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Section 1: Introduction

1.1 Overview

A multiple linear regression analysis  is  carried out to predict the values  of a 
dependent variable, Y, given a set of p explanatory variables (x1,x2,….,xp). In these 
notes, the necessary theory for multiple linear regression is  presented and examples 
of regression analysis with census data are given to illustrate this  theory. This course 
on multiple linear regression analysis is therefore intended to give a practical outline 
to the technique. Complicated or tedious algebra will be avoided where possible, and 
references will be given to more theoretical texts on this technique. Important issues 
that arise when carrying out a multiple linear regression analysis are discussed in 
detail including model building, the underlying assumptions, and interpretation of 
results. However, before we consider multiple linear regression analysis we begin 
with a brief review of simple linear regression.

1.2 Review of Simple linear regression.

A simple linear regression is  carried out to estimate the relationship between a 
dependent variable, Y, and a single explanatory variable, x, given a set of data that 
includes observations for both of these variables for a particular population. For 
example, for a sample of n=17 pupils in a particular school, we might be interested in 
the relationship of two variables as follows:

• Exam performance at age 16. The dependent variable, y (Exam16)
• Exam performance at age 11. The explanatory variable, x (Exam11)

(n.b. we would ideally have a bigger sample, but this small sample illustrates the 
ideas) 
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Exam16   Exam11

45  55
67  77
55  66
39  50
72  55
47  56
49  56
81  90
33  40
65  70
57  62
33  45
43  55
55  65
55  66
67  77
56  66

We would carry out a simple linear regression analysis to predict the value of the 
dependent variable y, given the value of the explanatory variable, x. In this example 
we are trying to predict the value of exam performance at 16 given the exam 
performance at age 11.

Before we write down any models we would begin such an analysis by plotting the 
data as follows: Figure 1.1. 

We could then calculate a correlation coefficient to get a summary measure of the 
strength of the relationship. For figure 1.1 we expect the correlation is highly positive 
(it is 0.87). If we want to fit a straight line to these points, we can perform a simple 
linear regression analysis. We can write down a model of the following form.
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Where β0 the intercept and β1 is the slope of the line. We assume that the error 
terms ei have a mean value of 0. 

The relationship between y and x is then estimated by carrying out a simple linear 
regression analysis. We will use the least squares criterion to estimate the 
equations, so that we minimise the sum of squares  of the differences between the 
actual and predicted values for each observation in the sample. That is, we minimise 
Σei2. Although there are other ways of estimating the parameters in the regression 
model, the least squares criterion has several desirable statistical properties, most 
notably, that the estimates are maximum likelihood if the residuals ei are normally 
distributed.

For the example above, if we estimate the regression equation we get:

where xi is the value of EXAM11 for the ith student. 

We could draw this line on the scatter plot. It is sometimes referred to as the line of y 
on x, because we are trying to predict y on the information provided by x. 

Predicted values

The first student in the sample has a value of 45 for EXAM16 and 55 for exam11. 
The predicted value of EXAM16 for this student is 47.661.



6

Residuals

We know that the actual value of EXAM16 for the first student is 45, and the 
predicted value is 47.661, therefore the residual may be calculated as the difference 
between the actual and predicted values of EXAM16. That is, 45 – 47.661 = -2.661.

Figure 1.2 Scatter plot, including the regression line.

Scatterplot of exam performance at 16 against exam performance at 11
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1.3 Theory for multiple linear regression

In multiple linear regression, there are p explanatory variables, and the relationship 
between the dependent variable and the explanatory variables is  represented by the 
following equation:

Where:

β0 is the constant term and

β1 to βp  are the coefficients relating the p explanatory variables to the variables  of 
interest.

So, multiple linear regression can be thought of an extension of simple linear 
regression, where there are p explanatory variables, or simple linear regression can 
be thought of as a special case of multiple linear regression, where p=1. The term 
‘linear’ is  used because in multiple linear regression we assume that y is directly 
related to a linear combination of the explanatory variables. 

Examples where multiple linear regression may be used include:

• Trying to predict an individual’s  income given several socio-economic 
characteristics.

• Trying to predict the overall examination performance of pupils in ‘A’ levels, given 
the values of a set of exam scores at age 16.

• Trying to estimate systolic or diastolic blood pressure, given a variety of  socio-
economic and behavioural characteristics  (occupation, drinking smoking, age 
etc).

As is the case with simple linear regression and correlation, this analysis does not  
allow us to make causal inferences, but it does allow us to investigate how a set of 
explanatory variables is associated with a dependent variable of interest.

In terms of a hypothesis test, for the case of a simple linear regression the null 
hypothesis, H0 is that the coefficient relating the explanatory (x) variable to the 
dependent (y) variable is  0. In other words that there is no relationship between the 
explanatory variable and the dependent variable. The alternative hypothesis H1 is 
that the coefficient relating the x variable to the y variable is not equal to zero. In 
other words there is some kind of relationship between x and y. 
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In summary we would write the null and alternative hypotheses as:

H0: β1 =0
H1: β1≠0 
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A1: Aside: theory for correlation and simple linear regression

The correlation coefficient, r, is calculated using:

Where,

Is the variance of x from the sample, which is of size n.

Is the variance of y, and,

Is the covariance of x and y.

Notice that the correlation coefficient is a function of the variances of the two 
variables of interest, and their covariance.

In a simple linear regression analysis, we estimate the intercept, β0, and slope of the 
line, β1 as:
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Section 2: Worked Example using SPSS 

This  document shows how we can use multiple linear regression models  with an 
example where we investigate the nature of area level variations in the percentage of 
(self reported) limiting long term illness in 1006 wards in the North West of England. 
The data are from the 2001 UK Census. 

We will consider five variables here:

• The percentage of people in each ward who consider themselves to have a 
limiting long-term illness (LLTI)

• The percentage of people in each ward that are aged 60 and over (A60P)
• The percentage of people in each ward that are female (FEMALE)
• The percentage of people in each ward that are unemployed (of those 

Economically active) (UNEM)
• The percentage of people in each ward that are ‘social renters’ (i.e .rent from 

the local authority). (SRENT).

The dependent variable will be LLTI and we will investigate whether we can explain 
ward level variations in LLTI with A60P, FEMALE, UNEM, SRENT

We will consider:

1. Whether this model makes sense substantively
2. Whether the usual assumptions of multiple linear regression analysis are met 

with these data
3. How much variation in LLTI the four explanatory variables explain
4. Which explanatory variables are most ‘important’ in this model
5. What is the nature of the relationship between LLTI and the explanatory 

variables.
6. Are there any wards where there are higher (or lower) than expected levels  of 

LLTI given the explanatory variables we are considering here.

But first we will do some exploratory data analysis  (EDA). It is always a good idea to 
precede a regression analysis with EDA. This may be univariate: descriptives, 
boxplots, histograms, bivariate: correlations, scatter plots, and occasionally 
multivariate e.g. principal components analysis. 
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Univariate EDA - descriptives
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Univariate EDA – boxplots
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Bivariate EDA - correlations

Correlations
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Bivariate EDA - Scatterplot



17

Double click on the graph to go into the graph editor window … 
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Choose – Elements, Fit line, Linear to fit a simple linear regression line of % LLTI on 
% social rented.
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__

The simple linear regression has an R squared value of 0.359. i.e. it explains 35.9% 
of the ward level variation in % LLTI
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Bivariate Analysis - Simple Linear Regression

Let us continue with the example where the dependent variable is % llti and there is 
a single explanatory variable, % social rented. Hence we begin with a simple linear 
regression analysis. We will then add more explanatory variables in a multiple linear 
regression analysis.

To perform a linear regression analysis, go to the 

analyze > regression > linear 

menu options. 

Choose the dependent and independent (explanatory) variables  you require. The 
default ‘enter’ method puts  all explanatory variables you specify in the model, in the 
order that you specify them. Note that the order in unimportant in terms of the 
modeling process. 

There are other methods available for model building, based on statistical 
significance, such as backward elimination or forward selection but when building the 
model on a substantive basis, the enter method is best: variables are included in the 
regression equation regardless of whether or not they are statistically significant. 
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Regression

the table above confirms that the dependent variable is % llti and the explanatory 
variable here is % social rented.

the table above shows that we have explained about 35.9% of the variation in % llti 
with the single explanatory variable, % social rented. In general quote the ‘adjusted r 
square’ figure. When the sample size, n, is large, r square and adjusted r square will 
usually be identical or very close. For small n, adjusted r square takes  the sample 
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size (and the number of explanatory variables in the regression equation) into 
account.

the ANOVA table above indicates that the model, as a whole, is a significant fit to the 
data.

The coefficients table above shows that:

• the constant, or intercept term for the line of best fit, when x = 0, is  17.261 
(%).

• The slope, or coefficient for % social rented, is positive: areas with more 
social renting tend to be associated with areas with more limiting long term 
illness.

• The slope coefficient is 0.178 with a standard error of .008. 
• The t value = slope coefficient / standard error = 23.733
• This  is highly statistically significant (p << 0.05) the usual 5% significance 

level
• The standardized regression coefficient provides  a useful way of seeing what 

the impact of changing the explanatory variable by one standard deviation.
• The standardized coefficient is 0.599 – a one standard deviation change in 

the explanatory variable results  in a 0.599 standard deviation change in the 
dependent variable % llti.

the theoretical model is 

or 
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where 

 is the intercept (constant) term and

 is the slope term; the coefficient that relates the value of SOCIAL_P to the 
expected value of LLTI.

From the results above, our estimated equation is:
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Multiple linear regression analysis

We will now add some more explanatory variables so that we now have a multiple 
linear regression mode, which now contains: 

Social rented, Age, female and age 60 plus as explanatory variables.
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Regression

This  multiple linear regression model, with four explanatory variables, now has an R 
squared value of 0.675. 67.5 % of the variation in % LLTI can be explained by this 
model.

Once again, the model, as a whole, is a significant fit to the data.



28

From the table above we see that:

• All the explanatory variables are statistically significant.
• All have positive coefficients – for each explanatory variable a greater 

percentage is associated with a higher level of LLTI
• Taking % aged 60 and over as an example, we see that having controlled for 

unemp, female and social rented (i.e. holding these variables  constant),  for 
every 1% increase in the % of 60 and over, there is  an increase of 0.33% in 
the predicted value of LLTI.

The theoretical model here is:

The estimated model here is:
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We notice that the variables % unemployed (of all economically active) and % social 
rented are very highly correlated. We can assess  the impact of the correlation on the 
regression results by leaving one of the variables, % unemployed, out of the multiple 
linear regression analysis.

Regression

With 3 predictors (+ a constant), we see that we can explain 51.7 % of the variation 
in % LLTI.
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The estimated model here is:

Assumption checking. 

We can check many of the assumptions of the multiple linear regression analysis by 
producing plots. Based on the results  of the last model (with 3 explanatory variables) 
we can produce plots by clicking the ‘plots’ button, which appears  in the window 
when we specify the model in analyze > regression > linear. Click ‘histogram’ and 
‘normal probability plot’ to obtain the full range of plots: 
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Also in the menu where we specify the regression equation via analyze > regression 
> linear is  a ‘save’ button, where we can tick values, residuals and measures to be 
added, as new variables, to the worksheet (i.e. the dataset) we are using. Here we 
have saved the unstandardised and standardised residuals and predicted values:



35

new variables are added to the worksheet called

pre_1 = unstandardised predicted
res_1 = unstandardised residual
zpr_1 = standardised predicted
zre_1 = standardised residual

the suffix _1 in the variable names indicates these are the first set of residuals we 
have saved. If we re-specified the model and saved the residuals, these variable 
names would have the suffix_2 etc … 

A large (positive) standardized residual i.e. > 2 from the model indicates an area 
where, even when accounting for the explanatory variables in the model, there is still 
a higher-than-expected level of LLTI in that ward. Conversely a standardized residual 
< -2 indicated an area that, even when accounting for the explanatory variables, 
there is still a lower than expected level of LLTI.
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Section 3: Further topics 

3.1 Checking the assumptions

Most of the underlying assumptions of multiple linear regression can be assessed by 
examining the residuals, having fitted a model. The various assumptions are listed 
below. Later, we will see how we can assess whether these assumptions hold by 
producing the appropriate plots. 

The main assumptions are:

1. That the residuals have constant variance, whatever the value of the dependent 
variable. This  is the assumption of homoscedasticity. Sometimes textbooks 
refer to heteroscedasticity. This is simply the opposite of homoscedasticity.

2. That there are no very extreme values in the data. That is, that there are no 
outliers.

3. That the residuals are normally distributed.

4.   That the residuals are not related to the explanatory variables.

5. We also assume that the residuals are not correlated with one another.

Residual plots.

1. By plotting the predicted values against the residuals, we can assess the 
homoscedasticity  assumption. Often, rather than plotting the unstandardised or 
raw values, we would plot the standardised predicted values against the 
standardised residuals. (Note that a slightly different version of the standardised 
residual is  called the studentized residual, which are residuals standardised by their 
own standard errors. See Plewis page 15 ff for further discussion of these).
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Examples from  1991 census dataset for districts in the North West

We can also assess the assumption that there are no outliers in our data from the 
above plot. If there was an extreme value in the standardised predicted values  or 
standardised residuals  (say greater/less than +/- 3), we should look at the sample 
unit (in this case the district) that corresponds to the residual. We should consider 
the following: is the data atypical of the general pattern for this  sample unit? Has the 
information been recorded/entered into the computer properly for this sample unit? Is 
there a substantive reason why this outlier occurs: have we left an important 
explanatory variable out of the regression analysis? In many cases  an outlier will 
affect the general estimate of the regression line, because the least squares 
approach will try to minimise the distance between the outlier and the regression 
line. In some cases the extreme point will move the line away from the general 
pattern of the data. That is, the outlier will have leverage on the regression line. In 
many cases we would consider deleting an outlier from the sample, so that we get a 
better estimate of the relationship for the general pattern on the data. The above plot 
suggests that, for our data, there are no outliers.

We can assess the assumption that the residuals are normally distributed by 
producing a normal probability plot (sometimes called a quantile-quantile or q-q plot). 
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For this plot, the ordered values of the standardised residuals are plotted against the 
expected values from the standard normal distribution. If the residuals are normally 
distributed, they should lie, approximately, on the diagonal. The figure below shows 
the normal probability plot for our example. 

The fourth assumption listed above is that the residuals  are not related in some way 
to the explanatory variables. We could assess this by plotting the standardised 
residual against the values  of each explanatory variable. If a relationship does seem 
to exist on this plot, we need to consider putting extra terms in the regression 
equation. For example, there may be a quadratic relationship between the residual 
and explanatory variable, as  indicated by a ‘U’ or ‘n’ shaped curve of the points. In 
order to take into account this quadratic relationship, we would consider adding the 
square of the explanatory variable to the variables included in the model, so that the 
model includes a quadratic (x2) term. E.g. if there appeared to be a quadratic 
relationship between the residuals and age, we could add age2  to the model. 
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The above plot shows a plot of an explanatory variables  – AGE60P – against the 
standardised residual. If the plot had an obvious pattern it would be sensible to 
consider including further explanatory variables in the model. There does not seem 
to be an obvious pattern here, but with only 43 observations, it is not easy to tell 
whether or not a pattern exists. 

In general it should be borne in mind that you should have a reasonable size sample 
to carry out a multiple linear regression analysis when you have a lot of explanatory 
variables.

There is no simple answer as to how many observations you need, but in general the
bigger the sample, the better.

3.2 Multicollinearity.

By carrying out a correlation analysis before we fit the regression equations, we can 
see which, if any, of the explanatory variables are very highly correlated and avoid 
this  problem (or at least this will indicate why estimates of regression coefficients 
may give values very different from those we might expect). For pairs  of  explanatory 
variables with have very high correlations > 0.8 or very low correlations < 0.8 we 
could consider dropping one of the explanatory variables from the model.
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3.3 Transformations:

In some situations the distribution of the dependent variable is not normal, but 
instead is positively or negatively skewed. For example the distribution of income, 
and similar variables such as  hourly pay, tends  to be positively skewed because a 
few people earn a very high salary. Below is  an example of  the distribution of hourly 
pay. As can be seen, it is positively skewed. 

If we now take the natural log (LN) of the hourly wage we can see that the resulting 
distribution is much more ‘normal’. 



41

Later we will do some multiple linear regression modelling using log(hourly wage) as 
the dependent variable.

3.4 Dummy variables

Suppose we were interested in investigating differences, with respect to the y 
variable (e.g. log(income), in three different ethnic groups. Hence we would have an 
ethnic group variable with three categories: Afro Caribbean, Pakistani, Indian. We 
would need to create dummy variables to include this categorical variable in the 
model

For example we could use this  dummy variable scheme, where ‘afro-caribbean’ is 
the reference category.

D1 D2
Afro-caribbean 0 0
Pakistani 1 0
Indian 0 1

Where D1 is the dummy variable to represent the Pakistani ethnic group and
D2 is the dummy variable to represent the Indian ethnic group
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Hence the estimate of the coefficient β0 gives the average log(income) for the Afro-
Caribbean ethnic group. The estimate of β1 shows how log(income) differs on 
average for Indian vs Afro-Caribbean ethnic group and the estimate of coefficient β2 
shows how log income differs on average for Pakistani vs  Afro Caribbean ethnic 
group. If we are interested in the way in which log income differs on average for the 
Indian vs Pakistani ethnic group we can find this out by subtracting the estimate of β2 

from the estimate of β1.

Dummy variables can be created in SPSS via compute variable or via recode. Both 
these options appear in the transform menu in SPSS.

3.5 Interactions:

Interactions enable us to assess  whether the relationship between the dependent 
variable and one explanatory variable might change with respect to values of another 
explanatory variable. 
For example, consider a situation where we have a sample of pupils, and the 
dependent variable is  examination performance at 16 (exam16) which we are trying 
to predict with a previous  measure of examination performance based on an exam 
the pupils took when they were 11 years old (exam11).  Suppose we have another 
explanatory variable, gender. 

There are three usual things that might be the case for this example (assuming that 
there is some kind of a relationship between exam16 and exam11).

(a) The relationship between exam16 and exam 11 is identical for boys and girls.
(b) The relationship between exam16 and exam11 has a different intercept 

(overall average) for boys than girls but the nature of the relationship (i.e. the 
slope) is the same for boys  and for girls). In graph (b) below the top line might 
refer to girls and the bottom line to boys. 

(c) The relationship between exam16 and exam11 has a different intercept and a 
different slope for boys and girls4. In graph (c) below the line with the lower 
intercept but steeper slope might refer to boys and the line with the higher 
intercept and shallower slope to girls.

And one other possibility that is less likely to occur in general.

(d) A fourth possibility is that the slope is different for girls and boys but the 
intercept is identical. In this graph (d, below) one of the lines would refer to 
girls and the other to boys.
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Graphical representations of all four possibilities are shown below:

(a) (b)

(c)
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The simplest model, represented schematically by graph (a) above is one where 
exam16 and exam11 are positively associated, but there is no difference in this 
relationship for girls compared with boys. In other words, a single line applies to both 
genders. The equation for this line is:

  (a)

where exam16 and exam11 are continuous exam scores 

If we now consider graph b we might find that there is an overall difference in the 
level of exam average exam scores but once we have accounted for this overall 
difference, the relationship between exam16 and exam11 is  the same for girls  and 
boys. That is, the lines have the same slope and are therefore parallel. 

We can represent this situation via a main effects model where we now have a 
second explanatory variable. This  time it is a categorical (dummy) variable, where 
gender=0 for boys  and gender=1 for girls. Equation (b) is hence a main effects 
model relating exam11 and gender to exam11. 

   (b)

Interactions can also be added to the model (this would be appropriate if case (c) 
applies).

  (c)

To create an interaction term such as exam11.gender we simply multiply the two 
variables exam11 and gender together to create a new variable e.g. ex11gen we 
then add this to the model as a new explanatory variable. In general you should 
always leave each of the single variables that make up the interaction term in the 
model when the interaction term is added.

3.6 Quadratic Relationships.

Sometimes a linear relationship between dependent and explanatory variable may 
not be appropriate and this is  often evident when a scatter plot is produced. For 
example the linear relationship and quadratic (i.e. curved) relationship for log(hourly 
wage) vs age are shown below. It seems that although age as  a single measure 
does not explain all the variation in log(hourly wage) it is apparent that the 
relationship between log(hourly wage) and age is better summarised with a quadratic 
curve than a straight line.
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figure (a) above

figure (b) above

It is easy to estimate a curve as shown above using SPSS. We first create a new 
variable: agesq = age2. We then simply add agesqu into the regression equation as 
a new explanatory variable.

Hence the equation the straight line shown in figure (a) is:
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And the equation for the curve shown in figure (b) is:

Which we could also write equivalently as:

3.6 Model selection methods

In some cases, especially when there are a large number of explanatory variables, 
we might use statistical criteria to include/exclude explanatory variables, especially if 
we are interested in the ‘best’ equation to predict the dependent variable. This is a 
different fundamental approach to the substantive approach where variables are 
included on the basis  of the research question and this variables are often chosen 
given the results previous research on the topic and are also influenced by ‘common 
sense’ and data availability.

Two examples of selection methods are backward elimination, and stepwise. The 
main disadvantage of these methods is  that we might miss out important theoretical 
variables, or interactions. Two selection methods are briefly described below. See 
Howell page 513 ff  for a more detailed description of the methods.

Backward elimination.

Begin with a model that includes all the explanatory variables. Remove the one that 
is  least significant.  Refit the model, having removed the least significant explanatory 
variable, remove the least significant explanatory variable from the remaining set, 
refit the model, and so on, until some ‘stopping’ criterion is  met: usually that all the 
explanatory variables that are included in the model are significant.

Stepwise

More or less the reverse of backward elimination, in that we start with no explanatory 
variables in the model, and then build the model up, step-by-step. We begin by 
including the variable most highly correlated to the dependent variable in the model. 
Then include the next most correlated variable, allowing for the first explanatory 
variable in the model, and keep adding explanatory variables until no further 
variables are significant. In this approach, it is  possible to delete a variable that has 
been included at an earlier step but is  no longer significant, given the explanatory 
variables that were added later. If we ignore this possibility, and do not allow any 
variables that have already been added to the model to be deleted, this model 
building procedure is called forward selection.

Section 4: BHPS assignment

Using the dataset bhps.sav produce a short report of a multiple regression analysis 
of the log (hourly wage). The dataset is on the blackboard site.
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The report should be between 500-1000 words and might include: 
Appropriate exploratory analysis. 
Appropriate tests of assumptions.
Dummy variables. 
Interaction terms.
Squared terms.
Multiple models (i.e. evidence of a model selection process).

Don’t worry about presentational issues for this assignment; we are not after 
polished pieces of work at this  stage. You can cut and paste any relevant SPSS 
output into appendices. The important point is  to the interpretation of the output; the 
reader should be able to understand the analytical process you have been through. 
So explain your recodes, dummy variables model selection choices etc.

Reading list
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Howell, D (1992) Statistical methods for psychology. (3rd Edition)  Duxbury. Chapter 
15 (and also some of chapter 9). 

Plewis, I (1997) Statistics in Education. Edward Arnold. 

More theoretical:

Draper and Smith (1981) Applied regression analysis (2nd ed). Wiley.[nb: although 
this  book uses the word ‘applied’ in the title, it is actually more theoretical than the 
reference above by Howell]


