MANCHESTER
1824

18%

The Universit
of Manchester

Cathie Marsh Centre for Census and Survey Research

Processing Everything - lessons from
comprehensive automated processing of
the UK Large Scale Government

Surveys

CCSR Working Paper 2008-12
Sam Smith
S.Smith@manchester.ac.uk

A common problem when searching repositories for secondary microdata is finding useful data to
meet specific requirements. Variables are a fundamental building block of data analysis and usage.
This paper covers the technical implementation and design of a infrastructure underlying a information
and cross-references system for finding variables in each file of the 650 (and growing) large-scale UK
Government datasets supported by ESDS Government and the Samples of Anonymised Records.

Processing everything - lessons from comprehensive
automated processing of the UK large scale government
surveys

Sam Smith
WWW.ccsr.ac.uk

CCSR Working Paper 2008-12
June 2008

Abstract

A common problem when searching repositories for secondary microdata is find-
ing useful data to meet specific requirements. Variables are a fundamental building
block of data analysis and usage. This paper covers the technical implementation
and design of a infrastructure underlying a information and cross-references system
for finding variables! in each file of the 650 (and growing) large-scale UK Govern-
ment datasets supported by ESDS Government? and the Samples of Anonymised
Records?.

This paper discusses how decisions made stage have significant benefits, and mi-
nor downsides, further along in processing. The paper does not cover the collection
or dissemination of data, but talks of the process for enhancing the value of the data
and metadata that is already published as part of other processes.

lwww.ccsr.ac.uk/esds/variables
Zyww.esds.ac. uk/government
3www.ccsr.ac.uk/sars/

Contents

1 Introduction

1.1 Acknowledgements

1.2 Terminology

2 Data Processing

2.1 Datadownload
2.2 Pre-Processing
2.3 Univariate Data Processing
2.4 Additional Metadata sourcing

2.5 Nesstar, DDI, and other external services . .

3 Platform

3.1 Building on the platform

3.2 The Internet Environment

3.3 The benefits and drawbacks of this approach

4 Summary

5 Appendix A: Workflow diagram

6 Appendix B: Data Structures

10

11

11

13

14

15

1 Introduction

A common problem when secondary analysts search repositories for microdata is finding
useful variables to meet specific requirements - variables being the fundamental building
block of data analysis and usage. This paper describes the design and technical infras-
tructures of an extensible platform for data and variable discovery? within the 650+

large-scale UK Government datasets, 25 surveys® over 30 years that are supported by
ESDS® Government”.

The extensive time series of the Government Surveys are one of their advantages, with
similar datasets existing on a sub-annual basis since the 1970s for some of the surveys.
However while the “Labour Force Survey” has not changed its’ name since the 1970s,
changes in the survey environment over the last 30 years have been reflected in the
surveys themselves, the questions asked, the methods used to ask them etc, not to
mention the file formats in which the data are supplied, which have been sequentially
converted to the current standard (SPSS) over time.

Social Science data has significant and fundamental differences to large scale datasets
produced in other scientific disciplines. While some of our data runs over 30 years, and
may be trying to get the same information, over time, both the question and the answer
may change. “What is your main job?” is not only going to have many more and different
answers now than 20 or 15 years ago, the definition of “main job” has changed over time.
These changes can not be represented within the dataset, but are part of the constantly
evolving context of the data we’re handling. While in a physics dataset the dataset has
a relatively simple structure - being a set of (possibly highly complex) readings from
experiments or simulations, it is at least predictable. The surveys with which we deal
are primarily collected by asking people questions, and the answers returned can be
somewhat idiosyncratic based on the differences between people being interviewed.

4yww.ccsr.ac.uk/esds/variables/

Swww.esds.ac.uk/government/variables
Sthe Economic and Social Data Service
"www.esds.ac. uk/government

1.1 Acknowledgements

We must thank all those at ICPSR® for inspiring and detailed conversations in 2006.
Special thanks must go to Peggy Overcashier and Cole Whitman, who provided clear
insight into what was possible given what they were doing, which was far in advance of
what we had considered previously. We should also thank Kevin Schurer of the UK Data
Archive, and especially Tanvi Desai of the LSE. As ever, Angela Dale, Gillian Meadows,
Anthony Rafferty, Jo Wathan and Vanessa Higgins of ESDS Government have provided
expert and vital feedback and ideas. ESDS Government must also thank the SARs?
project, as part of the UK ESRC Census Programme!'? for the infrastructure, designs
and time.

1.2 Terminology

ESDS Government supports 25 surveys, each of which is a time series of cross-sectional
surveys dating back as far as the 1970s. A dataset is one cross-section of one survey, and
there can be any number of datasets per year, depending on the survey frequency. These
surveys change significantly over time potentially without any name change in variable
names. ONS policy (oft imitated) means that any change in a variable generally leads to
its name being changed, at least for the more recent surveys, which gives us some level
of confidence that two variables in different cross-sections of the same survey are likely
to be somewhat comparable. That does not necessarily hold across different datasets.
The SARs are similarly designed datasets consisting of anonymised microdata from the
1991 and 2001 censuses.

A univariate distribution gives the range and spread of the values for a variable e.g. by
listing frequencies of each value.

. icpsr.umich.edu
9www.ccsr.ac.uk/sars
10y4ww. census.ac.uk

2 Data Processing

We'll follow the process of the data pipeline!! through. Although it is not, and can
not be, a strictly linear process, and the implementation is fundamentally reentrant and
potentially'? recursive. Appendix A contains an overview of how a single dataset flows
through. For example, it is perfectly normal for additional metadata to appear at a
later date, after the original data release - the clearest example of this is Nesstar, where
ingest into Nesstar can not begin until the data is ready for release, and that release
should not be held up because of Nesstar. Reasons such as this are the primary drivers
behind the replicability of the processing. We periodically rescan Nesstar and reparse
the metadata that it holds and reimport the relevant datasets to pick up any changes to
the metadata. Similarly, a dataset may get reissued for one of many reasons, and so we
need to re-fetch and update the relevant database entries and regenerate the pages'.

For reference, a copy of the database structures are included as Appendix B. While they
may not be directly clonable for resuse, the relatively simple structure should hopefully
give enough information.

2.1 Data download

Data download takes place via a script which follows the standard data registration
and download procedures followed by all UK academic users in their web browser. We
deliberately behave as a “normal user” and additionally exclude datasets with any extra
restrictions on them over and above the standard license agreement. Inclusion of these
“Special License” datasets is technically possible, although extra discussions with data
providers would need to take place.

2.2 Pre-Processing

While recent data is generally of a high standard, our portfolio includes data that was
created over 30 years ago, and has been run through a variety of conversion processes
over the course of that time, as software has changed and new formats were required.
While data conversion has been of a high standard and opened correctly in all newer
software, with the advent of a wider range of software (such as R), it is no longer enough

'1See Cole Whitman’s TASSIST publication and related reading at http://icpsr.umich.edu/ICPSR/
org/publications/staff/ProcessMapping.pdf

2hut carefully

13We’ll consider the effects of why a dataset may be reissued in a few pages

for the data file to open, the data file has to match the format specification. SPSS has
the advantage of being a ubiquitous and well documented format.

A simple example of conversion problems is taking an SPSS export file (.exp extension)
and renaming it to have a .por extension, and with no other changes, SPSS will open
it correctly. On saving the document, SPSS will create a valid portable file, but should
be closed without saving in SPSS, as the unsaved file will not follow the specification
for SPSS portable files (as all you did was rename it) so other software may not open
it. Previously, this has not been a significant problem, however, with the proliferation
of different software options for analysis (the recent rise of R and M-Plus for example),
there should be no expectation that the software that users are opening data in is the
same software it was originally created for. This is going to be a major issue as e-Social
Science becomes more mainstream - SPSS is not the dominant platform on the grid, and
open-source based solutions are used for opening datafiles.

While the process downloads and use SPSS data as the input, it does not generally use
the SPSS software itself as part of the normal workflow. For older datasets, a script is
run to open adn save all datasets to ensure the formats are as described. While there
were several thousand files to be processed, this was easily accomplished in a single run
overnight. During the process, we found that some datasets had failed to open, and the
previous dataset had been saved instead. While this only happened a couple of times,
and was completely unrepeatable, it was a problem. Therefore an additional check was
preformed by creating an MD5 checksum of each file processed and looking for duplicates
to ensure that any files so affected could be resaved through another syntax file. The
reasons for this problem remain unexplained.

The main output of this stage is the dataset expanded from the zip archive, having been
resaved. Due to the above process, it is not enough to only permanently store the original
zip file, but the processed output should be kept to enable reprocessing. The other output
created at this stage is a list of the datafiles as unzipped. This has the advantage of
allowing any data conversions to be transparent to higher layers of processing - they
simply ignore files that aren’t listed. As we were running all the historic data through
SPSS anyway to clean up the file formats, we took the opportunity to resave the file as
a SPSS .sav format, rather than portable. As all new data comes as SPSS sav files, it
ensured all input is in one standardised format and reduced the number of paths through
processing that data follows.

2.3 Univariate Data Processing

The core of any variable information system is the production of a univariate list of
values.

Using one of two readily available scripts, we produce a list of variable names, values and
labels within each file. While these scripts do not provide any distribution information,
they provide a the core list of variables and files.

To obtain the values and labels for the data from the SPSS files, we use scripts to provide
the variable level information about labelling. SPSS portable files are either converted
to SPSS .sav format'*, or run through the zlabels script written by Frank Stetzer of UW
Milwaukee!®. SPSS .sav files are processed by the spssread.pl script by Scott Czepiel®
which produces a tab seperated file of information about the variables or values. These
two outputs are merged to provide the univariate distribution information, along with
variable and value labels. That is the extent of the metadata that is stored in most
SPSS files.

This information is then used to generated an R command file which opens the dataset
(via the foreign library), and runs the summary command on each variable e.g.
print (summary(TPBEN38), print.gap=250);

This produces a univariate distribution for each variable in the dataset, with the print.gap
argument ensuring that there is one value per line, which aids in parsing the output.
The summary function helpfully will produce useful output for variables it believes are
continuous, as well as a standard univariate information for discrete variables. That dis-
tinction can be detected and saved as useful metadata for display later in the processing.

The univariate information, including the filename/variablename, label, and value infor-
mation is then stored on disc in a simple text file which is substantially similar to the
format used by Survey Documentation and Analysis System (SDA) at Berkeley'” While
DDI is an excellent interchange format for sharing data between organisations and for
forward archiving of final metadata, it is both hierarchical and complicated in many
ways that the univariate distributions aren’t. As a result, while we can both import
from and export to DDI without a problem, internally, we use something that’s only as
complicated as we need.

The metadata file is always stored with a set of defined filenames (e.g. values) which
allows other processes to use the file information. This information could as easily be
stored in a database with suitable priorities allowing some items to override others.

for why this happens see the detailed process

'5and available from ftp.uwm.edu/pub/stetzer
http://czep.net/data/spssread/
"http://sda.berkeley.edu - a great system that we don’t use

2.4 Additional Metadata sourcing

We are fortunate, to get a large am ount of documentation from our data providers,
covering broad aspects of the data, its’ collection, derivation and context. While this is
a good thing, it can be a relatively large haystack within which to start searching for
the needle needed to start sewing the data together for specific research purposes.

As all our datasets have defined catalogue names, and all the documentation is accessible
via the UKDA website which we can index, and then download all the PDF's for that
dataset. Once we have them downloaded, we can easily convert them to an xml format,
and then search each xml file for each of the variables names we have already found.
This allows us to produce a variable based index to all the documentation, giving the
document file names and page numbers where that variable is referenced. Keeping a
simple count of the references found gives us one way to measure the “importance”
of any page in the documentation, as a page which mentions the variable name more
is likely to be more relevant. Any page which references the variable at all may be
interesting (as the researcher may find a derived variable more useful than the main one
they originally looked for).

However, no matter how much good metadata exists locked away in databases, it is only
useful and usable if it is able to be accessed in an automated way.

2.5 Nesstar, DDI, and other external services

Both the ESDS and the SARs projects are fortunate in having a range of complimentary
services surrounding them, which provide different information and services to users,
and to which we send users for pieces of information - such as to the Question Bank
for the survey questionnaires. The use of common and consistent acronyms and hence
predictable URLs means that it easy for us to link information on any dataset held by
any of these compliemntary services, without forcing users to search or a high degree of
integration effort.

The UKDA, who disseminate the data we support, do significant amounts of work on
some datasets to add metadata and put them into the Nesstar system'®. This work
includes question texts and additional metadata such as universe information based on
routing. All published to Nesstar, which makes available an XML file of datasets it
contains and the associated URL to download the DDI file for each of them. This allows
an automatic process to run to download the latest DDI metadata and merge it with

Bhttp://nesstar.esds.ac.uk/

the information we have created. This also allows us to cross check the DDI data with
the variable information output from our scripts, and then investigate any differences.
While the DDI contains univariate distribution information, it is not available for all
of our datasets, so for simplicity and consistency of processing, it makes sense to use a
single system available for all our datasets. Additionally, due to the extra work required
to put a dataset into Nesstar, this only happens a short time after the dataset becomes
available for download, so when a dataset is initially processed, there may be no Nesstar
version available.

Creating the system so that it can re-enter the build process and reconstruct any part of
itself allows for asynchronous updates from external services and makes an entire rebuild
be easily run. There are then two scripts which load all metadata for a dataset into the
database, and then commence a rebuild of the relevant webpages and their dependencies.

3 Platform

Once the webpages have been built and are loaded onto the webserver, standardised,
predictable URLs based on the survey, dataset and variable (with full information and
cross-linking where appropriate!?).

This allows Internet search engines to index all our content, and make all of the combined
metadata available without changing their normal working practices - which ends to be
searching via Google. The bulk of search traffic appear only once or twice, with people
searching for variable names?’

We can also look across surveys and datasets to find variables with similar names else-
where, which may be candidates for either usage or merging, based on reversing the
process by which variable names were changed, and matching the resulting stem. For ex-
ample, the variable actwkdy? is highly likely to be related to both the variable actwkdyl
in the same dataset, and the variable actwkdy2 in a different dataset. Precomputing
these matches can take a few minutes per dataset, even after the obvious optimisations

Yhttp://www.ccsr.ac.uk/esds/variables/1fs/1fs5441/actwkdy2/
20¢.g. actwkdy?2

3.1 Building on the platform

As we have a set of pages for each variable, we can then use those pages as a basis for
more advanced services. When you can link to a variable to find out all the information
about it, you can offer a search function which lets users select the diverse topics which
they want a dataset to cover, and then providing them with a list of datasets where the
data itself matches those terms.

While it took a few iterations to develop a method of displaying such data in a useful and
accessible way, once the script was written, it was a simple matter of rerunning the build
script for each survey and then this service was available for all the datasets we support?!.
At negligible extra work, we were able to save our helpdesk staff a significant quantity of
time and complex work for some of our more involved queries on data matching. More
importantly, it also put that tool in the hands of all researchers, allowing them to answer
those questions themselves, and not ask our helpdesk the question at all, allowing staff
time to be used on more complex queries.

For example, reusing the simple information of which variables appear in multiple files,
allows us to produce a table of all variables which are in multiple files, and which files
they’re in, which gives researchers an invaluable and unique tool for easily visualising the
options for matching across datasets 22 in a way which is otherwise impossible. While
users may know the major datasets which cover their areas of interest, there may be
additional datasets which match those terms for other reasons, but those topics were
not their primary area of interest, and those terms do not appear in the hand created
metadata.

Within a single dataset there may be many data files (the most we have is over 60) and
need to be joined before the files can be used together. Variables having the same name
in multiple files implies that they perform some sort of linking function, and putting
this information in a publicly visible table is useful both for quickly helping researchers
doing data linkages, and data support staff when answering questions.

Developing new services is a relatively simple process as the underlying pages to link to
- containing the data of interest to users, is already in place. Additional functionality is
generally developing new and innovative ways of directing users to that those pages via
a range of different services offering diverse routes.

2Lobviously, we skipped the datasets which consist of only one file
2Inttp://www.ccsr.ac.uk/esds/surveyfinder/

10

3.2 The Internet Environment

It is increasingly the case that users are getting both happier with online delivery of re-
sources, and also requiring increased usage of those resources, in a way which researchers
expect. Since exposing the pages to google, prior to launch, we were seeing significant
numbers of users finding the information they wanted due to their presence in search
engines - people were googling the variable names that they were looking for.

While this seems completely natural behaviour to those who are comfortable using in-
ternet services. It was something of a suprise when we ran variable name based search
in google, that until our pages existed, no relevant information was found from either
ourselves or other relevant organisations. We also had no idea that they were even look-
ing for it as no relevant services came up. While some of this information was available
online if you knew where to look, it was not findable by google, nor any of google’s users.
Walled gardens can be nice to look at, and networks of walled gardens can be nicer, but
people need to know they’re there and how to get through the door when they do.

Once we have everything in a database, and we add relevant date information to datasets
when they appear, we can offer email and RSS alert services for new datasets based
on their full contents, rather than just on the survey that the dataset contains. This
enables us to tell users about a dataset is available that contains “Pakistani”, “part-
time” combined with any other words that meet their research interests, rather than
just telling users there’s a new Labour Force Survey out and leaving users to find out
whether it’s useful for their questions.

When that information on pages viewed, and the web server referrer logs which include
the search queries that users entered into google or elsewhere which then lead them onto
our pages. Looking at this information on an aggregate basis in terms of overall search
traffic, we currently see a wide range of search terms, but rarely - generally following a
long tail distribution.

3.3 The benefits and drawbacks of this approach

The benefit of a hierarchy of scripts which run a number of specific components of the
process allows for individual process stages to rebuild as much or as little data as they
need. The single main script (called go) runs on a regular basis downloading all new
datasets and running them through the full pipeline, calling relevant other scripts in the
right order for the right datasets. Individual subsystems (such as nesstar) can either run
asynchronously or from those same scripts. There’s a single script to load all metadata
into the database, and another (with a number of slave-scripts) to rebuild the webpages

11

for a dataset. This made possible an iterative approach of getting something working
followed by continuous and ongoing improvements to the services we offer.

This makes it relatively easy to do as much or as little work on a dataset as required. It
is also exceptionally easy to reprocess one or all datasets without any extra work.

While it is possible to generate each page dynamically on a per request basis, reading
information and will regenerate pages as needed. Much of our data is subject to re-issue
due to errors, omissions, or a variety of reasons such as population rebasing. This reissue
can be full or partial, and may or may not be based on the same original dataset, or a
manual reextraction from some other database. As a result, it is not unknown for there
to be oversights in an updated dataset, where a variable was added on at a late point in
a previous issue, and then forgotten in the latest issue. As the database represents the
state of the dataset now (rather than including all historical information for variables
dropped), pages for variables that are no longer available will disappear. This may
be the desired behaviour where data has been deliberately removed, for accidents and
oversights it is not.

We therefore generate over 750,000 static pages which then get overwritten when data
is updated (and when a variable is dropped, the page still exists, but is not listed in
any indices or searchable). While this can be a somewhat time consuming process to
update, it does mean that we have some infrastructure in place which makes it easy to
find variables that have been accidentally dropped. Given the long-term nature of our
project, and the expectation that the data we support, collected 30 years ago, will still
have research value in another 30 years, this permanence is a feature, rather than than
a bug. This also has the fundamental and significant benefit of decoupling the system
outputs from the language in which they’re implemented. While all our code is written
in Perl and shell scripts, that could all be replaced, transparently, without any visibility
to users should there be a reason to.

As all of these systems are made available via our website to the whole community, not
just our support staff, this has the benefit that when such a query comes in, we can
easily both send the user the link with the answer in it, and also encourage them to use
that service themselves in future so that they don’t need to wait for our helpdesk to
reply. This frees up staff time to work on added value rather than repetitive questions.
Similarly, the platform allows for the creation of small custom services to regular classes
of queries as it is exceptionally easy to provide a link onwards to the relevant variable

pages.

12

4 Summary

One of the main aims of this was to make metadata and information from one of our
surveys taken 20 years ago as accessible as our latest release. While this will never
be possible, as we simply have less metadata, it succeeds in making as much available
as we do have; starting from the data files themselves, and building everything on the
fundamental building block of quantitative social science research - the data.

The web pages produces are static and permanent, ensuring that even through data
reissue and any potential system recreation, any historic data must be explicitly deleted,
rather than explicitly maintained - and the system will not stop working through neglect,
but will simply stop updating. This also aids with the scalability issues, in that older
data does not take up a significant resource (it’s just bits on disc)

The iterative design process of continuous improvement was made possible via the data
pipeline model. Sections could be rerun, or the entire data holding completely repro-
cessed, as improvements were made, at negligible extra effort.

As for future developments, the system is expected to continue to scale as we add more
data into it. While there are likely to be limits of the systems on which this runs, the
system is expected to continue to scale until we run out of data to put into it.

We leave all metadata easily accessible and open for Internet search engines to index
all our content. Users increasingly require online resources in a way which they expect
where they are already. Since exposing the pages to google, prior to launch, we were
seeing significant numbers of users finding the information they wanted due to their
presence in search engines - people were googling the variable names that they were
looking for. Previously, we had no way of even knowing that they were doing this, let
alone not getting back useful information.

Most importantly, we aim to solve users’ queries. For some questions that previously
have required a conversation with the helpdesk, we now provide a public and reusable
solution for users to solve their own queries, which also helps our staff when we do get
queries.

13

Appendix A: Workflow Diagram

download new datasets

extract & validate

create metadata

create variable list & value labels |

AR

download
— download all avaiable
pass variable list through R for univariate PDF metadata DDI

and convert to
XML

information

foreach variable, list values/value labels match metadata info to variables

A

create intermediate file of
additional metadata

create intermediate file of variable info

reload database

create webpages also used by additional services

Univariate variables pages

6 Appendix B: Data Structures

The database table structures behind the system are below.

CREATE TABLE ‘files‘ (

‘surveyid‘ int(10) unsigned NOT NULL auto_increment,
‘filename‘ varchar(200) NOT NULL,

‘ukda_surveyno‘ int(10) unsigned NOT NULL default ’0’,
‘survey_name‘ varchar(200) NOT NULL default ’’,

‘url‘¢ varchar(200) default NULL,

‘survey_acronym‘ varchar(10) NOT NULL default ’’,
‘ddi_survey_id¢ varchar(30) NOT NULL default ’’,
‘project® varchar(14) NOT NULL default ’missing’,
‘year‘ smallint(5) unsigned default NULL,

PRIMARY KEY (‘surveyid‘),

KEY ‘survey name‘ (‘survey name‘,‘filename‘, ‘surveyid‘)

)

-- the only table that is populated from outside the system.
-- Various parts of this table are guessed from others, but
-- open to be corrected by administrators.

-- surveyid is the internal id number for a dataset

-- ukda_surveyno is the catalogue number at the UKDA

-- survey._name is the long title of the dataset

-- url is the generated URL where pages will live

-- survey_acronym is the acronym for the series (e.g. 1fs)

-— ddi_survey_id is the reference used in DDI we import

-- project is set to ’sars’ or ’esds’

-- year is the year of data processing - for date based search

CREATE TABLE ‘file_info‘ (

‘fileinfoid‘ int(10) unsigned NOT NULL auto_increment,
‘surveyid‘ int(10) unsigned NOT NULL,

‘info key‘ varchar(30) NOT NULL,

‘info_value‘ text,

PRIMARY KEY (‘fileinfoid‘),

KEY ‘finfo¢ (‘surveyid‘, ‘info_key*‘)

)

-- store for key/value pairs that we can pull from the metadata automatically

15

-- Table structure for table ‘variables

CREATE TABLE ‘variables® (

‘variableid‘ int(10) unsigned NOT NULL auto_increment,

‘variable name‘ varchar(30) NOT NULL,

‘variable_label‘ varchar(100) NOT NULL,

‘surveyid‘ int(10) unsigned NOT NULL,

‘url‘¢ varchar(100) default ’’,

‘filename‘ varchar(50) NOT NULL default °’’,

‘stillthere‘ tinyint(3) unsigned default ’0’,

PRIMARY KEY (‘variableid®),

KEY ‘main‘ (‘variable name‘, ‘stillthere®, ‘surveyid‘, ‘variableid‘),
KEY ‘search‘ (‘surveyid‘, ‘variable name‘, ‘stillthere‘, ‘variableid‘),
FULLTEXT KEY ‘ft2¢ (‘variable_name‘, ‘variable_label®)

);

-- Table structure for table ‘var_values‘

CREATE TABLE ‘var_values‘ (

‘valueid int(10) unsigned NOT NULL auto_increment,
‘value_name‘ varchar(100) NOT NULL,

‘value‘ varchar(20) default NULL,

‘percent‘ varchar(10) default NULL,

‘hide_count‘ tinyint(3) unsigned NOT NULL default ’0’,
‘count‘ int(10) unsigned NOT NULL default ’0’,
‘variableid‘ int(10) unsigned NOT NULL,

‘surveyid‘ int(10) unsigned NOT NULL,

PRIMARY KEY (‘valueid‘),

KEY ‘mainlookup_varvalues‘ (‘value name‘, ‘valueid‘),
KEY ‘main‘ (‘surveyid®, ‘variableid‘, ‘valueid‘),

KEY ‘variableid‘ (‘variableid‘, ‘surveyid‘, ‘valueid‘),
KEY ‘value name‘ (‘value_name‘, ‘variableid®, ‘surveyid‘),
KEY ‘s3¢ (‘valueid®, ‘surveyid‘, ‘variableid‘),
FULLTEXT KEY ‘ft2¢ (‘value_name‘, ‘value‘)

);

—-- the table that contains all the information about values in datasets

16

-- Table structure for table ‘var_lookup®

CREATE TABLE ‘var_lookup‘ (

‘varlookupid‘ int(10) unsigned NOT NULL auto_increment,
‘survey_name‘ varchar(10) NOT NULL,

‘variable_name‘ varchar(30) NOT NULL,

PRIMARY KEY (‘varlookupid‘),

KEY ‘main‘ (‘survey._name‘, ‘variable name‘, ‘varlookupid‘)

)

-- Table structure for table ‘matches®

CREATE TABLE ‘matches‘ (

‘matchid¢ int(10) unsigned NOT NULL auto_increment,
‘surveyidl‘ int(10) unsigned NOT NULL,

‘surveyid2‘ int(10) unsigned NOT NULL,

‘varnamel‘ char(30) NOT NULL default ’’,

‘varname2‘ char(30) NOT NULL default ’’,

‘manual ‘¢ tinyint(3) unsigned NOT NULL default ’0’,
‘negative match® tinyint(3) unsigned NOT NULL default ’0’,
PRIMARY KEY (‘matchid®),

KEY ‘mainmatch® (‘surveyidl‘, ‘surveyid2‘, ‘varnamel‘, ‘varname2‘, ‘negative match‘),
KEY ‘s1¢ (‘surveyidl‘, ‘surveyid2‘, ‘negative match‘)

)

-- manual matches are those added by hand. negative match allows items which
-- do not actually match, but appear that they do, to be flagged and excluded
-- by only selecting matches where that flag is not set in output, and ignoring
—-- the setting at input

17

-- Table structure for table ‘metadata‘

CREATE TABLE ‘metadata‘ (

‘metadataid® int(10) unsigned NOT NULL auto_increment,
‘valueid int(10) unsigned NOT NULL,

‘variableid int(10) unsigned NOT NULL,

‘metadata_key‘ varchar(200) default NULL,
‘metadata_value‘ text,

‘url‘ varchar(255) default NULL,

‘surveyid‘ int(10) unsigned NOT NULL,

PRIMARY KEY (‘metadataid‘),

KEY ‘main‘ (‘surveyid‘, ‘variableid‘, ‘metadata_key‘),
KEY ‘var‘ (‘variableid‘, ‘valueid®, ‘surveyid‘, ‘metadataid‘),
KEY ‘missing‘ (‘metadata_key‘, ‘variableid‘),

FULLTEXT KEY ‘ft1¢ (‘metadata_value‘)

)3

--- table for storing metadata (key/value pairs) and associated information

18

