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Section 1: Introduction
1.1 Overview

A multiple linear regression analysis is carried out to predict the values of a
dependent variable, Y, given a set of p explanatory variables (x1,x2,....,Xp). In these
notes, the necessary theory for multiple linear regression is presented and examples
of regression analysis with census data are given to illustrate this theory. This course
on multiple linear regression analysis is therefore intended to give a practical outline
to the technique. Complicated or tedious algebra will be avoided where possible, and
references will be given to more theoretical texts on this technique. Important issues
that arise when carrying out a multiple linear regression analysis are discussed in
detail including model building, the underlying assumptions, and interpretation of
results. However, before we consider multiple linear regression analysis we begin
with a brief review of simple linear regression.

1.2 Review of Simple linear regression.

A simple linear regression is carried out to estimate the relationship between a
dependent variable, Y, and a single explanatory variable, x, given a set of data that
includes observations for both of these variables for a particular population. For
example, for a sample of n=17 pupils in a particular school, we might be interested in
the relationship of two variables as follows:

* Exam performance at age 16. The dependent variable, y (Exam16)
* Exam performance at age 11. The explanatory variable, x (Exam11)

(n.b. we would ideally have a bigger sample, but this small sample illustrates the
ideas)



Exam16 Exam11

45 55
67 77
55 66
39 50
72 55
47 56
49 56
81 90
33 40
65 70
57 62
33 45
43 55
55 65
55 66
67 77
56 66

We would carry out a simple linear regression analysis to predict the value of the
dependent variable y, given the value of the explanatory variable, x. In this example
we are trying to predict the value of exam performance at 16 given the exam
performance at age 11.

Before we write down any models we would begin such an analysis by plotting the
data as follows: Figure 1.1.
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We could then calculate a correlation coefficient to get a summary measure of the
strength of the relationship. For figure 1.1 we expect the correlation is highly positive

(it is 0.87). If we want to fit a straight line to these points, we can perform a simple
linear regression analysis. We can write down a model of the following form.

yi = BOTBIXZ.‘FQZ.



Where o the intercept and 1 is the slope of the line. We assume that the error
terms ej have a mean value of 0.

The relationship between y and x is then estimated by carrying out a simple linear
regression analysis. We will use the least squares criterion to estimate the
equations, so that we minimise the sum of squares of the differences between the
actual and predicted values for each observation in the sample. That is, we minimise
>e?. Although there are other ways of estimating the parameters in the regression
model, the least squares criterion has several desirable statistical properties, most
notably, that the estimates are maximum likelihood if the residuals e; are normally
distributed.

For the example above, if we estimate the regression equation we get:

A

v, ==3.984 + 0.939x,

where xiis the value of EXAM11 for the ith student.

We could draw this line on the scatter plot. It is sometimes referred to as the line of y
on x, because we are trying to predict y on the information provided by x.

Predicted values

The first student in the sample has a value of 45 for EXAM16 and 55 for exam11.
The predicted value of EXAM16 for this student is 47.661.



Residual

S

We know that the actual value of EXAM16 for the first student is 45, and the
predicted value is 47.661, therefore the residual may be calculated as the difference
between the actual and predicted values of EXAM16. That is, 45 — 47.661 = -2.661.

Figure 1.2 Scatter plot, including the regression line.

Scatterplot of exam performance at 16 against exam performance at 11
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Rsq =0.7541



1.3 Theory for multiple linear regression

In multiple linear regression, there are p explanatory variables, and the relationship
between the dependent variable and the explanatory variables is represented by the
following equation:

Vi =Py +Brxy; +Pyxy; +.t Bpxpi t+ €

Where:
Bo is the constant term and

B1to Bp are the coefficients relating the p explanatory variables to the variables of
interest.

So, multiple linear regression can be thought of an extension of simple linear
regression, where there are p explanatory variables, or simple linear regression can
be thought of as a special case of multiple linear regression, where p=1. The term
‘linear’ is used because in multiple linear regression we assume that y is directly
related to a linear combination of the explanatory variables.

Examples where multiple linear regression may be used include:

* Trying to predict an individual’s income given several socio-economic
characteristics.

* Trying to predict the overall examination performance of pupils in ‘A’ levels, given
the values of a set of exam scores at age 16.

* Trying to estimate systolic or diastolic blood pressure, given a variety of socio-
economic and behavioural characteristics (occupation, drinking smoking, age
etc).

As is the case with simple linear regression and correlation, this analysis does not
allow us to make causal inferences, but it does allow us to investigate how a set of
explanatory variables is associated with a dependent variable of interest.

In terms of a hypothesis test, for the case of a simple linear regression the null
hypothesis, Ho is that the coefficient relating the explanatory (x) variable to the
dependent (y) variable is 0. In other words that there is no relationship between the
explanatory variable and the dependent variable. The alternative hypothesis H1 is
that the coefficient relating the x variable to the y variable is not equal to zero. In
other words there is some kind of relationship between x and y.

7



In summary we would write the null and alternative hypotheses as:

Ho: f1=0
H1: f1=20



A1: Aside: theory for correlation and simple linear regression

The correlation coefficient, r, is calculated using:

Cov(X,Y)
v =
\/Var(X)Var(Y)

Where,

2@ ~x)’
Var(X)="T"———

n-1
Is the variance of x from the sample, which is of size n.
2@;%
Var(Y) = =———
n-1

Is the variance of y, and,

n

Zurbm—b
Var(X,Y) ==

n-1

Is the covariance of x and y.

Notice that the correlation coefficient is a function of the variances of the two
variables of interest, and their covariance.

In a simple linear regression analysis, we estimate the intercept, fo, and slope of the
line, B1as:

3 = —COV(X’Y) BAO = ; - gl;i
! Var(X)



Section 2: Worked Example using SPSS

This document shows how we can use multiple linear regression models with an
example where we investigate the nature of area level variations in the percentage of
(self reported) limiting long term iliness in 1006 wards in the North West of England.
The data are from the 2001 UK Census.

We will consider five variables here:

The percentage of people in each ward who consider themselves to have a
limiting long-term illness (LLTI)

The percentage of people in each ward that are aged 60 and over (A60P)

The percentage of people in each ward that are female (FEMALE)

The percentage of people in each ward that are unemployed (of those
Economically active) (UNEM)

The percentage of people in each ward that are ‘social renters’ (i.e .rent from
the local authority). (SRENT).

The dependent variable will be LLTI and we will investigate whether we can explain
ward level variations in LLTI with A6OP, FEMALE, UNEM, SRENT

We will consider:

1.

Whether this model makes sense substantively

2. Whether the usual assumptions of multiple linear regression analysis are met

ok w

with these data

How much variation in LLTI the four explanatory variables explain

Which explanatory variables are most ‘important’ in this model

What is the nature of the relationship between LLTI and the explanatory
variables.

Are there any wards where there are higher (or lower) than expected levels of
LLTI given the explanatory variables we are considering here.

But first we will do some exploratory data analysis (EDA). It is always a good idea to
precede a regression analysis with EDA. This may be univariate: descriptives,
boxplots, histograms, bivariate: correlations, scatter plots, and occasionally
multivariate e.g. principal components analysis.
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Univariate EDA - descriptives

va: adal.sav [DataSet1] - SPSS Data Editor

File Edit V“iew Data Transform | A&nalyze Graphs Ulities Add-ons ‘Window  Help
EHS B &6 X Ej Reports bké@‘l
12 ZoneCode 00BLFM Desctiptive Statistics » | 123 Frequencies... Visible: 64 of B4 Varisbles
I i de‘ Tables 4 Descriptives... o0 | good
1 OOBLFA  Astley Brigy ~ Comears Means > | B Explore... 13979 98254
2 00BLFE Blackrod General Linear Model » @ Crosstabs... 13098 8901£
3 00BLFC Bradshaw Generalized Linear Models P Ratio... 13177 914¢
4 |O0BLFD Breightmet|  MuxedModels > | B2 B-P Pits... 13595 5664
5 O0BLFE Bromley Cy|  Corelste > | a-apus.. 13837 10138
B O0BLFF  Burnden Regression 4 12963 8366
7 00BLFG  Central Loglinear 4 10713 6399
8 00BLFH  Daubhil gt 4 11813 7760
9 O0BLFJ Deane-Cum  Det@Reduction ’ 16987 11804
10 00BLFK  Derby Scele ’ 13152 8166
11 00BLFL  Famwaorth L I ’ 12993 8184
OOBLFM  Halliwell = % 12026 7632
OOBLFN  Harper Greg  Survival ' 13768 5964
00BLFP  Horwich Missing Value Analysis... 14343 989?:
e Multiple Response 4 I ]—
Data View | Variable View || ol samples " f
IDescriptives... g ’ ISPSS Processor is ready ’_| | ’_[_I
L - ROC Curye...
va: Descriptives E]
Variable(s): ;
| general health [Uv20] |~ T&’ % Ilt(i [I)Iti _p] SR
&” good [good] _ & % good heatth [good_p)
& fairly good [fairly] f % female [female_p]
& not good [not_good) & % aged 60 and over [ag...
& all people table 22 [U... & % unemp of econ act. [...
& with Iti [Iti] & % social rerted [srent_p]
&’ without Iti [no_IIii] f % of people with »=1 c...
& all people in househo...| |
& owned tatal [Uv0430,.. 7

[save standardized values as variables

I OK ][ Paste H Reset ][ Cancel ” Help ]
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Descriptive Statistics

N Minimum | Maximum Mean Std. Deviation
% llti 1006 9.26 33.26 20.0436 4.13001
% good health 1006 55.70 81.22 67.5984 4.78456
% female 1006 35.18 56.77 51.4180 1.45675
% aged 60 and over 1006 7.24 46.60 21.4374 4.95659
% unemp of econ act. 1006 1.15 24.63 5.3712 3.54237
% social rented 1006 13 73.89 15.6315 13.90675
% of people with >= 1 1006 35.84 99.44 | 834959 12.83261
carin hh
Valid N (listwise) 1006
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Univariate EDA — boxplots

=2 adal.sav [DataSet1] - SPSS Data Editor

File Edit View Data Transform Analyze | Graphs Ufiities Add-ons  Window  Help

= M &0 EHEk #A Chart Buider... k Q@ .|

12: ZoneCode |ooBLFM o) [ cer.. e 64 of 64 Variables

ZoneCode| ZoneName 3-D Bar... J
1 O0BLFA  Astley Bridge Line...
2 00BLFBE  Blackrod 8 Area...
3 O0BLFC  Bradshaw ® Pie...
4 O0OBLFD  Breightmet [i] High-Low...
5 00BLFE  Bromley Cross —
B 00BLFF  Burnden [ Errer Ber..,
7 00BLFG  Central
; ‘ Population Pyramid...
g 00BLFH  Daubhil _—
9 O0BLFJ  Deane-Cum-Heatan ScatterDot...
10 00BLFK  Derby Luf Histogram...
1 00BLFL  Farnworth Interactive »
12 |DOBLFM  Halliwell T202
13 O00BLFN  Harper Green 13768
14 00BLFP  Horwich 14343
<]
Data View | Variable View
IBoxplcn... SPSS Processor is ready| [ \ \ [

W Simple

ﬁ Q Clustered

rData in Chart Are

() Summaries for groups of cases

@ ISummaries of separate zariablesl

I Define ][ Cancel 1[ Help _]

sz Define Simple Boxplot: Summaries of Separate Variables

Boxes Represent:
&4 ward code [ZoneCo... |~ & % It [Iti_p) =

& general health [Uv20] & % good health [good_p)]

f good [good] é’ % female [female_p]

& tairly good [fairly] & % aged 60 and over [ages0p] o
f not good [not_good] é’ % unemp of econ act. [unem... =
& all people table 22 [U... £ :
& with I [Iti] . Label Cases by :

& without Iti [ro_t] | g ward name [ZoneName] |
f all people in househo... ~Panel by
& owned total [UY0430...

Rows:
f owns outright [UV04...
f owns with mortgage... .
f shared ownership [U...
& social rerted total [U...
& rented from council (... [ e ables (no empty

& cther social rented ... Columns:
f private rented total [...

f private landlord or let... .
f employer of househo...

i rilativ:‘a I:Jr househt‘:ld... = [ nest v:

ables (no empty columns)

l OK ][ Paste H Reset H Cancel H Help ]
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80—
Benchill
8Ardwick
o
gVauxhall
- Longview
60 Colleﬁge 9
Brec 8
_gftentral
edbergh Grange
*
* abus
Lostock X man
40— *
Haverigg
Vauxhall * Derwent Valley
¥Granby
Northwood
20— I— ‘ ‘ ¥
Tranmere
Bastwell —
o 1
I I I I I
% llti % female % aged 60 and over % social rented % unemp of econ

Bivariate EDA - correlations

Correlations
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«a: Bivariate Correlations @

& 3510 49 [cs0160023)
& 50t0 59 [cs0160037]
& B0to 64 [cs0160046]
& 6510 84 [cs0160055]
& 85 plus [cs0160064]
f all people in househo...

1»

Variables:

& % Iti [ti_p]
& % good health [good_p)
&) % female [female_p)]

& % aged 60 and over [ag...
& % unemp of econ act. [...
f % social rented [srent_p]

Options...

& no car or van [cs061 ..

W % of people with == 1 cl

& 1 car or van [cs0610...| =
&’ 2 Or more cars or va... | ¥

r Correlation Coefficients

Pearson | | Kendal'stau-b [ | Spearman

r Test of Significance

7~

(3) Two-tailed () One-tailed

Flag significant correlations

I OK “ Paste H Reset H Cancel H Help l

Correlations

% of people
% good % aged 60 | % unemp of % social | with >=1 car
Y Ilti health and over econ act. % female rented in hh

% llti Pearson Correlation 1 -.938 .166 .693 .370 599 -.723

Sig. (2-tailed) .000 .000 .000 .000 .000 .000

N 1006 1006 1006 1006 1006 1006 1006

% good health Pearson Correlation -.938 1 -.063 -.693 -.286 -.637 769

Sig. (2-tailed) .000 .047 .000 .000 .000 .000

N 1006 1006 1006 1006 1006 1006 1006

% aged 60 and over Pearson Correlation .166 -.063 1 -.320 .259 -.321 .346

Sig. (2-tailed) .000 .047 .000 .000 .000 .000

N 1006 1006 1006 1006 1006 1006 1006

% unemp of econ act. Pearson Correlation 693 -.693 -.320 1 .162 797 -.901

Sig. (2-tailed) .000 .000 .000 .000 .000 .000

N 1006 1006 1006 1006 1006 1006 1006

% female Pearson Correlation .370 -.286 .259 162 1 211 -.200

Sig. (2-tailed) .000 .000 .000 .000 .000 .000

N 1006 1006 1006 1006 1006 1006 1006

% social rented Pearson Correlation .599 -.637 -.321 797 211 1 -.814

Sig. (2-tailed) .000 .000 .000 .000 .000 .000

N 1006 1006 1006 1006 1006 1006 1006

% of people with >= 1 Pearson Correlation -723 769 .346 -.901 -.200 -.814 1
carin hh Sig. (2-tailed) .000 .000 .000 .000 .000 .000

N 1006 1006 1006 1006 1006 1006 1006
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Bivariate EDA - Scatterplot

Variables:

Chart preview uses example data

&7 09 pIUS [CSU10000q)
& all people in househ...
f no car or van [cs06...
ﬁ 1 car or van [cs061...
f 2 Or more cars or v...
| % Iiti [Iti_p]

& % good health [goo...
f % female [female_p)
& % aged 60 and ove...
& % unemp of econ a...
& % social rerted [sre...|
& % of people with ==...

[

% Iti

No categories (scake
variable)

(e}

£
n
o
e
8
=
I
E)
—-
m
a

Gallery I Basic Elements

Groups/Point ID | Titles/Footnotes I

Choose from:

Favorites
Bar O C
Line D
Area

ooco—..‘
e

-

Pie/Polar

ScatterDot (o} o
Histogram
High-Lowy

-
¥z

1t

0000
0000
e
[

Boxplot
Dual Axes

I OK ” Paste ” Reset ” Cancel H Help
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35.00—

30.00—

25.00—

20.00 -

Il %

5.00—

40.00 60.00 80.00
% social rented

20.00

0.00

Double click on the graph to go into the graph editor window ...
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& Chart Editor
File Edit View Options Elements Transform Help

B XY =|LEKICIs
= Zl|lB I |E =
Bl i | 9

KD (s

35.00

30.00

25.00 H

20.00

% llti

15.00+

10.00 —

5.00
I
80.00

I I I I
20.00 40.00 60.00

0.00
% social rented

H:375, W.468.75 points

Choose — Elements, Fit line, Linear to fit a simple linear regression line of % LLTI on

% social rented.
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Chart Sizel Lines

I Display Spikes
~Fit Method

" Mean of ¥ " Quadratic

(+ Linear " Cubic

" Loess

% of points to fit: |' 0

Kernel: |Enanechni

~Confidence Intervals

(* None
" Mean

" Individual

%l_

Close | Help |
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35.00
30.00
25.00 -
=
— 20.00-
S
15.00—
10.00—
R Sq Linear = 0.359
5.00—
| | | | |
40.00 60.00 80.00

0.00 20.00
% social rented

The simple linear regression has an R squared value of 0.359. i.e. it explains 35.9%

of the ward level variation in % LLTI
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Bivariate Analysis - Simple Linear Regression

Let us continue with the example where the dependent variable is % lIti and there is
a single explanatory variable, % social rented. Hence we begin with a simple linear
regression analysis. We will then add more explanatory variables in a multiple linear
regression analysis.

To perform a linear regression analysis, go to the

analyze > regression > linear

menu options.

Choose the dependent and independent (explanatory) variables you require. The
default ‘enter’ method puts all explanatory variables you specify in the model, in the
order that you specify them. Note that the order in unimportant in terms of the
modeling process.

There are other methods available for model building, based on statistical
significance, such as backward elimination or forward selection but when building the

model on a substantive basis, the enter method is best: variables are included in the
regression equation regardless of whether or not they are statistically significant.

21



al.sav [DataSet1] - SPSS Data Editor

File Edit ‘“iew Dsta Transform | Analyze Graphs Utiities Add-ons ‘Window  Help

B.[% E’ o0 ?!mﬁ-ﬁ Reports DQQ~|

[12: Zonecode |ooBLFM Deseriptive Stafistics »

ZuneCodeI RS ’ | Uv20 good fairly n

1 ODBLFA  Astley Brig{ ~ Compare Means b 13979 9825 2871
2 00BLFB  Blackrod Cepeall el b 13098 8901 2858
3 00BLFC  Bradshaw Generalized Linear| Models P 13177 9149 2793
4 00BLFD  Breightmet |  Mixed Models D 13595 8864 3036
5 O0BLFE  Bromley Cy|  Correlate D 13837 10138 2617
6 00BLFF  Burnden Reoeskg »| B Linear.. 8368 3034
7 00BLFG Central Loglinear » Curve Estimation... 5399 2609
g 00BLFH  Daubhill Classify » ,,',_zs Partial Least Squares... 7760 2700
9 OOBLFJ  Deane-Curj  D2etaReduction " | R Binary Logistic... 11804 3494
10 D0BLFK  Derby Scale > | R Mutinomial Logistic. . 8186 3105
11 00BLFL  Famwaorth TS IS "I R ordinal.. 8184 3067
12 DOBLFM  Halliwell [iz=Esies | R proni 7639 2895
13 O0BLFN  Harper Greq  Survival b 3 o 8964 3166
14 |0DBLFP  Horwich Missing Value Analysis. . o e 9897 3028
15 |0OBLFQ Hulton Park  Multle Response b |5 Hent Exitien.. 11693 3304
5 DOBLFR  Kearsley Complex Samples ) | 2its 2-Stage Least Squares... a667 2001
17 D0BLFS  Little Lever |  Qualty Control | Optimal Scaling... 7751 2572
18 D0BLFT  Smithills REE R | 10881 7379 2445
19 DOBLFU  Tonge 10153 6330 2428
20 O0BLFYW  ‘Westhoughton 12430 8889 2457

x2 Linear Regression

£3
Dependent:
@4 ward code [ZoneCo... |4 m |

& ward name [ZoneNa... “Block 1 of 1
& general health [UV20] |-

G 1
. . ons...
f fairly good [fairly] Independent(s):

f not good [not_good)

& sl people table 22 [U...
& with It i)

& without Iti [no_Iti]

f all people in househo... Method:

& owned tatal [UY0430...
& owns outright [UV04... Selection Variable:

» | Rule...
& shared ownership [U... Case Labels:
& social rented total [U... | |

f owns with mortgage...
f rented frc!m council (... WLS Weight:
f ather social rerted [... — L 2 | | I
L. b

[ OK H Paste ” Reset ” Cancel ” Help ]

22



st Linear Regression

Dependent: .

? pERRE R TR = m & % Iti [Iti_p] |

0to 15 [cs0160010)
& 1610 34 [cs0160019] ~Block 1 of 1
& 3510 49 [cs0160028] -
& 50to 59 [cs0160037) =
& B0to 64 [cs0160046] Independent(s):
& 6510 84 [cs0160055) & % social rented [srent_p]

& 85 plus [cs0160084]

& all people in househo...
& no car or van [cs061...

I h g
f 1 car or van [cs0610... Method.
f 2 or more cars or va... Selection Variable:

& % good health [good... || ) | | Rule..

& % female [female_p]

& % aged 60 and over .. A [ vy Case Labels:
& % unemp of econ ac...| | |
& % social rented [sre... T WLS Weight:

& % of people with == .. v -» | |

l OK ][ Paste H Reset ” Cancel H Help ]

Regression

Variables Entered/Removed

Variables Variables
Model Entered Removed Method
1 % social
rented

Enter

a. All requested variables entered.
b. Dependent Variable: % Ilti

the table above confirms that the dependent variable is % llti and the explanatory
variable here is % social rented.

Model Summary

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 .5992 .359 .359 3.30724

a. Predictors: (Constant), % social rented

the table above shows that we have explained about 35.9% of the variation in % Ilti
with the single explanatory variable, % social rented. In general quote the ‘adjusted r
square’ figure. When the sample size, n, is large, r square and adjusted r square will
usually be identical or very close. For small n, adjusted r square takes the sample

23



size (and the number of explanatory variables in the regression equation) into
account.

ANOVAP
Sum of
Model Squares df Mean Square F Sig.
1 Regression 6160.641 1 6160.641 563.240 .0002
Residual 10981.604 1004 10.938
Total 17142.244 1005

a. Predictors: (Constant), % social rented
b. Dependent Variable: % llti

the ANOVA table above indicates that the model, as a whole, is a significant fit to the
data.

Coefficients
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 17.261 157 109.999 .000
% social rented 178 .008 .599 23.733 .000

a. Dependent Variable: % llti

The coefficients table above shows that:

* the constant, or intercept term for the line of best fit, when x = 0, is 17.261

(%).

The slope, or coefficient for % social rented, is positive: areas with more

social renting tend to be associated with areas with more limiting long term

illness.

* The slope coefficient is 0.178 with a standard error of .008.

* The t value = slope coefficient / standard error = 23.733

* This is highly statistically significant (p << 0.05) the usual 5% significance
level

* The standardized regression coefficient provides a useful way of seeing what
the impact of changing the explanatory variable by one standard deviation.

* The standardized coefficient is 0.599 — a one standard deviation change in
the explanatory variable results in a 0.599 standard deviation change in the
dependent variable % llti.

the theoretical model is

LLTI= B, + B,SOCIAL P+¢,

or

24



LLTI =B, + p,SOCIAL P,

where

B, is the intercept (constant) term and
B, is the slope term; the coefficient that relates the value of SOCIAL_P to the

expected value of LLTI.

From the results above, our estimated equation is:

LLTI=17.261+0.178 SOCIAL P,

25



Multiple linear regression analysis

We will now add some more explanatory variables so that we now have a multiple
linear regression mode, which now contains:

Social rented, Age, female and age 60 plus as explanatory variables.

+2f Linear Regression

(&7 Al PeUpe Ene oo

Dependent:
[ & o ipi_p) |

X
& 01015 [cs0160010] [
& 1610 34 [cs0160019] ~Block 1 of 1
& 3510 49 [cs0160028] o
& 5010 59 [cs0160037) . =
& 60to 64 [cs0160046] Independent(s):
& 6510 84 [cs0160055] « % social vented [srent_p]
& 85 plus [cs0160084) ‘ & & % female [female_p] '
& all people in househo... &: % aged B0 and over [ageB0p] v
f no car or van [cs061... —

r w

f 1 car or van [cs0610... Method: Enter

& 2 Or more cars or va... Selection Variable:

& % good heatth [good... || | ) B | m
f % female [female_p] —
& % aged 60 and over .. . T Case Labels:
& % unemp of econ ac...| | l
f % social rented [sre... T WLS Weight:
& % of people with == ... - - | |
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Regression

Variables Entered/Removed

Variables Variables
Model Entered Removed Method
1 % aged 60
and over,
% female,
% unemp
of econ
act., %
social a
rented

Enter

a. All requested variables entered.
b. Dependent Variable: % llti

Model Summary

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 .8232 677 .675 2.35344

a. Predictors: (Constant), % aged 60 and over, % female,
% unemp of econ act., % social rented

This multiple linear regression model, with four explanatory variables, now has an R
squared value of 0.675. 67.5 % of the variation in % LLTI can be explained by this
model.

ANOVA
Sum of
Model Squares df Mean Square F Sig.
1 Regression | 11598.023 4 2899.506 523.501 .0002
Residual 5544.221 1001 5.539
Total 17142.244 1005

a. Predictors: (Constant), % aged 60 and over, % female, % unemp of econ act., %
social rented

b. Dependent Variable: % llti

Once again, the model, as a whole, is a significant fit to the data.
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Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -9.832 2.734 -3.596 .000
% unemp of econ act. 774 .035 .664 22147 .000
% female .344 .056 121 6.176 .000
% social rented .052 .009 175 5.728 .000
% aged 60 and over .336 .017 404 19.762 .000

a. Dependent Variable: % llti

From the table above we see that:

* All the explanatory variables are statistically significant.
All have positive coefficients — for each explanatory variable a greater

percentage is associated with a higher level of LLTI

* Taking % aged 60 and over as an example, we see that having controlled for

unemp, female and social rented (i.e. holding these variables constant),

every 1% increase in the % of 60 and over, there is an increase of 0.33% in

the predicted value of LLTI.

The theoretical model here is:

LLTI ;= B, + B,UNEM_P, + §,FEMALE P, + 3,SOCIAL P, + 3,A60P_P, +¢,

The estimated model here is:

LLTI ;= -9.832+.774UNEM P, + .344FEMALE P, +.052SOCIAL P, +.336A60P P,
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We notice that the variables % unemployed (of all economically active) and % social
rented are very highly correlated. We can assess the impact of the correlation on the

regression results by leaving one of the variables, % unemployed, out of the multiple
linear regression analysis.

Regression

Variables Entered/Removed

Variables Variables
Model Entered Removed Method
1 % aged 60
and over,

% female, . | Enter
% social
rented

a. All requested variables entered.
b. Dependent Variable: % llti

Model Summary

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 7208 .518 517 2.87129

a. Predictors: (Constant), % aged 60 and over, % female,
% social rented

With 3 predictors (+ a constant), we see that we can explain 51.7 % of the variation
in % LLTI.

ANOVA
Sum of
Model Squares df Mean Square F Sig.
1 Regression 8881.461 3 2960.487 359.095 .0002
Residual 8260.783 1002 8.244
Total 17142.244 1005

a. Predictors: (Constant), % aged 60 and over, % female, % social rented
b. Dependent Variable: % llti
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Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -9.127 3.336 -2.736 .006
% female .384 .068 135 5.648 .000
% social rented .203 .007 .683 27.952 .000
% aged 60 and over 292 .021 .350 14.165 .000

a. Dependent Variable: % llti

The estimated model here is:

LLTI = -9.127 + .384FEMALE P, +.203SOCIAL P, +.292A60P P,

Assumption checking.

We can check many of the assumptions of the multiple linear regression analysis by
producing plots. Based on the results of the last model (with 3 explanatory variables)
we can produce plots by clicking the ‘plots’ button, which appears in the window
when we specify the model in analyze > regression > linear. Click ‘histogram’ and
‘normal probability plot’ to obtain the full range of plots:

< Linear Regression: Plots

DEPENDNT Scatter 1 of 1

*ZPRED

*ZRESID eviou Next
*DRESID y:

*ADJPRED m *zRESD |
*SRESID .

*SDRESID m FZPRED |

~Standardized Residual Plots :
[T produce all partial plots

Histogram

ormal probability plot

| Continue J[ Cancel H Help
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Frequency

Histogram

Dependent Variable: % Ilti
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Normal P-P Plot of Regression Standardized Residual

Dependent Variable: % llti

Expected Cum Prob

0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0
Observed Cum Prob
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Regression Standardized Residual

Scatterplot

Dependent Variable: % llti

T T T T
-1 0 1 2

Regression Standardized Predicted Value
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Also in the menu where we specify the regression equation via analyze > regression
> linear is a ‘save’ button, where we can tick values, residuals and measures to be
added, as new variables, to the worksheet (i.e. the dataset) we are using. Here we
have saved the unstandardised and standardised residuals and predicted values:

i Linear Regression: Save

~Predicted Values —— rResiduals
Unstandardized Unstandardized
Standardized
[ Adjusted [ studentized
[] S.E. of mean predictions [ Deleted
[] studentized deleted
~Distances rInfluence Statistics
[ ] Mahalanobis [] piBeta(s)
[ cook's [ ] standardized DfBeta(s)
[ ] Leverage values [ piFit
~Prediction Intervals — | [_] Standardized DfFit
[Tmean [ ] individual [] covariance ratio
Confidence Interval: %

| ~Coefficient statistics

[] create coefficient statistics

(® Create a new dataset
Dataset name
O wirite & new data file
File ‘

~Export model information to XML file

| I Browvse...

Include the covariance matrix

= || SR || T 1
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new variables are added to the worksheet called

pre_1 = unstandardised predicted
res_1 = unstandardised residual
zpr_1 = standardised predicted
zre_1 = standardised residual

ada nw wards.sav - SPSS Data Editor E]@
File Edit View Data Transform Analyze Graphs Utilities Window Help
@ (=S| B o] @] |k o £l BlklE 5l
Name | Type | Width | Decimals | Label [ Values | Missing | Columns | Align | Measure =]
B0|female_p  Numeric 8 2 % female None None 10 Right Scale
61|age60p Numeric g 2 % aged 60 and over None None 10 Right Scale
62{unem_p Numeric g 2 % unemp of econ act. None None 10 Right Scale
63|social_p  Numeric 8 2 % social rented None None 10 Right Scale
64|carl_2 Numeric g 2 % of people with >= 1 car in hh None None 10 Right Scale
65(PRE_1 Numeric " 5 Unstandardized Predicted Value None None 13 Right Scale
B6|RES_1 Numeric 1" 5 Unstandardized Residual None None 13 Right Scale
67 |ZPR_1 Numeric 1" 5 Standardized Predicted Value None None 13 Right Scale
BB|ZRE_1 Numeric 1" 5 Standardized Residual None None 13 Right Scale
59
70

the suffix _1 in the variable names indicates these are the first set of residuals we
have saved. If we re-specified the model and saved the residuals, these variable
names would have the suffix_2 etc ...

A large (positive) standardized residual i.e. > 2 from the model indicates an area
where, even when accounting for the explanatory variables in the model, there is still
a higher-than-expected level of LLTI in that ward. Conversely a standardized residual
< -2 indicated an area that, even when accounting for the explanatory variables,
there is still a lower than expected level of LLTI.
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Section 3: Further topics

3.1 Checking the assumptions

Most of the underlying assumptions of multiple linear regression can be assessed by

examining the residuals, having fitted a model. The various assumptions are listed

below. Later, we will see how we can assess whether these assumptions hold by

producing the appropriate plots.

The main assumptions are:

1. That the residuals have constant variance, whatever the value of the dependent
variable. This is the assumption of homoscedasticity. Sometimes textbooks

refer to heteroscedasticity. This is simply the opposite of homoscedasticity.

2. That there are no very extreme values in the data. That is, that there are no
outliers.

3. That the residuals are normally distributed.

4. That the residuals are not related to the explanatory variables.

5. We also assume that the residuals are not correlated with one another.

Residual plots.

1. By plotting the predicted values against the residuals, we can assess the
homoscedasticity assumption. Often, rather than plotting the unstandardised or
raw values, we would plot the standardised predicted values against the
standardised residuals. (Note that a slightly different version of the standardised

residual is called the studentized residual, which are residuals standardised by their
own standard errors. See Plewis page 15 ff for further discussion of these).
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Examples from 1991 census dataset for districts in the North West

Scatterplot
Dependent Variable: LLTI
3
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Regression Standardized Predicted value

We can also assess the assumption that there are no outliers in our data from the
above plot. If there was an extreme value in the standardised predicted values or
standardised residuals (say greater/less than +/- 3), we should look at the sample
unit (in this case the district) that corresponds to the residual. We should consider
the following: is the data atypical of the general pattern for this sample unit? Has the
information been recorded/entered into the computer properly for this sample unit? Is
there a substantive reason why this outlier occurs: have we left an important
explanatory variable out of the regression analysis? In many cases an outlier will
affect the general estimate of the regression line, because the least squares
approach will try to minimise the distance between the outlier and the regression
line. In some cases the extreme point will move the line away from the general
pattern of the data. That is, the outlier will have leverage on the regression line. In
many cases we would consider deleting an outlier from the sample, so that we get a
better estimate of the relationship for the general pattern on the data. The above plot
suggests that, for our data, there are no outliers.

We can assess the assumption that the residuals are normally distributed by
producing a normal probability plot (sometimes called a quantile-quantile or g-q plot).
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For this plot, the ordered values of the standardised residuals are plotted against the
expected values from the standard normal distribution. If the residuals are normally
distributed, they should lie, approximately, on the diagonal. The figure below shows
the normal probability plot for our example.

Normal P-P Plot of Regression Standai

Residual. Dependent Variable: LLTI

1.00 oo

75+ 7

.50 4 o

.25 4 .

gonf

Expected Cum Prob

0.00 [ ] ]
0.00 25 50 75 1.00

Observed Cum Prob

The fourth assumption listed above is that the residuals are not related in some way
to the explanatory variables. We could assess this by plotting the standardised
residual against the values of each explanatory variable. If a relationship does seem
to exist on this plot, we need to consider putting extra terms in the regression
equation. For example, there may be a quadratic relationship between the residual
and explanatory variable, as indicated by a ‘U’ or ‘n’ shaped curve of the points. In
order to take into account this quadratic relationship, we would consider adding the
square of the explanatory variable to the variables included in the model, so that the
model includes a quadratic (x2) term. E.g. if there appeared to be a quadratic
relationship between the residuals and age, we could add age? to the model.

scatterplot of standardised

residual vs A6OP

esidual



The above plot shows a plot of an explanatory variables — AGEGOP — against the
standardised residual. If the plot had an obvious pattern it would be sensible to
consider including further explanatory variables in the model. There does not seem
to be an obvious pattern here, but with only 43 observations, it is not easy to tell
whether or not a pattern exists.

In general it should be borne in mind that you should have a reasonable size sample
to carry out a multiple linear regression analysis when you have a lot of explanatory
variables.

There is no simple answer as to how many observations you need, but in general the
bigger the sample, the better.

3.2 Multicollinearity.

By carrying out a correlation analysis before we fit the regression equations, we can
see which, if any, of the explanatory variables are very highly correlated and avoid
this problem (or at least this will indicate why estimates of regression coefficients
may give values very different from those we might expect). For pairs of explanatory
variables with have very high correlations > 0.8 or very low correlations < 0.8 we
could consider dropping one of the explanatory variables from the model.
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3.3 Transformations:

In some situations the distribution of the dependent variable is not normal, but
instead is positively or negatively skewed. For example the distribution of income,
and similar variables such as hourly pay, tends to be positively skewed because a
few people earn a very high salary. Below is an example of the distribution of hourly

pay. As can be seen, it is positively skewed.
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If we now take the natural log (LN) of the hourly wage we can see that the resulting

distribution is much more ‘normal’.
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log of pay £ per hour

Later we will do some multiple linear regression modelling using log(hourly wage) as
the dependent variable.

3.4 Dummy variables

Suppose we were interested in investigating differences, with respect to the y
variable (e.g. log(income), in three different ethnic groups. Hence we would have an
ethnic group variable with three categories: Afro Caribbean, Pakistani, Indian. We
would need to create dummy variables to include this categorical variable in the
model

For example we could use this dummy variable scheme, where ‘afro-caribbean’ is
the reference category.

D1 D2
Afro-caribbean 0 0
Pakistani 1 0
Indian 0 1

Vi = [30 + BlDli + BzDzi T €

Where D1 is the dummy variable to represent the Pakistani ethnic group and
D2 is the dummy variable to represent the Indian ethnic group
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Hence the estimate of the coefficient o gives the average log(income) for the Afro-
Caribbean ethnic group. The estimate of 1 shows how log(income) differs on
average for Indian vs Afro-Caribbean ethnic group and the estimate of coefficient 2
shows how log income differs on average for Pakistani vs Afro Caribbean ethnic
group. If we are interested in the way in which log income differs on average for the
Indian vs Pakistani ethnic group we can find this out by subtracting the estimate of 32
from the estimate of B1.

Dummy variables can be created in SPSS via compute variable or via recode. Both
these options appear in the transform menu in SPSS.

3.5 Interactions:

Interactions enable us to assess whether the relationship between the dependent
variable and one explanatory variable might change with respect to values of another
explanatory variable.

For example, consider a situation where we have a sample of pupils, and the
dependent variable is examination performance at 16 (exam16) which we are trying
to predict with a previous measure of examination performance based on an exam
the pupils took when they were 11 years old (exam11). Suppose we have another
explanatory variable, gender.

There are three usual things that might be the case for this example (assuming that
there is some kind of a relationship between exam16 and exam11).

(a) The relationship between exam16 and exam 11 is identical for boys and girls.

(b) The relationship between exam16 and exam11 has a different intercept
(overall average) for boys than girls but the nature of the relationship (i.e. the
slope) is the same for boys and for girls). In graph (b) below the top line might
refer to girls and the bottom line to boys.

(c) The relationship between exam16 and exam11 has a different intercept and a
different slope for boys and girls4. In graph (c) below the line with the lower
intercept but steeper slope might refer to boys and the line with the higher
intercept and shallower slope to girls.

And one other possibility that is less likely to occur in general.
(d) A fourth possibility is that the slope is different for girls and boys but the

intercept is identical. In this graph (d, below) one of the lines would refer to
girls and the other to boys.
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Graphical representations of all four possibilities are shown below:

(a) (b)

(c)
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The simplest model, represented schematically by graph (a) above is one where
exam16 and exam11 are positively associated, but there is no difference in this
relationship for girls compared with boys. In other words, a single line applies to both
genders. The equation for this line is:

examl6, = B, + B,examl 1, +e, (a)

where exam16 and exam11 are continuous exam scores

If we now consider graph b we might find that there is an overall difference in the
level of exam average exam scores but once we have accounted for this overall
difference, the relationship between exam16 and exam11 is the same for girls and
boys. That is, the lines have the same slope and are therefore parallel.

We can represent this situation via a main effects model where we now have a
second explanatory variable. This time it is a categorical (dummy) variable, where
gender=0 for boys and gender=1 for girls. Equation (b) is hence a main effects
model relating exam11 and gender to exam11.

examl6, =, + B,examl 1, + B,gender, +e, (b)

Interactions can also be added to the model (this would be appropriate if case (c)
applies).

examl6, = B, + B,examl 1, + B, gender, + B examl1.gender, +e, (C)

To create an interaction term such as exam11.gender we simply multiply the two
variables exam11 and gender together to create a new variable e.g. ex11gen we
then add this to the model as a new explanatory variable. In general you should
always leave each of the single variables that make up the interaction term in the
model when the interaction term is added.

3.6 Quadratic Relationships.

Sometimes a linear relationship between dependent and explanatory variable may
not be appropriate and this is often evident when a scatter plot is produced. For
example the linear relationship and quadratic (i.e. curved) relationship for log(hourly
wage) vs age are shown below. It seems that although age as a single measure
does not explain all the variation in log(hourly wage) it is apparent that the
relationship between log(hourly wage) and age is better summarised with a quadratic
curve than a straight line.
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figure (b) above

It is easy to estimate a curve as shown above using SPSS. We first create a new
variable: agesq = age2. We then simply add agesqu into the regression equation as
a new explanatory variable.

Hence the equation the straight line shown in figure (a) is:

Log(income), =, + PB,age,
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And the equation for the curve shown in figure (b) is:
Log(income), = B, + B,age; + B,age;

Which we could also write equivalently as:
Log(income); =, + f,age; + ,agesq;

3.6 Model selection methods

In some cases, especially when there are a large number of explanatory variables,
we might use statistical criteria to include/exclude explanatory variables, especially if
we are interested in the ‘best’ equation to predict the dependent variable. This is a
different fundamental approach to the substantive approach where variables are
included on the basis of the research question and this variables are often chosen
given the results previous research on the topic and are also influenced by ‘common
sense’ and data availability.

Two examples of selection methods are backward elimination, and stepwise. The
main disadvantage of these methods is that we might miss out important theoretical
variables, or interactions. Two selection methods are briefly described below. See
Howell page 513 ff for a more detailed description of the methods.

Backward elimination.

Begin with a model that includes all the explanatory variables. Remove the one that
is least significant. Refit the model, having removed the least significant explanatory
variable, remove the least significant explanatory variable from the remaining set,
refit the model, and so on, until some ‘stopping’ criterion is met: usually that all the
explanatory variables that are included in the model are significant.

Stepwise

More or less the reverse of backward elimination, in that we start with no explanatory
variables in the model, and then build the model up, step-by-step. We begin by
including the variable most highly correlated to the dependent variable in the model.
Then include the next most correlated variable, allowing for the first explanatory
variable in the model, and keep adding explanatory variables until no further
variables are significant. In this approach, it is possible to delete a variable that has
been included at an earlier step but is no longer significant, given the explanatory
variables that were added later. If we ignore this possibility, and do not allow any
variables that have already been added to the model to be deleted, this model
building procedure is called forward selection.

Section 4: BHPS assignment

Using the dataset bhps.sav produce a short report of a multiple regression analysis
of the log (hourly wage). The dataset is on the blackboard site.
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The report should be between 500-1000 words and might include:
Appropriate exploratory analysis.
Appropriate tests of assumptions.
Dummy variables.
Interaction terms.
Squared terms.
Multiple models (i.e. evidence of a model selection process).

Don’t worry about presentational issues for this assignment; we are not after
polished pieces of work at this stage. You can cut and paste any relevant SPSS
output into appendices. The important point is to the interpretation of the output; the

reader should be able to understand the analytical process you have been through.
So explain your recodes, dummy variables model selection choices etc.

Reading list

Bryman A and Cramer D (1990) Quantitative data analysis for social scientists.
Routledge. Chapter 5.

Field, A (2005) Discovering Statistics Using SPSS (Introducing Statistical Methods
Second Edition.). Sage Publications

Howell, D (1992) Statistical methods for psychology. (3 Edition) Duxbury. Chapter
15 (and also some of chapter 9).

Plewis, | (1997) Statistics in Education. Edward Arnold.

More theoretical:

Draper and Smith (1981) Applied regression analysis (2" ed). Wiley.[nb: although
this book uses the word ‘applied’ in the title, it is actually more theoretical than the
reference above by Howell]
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