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Abstract

Probabilistic record linkage is used to identify records in distinct datasets that correspond to the same entities.

Classical probabilistic record linkage only considers the information contained in the variables common to two

datasets A and B. Information contained in the variables that appear only in A or only in B is ignored. In recent

years attempts have been made to exploit this information.

Approaches have either been ad hoc, or have been computationally expensive Markov Chain Monte-Carlo

approaches that (to some degree) have moved away from the classical approach. Here we present a theoretically

grounded approach that is an extension of the classical approach. The motivating idea is to improve record linkage

by indirectly applying Occam's razor by requiring a set of chosen links to be consistent with a parsimonious

generating process. Other approaches have been motivated by goals of improving the estimation of model

parameters or accounting for matching constraints. Although our goal is di�erent, we show (as others have

before) that linkage performance can be improved by combining the record linkage procedure with statistical

modelling.

Keywords: Bayesian methods; expectation maximization; graphical models

1 Introduction

Data are often contained in distinct databases held by distinct organisations. It is sometimes desirable to identify

records in such databases that relate to the same entities. This is termed record linkage. The entities in question

are often individuals. Record linkage might be used to replace high cost surveys, �ll in missing values in survey

data, or to produce combined data sets that can address research questions that cannot be addressed using existing

data sets. For instance, we might combine historic survey data with a database of o�enders to identify factors that

might in�uence the onset of o�ending. There is great interest in �nding improved approaches to linkage. Better

linkage should generally result in more robust research conclusions. For a comprehensive review of record linkage

approaches see Christen (2012).
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In the absence of unique identi�ers probabilistic approaches to linkage must be employed. These assign match

probabilities to each possible match (record pair). The classical approach to probabilistic record linkage (Fellegi

and Sunter, 1969) compares values on the variables that are common to a pair of datasets A and B. These are

termed the key variables. Comparisons are for equality, and the results of the comparisons on the key variables for

a record pair are assumed to be mutually independent given the match status of the pair. Record pairs that cannot

be con�dently classi�ed as matches or non-matches are sent for clerical review � manual classi�cation by a human.

There have been many subsequent attempts to improve on the classical approach. Some have sought to remove

the binary comparison assumption in order to exploit similarities between values (e.g. Winkler, 1990; Smith and

Shlomo, 2014). Others have sought to eliminate the conditional independence assumption (e.g. Tancredi and Liseo,

2011). Performance can also be improved by incorporating matching constraints. In particular, the assumption

that neither �le contains duplicated records is often reasonable. In this case a record in A can match at most a

single record from B, and vice versa. The Hungarian algorithm (Kuhn, 1955) can be used as a post hoc procedure

to �nd a maximal 1 to 1 matching that maximizes the product of the match probabilities for the included links.

Some approaches have sought to more adequately account for the dependencies implied by 1 to 1 matching by

incorporating the constraint into the linkage procedure itself (Tancredi and Liseo, 2011; Gutman et al., 2013;

Sadinle, 2017; Steorts et al., 2016).

Here we seek to improve linkage performance by exploiting the relationships between non-key variables. Within

the classical linkage approach this source of information is ignored, although prior knowledge of these relationships

would be exploited in the clerical review process. For example, a record pair that (if merged) would imply a 6 year

old CEO of a large company would likely be (manually) classi�ed as a non-match.

It has been previously recognised that the �link then analyse� approach can be improved upon � �It is important

to conceptualize the linkage and analysis steps as part of a single statistical system�, Scheuren and Winkler (1993).

Scheuren and Winkler (1997) demonstrated the bene�ts of a more integrated approach for linkage and linear

regression modelling. The authors speci�ed a simple straight line model and used it to generate data for the response

variable Y and the independent variable X. Y and X were adjoined to datasets A and B with known match status.

A and B were initially linked using the standard Fellegi-Sunter approach. Then Y was regressed against X using

the linked data (see Scheuren and Winkler (1993) for details). Record pairs corresponding to large residuals were

removed. The model was then re-�tted, and the X-values for record pairs corresponding to large residuals were

imputed from the �tted model. The model was then re-�tted using the retained record pairs (including those with

imputed values). The authors showed that both the �tted model and linkage could be improved. Furthermore, the

process did not need to be iterated many times to achieve signi�cant bene�ts.

Other approaches which have exploited the non-key variables tend to be based on Markov Chain Monte-Carlo

methods (Gutman et al., 2013; Hof et al., 2017). Our approach is more similar to that of Scheuren and Winkler

(1997) in that we retain much of the classical linkage framework, and combine linkage and modelling. However,



our approach does not require prior information regarding the relationships between variables � �A crucial practical

assumption for the work of this paper is that analysts are able to produce a reasonable model (guesstimate) for the

relationships between the noncommon quantitative items�, Scheuren and Winkler (1997). Our motivation stems

directly from Occam's razor � we should prefer a set of links that is consistent with a parsimonious generating

process. Thus the modelling component seeks models with simple structure, rather than just improved parameter

estimates. That is the essential di�erence between our approach and that of Scheuren and Winkler (1997). We

manipulate the model structure rather than the data. We show that our approach can be e�ective at improving

both record linkage and the quality of the resulting model.

In Section 2 we provide an overview of the classical (Fellegi-Sunter) approach to record linkage, and a commonly

used method for parameter estimation. In Section 3 we present our extended approach. In Section 4 we describe our

modelling approach. In Section 5 we demonstrate the e�ectiveness of the approach via experiments using real-world

data. We summarize our results in Section 6.

2 Classical linkage background

Classical record linkage (Fellegi and Sunter, 1969) is an unsupervised learning approach which only considers

comparisons for equality on the key variables. It also adopts the naïve Bayes assumption that the results of

comparisons on key variables are mutually independent given the match status.

Assume we have two datasets A and B and seek to identify the records in A and B that correspond to the same

population entities.

There is a set of all possible matches,

A×B = {(a, b); a ∈ A, b ∈ B}.

This can be partitioned into sets of matched and unmatched pairs,

M = {(a, b); a = b, a ∈ A, b ∈ B}

U = {(a, b); a 6= b, a ∈ A, b ∈ B}

and the goal of record linkage is to classify the possible matches as either members of M or members of U .

Bayes theorem leads to the following expression for the posterior odds that a and b correspond to the same

population unit,

Pr((a, b) ∈M |(a, b))
Pr((a, b) ∈ U |(a, b))

=
Pr((a, b)|(a, b) ∈M)

Pr((a, b)|(a, b) ∈ U)

Pr((a, b) ∈M)

Pr((a, b) ∈ U)
. (1)



Assume that the data are aligned so that each index i ∈ {1, . . . , n} corresponds to the same variable in A or B

(so n = |XA∩B |). Then, Fellegi-Sunter assumes that the posterior odds can be factorized as,

Pr((a, b) ∈M |(a, b))
Pr((a, b) ∈ U |(a, b))

=

(
n∏
i=1

Pr((ai, bi)|(a, b) ∈M)

Pr((ai, bi)|(a, b) ∈ U)

)
Pr((a, b) ∈M)

Pr((a, b) ∈ U)
. (2)

Fellegi and Sunter (1969) initially allocate possible matches to one of three sets,

A1 � a set of positive links

A2 � a set of possible links

A3 � a set of positive non-links

Pairs of records allocated to A2 are subjected to clerical review and manually allocated to either A1 or A3.

Fellegi and Sunter (1969) show that to maintain error rates Pr(A1|U) = µ and Pr(A3|M) = λ while minimising

the number of record pairs allocated to A2 it is usually necessary to allocate some possible links probabilistically.

Their rule is based on the link probabilities and, as we only have estimates of these, the e�ectiveness of the rule

depends on the quality of estimation.

2.1 Expectation-Maximization

Jaro (1989) details an Expectation-Maximization (EM) approach for estimating the Fellegi-Sunter parameters.

Expectation-Maximization (Dempster et al., 1977) is an iterative approach to maximum likelihood estimation.

When we have a likelihood (or log likelihood) function that is di�cult to maximize we can sometimes produce a

function that is much easier to maximize by treating a subset of the parameters as missing data and replacing

them with �xed values. The EM approach works by iteratively generating and maximizing such functions. Initial

parameter values are speci�ed (for the non-missing parameters) and these are used to calculate the expected values

of the missing data (E-step). The expected values are then substituted for the missing data to produce a new

function that can be more easily maximized (on the M-step). The parameter estimates generated on the M-step

are used on the subsequent E-step. The E-step and M-step are repeated until convergence to some (not necessarily

global) maximum of the underlying likelihood function. The use of expected values guarantees that the value of

the underlying likelihood function is increased on each iteration (until convergence).

In Jaro (1989) the unobserved match statuses are treated as missing data. This generates functions that can be

trivially maximized on the M-steps.

We have i = 1, . . . , n key variables and j = 1, . . . , N record pairs. We have a set M of correct matches and a

set U of incorrect matches.

γji = 0 if attribute i di�ers for record pair j, and γji = 1 if attribute i matches for record pair j.

mi = Pr(γji = 1|rj ∈M)



ui = Pr(γji = 1|rj ∈ U)

p =
|M |
|M ∪ U |

Pr(γj |M) =

n∏
i=1

m
γj
i
i (1−mi)

1−γj
i

Pr(γj |U) =

n∏
i=1

u
γj
i
i (1− ui)1−γ

j
i

The last two equations re�ect the naïve Bayes assumption.

We want to estimate the unknown parameters Φ = (m,u, p) .

Let x be the complete data vector equal to 〈γ, g〉 , where g j = (1,0) i� the j th record rj ∈ M and g j = (0,1)

i� rj ∈ U . Then the log likelihood for the complete data is,

ln(f(x|Φ)) =

N∑
j=1

gj ·

(
n∑
i=1

ln(m
γj
i
i (1−mi)

1−γj
i ),

n∑
i=1

ln(u
γj
i
i (1− ui)1−γ

j
i )

)T
+

N∑
j=1

gj · (ln(p), ln(1− p))T .

In the expectation step we calculate the expectation of the missing data, g j given pragmatic starting values for

the mi, ui and p. The expectations for the g j are simply the posterior probabilities that the r j are members of M

or U given the current values for mi, ui and p.

gm(γj) =
p
∏n
i=1m

γj
i
i (1−mi)

1−γj
i

p
∏n
i=1m

γj
i
i (1−mi)1−γ

j
i + (1− p)

∏n
i=1 u

γj
i
i (1− ui)1−γ

j
i

gu(γj) =
(1− p)

∏n
i=1 u

γj
i
i (1− ui)1−γ

j
i

p
∏n
i=1m

γj
i
i (1−mi)1−γ

j
i + (1− p)

∏n
i=1 u

γj
i
i (1− ui)1−γ

j
i

So each g j is equal to (gm(γj), gu(γj)) .

In the maximization step we �nd the maximum likelihood parameters for the mi, ui and p given the complete

data � the γji and the g j.

m̂i =

∑N
j=1 γ

j
i · gm(γj)∑N

j=1 gm(γj)

ûi =

∑N
j=1 γ

j
i · gu(γj)∑N

j=1 gu(γj)



p̂ =

∑N
j=1 gm(γj)

N
.

These estimates are used as �xed parameters for the next expectation step. This generates new (gm(γj), gu(γj))

which are used to generate the subsequent estimates for mi, ui and p, and so on, until convergence.

The �nal solution can be sensitive to the chosen starting values. The u probabilities can be estimated directly

from the record pairs if the proportion of correct matches is very low (Jaro, 1989). These estimates can be used as

the initial values. The m probabilities are related to data quality, and starting values are often close to 1. In many

cases an upper bound for p can be easily derived from the sizes of A and B. If neither A nor B contains duplicates,

then the maximum number of matches is equal to the minimum of |A| and |B |. In practice the initial value for p

would usually be set at a value much lower than this bound (an obvious exception being the case where, say, we

knew that every entity in A is also represented in B).

Record linkage performance can often be substantially improved by blocking. If there are variables which are

considered to be reliably recorded, then we can require that any record pair to be allocated to M must match on

these blocking variables. Restricting probabilistic linkage to such pairs can exclude many non-matches, increasing

the overall proportion of matches, and improve record linkage performance. Jaro (1989) suggests �xing u at values

estimated from all the record pairs when using a blocking strategy in order to reduce bias. In fact any of the

parameters can be �xed, and the remainder estimated within the EM framework.

The computational cost of the EM approach can be signi�cantly reduced by constructing a mapping of distinct

comparison vectors to frequencies (Jaro, 1989). Under the usual Fellegi-Sunter assumptions each record pair asso-

ciated with a given comparison vector has the same posterior probability of a correct match. Thus we only need to

calculate the expectations of a maximum of 2n distinct comparison vectors (or 3n if we have missing values on the

key variables) on the E-step. The frequencies of these comparison vectors are used to weight the expectations on

the M-step.

3 Extended Fellegi-Sunter record linkage

Consider a partitioning of the set of variables X contained in A or B,

XA\B = (Xz)z∈A\B

XB\A = (Xz)z∈B\A

XA∩B = (Xz)z∈A∩B



.

It is the variables in XA\B and XB\A that are ignored in the standard Fellegi-Sunter approach.

The set of matching pairs will follow some (unknown) probability distribution f(X). But for the set of non-

matching pairs we have the conditional independence relationship XA\B ⊥⊥ XB\A|XA∩B . So the joint distribution

for the non-matching pairs can be factorized as f(XA\B)f(XB\A)/f(XB∩A) Thus we have distinct factorizations for

the joint distribution over X under M and U, and their ratio provides an additional Bayes factor. This is essentially

the same Bayes factor that is used by Smith (2016) and Gutman et al. (2013). The di�erence here is that we need

to handle missing values due to non-matches on key variables. This leads to the latent model given by Equation 3,

Pr((a, b) ∈M |(a, b))
Pr((a, b) ∈ U |(a, b))

=
fA∪B(a⊕ b)

fA\B((a⊕ b)A\B)fB\A((a⊕ b)B\A)/fA∩B((a⊕ b)A∩B)
×(

n∏
i=1

Pr((ai, bi)|(a, b) ∈M)

Pr((ai, bi)|(a, b) ∈ U)

)
×

Pr((a, b) ∈M)

Pr((a, b) ∈ U)

(3)

where fZ denotes the marginal distribution of Z, a ⊕ b is the record formed from merging a and b into a single

record (with missing values for unequal comparisons on the key variables), and (a ⊕ b)Z is the merged record for

the values corresponding to the variables in Z.

The model implies that the probability of observing a given comparison vector is the same for all con�gurations of

X given the match status. We might suspect that certain typographical errors will be more likely for commonly mis-

spelled or longer words, so it is a questionable assumption. Nevertheless, we might still expect some improvement

in linkage performance through being able to distinguish between record pairs implying e.g. 6 year old and 50 year

old company CEOs.

We can estimate f(XA\B), f(XB\A) and f(XB∩A) directly from the unlinked data. The issue is how to estimate

the marginal distribution f(X). An intriguing possibility is to estimate this from using the results of standard

Fellegi-Sunter linkage. After all, a standard use case would be to use the results of standard Fellegi-Sunter linkage

to estimate some statistical model. So why not estimate f(X) and use this to generate improved linkage using the

extended latent model in 3? If this improves record linkage, then we could generate an improved estimate of f(X)

and iterate the process. We might also be able to exploit prior information and training data.

It might seem counterintuitive that we could achieve improvements in performance without either prior informa-

tion regarding f(X) or training data. But in this case we can exploit the most fundamental of scienti�c principles

- Occam's razor. In the classical record linkage framework there are no steps to ensure that links will be consistent

with a parsimonious generating process. Here we can introduce such a step by generating a parsimonious model

for f(X) from the linked data and feeding this back into the linkage process via the additional Bayes factor. This

general approach of combined linkage and modelling was set out in Smith and Elliot (2016) and the methodology



builds on that in Smith (2016).

3.1 Extended EM

It is clear that all the required marginal distributions for the additional Bayes factor could be generated from the

single marginal distribution f(X). But for the moment let us assume that the numerator and denominator terms

of the Bayes factor are based on distinct full probability models with parameter vectors Φm and Φu. Let the

con�guration of the evidence on the values of the variables for the j th record pair be denoted δj . Then,

gm(γj , δj) =
pPr(γj |M)Pr(δj |Φm)

pPr(γj |M)Pr(δj |Φm) + (1− p)Pr(γj |U)Pr(δj |Φu)
(4)

gu(γj , δj) =
(1− p)Pr(γj |U)Pr(δj |Φu)

pPr(γj |M)Pr(δj |Φm) + (1− p)Pr(γj |U)Pr(δj |Φu)
. (5)

If we apply the same mathematical treatment as for the standard EM algorithm (Jaro, 1989) we �nd that

the estimation of the Fellegi-Sunter parameters on the M-step is una�ected. The estimated match probabilities

generated on the E-step now also depend on the δj (via the additional Bayes factor) as shown in Equation 3. Thus

for a given set of Bayes factors we can estimate the Fellegi-Sunter parameters via a minimal extension of the usual

EM algorithm (Jaro, 1989). We simply need to incorporate the numerator and denominator terms of the additional

Bayes factor when calculating expectations, as shown in Equations 4 and 5.

The log likelihood for the complete data is,

ln(f(x|Φ,Φm,Φu)) =

N∑
j=1

gj ·

(
n∑
i=1

ln(m
γj
i
i (1−mi)

1−γj
i ),

n∑
i=1

ln(u
γj
i
i (1− ui)1−γ

j
i )

)T
+

N∑
j=1

gj · (ln(p), ln(1− p))T +

N∑
j=1

gj ·
(
ln(Pr(δj |Φm)), ln(Pr(δj |Φu))

)T
(6)

This still leaves open the question of the modelling approach. Φu can be estimated directly from the unlinked

data and �xed. But we still need to deal with the estimation of f(X) from the linked data and match probabilities,

and how many times we might iterate the process to generate incremental improvements in linkage performance.

4 Modelling

For our full probability modelling we choose decomposable graphical modelling. A decomposable graphical model

consists of a decomposable graph and the parameters for a corresponding collection of probability tables. Parsimo-

nious models are characterised by a sparse graph. We assume that all variables are categorical. In practice, many



of the variables we meet will be categorical, or will have been categorised to limit the risks of statistical disclosure.

Variables that are not categorical can be categorised for our purposes. This allows us to exploit the standard results

presented in Section 4.2 and identify good models with sparse structure.

4.1 Decomposable graphical models

A decomposable graph is an undirected graph G = (V,E) that contains no unchorded cycles of length greater

than three. The node set represents a set of variables X = (Xv)v∈V , and the absence of an edge {v,w} implies

that Xv is conditionally independent of Xw given the variables in (Xu)u∈V \{v,w}. A decomposable graph can also

be represented as a cluster tree. Each maximal pairwise connected subgraph of G is a cluster, and clusters are

connected into a tree (or forest in the case of statistically independent components) so as to respect the running

intersection property (Lauritzen and Spiegelhalter, 1988):

If a node is contained in two clusters, C1 and C2, then it is contained in all clusters on the unique path

between C1 and C2.

Each edge in the cluster tree is associated with a sepset � the intersection of the node sets associated with the

clusters that it connects. A cluster tree implies a factorization over the joint distribution of the variables in X,

Pr(X) =

∏
C∈C Pr(C)∏
S∈S Pr(S)

where C is the set of clusters in the cluster tree (or forest) and S is the multiset of sepsets.

Posterior beliefs over clusters given observed evidence can be generated via message passing in a cluster tree

(Lauritzen and Spiegelhalter, 1988). This exploits conditional independencies and avoids calculating Pr(X). Pos-

terior beliefs over sets of variables not contained in a single cluster can be generated via variable �ring (Jensen,

1996) or, at least as e�ciently, by manipulating the tree (or forest) so that there exists a cluster containing all the

relevant variables (Smith, 2001).

4.2 Model determination

Model determination algorithms for decomposable graphical models generally depend on two important results. The

�rst result is that it is possible to move between any pair of decomposable graphs, G and G ', by iteratively adding

or removing only a single edge at a time while remaining within the class of decomposable graphs (Frydenberg and

Lauritzen, 1989).

The basic rules for edge addition / deletion in decomposable graphs are:

An edge {v,w} can be added if, and only if, it is not already present, and v and w are either in adjacent

clusters or in distinct connected components



An edge {v,w} can be deleted only if, and only if, it is present in exactly one cluster

The second important result is that the Bayes factor for two neighbouring models (di�ering in only a single

edge) involves only four terms which can be calculated locally (Dawid and Lauritzen, 1993).

Assume the variables in X are categorical, taking values in �nite sets (Iv)v∈V . Let I = ×
v∈V

Iv denote the possible

con�gurations of X. Assume we have a random sample of X contained in a contingency table of counts n = (n(i))i∈I .

Let nZ denote the counts n(iZ) in the marginal table I Z over the variables in Z. If we also specify a hyper Dirichlet

prior as a contingency table of parameters λ = (λ(i))i∈I , then:

For any complete set C the marginal likelihood is,

pC (xC) =
Γ (λ)

Γ (λ+ n)

∏
iC∈IC

(
Γ (λiC + niC )

Γ (λiC )

)
and under the hyper multinomial-Dirichlet law (Dawid and Lauritzen, 1993) the marginal likelihood for the full

dataset is,

p(x) =

∏
C∈C pC(xC)∏
S∈S pS(xS)

.

If we have graphs G = (V,E) and G′ = (V,E′) where E′ contains the edges in E and an additional edge {v, w},

then the Bayes factor (ratio of marginal likelihoods) is given by,

p(x|G′)
p(x|G)

=
pC(xC)pS(xS)

pA(xA)pB(xB)

where C is the unique cluster in G′ containing {v, w} and A = C \ {v}, B = C \ {w} and S = C \ {v, w}.

These results have been exploited by various model determination algorithms. Markov Chain Monte Carlo

(MCMC) algorithms (e.g. Madigan and York, 1995) generate a posterior distribution over the model space. Aver-

aging over this distribution takes into account uncertainty in the model structure and generally provides improved

predictive performance (Hoeting et al., 1999). Madigan and Raftery (1994) use an alternative model selection

strategy where they reject any models that are su�ciently poorer than the best model(s). Their Occam's razor

strategy is based on comparisons of models di�ering by only a single edge. If the evidence favours the larger model

to a su�cient degree (decided by a threshold on the Bayes factor), then the smaller model and all its submodels

are rejected. A model M 0 is de�ned as a submodel of M 1 if all the edges in M 0 are also in M 1. Search can start

from an arbitrary set of candidate models. Their up algorithm considers only edge additions. Their down algorithm

considers only edge deletions. The up and down algorithms can be run in turn to identify a set of candidate models.

Models that are su�ciently poorer than the best candidate(s) are then removed to produce a �nal set of models

that can be used for model averaging purposes.

In common with other approaches we base our full probability modelling on adding and removing single edges



while remaining within the class of decomposable graphs. We also choose to work with categorical variables �

categorizing continuous variables as necessary. This allows us to exploit the hyper multinomial-Dirichlet law (Dawid

and Lauritzen, 1993) presented earlier.

Here we use a greedy algorithm based on single edge additions / deletions (Smith, 2016). It has some similarities

with the Occam's razor strategy. The main di�erences are that we only seek a single model, and we add / delete

an edge that maximizes the increase in marginal likelihood on each iteration of an upwards / downwards search. In

order to ensure that our �nal (and locally optimal) model is parsimonious we start with a full independence model

(the model containing no edges) and perform an upwards search followed by a downwards search. This greedy

approach is much more computationally e�cient than the MCMC and Occam's razor approaches, particularly for

larger numbers of variables. For smaller numbers of variables (such as the examples in Madigan and Raftery (1994))

it tends to �nd the best models found under their Occam's razor approach.

4.3 Missing data

In the current application we have two distinct sources of missing data.

1. Values that are missing in the underlying data

2. Non-matches on key variables

The latter arise under the hypothesis of a match when a pair of records are merged into a single record but do

not agree on all the key variables.

We use an EM algorithm due to Fuchs (1982) to generate a maximum likelihood joint distribution over X under

the assumption that values are missing at random. We generate an initial estimate for f(X) using only the merged

records with no missing values, and using the corresponding match probabilities as weights. We also add some

additional weight to each possible con�guration so that out initial f(X) contains no zero probabilities.

On the E-step we generate tables of pseudocounts from merged record pairs and match probabilities. There is

a distinct table for each 'pattern of missingness'. For example, if all the missing values were due to non-matches

on key variables, then we would have one table for each observed comparison vector. We then extend each table

to full dimension using the relevant conditional distributions derived from joint distribution. Table totals remain

unchanged.

We use tables for computational convenience. The correctness of the E-step is easier to appreciate if we consider

individual records. We might have a merged record with a single missing value for gender and with weight w given

by the corresponding match probability. The conditional distribution for gender given the observed values for other

variables (and the current estimate for f(X)) might be (male=0.4, female=0.6). So we generate two copies of

the original record and assign gender=male and weight 0.4w to one, and gender=female and weight 0.6w to the



other. Extending a table to full dimension is equivalent to treating each weighted record in a similar manner, and

aggregating the generated records and weights into a table of pseudocounts.

On the M-step we estimate the joint distribution by (elementwise) summation of the full-dimensional tables and

normalisation to sum to 1. Details of the algorithm are contained in (Fuchs, 1982).

Once the algorithm has converged we use the last contingency table generated by (elementwise) summation

for model determination purposes. The maximum likelihood estimates for the model parameters are generated by

marginalisation to the model's clusters and sepsets from the maximum likelihood distribution over X.

4.4 Training data

Larsen and Rubin (2001) present an approach based on the iterative re-estimation via EM after clerical review of

uncertain links. This requires that labelled training data can be incorporated on the M-step. After each run of EM

some record pairs are reviewed, labelled, removed from the set of pairs to be classi�ed, and added to the labelled

training data. Thus their approach can be used to incorporate training data into the estimation of Fellegi-Sunter

parameters.

In our approach we simply incorporate training data by including the data as an additional table of counts in

the EM algorithm described in Section 4.3.

4.5 Linkage strategies

There are a number of potential strategies for modelling under this general scheme. Thus far we have advocated

a 2-model approach, where we have distinct models for the numerator and denominator terms of the additional

Bayes factor. The potential issue here is that we can end up with numerator and denominator models that have

inconsistent marginal distributions. This is symptomatic of over-�tting the numerator model.

An alternative is to estimate f(X) from the record pairs and both the match probabilities and non-match

probabilities. The non-match probabilities would be associated with the marginal distributions f(XA\B), f(XB\A)

and f(XB∩A). The approach for model determination would be unaltered, except for having to deal with additional

marginal tables relating to the denominator term. The problem is that the high number of large non-match

probabilities places great weight on the conditional independence relationship that characterises the denominator

term. We have investigated this approach and found that it does not generally improve linkage performance.

There is also the issue that we have to estimate both structure and probability tables. We can always maximize

the (log) likelihood by adopting a full dependence model for both the numerator and denominator. Of course,

this would frustrate our approach, which is based on the idea of introducing Occam's razor to the linkage process

by requiring consistency with a parsimonious generating process. But for �xed model structure(s) we could still

re-estimate parameters for the probability tables within the EM framework.

The result of these considerations is that we estimate model structure outside the EM framework, using the



standard approach for model determination based on marginal likelihood and the results due to Frydenberg and

Lauritzen (1989) and Dawid and Lauritzen (1993). In any case, we do not suggest that decomposable graphical

modelling is the only means of generating the additional Bayes factor.

The modelling approach is relatively ad hoc, and for the reasons given above does not �t easily within the EM

framework. In essence we have described a stepwise EM approach where model determination and Bayes factor

generation takes place outside the framework, but subsequent esimation of the Fellegi-Sunter parameters is by EM

as described in Section 3.1. However, future work will consider alternative methods that could potentially bring

model determination wholly within an EM framework.

Of course we also have all the options available under the standard Fellegi-Sunter EM approach. We can �x

parameters (such as the ui), use priors and maximum a posteriori (MAP) estimation, exploit matching constraints,

use similarity scores etc.

In the following section we present results for the following pragmatic strategy.

1. Estimate parameters for ui from the unlinked data

2. Estimate f(XA\B), f(XB\A) and f(XB∩A) from the unlinked data

3. Estimate parameters for mi and p using the standard EM algorithm (Jaro, 1989) with �xed ui

4. Estimate f(X) using the match probabilities and linked data

5. Re-estimate mi using the minimally extended EM algorithm with �xed ui, �xed p and �xed Bayes factors

Steps 4 and 5 can be iterated a small number of times.

5 Simulations

5.1 Data

Available generators of test data for record linkage were found to be unsuitable, as it is di�cult to generate the

dependencies between variables that we �nd in practice and which we exploit here. For this reason we chose to

construct a dataset from two real-world datasets. Data for key variables was sampled from a �le available from

the North Carolina Voter Registration Database (NCRDB) 1. Data for the non-key variables was generated from

the 1991 Sample of Anonymised Records 2 (SAR). The variables from the SAR were recoded (some categories were

merged) to reduce the numbers of variable levels. This ensured that the data could be held in memory and reduced

the model determination costs.

Equal sized samples (n = 2, 500) from the NCRDB and the SAR were merged together to create a single dataset3.

1https://s3.amazonaws.com/dl.ncsbe.gov/data/ncvoter36.zip
2The 1991 SARs are provided through the Census Microdata Unit, at the Cathie Marsh Centre for Census and Survey Research

(University of Manchester), with the support of the ESRC/JISC/DENI. All tables containing Census data, and the results of analysis,
are reproduced with the permission of the Controller of Her Majesty's Stationery O�ce (Crown Copyright).

3We did attempt to use only the NCRDB data, but found few dependencies that could be exploited

https://s3.amazonaws.com/dl.ncsbe.gov/data/ncvoter36.zip


This dataset was then partitioned to create population datasets corresponding to the variables chosen for A and B.

These were then independently sub-sampled (nA = 1, 500, nB = 1, 000), and the key variables in B perturbed to

ensure that matching record pairs did not necessarily match on all key variables.

The SAR variables were, by construction, independent of the NCRDB variables. So model determination was

restricted to the SAR variables, and the NCRDB variables were ignored for the purposes of generating the additional

Bayes factors.

The SAR variables were randomly partitioned into sets {SEX, TENURE, ETHGROUP, FAMTYPE, AGE} and

{CARS, LTILL, ECONPRIM, QUALEVEL, MSTATUS, SOCLASS} which were allocated to A and B respectively.

The key variables selected from the NCRDB and allocated to both A and B were `�rst_name' and `middle_name'.

This choice of key variables was designed to produce a `di�cult' linkage problem where we would have some non-

matches that would agree on both key variables.

In order to illustrate di�erent aspects of the approach this initial con�guration was varied, but only by the

addition of extra key variables and / or training data. Training data was a sample (n = 500) from the SAR data

taken after removal of the initially sampled 2,500 records.

In each case the ui were estimated from the unlinked data using the approach in Jaro (1989) and �xed. The mi

and p were then estimated via the standard Fellegi-Sunter EM algorithm. We then iterated the extended approach

3 times, retaining the �xed ui and also �xing p at the value estimated by the standard Fellegi-Sunter run. Fixing

these parameters was a pragmatic decision based on the idea of reducing the number of parameters to be estimated,

and reducing the risk of over-�tting. The decision was not a response to any speci�c issue with the linkage results.

Results are presented in the form of Precision Recall curves. As with any binary classi�cation exercise we will

have counts of false positives fp, false negatives fn, true positives tp and true negatives tn. These will not generally

be observed, but we can generate these counts here because we know the true match status for each record pair.

Precision and recall are de�ned as,

Precision =
tp

tp + fp

Recall =
tp

tp + fn
.

A plot of precision against recall (for all possible thresholds) allows the comparison of classi�cation approaches.

Better approaches will tend to produce curves with greater area under the curve (AUC).

Fellegi-Sunter linkage associates a match probability with each observed comparison vector. Thus we have

an ordering of equivalence classes, and under the Fellegi-Sunter decision rule we will usually have to allocate the

members of one of these equivalence classes to M or U according to a Bernoulli random variable. Rather than

perform this random allocation (which would result in one of many possible outcomes) we plot expected precision



against expected recall.

5.2 Initial con�guration

Figure 1 demonstrates that we have achieved a general improvement in linkage performance by applying the extended

approach. Although there are thresholds for which FS would produce better classi�cation than the extended

approach (greater precision for a given recall or greater recall for a given precision), the opposite is the case over

large ranges of thresholds. It is notable that under the extended approach the highest ranked equivalence class

contains only matches. This is signi�cant if we were to use record linkage to assess the risk of re-identi�cation in a

statistical disclosure control exercise.

There is little evidence of improvement in performance through iterating the process. We achieve improvements

quickly, mirroring the �nding in Scheuren and Winkler (1997). But the most notable fact is that we have achieved

this improvement simply by adjusting the mi so that the resulting match probabilities are more consistent with a

parsimonious generating process. The improvement is solely due to the application of Occam's razor, and this was

achieved via the integration of linkage and analysis.

Figure 1: Precision-recall for the initial con�guration

Figure 2 shows the decomposable graphical model generated after the initial FS run and used to generate Bayes

factors for the 1st iteration. The nodes are coloured to distinguish the variables in A from those in B. It is a very

sparse model, with only a single edge between variables only in A and only in B. Yet it has been enough to generate

a signi�cant overall improvement in linkage performance.



Figure 2: Model for 1st iteration of extended approach

We should note that without any such edges we would have conditional independence between the variables

only in A and those only in B given the key variables. This is the relationship we assume under the hypothesis of

a non-match and with consistent numerator and denominator distributions the additional Bayes factors would all

equal 1. Given the 2-model approach presented here we would generally have some inconsistency between numerator

and denominator models, and therefore some small di�erence in linkage outputs. But this illustrates an important

point.

We can only expect performance to be improved when we have su�cient statistical power to generate

a numerator model that contains an edge between at least one non-key variable in A and at least one

non-key variable in B.

Of course, when we have training data we can boost the power considerably. The impacts of adding training

data are shown in Figures 3 and 4. Linkage performance is further improved, and we have some evidence that

iterating the process has had a positive impact. Encouragingly there are commonalities in structure with the model

in Figure 2. Structurally the models are very similar, and we still only have a single edge between the variables

only in A and those only in B. The main impact of the training data appears to have been the generation of better

parameter estimates for the probability tables.



Figure 3: Precision-recall for the initial con�guration with training data

Figure 4: Model for 1st iteration of extended approach with training data

5.3 Initial con�guration with additional key variables

The addition of the extra key variable `res_city_desc' (from NCRDB) produced similar improvements to those

previously presented. Improvements were consistent, and largely achieved after only a single iteration. We then

also introduced CARS (from the 1991 SAR) as a key variable (adding it to dataset A). So we now had a key variable

that was not (by construction) independent of all the non-key variables. The resulting precision recall curve is shown

in Figure 5, with the corresponding model shown in Figure 6 (with the modelled key variable coloured white).

We see a small increase in linkage performance, with some evidence that iterating the process helps. We also

see that the model shares much structure with the previous models, and that we are still relying on the single edge

between MSTATUS and FAMTYPE to generate meaningful additional Bayes factors. The addition of the extra

key variables has improved the initial Fellegi-Sunter linkage, perhaps leaving us with less scope for improvement.

However, Figures 7 and 8 show that further improvements are possible via improved model determination through

the addition of training data. We also see that increased statistical power, through the additional key variables and

training data, has generated a more densely connected, and (potentially) useful model.



Figure 5: Precision-recall for the initial con�guration plus additional key variables `res_city_desc' and CARS

Figure 6: Model for 1st iteration of the extended approach with additional key variables `res_city_desc' and CARS

Although these results seem to demonstrate a consistent improvement, this cannot be guaranteed. The extended

approach works by modifying the underlying likelihood function (via the additional Bayes factors). The initial

solution that was locally optimal for the original likelihood function will not generally be locally optimal for the

modi�ed likelihood function. We hope that the initial solution will be close to a local maximum of the modi�ed

likelihood function that is consistent with our parsimonious model, and that the subsequent EM run will �nd that

maximum. If initial linkage is poor then the model will be poor and subsequent linkage will be more consistent

with a parsimonious (but poor) model.

We can only expect performance to be improved if the initial Fellegi-Sunter run produces reasonable

parameter estimates.

We can increase the chances of �nding good parameter estimates using relatively standard approaches, such

as those based on the use of similarity scores or matching constraints. We can also check that the EM converges

quickly and smoothly, and that parameter estimates are plausible. Of course, we can also check that the model

used to generate the Bayes factors is plausible. It is also notable that when the extended EM approach performs



Figure 7: Precision-recall for the initial con�guration plus additional key variables `res_city_desc' and CARS and
with training data

Figure 8: Model for 1st iteration of the extended approach with additional key variables `res_city_desc' and CARS
and with training data



well it does not generally change the Fellegi-Sunter parameter estimates a great deal (they remain plausible).

For the simulations presented here we were su�ciently lucky to achieve reasonable linkage on the initial Fellegi-

Sunter run and see improvements in linkage via the extended EM approach. But generally the extended EM

approach must be applied with care, with due attention paid to available diagnostics. Of course this is generally

true of all linkage approaches, including those that seek to iteratively improve linkage such as the methods of Larsen

and Rubin (2001) and Scheuren and Winkler (1997).

5.4 Model determination performance

The question that we have not so far addressed is whether analysis can also be improved by combining linkage

with analysis. As we have the population data we can compare the probability distributions over X implied by our

models with the probability distribution over X resulting from the normalisation (to sum to 1) of our population.

The results corresponding to Figures 1, 3, 5 and 7 are shown in Figure 9.

Figure 9: Jensen-Shannon divergences for models under various strategies

FS corresponds to the distribution generated by applying Fuch's algorithm to the initial linkage (and training

data if available) without any decomposable graphical model determination. Ext1, Ext2 and Ext3 correspond to

the decomposable graphical models generated prior to the runs of the extended EM linkage algorithm. `Post' is the

result of performing an additional model determination exercise with the results of the 3rd extended EM run.

We can see that improved linkage is accompanied by improved models. But for each combination of key variables

and training data there is little improvement over the model generated prior to the 2nd iteration of the extended



model. This is consistent with the evidence of improved linkage from the precision-recall plots.

6 Conclusions

We have presented an extension of the usual Fellegi-Sunter record linkage approach that can result in improved

linkage and model determination performance. It is based on the basic scienti�c principle that we should prefer sets

of links that are consistent with a parsimonious generating process. We apply Occam's razor by integrating record

linkage with full probability modelling. A variety of approaches could be used for modelling; we chose decomposable

graphical models. The only requirement is that the model can be used to generate our additional Bayes factors.

Accommodating these additional Bayes factors requires only a minimal extension to the standard EM algorithm

for estimating Fellegi-Sunter parameters.

Improvement in linkage performance is by no means guaranteed. Firstly, we require su�cient statistical power

to generate a model that produces distinguishing Bayes factors. Secondly, we require that the parameters estimated

via an initial Fellegi-Sunter run (or previous iteration of the extended approach) are plausible. If not, we may move

to a solution that is consistent with a poor model. It is important to check diagnostics, just as it is for standard

Fellegi-Sunter linkage.

As the methodology closely mirrors Fellegi-Sunter linkage most of the existing techniques for improving FS

linkage can still be applied. We have already highlighted the possibility for exploiting similarity scores. The

extended approach also constitutes a convenient means of introducing prior information and / or training data.

Essentially we have presented a proof of concept along the same lines as in Scheuren and Winkler (1997). But

we have not yet fully investigated the potential of the approach. It is possible to specify priors on the Fellegi-

Sunter parameters and use MAP estimation rather than maximum likelihood. Again, this requires only a minor

extension to the standard EM algorithm. It also provides a mechanism by which we could penalize model complexity

(rather than relying on marginal likelihood). This could be used to bring the model determination within the EM

framework. Although a naive implementation would be computationally costly, we could potentially bring the costs

down by adopting a generalised EM approach. That is, we could seek an increase in the likelihood on each iteration,

rather than requiring maximization. This may go some way towards limiting the chances of poor models / linkage

when iterating the modelling. Future work will address this possibility.
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