .518 .517 2.87129

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors : (Constant), % aged 60 and over, % female,

% social rented

a. 
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Table 13:  Model parameters 

 

3.5.2 TESTING FOR COLLINEARITY – VARIANCE INFLATION FACTOR 

The variance inflation factor (or VIF) of a linear regression gives us an idea of how much the 

variance of the regression estimates has been increased because of multicollinearity.  This is 

easily calculated in SPSS as part of the model outputs.  As a rule of thumb, if the VIF values 

are greater than 10, then multicollinearity may be a problem, 

The VIF values can be generated as part of the regression output in the coefficients table – 

see section 3.6.2 

3.5.3 COLLINEARITY – WHAT TO DO 

The simplest method for dealing with collinearity is to remove the variable in question from 

the model as in the example in 3.5.1. 

Alternatively, the variables of interest can be reduced in dimensionality by using a technique 

such as principal component analysis.12   

3.6 CHECKING THE ASSUMPTIONS OF LINEAR REGRESSION WITH SPSS 

3.6.1 REQUESTING PLOTS 

 

From the regression dialogue box, select Plots.  From here, requesting a scatter plot of 

predicted values by variance, and the standardised residual plots will provide the three key 

visualisations used to assess the assumptions of linear regression as part of the regression 

output. 

                                                      

12 See for example Field (2017) or Hair et al (2010) for discussion of this method. 

Coefficientsa

-9.127 3.336 -2.736 .006

.384 .068 .135 5.648 .000

.203 .007 .683 27.952 .000

.292 .021 .350 14.165 .000

(Constant)

% female

% social rented

% aged 60 and over

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: % lltia. 
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3.6.2 CALCULATING VARIANCE INFLATION FACTORS 

From the regression dialogue box select Statistics to open the dialogue for requiring VIF.  

Tick the Collinearity diagnostics checkbox and exit.   
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When the regression analysis is run, the VIFs form part of the output.  Table  shows our 

example multiple linear regression output with the additional information.  We can see in 

this example that there are no variables which cause concern. 

Table 14: Coefficients of a model with variance inflation factors 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) -9.832 2.734  -3.596 .000   

% social rented .052 .009 .175 5.728 .000 .348 2.876 

% female .344 .056 .121 6.176 .000 .836 1.196 

% aged 60 and over .336 .017 .404 19.762 .000 .775 1.291 

% unemp of econ act. .774 .035 .664 22.147 .000 .360 2.778 

a. Dependent Variable: % llti 

 

3.7 SAVING REGRESSION VALUES 

Select Save from the regression dialogue box.  Here we can request that predicted values 

and residuals are saved as new variables to the dataset.  We can also save the Cook’s 

distance for each observation. 

In this example, we have saved the unstandardised and standardised residuals and 

predicted values, and the Cook’s distance. 
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New variables are added to the dataset: 

pre_1 = unstandardised predicted 

res_1 = unstandardised residual 

zpr_1 = standardised predicted 

zre_1 = standardised residual 

coo_1 = Cook’s Distance 

Further model specifications save as separate variables with the suffice _2 and so on.  

3.8 EXTREME VALUES 

A large residual means that the actual value and that predicted by the regression model are 

very different. 
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Extreme values seen on a scatter plot of residuals suggests that there is a sample unit which 

needs to be checked, as a rule of thumb, a standardised residual of magnitude 3 or greater 

should be investigated. 

When this occurs it is worth considering: 

 Is the data atypical of the general pattern for this sample unit? 

 Is there a data entry error? 

 Is there a substantive reason why this outlier occurs? 

 Has an important explanatory variable been omitted from the model? 

Some times in a regression analysis it is sensible to remove such outliers from the data 

before refining the model.  An outlier will have a disproportionate effect on the estimations 

of the 𝛽 parameters because the least squares method minimises the squared error terms – 

and this places more weight on minimising the distance of outliers from the line of best fit. 

This in turn can move the line of best fit away from the general pattern of the data. 

When an outlier has an influence like this, it is described as having leverage on the 

regression line.  In this example, in the simple model there are many residuals that have a 

magnitude greater than 3. This is further evidence that important explanatory variables 

have been omitted. In the multiple regression model there are very few points of concern 

and all of those are only just over the threshold, so no need to examine any of the wards for 

removal from the analysis. 

3.8.1 COOK’S DISTANCE  

To assess outliers we can plot a scatter plot for inspection or another approach is to 

calculate the Cook’s distance for each observation.  This can be specified as part of the 

regression and is saved as an extra variable in the dataset.  The Cook’s distance is a measure 

of the change in the predicted values, if the observation is removed.  Any value with a 

distance of larger than three times the mean Cook’s distance might be an outlier.   

In our multiple regression model example, if we save the Cook’s distances and visualise 

them by ward (as in Figure 10Figure 10  Cook's distance by ward code) we can see that there 

are several values that breach the threshold (which is typically 3 times the mean of the 

Cook’s distances in this case marked as a horizontal line at around y= 0.004).Two cases in 

particular have very high Cook’s distances;  these may be worth investigating as outliers.13 

                                                      

13 The Breusch-Pagan test is a further analysis where the outcome variable is the squared residual. The 

explanatory variables are the same as for the model in question.  This regression generates a test statistic for a 
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Figure 10  Cook's distance by ward code 

 

4 MOVING TO A MORE COMPLEX MODEL 

4.1 NOMINAL VARIABLES 

Up to this point, our models have included only continuous variables.  A continuous variable 

is numeric, and can take any value.  In our examples, the value has had a minimum of zero 

but actually, mathematically, it wouldn’t have mattered if the values extended into negative 

numbers – although this would not have made sense in the real world. 

A nominal or unordered categorical variable is one where the possible values are separate 

categories but are not in any order.   

Consider a survey that asks for a participant’s gender, and codes the answers as follows: 

1. Male 

2. Female 

                                                                                                                                                                     

χ^2 test where the null hypothesis is homoscedasticity.  This test is not available through the menu interface in 

SPSS but can be run using a readily available macro.  The technical details of the test and the method for 

executing it through SPSS are beyond the scope of this primer.  Note that a function exists within both python 

and R for automating the test. 
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3. Trans gender 

4. Non binary 

 

Each case within the data would have a numerical value for gender.  If we were to use this 

number within a linear regression model, it would treat the value for gender of a non-binary 

respondent as four times the value for gender of a male.  This doesn’t make sense and we 

could have listed the answers in any order resulting in them being assigned a different 

number within the dataset; the numerical codes are arbitrary. 

The variable is not continuous but our theory may still be that the outcome variable is 

affected by gender so we want to include it in the model.  To do this we construct a series of 

dummy variables. Dummy variables are binary variables constructed out of particular values 

of a nominal variable. 

We need (n-1) dummy variables where n is the number of possible responses/categories.  In 

this example, we are using the ‘Male’ response as our reference category and therefore all 

of the dummy coefficients are interpreted as comparisons to the male case.  We have 4 

possible responses so need 3 dummy variables. 

This means that when the value of all of the dummy variables is zero, the prediction we 

make using the regression equation is for a male.  Table 13 shows the values for the three 

new dummy variables against the original question for gender. 

If D_female = 1, and all other dummies are zero, then we are predicting for a female.  If 

D_trans = 1 and all other dummies are zero, we are predicting for a transgender person and 

so on. 

Table 13  Creating dummy variables 

Gender response D_female D_trans D_nb 

Male 0 0 0 

Female 1 0 0 

Transgender 0 1 0 

Non-binary 0 0 1 

 

Remembering the earlier model for exam results, if we had a theory that gender could also 

be used to predict the age 16 results, we might include it as follows: 

𝑒𝑥𝑎𝑚16𝑖 = 𝛽0 +  𝛽1(𝐷𝑓𝑒𝑚𝑎𝑙𝑒) + 𝛽2(𝐷𝑡𝑟𝑎𝑛𝑠) + 𝛽3(𝐷𝑛𝑏) + 𝛽4(𝑒𝑥𝑎𝑚11) + 𝜀𝑖  

For a male, the equation collapses to: 

𝑒𝑥𝑎𝑚16𝑖 = 𝛽0 + 𝛽4(𝑒𝑥𝑎𝑚11) + 𝜀𝑖  
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because all of the dummy variables take a value of zero. 

For a female: 

𝑒𝑥𝑎𝑚16𝑖 = 𝛽0 +  𝛽1 + 𝛽4(𝑒𝑥𝑎𝑚11) + 𝜀𝑖 

 because D_nb and D_trans are equal to zero, and D_female is equal to 1. 

4.2 INTERACTION EFFECTS  

An interaction effect is when the relationship between an outcome variable and an 

explanatory variable, changes, based on another explanatory variable. 

Going back to our sample of exam results, let’s say that we know the sex of the students.  

For this example, we will assume that sex is binary and we have only males and females in 

the sample. 

We are trying to predict the age 16 scores, using the age 11 scores and the sex of the 

student.  There are four possible outcomes for our modelling work. 

4.2.1 SCENARIO A:  SAME SLOPE, SAME INTERCEPT 

The relationship between exam16 and exam11 is identical for boys and girls – sex is not 

significant, and there is no interaction effect. 

Our model for scenario A is the same as in the earlier section on simple linear regression: 

 

𝑒𝑥𝑎𝑚16𝑖 = 𝛽0 + 𝛽1𝑒𝑥𝑎𝑚11𝑖 + 𝑒𝑖 

 

There is no difference between boys and girls so there is no term for sex in the equation. 

Figure 11  Same slope, same intercept 
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4.2.2 SCENARIO B:  DIFFERENT INTERCEPT, SAME SLOPE  

Here the relationship between exam16 and exam11 has a different intercept for boys than 

girls but the nature of the relationship (the slope) is the same for boys and for girls. This 

means that boys on average do differently to girls at age 11 and age 16, but the change in 

the scores between the two ages is the same regardless of sex.   

In scenario (b) the slopes are the same but there is an overall difference in the average 

exam scores.  We need a dummy variable to represent sex – let’s say that if sex = 0 for a 

male and sex = 1 for a female. 

𝑒𝑥𝑎𝑚16𝑖 = 𝛽0 + 𝛽1𝑒𝑥𝑎𝑚11𝑖 + 𝛽2𝑆𝑒𝑥𝑖 + 𝑒𝑖 

There are two separate lines for girls and boys, but they are parallel. 

Figure 12  Same slope, different intercept 

 

4.2.3 SCENARIO C:  DIFFERENT INTERCEPT, DIFFERENT SLOPES 

The relationship between exam16 and exam11 has a different intercept and a different 

slope for boys and girls.  The line with the lower intercept but steeper slope might refer to 

boys and the line with the higher intercept and shallower slope to girls. 

This is an interaction effect.   

The difference in intercept is modelled by including a term for sex as in scenario b.  The 

difference in slope is modelled by inclusion of an interaction term. To do this we simply 

create an extra variable that is the product of the two variables we wish to interact, and 

including that new variable in the model. 

For every case, we multiply the exam11 score by the Sex dummy variable and compute this 

into a new variable, here called exam11Sex. 

𝑒𝑥𝑎𝑚16𝑖 = 𝛽0 + 𝛽1𝑒𝑥𝑎𝑚11𝑖 + 𝛽2𝑆𝑒𝑥𝑖 + 𝛽3𝑒𝑥𝑎𝑚11𝑆𝑒𝑥𝑖 + 𝑒𝑖 
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Figure 13  Different slope, different intercept 

 

4.2.4 SCENARIO D:  DIFFERENT SLOPE, SAME INTERCEPT 

The slope is different for girls and boys but the intercept is identical. In this graph one of the 

lines would refer to girls, and the other line to boys.  This means that boys and girls do the 

same (on average) at age 11 but that the different sexes progress differently between age 

11 and age 16. 

In scenario (d) we have different slopes, but the same intercept for the two sexes14.  The 

equation for the line is the same as scenario c, but 𝛽2 is zero so the model equation 

collapses to: 

𝑒𝑥𝑎𝑚16𝑖 = 𝛽0 + 𝛽1𝑒𝑥𝑎𝑚11𝑖 + 𝛽3𝑒𝑥𝑎𝑚11𝑆𝑒𝑥𝑖 + 𝑒𝑖 

Figure 14  Same intercept, different slope 

 

                                                      

14 Note that this is a theoretical possibility. In practice, this will rarely happen and when building models one 

should by default include all the main effects for all of the variables in an interaction term as this improves 

model stability. 
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4.3 TRANSFORMING A VARIABLE 

 

Variables do not need to be normally distributed to be used within a linear regression; 

however, the assumptions of linear regression are sometimes more easily met when the 

response variable conforms to a normal, or near normal distribution. 

The distribution of income is often subject to significant skew and is bounded at zero.  This 

is because a few people earn a very high salary and it is not possible to have a negative 

wage.  Figure 15 shows a histogram of hourly pay with significant positive skew on the left 

hand side, and the result of taking the log of this variable as a histogram on the right hand 

side.  We can see that by taking the natural log of the hourly wage, the distribution becomes 

closer to normal. 

Figure 15  Histograms of hourly pay (left) and log of hourly pay (right) 

 

Another common transformation is to standardise the data.  To standardise a variable we 

subtract the mean, and divide by the standard deviation.  This gives a distribution with a 

mean of zero and a standard deviation of 1. 

The SPSS menu and dialogue boxes for transforming variables are shown in section 4.5. 

4.4 MORE MODEL SELECTION METHODS – BEYOND THE DEFAULT 

The default method within SPSS linear regression is the enter method. 
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In the enter method, a substantive theory based model is built, including all explanatory 

variables considered relevant based on the research question, previous research, real-world 

understanding and the availability of data. 

When there are a large number of explanatory variables, we might use statistical criteria to 

decide which variables to include in the model and produce the “best” equation to predict 

the response variable. 

Two examples of such selection methods are discussed here; backwards elimination and 

stepwise selection.  Even with these automatic methods, inclusion of many variables without 

a robust theory underlying why we think they may be related risks building spurious 

relationships into our model.  We may build a good predictive model, but if this is based 

upon spurious correlations, we do not learn anything about the problem our research is 

trying to address. 

4.4.1 BACKWARDS ELIMINATION 

Begin with a model that includes all the explanatory variables. Remove the one that has the 

highest p-value.  Refit the model, having removed the least significant explanatory variable, 

remove the least significant explanatory variable from the remaining set, refit the model, 

and so on, until some ‘stopping’ criterion is met: usually that all the explanatory variables 

that are included in the model are significant. 

4.4.2 STEPWISE 

This is more or less the reverse of backward elimination, in that we start with no 

explanatory variables in the model, and then build the model up, step-by-step. We begin by 

including the variable most highly correlated to the response variable in the model. Then 

include the next most correlated variable, allowing for the first explanatory variable in the 

model, and keep adding explanatory variables until no further variables are significant. In 

this approach, it is possible to delete a variable that has been included at an earlier step but 

is no longer significant, given the explanatory variables that were added later. If we ignore 

this possibility, and do not allow any variables that have already been added to the model to 

be deleted, this model building procedure is called forward selection. 

4.5 SPSS SKILLS FOR MORE ADVANCED MODELLING 

4.5.1 RECODING INTO A DUMMY VARIABLE 

Use the Transform > Recode into different variables menu path to open the recode 

dialogue box. 
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Here you can select the variable to recode, and specify the name and label of the new 

‘output variable’.  Then click on Change  to see variable within the Numeric Variable -> 

Output Variable box.   

 

 
 

Click on Old and new Values to open the next dialogue box for specifying the recode.  In this 

example, we have selected sex and are recoding into a dummy variable called “Female”.  

The previous and new codings are shown in Table 15. 

Table 14  Recoding sex to a dummy variable 

Previous code (Sex) New code (Female) Meaning 

1 0 Male 

2 1 Female 

 

Specify each old and new value and then click Add to generate the list of recodings.  In this 

dataset, the variable sex was binary and so only a few lines of recoding  are needed (see 

below) but a variable with more categories would need many values recoding to zero, and 

multiple dummies.  Also adding a recode of System Missing to System Missing ensures that 

values coded as missing within the data retain that coding. 
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4.5.2 COMPUTING A NEW VARIABLE 

New variables can be computed via the Transform > Compute Variable… menu path.  

To compute the natural log of pay in this example dataset: 
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To compute a quadratic term – here age squared: 

 

To save standardised versions of a variable, go to Descriptives and select the check box. 

 

The resulting dataset will look like this – we now have three original variables and four 

computed variables displayed in the Variables viewer. 

 

 

5 FURTHER READING 
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A number of excellent texts have been written with significantly more technical detail and 

worked examples, a selection of which are listed below.  Field is available in both SPSS and 

also a version in R (a free to use open source data analysis program widely used in academia 

and the public and private sectors). 

Bryman, A., Cramer, D., 1994. Quantitative Data Analysis for Social Scientists. Routledge. 

Dobson, A.J., 2010. An Introduction to Generalized Linear Models, Second Edition. Taylor & 

Francis. 

Field, A., 2017. Discovering Statistics Using IBM SPSS Statistics. SAGE. 

Hair, J.F., Anderson, R.E., Babin, B.J. and Black, W.C., 2010. Multivariate data analysis: A 

global perspective (Vol. 7).  

Howell, D.C., 2012. Statistical Methods for Psychology. Cengage Learning. 

Hutcheson, G.D., 1999. The Multivariate Social Scientist: Introductory Statistics Using 

Generalized Linear Models. SAGE. 

Linneman, T.J., 2011. Social Statistics: The Basics and Beyond. Taylor & Francis. 

McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models, Second Edition. CRC Press. 

Plewis, I., Everitt, B., 1997. Statistics in Education. Arnold. 
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6 APPENDIX A:  CORRELATION, COVARIANCE AND PARAMETER ESTIMATION 

The correlation coefficient, r, is calculated using: 

Where, 

 

Is the variance of x from the sample, which is of size n. 

 

Is the variance of y, and, 

 

Is the covariance of x and y. 

Notice that the correlation coefficient is a function of the variances of the two variables of 

interest, and their covariance. 

In a simple linear regression analysis, we estimate the intercept, 0, and slope of the line, 1 

as: 
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7 GLOSSARY 

categorical A variable where the responses are categories.  For example, 
ethnicity. 

collinear When one variable can be used to predict another.  When two 
variables are closely linearly associated. 

continuous A continuous variable is a variable which takes a numeric form 
and can take any value.  For example, distance in miles to the 
nearest shop. 

Cook's distance A measure of whether or not observations are outliers.  The 
threshold for further consideration is three times the mean of 
the Cook's distance.  The creator of the measure defines any 
point as having a Cook's distance of 1 to be of concern.  Used 
to assess whether or not an observation within a dataset 
should be removed to improve the fit of the model. 

correlated Two continuous variables are said to be correlated if a change 
in one variable results in a measurable change in the other.  
The correlation coefficient is a measure of the strength of this 
association or relationship. 

response variable The outcome we want to predict.  The value of this variable is 
predicted to be dependent on the other terms in the model.  
Sometimes referred to as the dependent variable or the Y 
variable. 

error term See residual 

explanatory variable The variables which we use to predict the outcome variable.  
These variables are also referred to as independent or the X 
variable(s). 

homoscedastic One of the key assumptions for a linear regression model.  If 
residuals are homoscedastic, they have constant variance 
regardless of any explanatory variables.  

linear regression A method where a line of best fit is estimated by minimising 
the sum of the square of the differences between the actual 
and predicted observations. 

multicolinearity When two or more variables are closely linearly associated or 
can be used to predict each other. 

multiple linear regression Linear regression with more than one explanatory variable. 

negative correlation  

ordinalordinal variable A variable where the responses are categories, which can be 
put in an order.  For example, the highest level of education 
achieved by a respondent.  Remember that the possible 
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responses may not be evenly spaced. 

Pearson's coefficient a measure of correlation. 

population The whole group we are interested in. 

positive correlation A situation where  if one variable increases in value, another 
variable also tends to increase in value. 

R2 A measure of model fit.  The percentage of variance explained 
by the model. 

representative When a sample is representative, it has the same statistical 
properties as the population as a whole.  This means that 
when we get results of a statistical analysis of the sample, we 
can infer that the same results are true for the population.  To 
be representative a sample needs to be of sufficient size and 
the correct composition to reflect the means of groups within 
the underlying population. 

residual The difference between the predicted value from the model, 
and the actual value of the observation.  When texts refer to 
the residuals, it means the data that is generated if we 
calculate the residual for every observation in the dataset. 

sample The sub section of the population which we are studying.  A 
smaller number of units, drawn from the population.  For 
example we might be interested in menu choices in a school 
canteen.  Our population of interest is everyone in the school.  
We could then take a survey of 5 students from each year 
group.  This would be our sample. 

simple linear regression Linear regression with one explanatory variable 

skew Measures the symmetry of a distribution.   A symmetrical 
distribution has a skew of 0.  Positive skew means more of the 
values are at the lower end of the distribution, negative skew 
means that more of the values are at the higher end of the 
distribution. 

statistically significant When a result is statistically significant, we mean that it meets 
our criteria for the hypothesis test.  Statistically significant is 
not the same as "important" or "interesting" and has a 
specific technical meaning. 

 


