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Abstract 

 

Sharing data can represent a risk of disclosing sensitive information about the individuals 

which the data sets concern.  Computationally complex techniques can be used by a so-

called ‘data intruder’ to link such data and discover information about targeted 

individuals.  Heuristic approaches to limiting this risk are aimed towards the more casual 

intruder.  A knowledgeable intruder, armed with data mining tools, can uncover sensitive 

information from ostensibly safe data sets.  This paper considers a method for assessing 

the risk of disclosure by a relatively knowledgeable intruder, whilst avoiding the 

computational problems associated with exact probability calculations. 

 

 

Introduction 

 

This paper addresses the degree to which the ability of a data intruder to correctly link 

records between distinct sample microdata sets is affected by the co-presence of a set of 

publicly available aggregate population tables.  It is based on an opportunistic attack 

scenario where an intruder has identified records in two separate samples (relating to the 

same population) that match on the set of variables that are common to the two sample 

tables.  Thus it is possible that the two partial records correspond to the same individual.  

Specifically we consider the case where a pair of potential matching records are each 

unique on a set of common attributes.   

The intruder is assumed to be mathematically literate and have access to reasonably 

standard computational resources.  A relatively naïve Bayesian approach is used to assess 

the degrees of confidence an intruder might reasonably have in the correctness of a 

potential match.  It is assumed that the intruder has no prior information regarding 

dependencies between variables. 

 

 

A general inferential approach 

 

 
 

Figure.1.  General causal structure 



 

 

The above directed acyclic graph (DAG) represents a general causal structure relating to 

tabular data (T), a data release (R) and (the answer to) a relatively arbitrary query (Q).  

The implied assumptions are: 

 

1. The query can be fully answered by reference to a known T. 

2. The mechanism for transforming T to R is known. 

 

In general T is not observed, R is observed and we require a posterior distribution over Q.  

The posterior distribution is given by, 
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Evaluating this expression is computationally expensive because of the requirement to 

sum over a potentially enormous space of tables.  In principle this space is infinitely 

large, but in practice it is possible to iterate over only those tables for which P(R=r|T) > 

0, although this often still represents an enormous computational burden. 

 

 

Rounded tables 

 

Consider a query relating to the value of a single cell with index, say, 1 in a table, T.  

Assume that a perturbed version of T is released, such that each population cell count Fi 
is perturbed independently of the other population cell counts to give a perturbed count fi.  

This is the case for many perturbation schemes, such as random rounding and 

deterministic rounding.  Then we have the causal structure shown in Figure 2. 
 

In general, all the Fi are children of T, and each Fi has a child (a corresponding perturbed 

value) for each perturbed table r∈R. 

 



 
Fig.2.  Cell level causal structure 

 

Here all the fi are observed and F1 is queried.  The posterior distribution over F1 is given 

by the expression in Eqn.2. 
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( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑ ∑ ∑

∑ ∑ ∑
=

1 2 3

2 3

321332211

321332211

3211 ,,

F F F T

F F T

TpTFpTFpTFpFfpFfpFfp

TpTFpTFpTFpFfpFfpFfp

fffFp . 

 

The important point is the summation over all feasible tables.  However, assume an 

improper uniform prior over T.   This implies complete independence of the Fi and 

inference is simplified enormously.  Effectively, T can be removed from the causal graph 

and we (or an intruder) can avoid the summation over T.  The uniform prior over T 

implies a uniform prior over each Fi and the posteriors for the Fi are given by, 
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which only requires a summation over the feasible values of Fi.  The p(fi|Fi) are easily 

calculated from the known rounding scheme.  A similar approach was used in Smith and 

Elliot (2003). 

 

 

Sample tables 

 

If a sample table (with known sampling fraction, implying the exact total can be 

accurately estimated) is released, then the likelihood p(fi|Fi), where fi denotes the number 

sampled from cell Fi, is simply the Hypergeometric probability, 
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where N and n denote the (estimated) population and samples sizes respectively. 

 

Thus for a release R consisting of rounded and sampled versions of T the posterior is 

given by, 

 

Eqn.5.   ( )
( )

( )∑∏

∏
=

iF R

ii

R

ii

i
Ffp

Ffp

RFp . 

 

 

Other tables 

 

In practice an intruder will not generally be lucky enough to have a set of released tables, 

each containing a perturbed version of a cell of interest.  In some cases perturbed counts 

will correspond to an aggregation over a number of cells, including the cell of interest.  In 

other cases the cell of interest will correspond to an aggregation over a number of 

perturbed cells. 

 

In the former case the joint posterior distribution over the aggregated cells is required in 

order to calculate the posterior distribution over the cells’ sum.  But the complete 

independence implied by the uniform prior over T ensures that the distribution of the sum 

can be derived by a simple convolution of the marginal posteriors for the aggregated 

cells.  Given the restricted range over the sum implied by a rounding scheme the 

convolution can be performed efficiently.  In the case of a sample table we have a 

convolution of Hypergeometric density functions which is simply another 

Hypergeometric density function. 

 

In the latter case a posterior distribution over the sum of aggregated cells can be 

calculated, but the intruder requires a posterior distribution over one of the individual cell 

counts.  But after choosing, say, an improper uniform prior for each individual cell count, 

a posterior over the queried cell count can be derived.  For rounded tables this can be 

performed efficiently.  For sample tables it is not clear that exact inference can be 

performed efficiently. 

 

But despite these possibilities for efficient, exact inference this paper is mainly concerned 

with inferences that are possible using naïve methods.  Although it would be useful to be 

able to compare exact posterior probabilities with naïve probabilities, only naïve 

approaches will be investigated. 



 

 

Naïve approaches 

 

One possible naïve approach is to solve the lower and upper bounds for the queried cell, 

using methods similar to those of Dobra (2002), and to compute the naïve posterior 

probability distribution over the queried cell using the equation in Equation 5.  In other 

words, the tables in R that have a single cell corresponding to the queried cell contribute 

directly to the calculation of the posterior, but only the feasible counts, derived from all 

tables in R, are summed over. 

 

A more naïve approach, and the one used in this paper, is to perform the above, but with 

naïve bounds calculations.  Taking into account all the interdependencies between cell 

counts can be computationally expensive for large base tables.  A naïve approach avoids 

this complexity by examining the constraints placed on the queried cell count by each 

table individually.  The bounds generated in this way are not guaranteed to be the tightest 

possible bounds, as can be achieved using the methods of Dobra and Fienberg (2000), 

and coupled with the naïve probability calculations might result in non-zero probabilities 

being assigned to non-feasible cell counts.  But currently the more naïve approach is 

necessary for full tables with more than around 1000 cells.  The following discussion 

considers these calculations for the specific attack scenario under consideration, a unique 

match across two samples.  Here, the queried cells are those in the crosstabulation of the 

population over the variables common to both samples. 

 

Bounds Calculations 

 

The naïve bounds from the two samples are straightforward.  A lower bound of 1 (for the 

relevant cell in the overlap margin) is implied by the unique match in the samples.  An 

upper bound is given by N-nmax+1, where N is the known population size and nmax is the 

size of the larger sample. 

For any marginal table that contains all the overlapping variables the constraints on the 

cell count can be found by generating the trivial lower and upper bounds and 

marginalizing to the overlapping variables.  i.e. The value for the relevant cell in the 

overlap margin cannot be less than the sum of the minimum values for the set of cells 

whose sum equals the relevant cell value.  Similarly the value for the relevant cell in the 

overlap margin cannot be greater than the sum of the maximum values for the set of cells 

whose sum equals the relevant cell value. 

For any marginal table that contains a proper subset of the set of overlap variables we 

have a similar upper constraint on the relevant cell in the overlap margin.  It cannot be 

greater than the corresponding cell in a smaller margin.  But when it comes to the lower 

bound there is no obvious constraint (other than the obvious non-negativity constraint).  

The cell count might well be less than the corresponding cell in a smaller margin. 

 

 

For example, 

 



Let A + B = C for the exact counts, where A and B are cells in a table and C is the 

corresponding cell in a margin. 

 

For perturbed counts where the marginal table contains all the overlapping variables (and 

we seek bounds on C given bounds on A and B), 

 

CL >= AL + BL 

 

CU <= AU + BU. 

 

For perturbed counts where the table contains cells A and B, and the margin contains a 

proper subset of the overlapping variables (so we seek bounds on e.g. B given bounds on 

C), 

 

BL <= CL 

 

BU <= CU. 

 

The third inequality, BL <= CL, never allows the obvious lower bound of 0 (or 1 in case 

of a unique match) to be tightened. 

The trivial lower and upper bounds for the table counts stem directly from the rounding 

schemes used to generate them, or are equal to the table counts if the table has not been 

perturbed. 

So, the trivial lower and upper bounds are generated for each table.  The table of trivial 

upper bounds is marginalised to the set of variables that are common to the table and the 

overlap table.  The upper bound (given the table) is computed as above.  If the table 

contains all the overlap variables, then the table of lower bounds is marginalised and the 

lower bound computed as above.  The lower bound (used for the calculation of the 

posterior) is the maximum of the lower bounds implied by the tables (and samples).  The 

upper bound is the minimum of the upper bounds implied by the tables (and samples). 

 

 

Example of analysis 

 

An intruder has access to one or more sample tables, each relating to the same 

population.  The samples have arbitrary, possibly overlapping, variable sets.  The intruder 

can match records across the samples, and identify cases where the combined sample 

contains a unique match; that is, there is a set of records, one for each sample table, 

where all the overlapping sets of attributes match, and are themselves unique. 

 

The intruder is interested in the probability that a unique match is a correct match.  That 

is, the probability that a set of partial records all pertain to the same population unit.  If a 

unique match in the samples has a corresponding count of 1 in the margin containing the 

overlapping variables, then the match would be correct.  Counts greater than one would 

imply lower matching probabilities.  The probability of a correct match can be derived 



from a posterior distribution over the count in the relevant cell of the overlapping margin 

(subject to assumptions detailed later). 

 

 

  Var3 

Var1 Var2 Level1 Level2 

Level1 Level1 2 1 

Level1 Level2 4 1 

Level2 Level1 5 2 

Level2 Level2 1 2 

 

The above exact table might have the following two marginal samples released, with an 

overlap on Var2. 

 

 

 Var2 

Var1 Level1 Level2 

Level1 2 1 

Level2 3 0 

 

 

 Var3 

Var2 Level1 Level2 

Level1 3 1 

Level2 1 0 

 

 

Pointwise (elementwise) multiplication of the sample tables gives all the possibilities for 

linkage between records in the samples, 

 

 

  Var3 

Var1 Var2 Level1 Level2 

Level1 Level1 6 2 

Level1 Level2 1 0 

Level2 Level1 9 3 

Level2 Level2 0 0 

 

 

and marginalizing to the overlapping variables (Var2) demonstrates that there is only one 

possibility for linking records in the samples containing Level2 of Var2. 

 

 

 

 

 



Var2 

Level1 Level2 

20 1 

 

 

If the value in the corresponding margin in the exact table is 1, then the unique match in 

the samples must be a correct match.  The existence of the matched records implies that 

the value in the corresponding margin of the exact table must be at least 1.  For values 

greater than 1 the confidence in a correct match is much diminished.  In this case we can 

see from the exact table that the value is actually 8.  Thus there are 64 possible matches 

and only 8 that will be correct.  Thus the ‘true’ marginal probability of a correct match is 

1/8.  NB.  This assumes that all possible matchings are a priori equally likely.  This is 

clearly a very big, and questionable, assumption, but seems to be made consistently 

within statistical disclosure control. 

 

Given only the constraints implied by the samples and the known exact total (assumed to 

be known via known sampling fractions) the feasible range of values for the cell is 1 to 

13.  The posterior distribution of the cell value is calculated using the naïve method, and 

is shown below, with probabilities shown to 2 decimal places. 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 

0.09 0.19 0.22 0.19 0.14 0.09 0.05 0.02 0.01 0.00 0.00 0.00 0.00 

 

 

A randomly rounded (to base 3) version of the full table can be added to the release. 

 

  Var3 

Var1 Var2 Level1 Level2 

Level1 Level1 0 3 

Level1 Level2 3 3 

Level2 Level1 6 3 

Level2 Level2 3 3 

 

 

Recalculating the posteriors to take the new information into account gives the following 

posterior. 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 

0 0 0 0.39 0.28 0.17 0.09 0.04 0.02 0.00 0.00 0 0 

 

 

Although the rounded table is not taken into account for the calculation of posterior 

probabilities (as four rounded counts in the table correspond to the single cell in the 

overlap margin) it does tighten the bounds.  The feasible range is now 4 to 11. 



 

The fact that the minimum count is now 4 does not preclude a correct match in the 

samples.  But we know that the marginal probability of a correct match for a count of c is 

simply 1/c.  The in intruder can generate the probability of a correct match by calculating 

the sum of the reciprocals of the feasible values, each weighted by the corresponding 

probability. 

 

0.39/4 + 0.28/5 + 0.17/6 + 0.09/7 + … = 0.20 

 

This overestimates the true marginal probability of 0.125.  (By ‘true marginal probability’ 

we mean the marginal probability of a match given full marginal tables rather than 

samples, assuming all possible matches are a priori equally likely.)  This overestimation 

might be due to chance, or the naïve approach to probability calculations.  Another 

possible cause is the initial search for (possibly degenerate) samples that had a unique 

match (that was undertaken for the purposes of this example).  This example was chosen 

for illustrative purposes; no such search is required for the purposes of the following 

experiment. 

 

 

An experiment 

 

Various sets of tables were generated from the 1991 SAR.  For each table a set of 

hypothetical release tables was generated (rounded and sampled tables on various sets of 

variables), as well as the two samples with overlapping variable sets used for the initial 

matching.  The naïve method was applied to various hypothetical releases and used to 

rank the sample unique matches in order of their posterior probability of correctness.  

These were compared with the correct rankings derived from the known ‘population’.  

Incremental releases were considered in order to identify types of table that were 

particularly informative. 

 

 

Results 

 

As many table releases were considered it is not possible to reproduce detailed results.  

But for the majority of table releases the rank correlations were highly significant.  The 

only exceptions were cases with very few unique matches, in which cases the 

significance tests lacked power.  Incremental additions of further tables to a table release 

tended to increase in the rank correlation.  Tables that contributed directly to the 

calculation of the posteriors tended to affect the rank correlation more than those that 

only contributed to bounds calculations. 

 

 

Conclusions 

 

In general the ability to distinguish true from false linkages between records in microdata 

samples can be significantly enhanced by the co-presence of other tables, even when 



using very naïve approaches.  Under the naïve approach used, certain tables are 

significantly more informative than others.  An intruder who uses a naïve Bayesian 

approach can avoid the computational costs associated with exact inference / Monte-

Carlo methods and still have a useful tool for identifying linkages that are more likely 

than most to be correct.  Similarly, very naïve Bayesian approaches might be useful for 

disclosure control.  They can be used to identify the most ‘obvious’ risks without the 

usual computational burden. 
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