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Summary 
 
Protection against disclosure is important for statistical agencies releasing microdata files 

from sample surveys.  Estimates of simple measures of disclosure risk can provide useful 

evidence to support decisions about release.  We propose a new measure of disclosure 

risk: the probability that a unique match between a microdata record and a population unit 

is correct.  We argue that this measure has at least two advantages.  First, we suggest that 

it may be a more realistic measure of risk than two measures currently used with census 

data.  Second, we show that it may be estimated consistently from sample data without 

making strong modelling assumptions.  This is a surprising finding, in its contrast to the 

properties of the two ‘similar’ established measures.  As a result, this measure has 

potentially useful applications to sample surveys.  Moreover, we propose a simple 

variance estimator and show that it is consistent.  We also show that the measure and its 

estimation may be extended to allow for misclassification of identifying variables and to 

allow for certain complex sampling schemes.  We present a numerical study based upon 

1991 census data for some 450,000 enumerated individuals in one area of Great Britain.  

We show that the theoretical results on the properties of the point estimator of the 

measure of risk and its variance estimator hold to a good approximation for these data. 
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1. Introduction 

 
Anonymised microdata files of individual records from surveys and censuses are often 

released to researchers so that they may conduct their own analyses.  An important 

consideration for agencies deciding whether and how to release such files is the need to 

protect against possible statistical disclosure.  There is a growing literature on how such 

protection may take place (Willenborg and de Waal, 1996, 2001).  A key element of 

protection methodology is the assessment of disclosure risk for a file.  Assessing 

disclosure risk usually involves difficult and complex judgements (Lambert, 1993).  With 

the increasing demand for microdata and other trends (Duncan and Pearson, 1991), 

systematic ways of supporting these judgements by statistical evidence have increasingly 

been sought.  In this paper we consider one common basic form of such evidence: the 

values of a single measure of disclosure risk, estimated from the data, for alternative 

possible specifications of the microdata file.  

 
Considerable progress has been made in developing more elaborate forms of evidence to 

capture more fully the complex nature of potential threats to confidentiality. Duncan and 

Lambert (1986, 1989), Paass (1988), Lambert (1993), Fuller (1993), Skinner et al.(1994) 

and Fienberg et al.(1997), among others, have developed statistical modelling 

frameworks for this purpose.  We shall not pursue these more general approaches in this 

paper, however.  We restrict attention to three simple measures of disclosure risk.  The 

first two measures have established uses with 100% census data, but suffer difficulties of 

inference in their extension to sample survey data.  The third measure is new and we 

argue that, not only is it potentially a more realistic measure of risk, but that surprisingly 

it provides a means of overcoming the inference difficulties for the first two measures. 

The assessment of disclosure risk using the new measure is the main subject of this paper. 
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The first measure of disclosure risk to be considered is the proportion of units in the 

population which have unique combinations of values of potentially identifying variables.  

We denote it Pr(PU), the probability of ‘population uniqueness’.  It has been used for 

disclosure risk assessment of census microdata in the U.S.A. and U.K. (Greenberg and 

Voshell, 1990; Marsh et al., 1991).  Bethlehem et al.(1990) provide a systematic 

discussion, setting set out the basic framework which we adopt.  The microdata file 

consists of a set of records for each unit in a sample from a finite population.  (For a 

census, only a sample of units is usually included in the file.  For a sample survey, the 

microdata file usually contains records for all units in the sample.)  Each record contains 

two disjoint forms of information: identifying information and sensitive information.  The 

identifying information consists of the values of a set of identifying variables, which 

might be matchable to known units in the population.  The threat of disclosure arises from 

the possibility that an intruder might succeed in identifying a microdata unit through such 

matching and hence be able to disclose the sensitive information on this unit.  The 

identifying variables are assumed to be categorical, a realistic assumption in many 

censuses and social surveys.  Population uniqueness is considered further by Greenberg 

and Zayatz (1992) and Skinner et al.(1994). 

 
Since only records which are sample unique can be population unique, it may be argued 

that a more realistic measure of disclosure risk is of the proportion of sample unique 

records which are population unique, denoted Pr (PU|SU).  This is our second measure.  It 

has been used by Statistics Canada to assess disclosure risk in census microdata (Carter et 

al, 1991), and has been considered further by Skinner et al (1994), Chen and Keller-

McNulty (1998), Samuels (1998), Fienberg and Makov (1998) and Elliot et al. (1998) 
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A potential problem with this second measure is that it is also unrealistic in neglecting the 

risk presented by records which, although not population unique, are unusual.  The third 

measure of risk again refers to the threat represented by the sample unique records but 

now allows for the risk arising from records which are not population unique.  It is 

defined as the proportion of correct matches amongst those records in the population 

which match a sample unique microdata record and is denoted θ .  The basic idea was 

introduced by Elliot (2000).  We discuss these three measures further in Section 2. 

 
We claim two advantages for the third measure.  First, we suggest that it may be a more 

realistic measure of disclosure risk.  The second advantage and the main contribution of 

this paper is to show in Section 3 that θ  may be estimated consistently by a simple point 

estimator without strong modelling assumptions and that a simple consistent variance 

estimator is also available.  This is a surprising finding since it contrasts with the property 

discussed in Section 2, that consistent estimation of the ‘similar’ measures Pr(PU) or 

Pr(PU|SU) from sample data is problematic in the absence of strong modelling 

assumptions.  For a census, these measures may be calculated by the census office from 

the population data, even if a microdata file is released only for a sample.  For a sample 

survey, it is necessary to make inference about the measure from sample data. 

 
It is desirable when measuring disclosure risk to take account of possible risk reducing 

effects of measurement error in the identifying variables, first because measurement error 

occurs naturally in surveys and second because it may be used as a masking technique 

(Fuller, 1993; Fienberg et al, 1997).  In Section 4 we show how measurement error may 

be allowed for in θ .  The results in Section 3 assume Bernoulli sampling.  The extension 

of these results to other designs is considered in Section 5.  A numerical study of the 
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properties of the estimation procedures of Section 3 is presented in Section 6.  Some 

concluding remarks are made in Section 7. 

 

2. Measures of Disclosure Risk 
 

In this section we first set out the basic framework and notation.  We then define the three 

measures of disclosure risk, introduced in Section 1.  Finally, we compare the three 

measures, commenting on some advantages of interpretation of the third measure and on 

difficulties in estimating the first two measures from sample data.  The estimation of the 

third measure will be considered in Section 3. 

 
2.1. Framework and Notation 

Let the microdata file consist of a set of records, each corresponding to a unit in a 

microdata sample s, selected from a finite population U (s ⊂  U).  Let n and N denote the 

numbers of units in s and U respectively.  We assume that each record contains the values 

for the unit on the categorical identifying variables, assumed given.  The categorical 

variable formed by cross-classifying all the identifying variables is denoted X, with 

values denoted 1, ...., J.  Each of these values corresponds to a possible combination of 

values of the identifying variables.  For example, if the identifying variables are sex, age, 

occupation and marital status then a possible value of X might be (female, 38 years, 

medical professional, divorced).  In practice we may expect J, the number of categories of 

X, to be large. 

 
Let Xi denote the value of X for population unit i.  Let the population frequencies for the 

different values of X be denoted 

j i
i U

F I(X j) , j 1,..., J
∈

= ∑ = = , 
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where I(.) is the indicator function : I(A)=1 if A is true and I(A)=0 otherwise.  Any 

categories with zero counts are excluded so that jF 1≥  for j 1,..., J= .  Let the population 

frequencies of frequencies be denoted 

J

r j
j 1

N I(F r) , r 1, 2,...
=

= ∑ = =  

For example, N1 is the number of values of X which are unique in the population.  We 

refer to such a value of X (with jF 1= ) as population unique.  We also describe a unit as 

population unique if its value is population unique.  Note that 

 r r
r 1 r 1

N J , rN N
∞ ∞

= =
∑ = ∑ =  .     (1) 

The sample quantities fj and nr are defined analogously to Fj and Nr, respectively.  Thus, 

the sample frequency for value j of X is denoted 

 j i
i s

f I(X j) , j 1,..., J
∈

= ∑ = =  

and the sample frequencies of frequencies are denoted 

 ( )
J

r j
j 1

n I f r , r 0,1, 2...
=

= ∑ = =  

A value j of X is called sample unique if fj=1.  Similarly, a unit is called sample unique if 

its value of X is sample unique. 

 
2.2. Three Measures of Disclosure Risk 

The first measure of disclosure risk to be considered is N1/N, the proportion of units in 

the population, which are population unique.  We write 

 1 j
j

Pr(PU) N / N I(F 1) / N= = ∑ =  

as the probability of population uniqueness (PU) for a unit randomly drawn (with equal 

probabilities) from the population.  The second measure of disclosure risk to be 

considered is given by 
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 j j j
j j

Pr(PU | SU) I(f 1, F 1) / I(f 1).= ∑ = = ∑ =  

This is the conditional probability that, for a unit randomly drawn from the population, 

the unit is population unique given that the unit is sample unique. 

 
Finally, the proposed measure of disclosure risk is given by 

 j j j
j j

I(f 1) / F I(f 1)θ = ∑ = ∑ =        (2) 

To interpret θ , suppose that a unit is drawn randomly (with equal probabilities) from the 

population.  Call this the chosen unit.  Suppose the value of X for the chosen unit is 

matched to the value of X for each unit in the microdata sample s.  A unique match is said 

to be established if there is just one unit in s with the same value of X.  Call this the 

matching unit.  A unique match is said to be a correct match if the matching unit and the 

chosen unit are identical.  The number of possible chosen units for which a unique match 

will exist is j jF I(f 1)∑ = , the denominator of θ , and the number of these units for which 

the match is correct is jI(f 1)∑ = , the numerator of θ .  Hence we may write 

 θ =Pr (correct match | unique match) 

and interpret θ  as the conditional probability that a unique match will be correct. 

 
2.3 Discussion and Comparison of Three Measures 

Let us first consider the measure Pr(PU).  Any population unique microdata record might 

be viewed as ‘risky’.  For, if an intruder were able to link such a record to an identifiable 

unit in the population and know that the unit was population unique then the intruder 

would know that the link was correct.  Thus, one interpretation of Pr(PU) is that it is the 

expected proportion of sample units which are ‘at risk of’ disclosure (under sampling 

with equal inclusion probabilities).  One problem with this interpretation as a common 

measure of risk for all microdata records is that not all microdata records are ‘equally 
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likely’ to be population unique.  In particular, if a record is not sample unique then it 

cannot be population unique (assuming no misclassification).  Thus the proportion of 

population uniques among all microdata records (which approximates Pr(PU) under 

sampling with equal inclusion probabilities) will not exceed Pr (PU|SU), the proportion of 

population uniques among sample unique microdata records.  The measure Pr(PU) may 

therefore be rejected in favour of Pr(PU|SU) on the grounds that Pr(PU) is too optimistic 

a measure. 

 
It is possible to extend this argument to argue that not all sample unique microdata 

records are equally likely to be population unique (Skinner and Holmes, 1998).  Such 

extensions involve modelling complications, however, which we wish to avoid.  We 

restrict attention to measures which take a single value for the microdata file. 

 
Note that the definition of Pr(PU|SU) (like θ ) depends upon the sample s and Pr(PU|SU) 

is thus not a conventional finite population parameter of the kind considered in survey 

sampling (Cochran, 1977).  The sample-dependent nature of Pr(PU|SU) is, however, 

natural here since disclosure is conceived of as a property of the sample data rather than 

the population. 

 
Let us now consider further the adequacy of Pr(PU|SU) as a measure of risk.  It seems 

desirable to interpret Pr(PU|SU) relative to a scenario of attack, according to which an 

intruder may attempt disclosure.  We suggest that the most natural method of attack for 

which Pr(PU|SU) is relevant is as follows. 

 
Attack Method A:  The intruder draws one microdata record at random (with equal 

probabilities) from the sample unique records and searches through the population at 

random until a unit is located which matches the selected record. 
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Under this method, the intruder knows that the probability that the selected record is 

population unique is Pr(PU|SU) and hence that the probability, P, that the selected record 

belongs to the located unit is at least Pr(PU|SU).  For, we may write 

 1
j j j

j j
P I(f 1)F / I(f 1)−= ∑ = ∑ =        (3) 

 j j j
j j

I(f 1,F 1) / I(f 1) Pr(PU | SU)≥ ∑ = = ∑ = =  

It may be argued, on the basis of this inequality, that Pr(PU|SU) is an over-optimistic 

measure of disclosure risk since it fails to reflect the risk arising from values of X which 

are twins (Fj=2), triples (Fj=3) and so forth.  A more appropriate measure under method A 

is the expression, P, in (3), which may be interpreted as Pr (correct match | unique match) 

under this method.  Note, however, that P is not the same as θ  in (2). 

 
Let us turn then to the third measure θ .  This will be equal to Pr(correct match | unique 

match) under the following two methods of attack, which are essentially identical. 

 
Attack Method B:  The intruder draws one unit at random from the population and 

matches this to the microdata.  The intruder repeats this process until a unique match is 

found. 

 
Attack Method B':  The intruder takes the whole microdata file and searches through the 

population at random until a unit is found which uniquely matches one of the microdata 

records. 

 
Whether θ  or P is a more appropriate measure of risk depends on the method of attack.  

We suggest that method B' is more plausible than method A since the intruder makes 

fuller use of all the microdata information in the former method B'.  For example, this 

method is similar to that employed by Blien et al. (1992), who matched all records in the 
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microdata against all records in an external file.  We therefore claim that θ  is a useful 

measure of disclosure risk.  Having argued that θ  has some advantages of interpretation 

as a measure of disclosure risk compared to Pr(PU) and Pr(PU|SU), we now comment on 

the estimation of these two measures from sample data. 

 
The estimation of Pr(PU) or Pr(PU|SU) appears to be an intrinsically difficult problem.  

Assuming that N is known, the estimation of Pr(PU) reduces to the estimation of N1, 

which appears to share similar problems to the well-known difficulties involved in 

estimating rJ rN= ∑  (Bunge and Fitzpatrick, 1993).  A natural approach is to write 

 r s rs
s

E(n ) N P r 1, 2,...= ∑ =       (4) 

where E(.) is the expectation with respect to sampling and the coefficients Prs are known 

for sampling schemes such as simple random sampling or Bernoulli sampling (Goodman, 

1949).  The solution of these equations for Nr with E(nr) replaced by nr, gives unbiased 

estimators of J and N1 under apparently weak conditions (Goodman, 1949).  

Unfortunately, Goodman finds the estimator of J can be ‘very unreasonable’ and the same 

appears to be the case for the corresponding estimator of N1 (given in his Theorem 4).  

One interpretation is that this is a problem of collinearity between the equations in (4).  

An alternative ‘non-parametric’ estimator of N1 has been proposed by Zayatz (1991) and 

Greenberg and Zayatz (1992) but appears to be subject to serious upward bias for small 

sampling fractions (Chen and Keller-McNulty, 1998).   

 
One way of addressing the estimation difficulties is to make stronger modelling 

assumptions.  Bethlehem et al (1990) set out one approach based upon the Poisson-

gamma model but this approach appears not to be robust, as discussed by Skinner et al 

(1994) and Chen and Keller-McNulty (1998).  The latter authors proposed an estimator 

based upon a slide negative binomial model which improved on the Poisson-gamma 
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model but still had upward bias for small sampling fractions when J is known and was 

found to be unstable for small sampling fractions when J is unknown (the usual case).  

Samuels (1998) discusses the point estimation of Pr(PU|SU) based on a Poisson-Dirichlet 

model.  Although obtaining some encouraging results, he finds substantial 

underestimation when the sampling fraction is low and comments (in his Section 6) on 

the intrinsic difficulties in estimating Pr (PU|SU) from sample data in certain situations.  

In summary, we suggest that no estimation procedure is currently available which 

robustly estimates Pr (PU) or Pr (PU|SU) across the wide range of possible population 

structures that may exist in surveys and for small sampling fractions.  In the next section 

we show how θ  may be estimated without strong modelling assumptions.  This is a 

surprising finding since θ  appears to be a ‘similar’ parameter to the first two measures. A 

heuristic explanation for this finding is that inference about θ  may essentially be 

achieved by solving only the second of the estimating equations defined by (4) (see 

Proposition 2) rather than the entire set as required for the estimation of N1 or J. 

 
3. Estimation of the Proposed Measure 

 
In this section we consider the estimation of θ  in (2).  We assume that the sample 

frequencies of frequencies nr, r=1,2 ... are known but that the Fj and Nr are unknown.  We 

adopt a design-based survey sampling framework in which the finite population quantities 

Fj and Nr are fixed and the only source of randomness comes in the selection of the 

sample, s.  As a consequence, not only are the sample quantities fj and nr random but so 

too is the ‘parameter’ θ  of interest (see discussion in section 2.3).   For simplicity, we 

shall assume Bernoulli sampling in which all population units are sampled independently 

with a common probability π.  We consider extensions to other sampling designs in 
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Section 5.  In particular, the Bernoulli sampling assumption implies that the fj are 

independently binomially distributed: 

 j jf ~ Bin(F , ) j 1,..., J.π =       (5) 

To motivate our point estimator of θ , we consider a simulation-based estimator.  This is 

based upon a sample-based analogue of Scenario B in Section 2, referred to here as Data 

Intrusion Simulation. 

 
Data Intrusion Simulation 

Repeat the following steps (independently) for k=1, 2, ...., K 

Step 1:  remove 1 unit at random (with equal probabilities) from the sample; 

Step 2:  copy the unit back into the sample with probability π; 

Step 3:  record whether the removed unit has a unique match on X with a sample unit 

(Ruk=1 if so, Ruk=0 otherwise) and, if so, whether this match is correct (Rck=1 if so, Rck=0 

otherwise) 

The estimator of θ  is then the proportion of unique matches which are correct: 

 
K K

ck uk uk
k 1 k 1

ˆ (K) R R / R
= =

θ = ∑ ∑  .      (6) 

Step 1 simulates a random drawing of one unit from the population, as in Scenario B, 

since the sample units are assumed to be drawn with equal probabilities.  Likewise, Step 2 

simulates the fact that the population unit selected by the intruder will be included in the 

sample with probability π.  The estimator ˆ(K)θ  is formed from the usual ‘analogue’ 

principle that a sample quantity is a natural estimator of the corresponding population 

quantity.  This principle does not generate a sensible estimator of Pr(PU) or Pr(PU|SU), 

however, and so it is natural to be sceptical initially as to whether ˆ(K)θ  will be a sensible 

estimator of θ . 
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Having used the Data Intrusion Simulation and the analogue principle to motivate the 

form of ˆ(K)θ , we note that the limit of ˆ(K)θ  as K → ∞  can, in fact, be expressed simply 

in closed form. 

 
Proposition 1: ˆ ˆ(K)θ → θ a.s. (with respect to the randomisation in the simulation), where 

 ( )1 1 2
ˆ n / n 2 1 nθ = π π + − π          (7) 

The proofs of this and subsequent propositions are given in the Appendix. 

 
Since n1 and n2 are easy to compute and π is known, θ̂  is also easy to compute and, we 

propose, is used in practice rather than ˆ(K)θ .  The latter estimator has been introduced 

only to motivate θ̂  and possible extensions (see Section 4). 

 
We now assess whether θ̂  in (7) is a sensible estimator of θ  in (2).  To consider this, θ̂  

and θ  may be re-expressed as: 

 ( )1 1 2
ˆ n / n 2 1 n /θ = + − π π    ,   ( ) ( )1 1 j j

j
n / n F 1 I f 1 θ = + ∑ − =  

. 

Hence θ̂  will be a sensible estimator of θ  if n2 is a sensible estimator of 

( ) ( ) ( )j jF 1 I f 1 / 2 1π∑ − = − π   .  The unbiasedness of the latter estimator with respect to 

the Bernoulli sampling is implied by the following result. 

 

Proposition 2:  ( ) 2 j j
j

E 2 1 n / E (F 1)I(f 1) − π π = ∑ − =     
    (8) 

 
In order to demonstrate the consistency of θ̂  as an estimator of θ , we consider an 

asymptotic framework defined by a sequence of populations indexed by increasing J. 
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In practice J will usually be large, for example it is 64.3 10×  in the application in Section 

6 (including catgegories with zero counts).  We conceive of an increase in J as 

corresponding to an increase in the number of identifying variables, associated with an 

increase in the population size J
j(N F )= ∑  in such a way that the maximum value of Fj 

remains bounded.  The expected sample size E(n) = Nπ  (from (5)) will increase in 

proportion to the population size (with π treated as fixed). 

 
Proposition 3:  Under Bernoulli sampling with sampling fraction , 0 1π < π < , and assuming that 

the Fj are bounded above, we have ( ) ½
p

ˆ ˆo (1) , / v N(0,1) as Jθ − θ = θ − θ → → ∞ 

where ( )( )( ) j
J F 12

j j j
j 1

v c F F 1 F 3 2 1 −

=
= ∑ − π − π + − π  

 ( ) ( )j j

j

2F 1 F 12
jc F 1 / F 1− −   = ∑ π − π ∑ π − π     

 

Thus, under the given asymptotic framework, θ̂  is consistent for θ , in the sense that 

θ̂ − θ converges in probability to zero, and θ̂ − θ is asymptotically normal.  A simple 

consistent estimator of the variance of θ̂ − θ is given by  

( ) ( ) ( )
( )

3 22
2

1 2

2 1 3 1 n 2 nˆv̂
n 2 1 n

− π − π + − π  = θ
π + − π  

      (9) 

Its consistency for v is now demonstrated. 

 
Proposition 4:  Under the assumptions of Proposition 3, ( )1

pv̂ v o J−= +  

 
A corollary of Propositions 3 and 4 is, from Slutsky’s Theorem, that 

( ) ½ˆ ˆ/ v N(0,1)θ − θ →  as J → ∞ . 
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For the disclosure control application, an agency might adopt a conservative approach by 

considering the upper bound of a one-sided confidence interval ½
1

ˆ ˆz v−αθ + , where 1z −α  is 

the 1100z −α  percentage point of the standard normal distribution, and requiring this bound 

to be sufficiently low, say below 0.1. 

 
4. Misclassification 

 
In this section we extend the definition of Prθ = (correct match | unique match) to 

accommodate misclassification and show that the Data Intrusion Simulation approach of 

Section 3 may be naturally extended to estimate θ  consistently.  To allow for 

misclassification, we now let X denote the combination of values of the identifying 

variables as recorded in the microdata and X%  denote the corresponding variable as 

measured by a potential intruder using external information.  We say that 

misclassification occurs for unit i if i iX X≠ % .  We do not assume that either X or X%  

measures ‘truth’. They simply reflect two ways of classifying the same quantity.  In 

particular, it is possible that either X or X%  is subject to measurement error and that X is 

subject to deliberate perturbation as a means of disclosure control. 

 
By analogy with the definitions of j j rF , f , N  and nr in Section 2.1, we let 

( ) ( )j i j i
i U i s

F I X j , f I X j ,
∈ ∈

= ∑ = = ∑ =%% % %  ( ) ( )r j r j
j j

N I F r , n I f r= ∑ = = ∑ =%% % % . 

We define θ  again as Pr (correct match | unique match) under attack method B of Section 

2.3, that is 

Prθ = (correct match | unique match) 
( )

( )
iX i i

i s

j j
j

I f 1, X X

FI f 1
∈
∑ = =

=
∑ =

%

%
   (10) 
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Note that θ  is the same as in (2) if there is no misclassification.  In order to estimate θ  

we assume that misclassification takes place according to a random mechanism in which 

( )i i jj*Pr X j* | X j M= = =%  j 1,...J , j* 1,...J , i U= = ∈  (11) 

where the matrix jj*M M =    is a J J×  misclassification matrix.  We further assume that 

M is known.  In practice, an agency will not know M exactly, but may conduct a 

sensitivity analysis for various plausible values of M (c.f. Kuha and Skinner 1997).  In 

order to obtain a point estimator of θ̂  of θ  we add a step to the Data Intrusion Simulation 

of Section 3. 

 
Data Intrusion Simulation under Misclassification 

Repeat the following steps (independently) for k=1, ..., K. 

Step 1:  remove 1 unit at random from the sample; 

Step 2:  determine the value of X%  for this unit randomly using M, that is set X j*=%  with 

probability jj*M , where j is the unit’s value of X; 

Step 3:  copy the unit back into the sample with probability π (keeping its original value 

of X); 

Step 4:  record whether the value X%  of the removed unit matches uniquely the value of X 

for a sample unit ( ukR 1=  if so) and, if so, whether this match is correct ( ckR 1=  if so). 

 
The resulting estimator of θ  is again given by ˆ(K)θ  in (6).  As before we may obtain a 

closed form expression, θ̂ , as the limit of ˆ(K)θ  as K → ∞ .  Events 1 and 2 in the proof 

of Proposition 1 now require correct classification at Step 2 (which occurs with 

probability jjM ) for the match to be unique.  A third possible event when a unique match 

arises must also be considered, that in Step 2 X is misclassified to a value j which 
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corresponds to a sample unique in the microdata at Step 3.  This event occurs with 

probability 

( ) ( )ji

J

X i j
i s j 1

A M I X j I f 1 / n
∈ =

= ∑ ∑ ≠ =  

Following an analogous argument to the proof of Proposition 1, we obtain 

( )
( ) ( ) ( )

j jj
j

j jj j jj
j j

I f 1 M
ˆ

I f 1 M 2 1 I f 2 M nA

π∑ =
θ =

π∑ = + − π ∑ = +
     (12) 

Note that, in the absence of misclassification, jjM 1= , A 0=  and θ̂  reduces to the 

expression in (7).  The expression for A reduces in general to  

( ) ( )M j jj j
j

A E f M I f 1 / n, = ∑ − = 
%        (13) 

where ( )ME .  denotes the expected value with respect to the misclassification mechanism.  

The consistency of θ̂  for θ  is now shown. 

 
Proposition 5:  p

ˆ o (1)θ − θ = , under the probability distribution induced by both the 

Bernoulli sampling and the misclassification mechanism in (11), where ˆ andθ θ are 

defined in (12) and (10) respectively and the assumptions of Proposition 3 hold. 

 
 
5. Complex Sampling Designs 

 
The results so far have assumed Bernoulli sampling for simplicity.  In this section we 

consider the extension to other survey sampling designs. 

 
5.1. Simple Random Sampling Without Replacement 

Under simple random sampling of size n, the binomial distribution of fj in (5) is replaced 

by the hypergeometric distribution with parameters ( )jN, n,F .  We define θ̂  as in (7) 
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with n / Nπ = .  Proposition 2 no longer holds exactly but it is straightforward to verify 

that it does so approximately in an asymptotic framework where n → ∞ , N → ∞ , 

n / N → π (fixed) and the Fj are bounded.  Using this result, we may extend the argument 

in Proposition 3 to show that θ̂  remains consistent for θ  under simple random sampling 

within this framework.  This follows more directly by noting that, under this asymptotic 

framework, the hypergeometric distribution for fj is approximated by the binomial 

distribution in (5) and the fj are approximately independent ( )j 1,..., J= . 

 
5.2 Proportionate Stratification 

Suppose now that the population consists of H strata of sizes 1 HN ,..., N  and that 

independent simple random samples of sizes 1 Hn ,..., n  are drawn from these strata.  

Letting hjf  and hjF  be defined analogously to jf  and jF  within stratum h (so that 

h hj j h hj jf f , F F∑ = ∑ = ), the distribution of hjf  is now hypergeometric with parameters 

( )h h hjN ,n ,F .  We assume h hn / N = π and define θ̂  as in (7).  If we assume an 

asymptotic framework in which h h h hn , N ,n / N→ ∞ → ∞ → π (fixed) and Fj is bounded 

( )h 1,...,H, j 1...J= =  then, as in Section 5.1, the hjf  will be approximately independently 

binomially distributed with parameters ( )hjF ,π .  Under independent sampling in different 

strata, the distribution of fj will again be as in (5) and the consistency of θ̂  holds. 

 
5.3 Unequal Probability Sampling 

Suppose now that the sample inclusion probabilities iπ  of different population units may 

now be unequal.  The simplest case is Poisson sampling when different units are selected 

independently.  The definition of θ  remains unchanged, since Pr (correct match | unique 

match) is not defined with respect to the sampling mechanism.  It is not possible, 
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however, to maintain the definition of θ̂  in (7), since it depends on π, an assumed 

common inclusion probability.  It does not appear to be straightforward to modify θ̂  to 

achieve consistent estimation of θ  under general unequal probability designs.  Perhaps 

the most natural modification of the Data Intrusion Simulation in Section 3 would be to 

modify Step 1 to remove the sample unit i with probability 1 1
i i

s
/− −π ∑ π  (in order to mimic 

selecting one unit with equal probability from the population) and to modify Step 2 to 

copy this unit back into the sample with probability iπ .  The properties of the resulting 

estimator, θ̂ , require further research. 

 
5.4 Cluster Sampling 

Under cluster sampling, it is possible for θ̂  in (7) to be seriously inconsistent for θ , even 

if all units have a common inclusion probability π. 

Example  Suppose the population is partitioned into clusters of size 1 or 2 and cluster 

sampling is employed with equal inclusion probability π.  Suppose X takes a common 

value for two units in the same cluster but different values for two units in different 

clusters, Hence jF =1 or 2 and fj=0 or Fj for all j.  It follows from (2) that θ =1.  But n2 

will not in general be zero and the probability limit of θ̂  will in general be less than 1 and 

may be arbitrarily close to 0, dependent on π and the proportion of clusters of size 2 in 

the population.  It is clear that θ̂  may be a poor estimator of θ  in this example. 

 

To obtain a heuristic guide to the impact of cluster sampling, note that for θ̂  to be a 

reasonable estimator of θ , the ratios ( ) ( )j jPr f 2 / Pr f 1= =  should roughly follow that for 

the binomial distribution of (5) (so that Proposition 2 holds approximately).  If the 

clusters are defined in a way that is fairly unrelated to X then this condition may hold and 
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it seems plausible that this will be the case for many social surveys.  The estimator θ̂  will 

be most harmed when the cluster sampling has a clear direct effect on the ( )jPr f 1=  or 

( )jPr f 2= .  Consider, for example, a survey of adults in which households form clusters 

(all adults in the household are sampled) and the variables defining X are all defined at 

the household level, even though θ  is defined at the individual level.  This form of 

sampling may tend to distort the ratio ( ) ( )j jPr f 2 / Pr f 1= =  relative to what would be 

expected under Bernoulli sampling of individuals. 

 
6. Numerical Study 

The aim of this section is to provide some numerical evidence on the properties of the 

procedures described in Section 2 and 3.  We use data from the 1991 Population Census 

of Great Britain on all enumerated individuals in one area of around N=450,000 people.  

The variable X was formed by cross-classifying the following potential identifying 

variables (with numbers of categories in parentheses): age group (94), sex (2), marital 

status (5), ethnic group (10), primary economic status (11), country of birth (42).  This 

choice of identifying variables was based upon the discussion of possible scenarios of 

attack by an intruder in Elliot and Dale (1999).  Many different cross-classifications have 

also been investigated and have yielded similar results to those presented here. 

Samples were drawn from this population using systematic sampling of 1 in L units for 

L=10, 20 and 50 i.e. with π=0.1,0.05 and 0.02, within geographical strata. 

The stratification follows that used to draw the individual Sample of Anonymised 

Records, a microdata file released from the 1991 Census (Marsh, 1993).  Hence, this 

study provides evidence on the extent to which users of such microdata could infer the 

value of θ  under different sampling fractions (the sampling fraction used in 1991 for 

individual microdata was 0.02).  Within the strata, the individuals in the population are 
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ordered by geography for the systematic sampling and, in this way, further implicit 

stratification by geography is achieved.  By departing from the Bernoulli sampling 

assumption, this study provides some evidence on the robustness of the results of Section 

3 to alternative sampling assumptions.  A further advantage of the use of systematic 

sampling is that we may evaluate the exact bias and variance of θ̂  and its standard error 

estimator ½v̂  by enumerating all L possible samples. 

 
Table 1 contains the means and standard deviations across the L systematic samples for 

ˆ,θ θ  and ½v̂  defined in (2), (7) and (9) respectively.  Considering the measure of 

disclosure risk θ  first, we recall that it is not a fixed population parameter but is sample 

dependent.  As expected, θ  tends to decrease as π decreases, reflecting the disclosure 

protection of sampling.  For a fixed sample size, however, the results do not indicate great 

sampling variation in θ .  For example, for a 2% sampling fraction, θ  varies only 

between 4.1% and 4.6% across the 50 possible systematic samples. 

Turning to the estimator θ̂ , we may define its bias by the mean of θ̂ − θ.  We see that for 

each sampling fraction the (absolute) bias is smaller than 16% of the standard error and is 

never greater than 0.1% in absolute terms.  This seems likely to be acceptably small for 

most practical applications.  Furthermore, the standard error of θ̂  (s.d. ( )θ̂ − θ ) is also 

small relative to the mean of θ̂ .  The coefficient of variation of θ̂   is 5.8%, 4.8% and 

3.1% for π=0.02, 0.05 and 0.10 respectively so θ̂  is a fairly stable estimator of θ  here. 

The estimator ½v̂  of the standard error of θ̂  does appear to be approximately unbiased.  

There is a slight upward bias (implying v̂  is a conservative variance estimator) arising 

perhaps from the stratified systematic design reducing the variance of θ̂ − θ.  The 
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coefficient variation of ½v̂  is 7.6%, 8.7% and 3.2% for π= 0.02, 0.05 and 0.10 

respectively and so v̂  is also a fairly stable estimator of the variance of θ̂ − θ here. 

 
7. Concluding Remarks 

In this paper, we have proposed a measure of disclosure risk for sample microdata based 

on the probability that an observed match between a microdata record and an external 

record is correct.  We have argued that this measure has a clear and useful interpretation 

and that it may be estimated simply from sample microdata.  The proposed approach to 

estimation has been shown to possess desirable theoretical properties and to perform well 

in a numerical study based upon census data for a population of 450,000 individuals from 

an area in Great Britain. 

 
The proposed measure might be used by a statistical agency trying to choose between 

alternative ways of releasing microdata from a sample survey.  For example; the agency 

may consider more or less detailed classifications of potential identifying variables, such 

as area of residence or occupation.  The value of θ̂  could be calculated for each 

alternative form of release.  The upper bound of a one-sided confidence interval for θ  

(say θ̂  + 2.3 ½v̂  for a 99% interval) might also be computed.  Disclosure risk may be 

assessed either in a relative way, by comparing alternative release strategies, or in an 

absolute way, for example by requiring that θ̂  (or θ̂  + 2.3 ½v̂ ) may not exceed some 

specified probability, for example 0.1. 

 
We have shown that our approach may also be extended to allow for misclassification of 

potential identifying variables.  Empirical investigation of this extension remains to be 

undertaken.  We have shown theoretically that our approach can accommodate Bernoulli, 

simple random or proportionate stratified sampling and have shown numerically that it 
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can accommodate stratified systematic sampling.  The extension of our approach to 

unequal probability sampling and multi-stage sampling requires further research.  

Nevertheless, our approach may be applied within strata when stratum sampling fractions 

are unequal and we conjecture that our approach will be reasonably robust under a self-

weighting multi-stage design, where the multi-stage units are not strongly related to the 

categories of X defined by potential identifying variables. 

 
Appendix : Proofs 
 
Proof of Proposition 1:  Observe first that Ruk=0 at iteration k unless either of the 

following two events occur:  event 1,  a sample unique unit (fj=1) is drawn at Step 1 and 

is copied back at Step 2, so that Ruk=1, Rck=1;  event 2,  a sample twin (fj=2) is drawn at 

Step 1 and is not copied back at Step 2, so that Ruk=1, Rck=0.  Hence at each iteration 

 ( )uk 1 2Pr(R 1) n 2 1 n / n= = π + − π     ,  ck uk
ˆPr(R 1| R 1)= = = θ  (A.1) 

Since the pairs (Rck,Ruk) are independent and identically distributed, the proposition 

follows from the strong law of large numbers, provided ( )ukPr R 1=  is non-zero. 

 
Proof of Proposition 2:  It follows from (5) that both sides of (8) equal 
 
 jF 1

j j
j

F (F 1) (1 ) −∑ − π − π . 

Outline Proof of Proposition 3:  We may write J
ˆ g(T )θ − θ = , where J jT Y= ∑  and 

( ) ( ) ( )j j j j jY I f 1 , I f 2 ,F I f 1 = = = = 
'.  The assumptions of the proposition are sufficient 

for a central limit theorem for the independent random vectors Y1, ..., YJ, giving 

[ ] ( )½
J J JV T N 0,1− − µ →  as J → ∞  where ( )J JE Tµ =  and J JV var(T )=  are defined with 

respect to the binomial distributions in (5).  It follows by the delta method that  

( ) ( )½
J

ˆ g / v N 0,1 θ − θ − µ →   
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where ( )'
J Jv var T = ∇ − µ   and ( )Jg'∇ = µ  is the vector of derivatives of ( )Jg T   

evaluated at J JT = µ .  Writing ( )J J1 J2 J3, , 'µ = µ µ µ  and 2(1 ) /φ= − π π, note first that  

( ) J1 J1
J

J1 J2 J3

g 0µ µµ = − =
µ + φµ µ

 

since, from Proposition 2, J3 J1 J2µ = µ + φµ .  Next, note that 

( ) ( )
J2 J1 J1

2 2 2
J3 J3J1 J2 J1 J2

1' , ,
 φµ φµ µ∇ = − − 

µ µµ + φµ µ + φµ  
 

 = [ ]2
J1 J3 1, ,1−µ µ − −φ   ,  using again the fact that J3 J1 J2µ = µ + φµ . 

Hence ( ) ( )
22

J1 J3 J1 J2 J3v var T T T−= µ µ − − φ +   ,  where ( )J J1 J2 J3T T ,T ,T '= .  (A.2) 

Now ( ) ( )J1 J2 J3 j j 2
j

T T T F 1 I f 1 n− −φ + = ∑ − = −φ . 

Using Proposition 2, we have 

( ) ( ) ( ) ( ) 2

J1 J2 J3 j j j
j

var T T T E F 1 I f 1 I f 2 − − φ + = ∑ − = − φ =   

( ) ( ) ( )2 2
j j j

j
E F 1 I f 1 Pr f 2 = ∑ − = +φ =    

( ) ( ) ( ) ( )j j2 F 1 F 22 2
j j j j

j
F 1 F 1 F F 1 1 / 2− −= ∑ − π − π + φ − π − π  

( )( ) ( ) ( )jF 1
j j j

j
F F 1 1 F 1 2 1−  = ∑ − − π − π + − π   

( )( )( ) jF 1
j j j

J
F F 1 F 3 2 1 −= ∑ − π − π + − π        (A.3) 

Finally the expression for v in the Proposition is obtained from (A.2) and (A.3) by noting  

 jF 1
J1 j

j
F (1 ) −µ = ∑ π − π  , jF 12

J3 j
j

F (1 ) −µ = ∑ π − π . 

 
Outline Proof of Proposition 4:  Note that J1 J3 p

ˆ / o (1)θ = µ µ +   ,   
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( )1 2 J3 Pn 2 1 n / J / J o (1)π + − π = πµ +    and 

( ) ( )3 23 1 n 2 n / J− π + − π =   ( )( )( ) ( )jF 1 2
j j j pF F 1 F 3 2 1 / 2J 1 o (1)− ∑ − π − π + − π π − π +     

It follows that 

( )( )( ) jF 12 4 1
J J j j j p1 3v̂ F F 1 F 3 2 1 o (J )−− − = µ µ ∑ − π − π + − π +   

and the result follows since 2
J1 J3c /= µ µ . 

 
 
Outline Proof of Proposition 5:  Note first that by taking expectations of the numerator 

and denominators of (10) with respect to the misclassification mechanism and using 

independence between j we have 

( ) ( ) ( )j jj j M j p
j j

I f 1 M / I f 1 E F o (1)θ = ∑ = ∑ = +%      (A.4) 

By comparing expressions (12) and (A.4) it is sufficient to show that 

( ) ( ) ( )j jj j jj
j j

I f 1 M / n 2 1 / I f 2 M / n A /∑ = + − π π ∑ = + π    

 = ( ) ( )j M j p
j

I f 1 E F / n o (1)∑ = +%    (A.5) 

This may be shown using the following results 

( ) ( ) jF 1
j jj j jjE I f 1 M F 1 M− = = π − π   

( ) ( ) ( ) jF 22
j jj j j jjE I f 2 M 0.5F F 1 1 M− = = − π − π   

[ ] ( ) ( ) ( ) jF 1
j* j*j j M j j jj j

j j* j j
E A E f M I f 1 / n E F FM F 1 / n−

≠

    = ∑ ∑ = = ∑ π − π − π      
%  

( ) ( ) ( ) ( )jF 1
j M j j M jE I f 1 E F F 1 E F− = = π − π 

% %  

where the expectations E(.) are with respect to the Bernoulli sampling. 
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Table 1.  Means and Standard Deviations of Different Quantities  
Across All Possible Systematic Samples of a Specified Sampling Fraction from  

Census Population of 450,000 individuals 
 
 
 
 

    Sampling Fraction π 

  0.02 0.05 0.10 

Risk Measure, θ  Mean 0.0426 0.1047 0.1985 

 s.d. 0.0012 0.0051 0.0027 

     

Estimator, θ̂  Mean 0.0429 0.1055 0.1990 

 s.d. 0.0020 0.0058 0.0045 

     

Error, θ̂ − θ Mean 0.0004 0.0008 0.0005 

 s.d. 0.0025 0.0051 0.0061 

     

S.E. Estimator, ½v̂  Mean 0.0028 0.0052 0.0072 

 s.d. 0.0002 0.0004 0.0002 

 
 
 


	A Measure of Disclosure Risk for Microdata
	
	
	
	C.J. Skinner
	and M.J. Elliot




	Summary
	Data Intrusion Simulation
	Proposition 2:  �				(8)
	Proposition 3:  Under Bernoulli sampling with sampling fraction �, and assuming that the Fj are bounded above, we have
	Proposition 4:  Under the assumptions of Proposition 3,
	Proof of Proposition 1:  Observe first that Ruk=0 at iteration k unless either of the following two events occur:  event 1,  a sample unique unit (fj=1) is drawn at Step 1 and is copied back at Step 2, so that Ruk=1, Rck=1;  event 2,  a sample twin (fj=2


	Outline Proof of Proposition 3:  We may write �, where � and �'.  The assumptions of the proposition are sufficient for a central limit theorem for the independent random vectors Y1, ..., YJ, giving � as � where � and � are defined with respect to the bi


