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Abstract

A basic concern in statistical disclosure control is the re-identification
of individuals via record linkage. A record containing identifying infor-
mation in file A is linked to a record containing sensitive information
in file B, resulting in a breach of confidentiality. The classical approach
to record linkage exploits the data in fields that are common to files
A and B. A more recent approach has attempted record linkage in the
absence of common fields via the extraction of structural information
using ordered weighted averaging (OWA) operators. Although this
can be shown to perform better than a random matching strategy,
it is debatable whether it demonstrates a significant disclosure risk.
This paper shows that a relatively simple Bayesian approach can con-
sistently outperform OWA linkage. Furthermore, it can demonstrate
a significant risk of re-identification for the types of data release con-
sidered in the OWA record linkage literature (where there exists a 1 to
1 correspondence between the records in A and the records in B). The
Bayesian approach flows from the same underlying theory as classical
record linkage, offering the possibility of using it to improve record
linkage performance in more general settings.
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1 Introduction

Statistical disclosure inevitably involves linkage. If sensitive information can
be linked to a population member with sufficient certainty, then we have
statistical disclosure. Measures to reduce the disclosure risk of released data
often involve either suppression or perturbation of the raw data. A com-
monly used form of suppression is anonymization — the removal of directly
identifying variables such as name and address. Complete records might be
suppressed via sampling. Perturbation generally involves changing variable
values, for instance by adding random noise to numeric variables. The suc-
cess of a disclosure limitation scheme is measured in terms of both disclosure
risk and data utility. The released data will hopefully be fit for purpose, and
without representing a significant risk of harm to the individuals in the data
or the Data Stewardship Organisation (DSO) responsible for data release.

Risk assessment often starts with an attack scenario — a description of
the means by which a data intruder might attack a dataset (Elliot and Dale,
1999). Typically this will include a set of key variables and a set of target
variables. The set of key variables is the intersection of the variables known to
the intruder (regarding the population members) and the variables contained
in the released data. The target variables are the sensitive variables contained
in the data, other than key variables. It could be argued that if there are
no sensitive variables then there is no risk of disclosure, although we must
also recognize that any discovered information could potentially be used to
link against additional datasets. The question addressed here is how a data
intruder might attack data in the absence of key variables. We assume that
the information relating to known individuals is in a file A, and we wish to
assess the risk to a DSO of releasing a file B. A and B share no common
fields.

Section 1 of the paper reviews classical record linkage. Classical linkage is
used as a part of the OWA approach, and the underlying theory can be used
to justify the Bayesian alternative. Section 3 describes the OWA approach,
section 4 presents details of the Bayesian alternative, section 5 describes
experiments that compare these approaches, with results in section 6. Risk
assessment is discussed in section 7.

2 Record linkage

In classical record linkage (Fellegi and Sunter, 1969) we have two databases A
and B and seek to identify record pairs that correspond to the same popula-
tion units. A and B are assumed to be independent samples from a common



population. Fellegi and Sunter’s approach is essentially a Bayesian approach,
although it is not presented as such in their paper.
We have the set of all possible matches,

Ax B={(a,b);a € A be B}.

This can be partitioned into sets of correctly matched and unmatched
pairs,

M ={(a,b) :a=0b,a € A,b € B}

U={(a,b) :a#bac Abe B}.

We can also partition the set of variables X contained in A or B,

Xa={z:z€ Az ¢ B}
Xg={r:2¢ A,z € B}

Xap={zx:2x€ Az e B}

Bayes theorem leads to the following expression for the posterior odds
that a and b correspond to the same population unit,

Pr((a,b) € M|a,b)  Pr(a,b|(a,b) € M) Pr((a,b) € M)

Pr((a,b) € Ula,b) - Pr(a,b|(a,b) € U) Pr((a,b) € U) (1)

which can be factored,

Pr((a,p)eMa,b) _ Pr({av:veXa} {by:veXp}|{av:vEXap} {bv:veEXup} (a,b)EM)

N e S o TR )

Pr({ayv€Xap},{bv:v€Xap}|(a,b)€U) Pr((a,b)eU)

Fellegi-Sunter only considers the evidence in the key variables X 45, and
adopts the naive Bayes assumption. Values are compared only on the basis
of equality leading to,

Pr((a,b) € M|a,b) ( H Pr(a, = b,|(a,b) € M)) Pr((a,b) € M)
Pr((a,b) € Ula,b) Pr(a, = by|(a,b) € U) | Pr((a,b) €eU)"

(3)

veEXAp

m and u probabilities are defined as,



my, = Pr(a, = b,|(a,b) € M)

u, = Pr(a, = b,|(a,b) € U).

Thus the Bayes factor is a product of terms in the form m,/u, or (1 —
my)/(1—u,) depending upon whether the a, and b, are equal. m probabilities
less than one allow for distortions in the data.

The log (to the base 2) of the Bayes factor is termed a match weight
in Fellegi and Sunter (1969). Thresholds on the match weights are used to
allocate possible matches to one of three sets:

A, — a set of correct links
A, — a set of uncertain links
A3 — a set of incorrect links

Pairs of records allocated to A, are subjected to clerical review - they are
manually inspected and subsequently allocated to either A; or Az. Fellegi and
Sunter (1969) present a decision rule that can be used to generate thresholds
corresponding to specified conditional error rates.

There are a number of approaches for estimating m and u probabilities
and the marginal probability of a correct match, p = Pr((a,b) € M) . As
the proportion of possible matches that are correct will often be very low,
the u probabilities can be estimated from the proportion of possible matches
where variable values are equal. For certain problems the population size
might be known, in which case p is simply the reciprocal of the population
size.

Jaro (1989) presents an Expectation Maximization (Dempster et al., 1977)
algorithm for generating maximum likelihood estimates of all the required
parameters.

3 OWA linkage

Torra (2004) describes the use of ordered weighted averaging (OWA) opera-
tors for record linkage (and therefore re-identification) when the two files A
and B contain no common variables. The idea behind this approach is that
files A and B will often contain common structural information, and that this
can be extracted via OWA operators. Each operator is used to construct a
new variable, and these variables are then used to perform classical record
linkage.



3.1 OWA operators

An OWA operator of dimension N can simply be specified as a vector W =
[wy, ..., wy] of non-negative weights that sum to one. The operator computes
the weighted mean of an ordered vector,

N
OWA(;Ul, Ce ,I‘N) = ijyj
j=1

where y; is the jth largest of the z;.

It is possible to specify OWA operators that will calculate common sum-
mary statistics such as the minimum, maximum, mean or median.

An alternative way to specify an OWA operator is via a process that will
generate the weight vector for a given N. Torra (2004) achieves this via a
non-decreasing fuzzy quantifier. This is simply a non-decreasing function F
with domain [0,1] and range[0,1]. The weights for an OWA operator of length
N are then calculated as,

w; = F(i/N) - F((i — 1)/N).

Thus a non-decreasing fuzzy quantifier is a specification of an OWA op-
erator that can be applied to vectors of different lengths.

3.1.1 Linkage

Initially all the variables in A and B are normalised by either a translation
to the unit interval (range normalisation), or via standardizing so that the
variable values have mean 0 and variance 1. Then a set of OWA operators
are applied to the records of A and B to construct new variables. The non-
decreasing fuzzy quantifier specification is used to handle differing numbers
of variables in A and B.

Two new files, A' and B', are created with numbers of rows equal to the
numbers of rows in A and B respectively, and with a column for each OWA
operator. Each OWA operator is applied to each row of A and B and the
resulting representative value placed in the relevant row and column of the
relevant new file. The representatives generated by a common OWA operator
are treated as the same variable for record linkage purposes.

Nin and Torra (2005) present the results of linkage experiments using
data from the UCI machine learning repository (Murphy and Aha, 1994).
The authors list three main assumptions:

1. The files contain a large set of correct matches



2. Both data files contain similar structural information

3. Structural information can be expressed by means of numerical repre-
sentatives of individuals

There are few details regarding the record linkage approach, although
they do use a classical (Fellegi-Sunter) approach. The authors demonstrate
that when A and B tend to separate pairs of highly correlated variables (one
in A and one in B), then it is possible to achieve better linkage performance
than by randomly pairing records from A and B.

4 A simple Bayesian alternative

In assessing the risk of statistical disclosure we should take into account all
the useful information held by a data intruder. This is not only the data that
they might hold regarding individuals, but also information regarding the
relationships between variables. The OWA approach attempts to exploit this
information in a relatively unsupervised manner. However, we must assume
that an intruder would be willing to exploit all prior knowledge or training
data that were available. So here we outline a supervised learning approach
that a data intruder might adopt in preference to the OWA approach.

Fellegi-Sunter linkage only exploits the data in variables common to A
and B. Without such variables we need to exploit the data ignored by Fellegi-
Sunter. From equation (1) we immediately get,

Pr((a,b) € M|a,b) Pr(a,b) Pr((a,b) € M)

Pr((a,b) € Ula,b)  Pr(a)Pr(b) Pr((a,b) € U) " )

We have two estimation problems. We need to estimate the Bayes factor,
and we also need to estimate p = Pr((a,b) € M) if we want to produce
posterior odds or probabilities. Firstly, we note that p can be estimated
from a vector of Bayes factors using Expectation Maximization, just as in
Jaro (1989). For any given p we can generate a vector of posterior match
probabilities over the record pairs. The mean of the posterior probabilities
is an estimator for p. So given a starting value for p we can iteratively
generate new posterior probabilities (expectation step) and new estimates
for p (maximization step). We iterate until the absolute difference between
consecutive estimates of p is less than some very small value.

For the Bayes factor the univariate marginals Pr(a) and Pr(b) could
potentially be estimated from A and B respectively, leaving us with the
problem of estimating Pr(a,b) . We could also re-express the Bayes factor,




Pr(a,b) Pr(alb)
Pr(a)Pr(b)  Pr(a)
leaving us with the problem of estimating Pr(a|b) .
Here we choose to estimate the terms in the Bayes factor in equation (4)
via a full probability modelling approach exploiting the theory of decompos-
able graphical models.

4.1 Decomposable graphical models

A decomposable graph is an undirected graph G(V, E) that contains no un-
chorded cycles of length greater than three. Each node in the graph repre-
sents a variable, and the absence of an edge {v, w} implies that v is condi-
tionally independent of w given the variables in V'\ {v,w}. A decomposable
graph can also be represented as a cluster tree. Each maximal pairwise con-
nected subgraph of G is a cluster, and clusters are connected into a tree (or
forest) so as to respect the the running intersection property (Lauritzen and
Spiegelhalter, 1988):

If a node is contained in two clusters, C; and Cy, then it is con-
tained in all clusters on the unique path between C; and Cs.

Each edge in the cluster tree is associated with a sepset, the intersection
of the node sets associated with the clusters that it connects. A cluster tree
implies a factorization over the joint distribution of the variables in V|

_ [eeo Pr(€)
[Lses Pr(s)

where C' is the set of clusters in the cluster tree (or forest) and S is the set
of sepsets.

For categorical variables the marginal distributions associated with clus-
ters are marginal probability tables. The tables for sepsets can be generated
by marginalisation from cluster tables. Given a structural model the ta-
ble parameters can be estimated from data via maximum likelihood or via
Bayesian estimation using a Hyperdirichlet prior.

Posterior beliefs over clusters given observed evidence can be generated
via message passing in a cluster tree (Lauritzen and Spiegelhalter, 1988).
This exploits conditional independencies and avoids calculating Pr(V'). Pos-
terior beliefs over sets of variables not contained in a single cluster can be
generated via variable firing (Jensen, 1996) or, at least as efficiently, by ma-
nipulating the tree so that the relevant variables appear in a single cluster
(Smith, 2001).

Pr(V)



4.2 Model determination

Model determination algorithms for decomposable graphical models generally
depend on two important results. Frydenberg and Lauritzen (1989) showed
that it is possible to move between any pair of decomposable graphs, G and
G', by iteratively adding or removing only a single edge at a time while
remaining within the class of decomposable graphs.

The basic rules for edge addition / deletion in decomposable graphs are:

An edge {v, w} can be added if, and only if, it is not already
present, and v and w are either in adjacent clusters or in distinct
connected components.

An edge {v, w} can be deleted only if, and only if, it is present in
exactly one cluster.

Dawid and Lauritzen (1993) showed that the Bayes factor for decom-
posable graphical models differing by one edge can be expressed as a ratio
involving only four terms, all of which can be computed locally. The marginal
likelihood can be factorised,

. Hcgcp(xc)
p(l‘vlg) - ngsp(flfs) :

It then follows from the addition / deletion rules that the ratio of marginal
likelihoods for models differing by a single edge can be expressed as a ratio
of products with only two terms in each product.

In addition Dawid and Lauritzen (1993) show that for categorical distri-
butions,

plwa) = P<A+n>H( T )
A=)\

where ¢ indexes the cells in a table of data marginalised to the variables in
A. The \; are parameters similarly derived from a Hyperdirichlet prior.
These results have typically been exploited by Markov Chain Monte Carlo
(MCMC) model determination algorithms (Madigan and York, 1995). These
generate a posterior distribution over the model space. Averaging over this



distribution takes into account uncertainty in the model structure and gen-
erally provides improved predictive performance (Hoeting et al., 1999).

Madigan and Raftery (1994) use an alternative model selection strat-
egy where they reject any models that are sufficiently poorer than the best
model(s). Their Occam's razor strategy is based on comparisons of models
differing by only a single edge. If the ratio of the posterior model probability
of the smaller model to that of the larger model is below a given threshold,
then the smaller model and all its submodels are rejected. A model M is
defined as a submodel of M, if all the edges in Mg are also in M;. Search
can start from an arbitrary set of candidate models. If search starts from
the complete graph, then only edge removals are considered (the down algo-
rithm). If search starts from the model with empty edge set, then only edge
additions are considered (the up algorithm). Otherwise, the down and up
algorithms are run in turn to generate a set of candidate models. Finally,
any candidates that are sufficiently poorer than the best model(s) are also
removed. The posterior probabilities of the remaining acceptable models are
normalised to sum to 1 for model averaging purposes.

5 Experiments

Experiments were carried out to compare the OWA approach with a Bayesian
approach based on decomposable graphical models. We used four of the data
sets used by Nin and Torra (2005) — the abalone, dermatology, housing and
ionosphere data sets from the UCI Machine Learning Repository (Murphy
and Aha, 1994). The same pre-processing steps were used - non-numeric vari-
ables were recoded using integer codes, and records with missing observations
were removed.

Nin and Torra (2005) reported numbers of correct matches for 1 to 1
matching (bijection) on samples of size 30 and 100, and for three distinct
sets of OWA operators. Variables were partitioned into sets A and B so as
to induce the structural information that their approach could exploit. They
showed that their approach could perform significantly better than random
matching. The OWA approach used here is designed to emulate the approach
in Nin and Torra (2005) as faithfully as possible while, perhaps, improving
on it in certain aspects. There may be significant differences in the details of
the linkage approach, and in the exploition of 1 to 1 matching. Details are
contained in the following subsection.



5.1 OWA approach
5.1.1 Partitioning of variables

Nin and Torra only considered highly correlated variables and adopted a
strategy of deliberately separating highly correlated variables when parti-
tioning variables into A and B. Variables were chosen via inspection of the
correlation matrix over all the variables in the relevant dataset!. They used
a threshold of 0.7 — variables that had no correlations with other variables
above 0.7 were ignored.

Here we formalize this process. A graph is constructed with variables
as nodes and pairwise correlations as edge weights. From this we gener-
ate a maximum weight spanning tree using Kruskal's algorithm (Kruskal,
1956), stopping when weights are below the threshold. The tree nodes are
bi-coloured so that no pair of adjacent nodes are identically coloured (this
is always possible for a tree or forest). The colouring provides us with our
partitioning of variables into files A and B.

5.1.2 Functions

We used the same sets of functions as Nin and Torra from which to generate
corresponding vectors of weights,

Qr={2": 2 €{02,04,...,2}}

Q2 = {1/(1 + %)) 1 0 € {0,0.1,...,0.9}}

Q3 = {{Oifﬂ:ﬁa ta € {0,0.1,...,0.9}}.

lifr > «
Note that for each function F in each set we define F'(0)=0 and F(1)=1.

5.1.3 Linkage

Comparing representatives for equality would provide very poor linkage per-
formance. We would expect very few (if any) matches and the vast majority
(if not all) comparison vectors would be vectors of zeroes. However, it is
still possible to use a standard record linkage approach if we generate binary
comparison vectors by other means. There is little detail of the linkage in
Nin and Torra (2005), so here we choose to employ a similarity score which

1Personal communication with Jordi Nin



is dichotemized to generate binary comparison vectors. A threshold of 0.95
was found to provide reasonable linkage performance.

Slm(‘T?y) = max(l - |.T - y| 70)

Linkage used the Expectation Maximization approach detailed in Jaro
(1989). A moderate degree of Bayesian regularization (dirichlet priors and
maximum a posteriori estimation) was used to avoid parameter estimates of
zero. The post hoc weighting scheme contained in Winkler (1990) was also
used. This tends to improve linkage performance by more fully exploiting the
information in similarity scores via piecewise interpolation on match weights.

5.1.4 1 to 1 matching

Nin and Torra considered only subsets of data containing 30 or 100 records.
Thus there was a 1 to 1 correspondence between the records in A and the
records in B. This knowledge provides important additional information that
can be used to improve linkage. Firstly, we can specify p — it is simply the
reciprocal of the size of the subset. Using a fixed p can result in improved
estimation of m and u probabilities. Secondly, we can attempt to find the best
1 to 1 matching. We can construct a bipartite graph connecting each record in
A to each record in B, with edge weights equal to the posterior probabilities of
a correct match. A maximum weight 1 to 1 matching can be found using the
Hungarian algorithm (Kuhn, 1955). The Hungarian algorithm was compared
with a greedy algorithm, where we iteratively matched the highest weight
record pair (a, b) such that neither a nor b had previously been matched.
The Hungarian algorithm generally produced better linkage performance,
and those are the results presented here.

5.1.5 Outputs

Nin and Torra reported the numbers of correctly matched record pairs for
samples of 30 and 100 records for the 3 sets of functions, Q1, Q2 and Q3.
No indication of the variability in these figures across various samples was
presented. For the experiments presented in the results section we provide
the mean numbers of correct matches for 100 random samples.

5.2 Bayesian approach

Using a threshold of 0.7 for partitioning the variables resulted in a relatively
low numbers of variables allocated to A and B. Although it would have been
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feasible to use MCMC or the Occam’s razor approach in Madigan and Raftery
(1994), we also wanted to consider other partitioning schemes and present a
more generally applicable approach. Two of the chosen datasets contain 35
variables. Highly dimensional datasets are computationally problematic for
the aforementioned approaches, so here we chose to use a simpler approach
that searches for a single locally optimum model. We also have a preference
for sparse models, not only with respect to Occam’s razor, but also for the
reduced computational cost of performing inference.

In common with other approaches we base our full probability modelling
on adding and removing single edges while remaining within the class of
decomposable graphs. We also choose to work with categorical variables —
categorizing continuous variables as necessary. This reflects the fact that
the majority of datasets that we will be considering in practice will contain
relatively few continuously scaled variables, and those that do will often cat-
egorize these variables for disclosure risk limitation purposes. It also allows
us to exploit the result of Dawid and Lauritzen (1993) presented earlier.

We use a greedy algorithm that has some similarity with the Occam’s ra-
zor approach. We start with a single candidate model. In an upwards search
we iteratively improve the model by adding whichever edge produces the
greatest increase in posterior model probability. We stop when no improve-
ment is possible. In a downwards search we iteratively improve the model
by removing the single edge that produces the greatest increase in posterior
model probability. We alternate between upwards and downwards searches
until no improvement is possible.

The final model is locally optimal, but in general many local optima exist
and choice of initial model is highly influential on the selected model. The
goal for the present application is to find a reasonably good model in a rea-
sonable time, while acknowledging that a sufficiently motivated data intruder
might be able to do better. For computational efficiency of inference it also
helps if the model is reasonably sparse. Thus we chose to start with the
model with no edges (full independence model). This tends to produce much
sparser models than starting with the fully connected graph (full dependence
model). Experimentation showed that with a more manageable number of
variables this often produced the same model as the highest posterior prob-
ability model under the Occam’s razor scheme.

For the Bayesian approach the sampled observations were used for match-
ing, while the remaining data were used for model determination. All con-
tinuous variables were split into 8 categories so that the data were evenly
distributed across the categories. Model determination used Hyperdirichlet
priors with all parameters equal and summing to 1. Subsequent estimation
of probability tables used the same prior in order to avoid probabilities of 0.

11



Table 1: Numbers of variables included at various thresholds

0.7 05 -o00
abalone 7 8 9
dermatology | 15 24 35
housing 5 11 14
ionosphere 5 20 34

Again, we exploited the Hungarian algorithm for 1 to 1 matching. We report
results for the same random samples generated for the OWA approach.

6 Results

As well as the results for a threshold of 0.7 (on pairwise correlations) we
also considered thresholds of 0.5 and -oo. These were used to investigate
the impacts of including additional variables, and all variables respectively
(one variable in the Ionosphere data set contains only a single value and was
removed).

6.1 Tables

Tables 2 and 3 show the numbers of correctly matched records for simulations
using range normalization for OWA. Standardization was not used as the
differences between representative values would not have been bounded and
the choice of similarity score would have been less obvious. The numbers
of correct matches reported by Nin and Torra are shown in braces. The
largest proportion of matches within each dataset / threshold combination
are shown in bold typeface.
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Table 2: Mean numbers of correct matches for random samples of size 30

0.7 0.5 -00
Q1 Q2 Q3 Bayes | Q1 Q2 Q3 Bayes | Q1 Q2 Q3 Bayes
abalone 11.70 11.93 10.23 10.28 | 7.19 822 7.76 10.07 | 3.11 4.63 5.72 10.97
2 @O G
dermatology | 1.66  1.81 218 4.23 |2.03 142 1.79 5.15 |1.79 1.72 147 6.77
0 1  ®
housing 3.0 242 1.70 10.23|160 160 1.8 17.17|1.68 1.18 1.31 18.97
4 2 2
ionosphere 522  6.05 569 6.24 | 7.93 1216 15.82 18.47 |4.83 9.09 13.90 20.38
(5)  (10)  (2)
Table 3: Mean numbers of correct matches for random samples of size 100
0.7 0.5 -00
Q1 Q2 Q3 Bayes | Q1 Q2 Q3 Bayes | Q1 Q2 Q3  Bayes
abalone 14.87 1297 14.38 13.06 | 948 10.82 846 13.60 | 2.38 5.20 6.22 13.87
B O @
dermatology | 1.79 1.71 216 4.36 | 2.08 131 1.78 6.05 |2.12 250 1.49 8.18
3 (0 (@)
housing 262 264 128 11.79| 1.82 147 121 33.97 162 1.07 1.22 37.90
® @ @
ionosphere 588 7.47 641 6.38 | 12.38 2394 31.69 35.28 | 5.75 17.23 31.88 41.85
(12)  (21)  (3)




We note that there appear to be some differences between the OWA
results and those reported in Nin and Torra (2005). This could be a result of
the partitioning of variables, the record linkage approach, or the use of the
Hungarian algorithm for 1 to 1 matching. We also note that although many
possible comparisons are highly statistically significant we place little weight
on this and do not report p-values. There are simply too many parameters
that can be varied in both the OWA and Bayesian approaches that will affect
performance. We restrict ourselves to the more general conclusions that we
can reach from examination of the tables.

Firstly we note that the OWA approach performs relatively poorly with
the Dermatology and Housing datasets. The mean numbers of correct matches
are low across all thresholds. For the Abalone dataset we have a decline in
performance for OWA as the threshold is reduced, whereas for the lonosphere
dataset performance is better at a threshold of 0.5.

The Bayesian approach seems to generally benefit from the inclusion of
additional variables. For each dataset and sample size the best performance
is achieved with the inclusion of all variables. In fact the Bayesian approach
including all variables provides the largest mean number of correct matches
for all datasets and sample sizes, except for the Abalone dataset where per-
formance is similar.

Partitioning variables using Kruskal’s algorithm is a device to show how
effective the approaches might be in a more or less ideal situation (for the
data intruder). A data intruder who simply wants to discredit a DSO might
be in a position to attack a number of datasets, and might seek to find one
that contains variables that have high pairwise correlations with variables
known to the intruder. More typically an intruder might attack a specific
dataset and have to deal with whatever variables it contains. In this situation
the data intruder using the OWA approach would have to exclude some vari-
ables to optimise the attack, while the intruder using the Bayesian approach
would use all variables. So the most appropriate comparison is perhaps with
randomly partitioned variables where the OWA intruder removes all variables
from the target dataset, B, that do not have at least one correlation above a
given threshold with a variable in A. Simulation results for randomly parti-
tioned variables are shown in Table 4. A threshold of 0.7 was used for OWA,
except for the Ionosphere dataset where a threshold of 0.5 produced better
performance. Again these are mean numbers of correct matches over 100
randomly generated samples. On each iteration the variables are randomly
partitioned such that the maximum difference in partition size is 1.

Performance tends to be generally worse than under the original par-
titioning scheme. Again we find that the Bayesian approach tends to be
superior to the OWA approach, except for the Abalone dataset. Fortunately
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Table 4: Mean numbers of correct matches using random partitioning of
variables

30 100
Ql Q2 Q3 Bayes| Q1 Q2 Q3  Bayes
abalone 8.28 8.08 7.02 830 |9.33 894 835 9.26
dermatology | 2.09 2.31 236 6.17 | 2.32 239 247 7.04
housing 209 1.8 1.74 17.79| 197 190 156 30.25
ionosphere 6.21 8.78 10.11 18.17 | 878 13.93 1591 33.25

Table 5: Details of variables for the Abalone dataset

Index Name Data type = Measure Description

0 Sex Nominal M, F and I (infant)

1 Length Continuous mm Longest shell measurement
2 Diameter Continuous mm Perpendicular to length

3 Height Continuous mm With meat in shell

4 Whole weight Continuous grams Whole abalone

) Shucked weight Continuous grams Weight of meat

6 Viscera weight ~ Continuous grams Gut weight (after bleeding)
7 Shell weight Continuous grams After being dried

8 Rings Integer +1.5 gives the age in years

there are published metadata (Murphy and Aha, 1994) so we can investigate
why the difference in performance is less marked for the Abalone data.

6.2 Abalone data

The Abalone data contains 9 variables. The first variable Sex is nominal,
and on preprocessing has its values replaced with integer codes. All other
variables are numeric, and all but the final variable (Rings) relate to Abalone
size?. All the 'size' variables are highly correlated.

The graph in Figure 1 shows the decomposable graphical model fitted
from the whole data set with nodes labelled by variable index. The light
grey and dark grey nodes represent the partitioning of variables at the 0.7
threshold using Kruskal's algorithm. So all the size variables have been
included. Clearly any OWA operator is going to generate some summary
measure of size, and it is no surprise that these can be used for linkage
purposes. This explains the similar performance of the OWA approach when

2An abalone is a type of edible sea mollusc
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Figure 1: Decomposable graphical model for the Abalone dataset

compared with the Bayesian approach.

For the threshold of 0 the variable Rings (with index 8) is also coloured
light grey. The graph suggests that Rings is conditionally independent of
the other variables given Shell Weight. In fact it is approximately condition-
ally independent of the remaining variables given any size variable. Thus its
inclusion does little more than add noise to the OWA approach. Similarly,
it is likely to be relatively uninformative for the Bayesian approach. The
threshold of -co additionally includes the final variable Sex coloured dark
grey. This is similarly uninformative and results in another drop in perfor-
mance for OWA. This is less marked for the Bayesian approach as it less
reliant on separating highly correlated variables and will not be affected by
the arbitrary integer coding of categorical variables in the same way as the
OWA approach. In many ways the Abalone dataset is ideal for the OWA
approach, which explains why performance is comparable to the Bayesian
approach, even when the Bayesian approach exploits additional variables.
Given this, it is perhaps a little surprising that the results reported for the
Abalone data in Nin and Torra (2005) are not better.

We can contrast the above with the Housing data set. There are few large
positive pairwise correlations and of 14 variables only 5 are included in par-
titions at the 0.7 threshold. Performance is relatively poor across the board
for the OWA approach. It does not appear to perform much better than a
random matching strategy for a thresholds of 0 or -oo. On the other hand,
there is plenty of structure for the Bayesian approach to exploit, and as larger
numbers of variables are considered performance increases substantially.
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6.3 Precision Recall

We have seen that linkage performance drops when we use randomly par-
titioned variables. We might also expect it to drop if we do not have 1 to
1 matching that can be exploited by the Hungarian algorithm. That is not
to say that we will not have structural information to exploit. We might
have the constraint that each record in A can map to at most one record in
B (injection) and vice versa. In some cases we might need to entertain the
possibility of duplicate records within a file. We can compare the OWA and
Bayesian approaches without the benefits of post-processing by generating
precision-recall plots. The plots in Figures 2 and 3 were generated from the
simulations used to generate Table 4. Results were aggregated over all 100
randomly generated partitions in order to assess the general performance of
OWA and the Bayesian approach as classifiers.

For any given threshold on a score (here the posterior probability of a
correct match) we will have a number of false positives fp, and a number of
false negatives fn. Similarly we will have a number of true positives tp, and
a number of true negatives tn.

.. tp
Precision =
tp + fp
t
Recall = P
tp + fn

A plot of precision against recall allows the comparison of record linkage
approaches. Good approaches will produce curves in the upper right of the
plot. The area under the curve is sometimes used as a performance metric.

Although these curves are based on the posterior probabilities of a cor-
rect match generated by the classifier, the curves generated on the basis of
Bayes factors would be identical due to the constant marginal probability of
a correct match. The expected performance of a random matching strategy
is shown by a broken line.

The superiority of the Bayesian classifier is evident. In several cases the
most probable match for the Bayesian approach (over the 100 partitions)
is a correct match. This suggests that an intruder with a sufficiently high
match probability could infer a correct match with some confidence. It does
not however imply that such high probability matches are common. In fact
the curves for individual partitions are highly variable. This is only to be
expected - the approach relies on the existence of dependencies between the
variables in A and the variables in B, and would have no discriminatory
power if the variables in A were independent of the variables in B. This also
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highlights the fact that an informed intruder might be able to readily iden-
tify vulnerable datasets from prior information regarding the dependences
between variables.

We also see a general decline in performance when moving from n=30 to
n=100. This is to be expected due to the reduction in the marginal prob-
ability of a correct match. A priori knowledge of this marginal probability
would also help in the identification of vulnerable datasets.

7 Risk assessment

Attack scenarios are generally paired with risk measures, and an obvious
measure is the probability of a successful re-identification. The plots in Fig-
ures 2 and 3 are potentially useful for risk assessment, but the use of precision
recall plots is better illustrated if we consider an alternative attack scenario.

An intruder simply seeking to discredit a DSO might attempt to maximize
the probability of a successful re-identification by making a single claim of
re-identification against the most probable match, and only if that match has
a sufficiently high probability. So rather than constructing precision-recall
plots from all possible matches we restrict consideration to those that are
most probable for each randomly generated dataset / partition combination.
The resulting precision-recall plots are shown in Figures 4 and 5.

The first thing to note is that the proportion of correct matches is no
longer constant. Excluding all but the most probable matches from each
dataset (and partition) has increased the proportion of correct matches sub-
stantially. For n=30 and the Abalone dataset we have proportions of 0.21,
0.52, 0.69 and 0.46 for Q1, Q2, Q3 and Bayes respectively. For n=30, Hous-
ing and Bayes we have a proportion of 0.83. These represent the empirical
probabilities of a successful re-identification at a threshold of 0 - the propor-
tions of most probable matches that are correct matches.

Another notable feature is that choosing higher thresholds does not con-
sistently increase the probability of re-identification. The data intruder cer-
tainly benefits from only considering the most probable match from each
dataset, but only seems to clearly benefit from further exclusion of less prob-
able matches for the Abalone dataset with the Bayesian approach.

The results for n=100 are consistent with those for n=30. Only for the
Abalone dataset and the Bayesian approach does the use of a non-zero thresh-
old clearly increase the probability of re-identification. Risks are generally
lower, although we still have a probability of successful re-identification of
0.57 for the Housing dataset and the Bayesian approach.

In practice a DSO might be interested in assessing risk for a single dataset

19



Precision

Precision

0.8
0.6
0.4

0.2

0.0 | =
0.0 0.2 0. 0.6 0.8 1.0

— 7 7

Dermatology

Q1

— Bayes

Housing

lonosphere

Recall

0.0

0.2

0.4 0.6 0.8 1.0
Recall

Figure 4: Precision-recall plot for n=30 and the most probable

egy

Precision

Precision

0 Abalone Dermatology
’ Ql
— Q2
08f | I — a ]
06 — Bayes
041 R
0.2 / B
0.0 ’ I ——— |
Housing lonosphere
0.8} f L E

00 02 04 O 0.8 1.0
Recall

match strat-

Figure 5: Precision-recall plot for n=100 and the most probable match strat-

egy

20



or a collection of datasets. The relevant variables in B might be fixed, or
variable if attribute suppression is a possibility. The variables in A will
depend on the attack scenario under consideration. Nevertheless, as long as
there is a notion of an intruder-specified threshold on the match probability,
then precision-recall plots can be useful risk assessment tools. Of course, this
also applies in situations where there are also common variables that can be
used for matching.

8 Conclusions

Nin and Torra (2005) showed that the OWA approach could perform sig-
nificantly better than a random matching strategy. We have shown that a
relatively simple Bayesian approach can consistently outperform OWA, the
exception being a rather degenerate dataset that is ideally suited to OWA.
We have shown that the risks are of practical significance for the 1 to 1
matching problems considered in the OWA literature. In this case match-
ing can be significantly improved by exploiting structural information via
the Hungarian algorithm. The precision-recall analysis demonstrated that
there can still be appreciable risks of re-identification when this structural
information is either not exploited, or not present.

Analysis has been restricted to datasets that are considered in Nina and
Torra (2005) - for the purposes of comparison. These are suited to the OWA
approach as they contain large numbers of numeric variables. In practical
circumstances we will tend to meet datasets containing categorical variables
- not least because numeric variables are often categorised for statistical
disclosure risk limitation purposes. The Bayesian approach was designed to
deal with the more usual case, and numeric variables had to be categorized.
We expended some effort trying to optimise the OWA approach, and hardly
any effort trying to optimise the Bayesian approach. Given the above, and
the difference in performance, we would have to recommend the Bayesian
approach over the OWA approach for risk assessment. Precision-recall plots
are useful tools for risk assessment, and can be generated for both collections
of datasets and individual datasets, and under various attack scenarios.

An obvious extension to the Bayesian approach is to exploit the informa-
tion in non-overlapping variables to improve classical record linkage. Equa-
tion (2) shows exactly how this can be approached. This is an area for future
work. Some early work has shown that naively combining the two approaches
is ineffective. We can decompose the Bayes factor into a product of terms
relating to the non-key variables and key variables as presented earlier. But
it seems to be important that the former term is conditioned on the key
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variables. Another consideration is that Fellegi-Sunter is designed to accom-
modate errors (perhaps introduced via deliberate perturbation) through the
m-probabilities. To some degree this will also be true of the OWA approach.
The simple Bayesian approach presented here does not accommodate errors
in Files A or B unless they are present in (or introduced to) the training
data.
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