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Summary

Protection against disclosure isimportant for statistical agencies releasing microdatafiles
from sample surveys. Estimates of simple measures of disclosure risk can provide useful
evidence to support decisions about release. We propose a new measure of disclosure
risk: the probability that a unique match between a microdata record and a population unit
iscorrect. We argue that this measure has at least two advantages. First, we suggest that
it may be amore realistic measure of risk than two measures currently used with census
data. Second, we show that it may be estimated consistently from sample data without
making strong modelling assumptions. Thisisasurprising finding, in its contrast to the
properties of thetwo ‘similar’ established measures. Asaresult, this measure has
potentially useful applications to sample surveys. Moreover, we propose asimple
variance estimator and show that it is consistent. We also show that the measure and its
estimation may be extended to allow for misclassification of identifying variables and to
allow for certain complex sampling schemes. We present a numerical study based upon
1991 census data for some 450,000 enumerated individualsin one area of Great Britain.
We show that the theoretical results on the properties of the point estimator of the

measure of risk and its variance estimator hold to a good approximation for these data.
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1. Introduction

Anonymised microdata files of individual records from surveys and censuses are often
released to researchers so that they may conduct their own analyses. An important
consideration for agencies deciding whether and how to release such filesis the need to
protect against possible statistical disclosure. Thereisagrowing literature on how such
protection may take place (Willenborg and de Waal, 1996, 2001). A key element of
protection methodology is the assessment of disclosurerisk for afile. Assessing
disclosure risk usually involves difficult and complex judgements (Lambert, 1993). With
the increasing demand for microdata and other trends (Duncan and Pearson, 1991),
systematic ways of supporting these judgements by statistical evidence have increasingly
been sought. In this paper we consider one common basic form of such evidence: the
values of asingle measure of disclosure risk, estimated from the data, for aternative

possible specifications of the microdatafile.

Considerable progress has been made in developing more elaborate forms of evidence to
capture more fully the complex nature of potential threats to confidentiality. Duncan and
Lambert (1986, 1989), Paass (1988), Lambert (1993), Fuller (1993), Skinner et al.(1994)
and Fienberg et a.(1997), among others, have developed statistical modelling
frameworks for this purpose. We shall not pursue these more general approachesin this
paper, however. We restrict attention to three simple measures of disclosurerisk. The
first two measures have established uses with 100% census data, but suffer difficulties of
inference in their extension to sample survey data. The third measure is new and we
argue that, not only isit potentially a more realistic measure of risk, but that surprisingly
it provides a means of overcoming the inference difficulties for the first two measures.

The assessment of disclosure risk using the new measure is the main subject of this paper.



The first measure of disclosure risk to be considered is the proportion of unitsin the
population which have unique combinations of values of potentially identifying variables.
We denote it Pr(PU), the probability of ‘ population uniqueness'. It has been used for
disclosure risk assessment of census microdatain the U.S.A. and U.K. (Greenberg and
Voshell, 1990; Marsh et al., 1991). Bethlehem et al.(1990) provide a systematic
discussion, setting set out the basic framework which we adopt. The microdatafile
consists of a set of records for each unit in a sample from afinite population. (For a
census, only asample of unitsisusually included in thefile. For a sample survey, the
microdata file usually contains records for all unitsin the sample.) Each record contains
two digoint forms of information: identifying information and sensitive information. The
identifying information consists of the values of a set of identifying variables, which
might be matchable to known unitsin the population. The threat of disclosure arises from
the possibility that an intruder might succeed in identifying a microdata unit through such
matching and hence be able to disclose the sensitive information on this unit. The
identifying variables are assumed to be categorical, arealistic assumption in many
censuses and social surveys. Population uniquenessis considered further by Greenberg

and Zayatz (1992) and Skinner et al.(1994).

Since only records which are sample unique can be population unique, it may be argued
that a more realistic measure of disclosure risk is of the proportion of sample unique
records which are population unigque, denoted Pr (PU|SU). Thisis our second measure. It
has been used by Statistics Canada to assess disclosure risk in census microdata (Carter et
al, 1991), and has been considered further by Skinner et al (1994), Chen and Keller-

McNulty (1998), Samuels (1998), Fienberg and Makov (1998) and Elliot et al. (1998)



A potential problem with this second measureisthat it is also unrealistic in neglecting the
risk presented by records which, although not population unique, are unusual. The third
measure of risk again refers to the threat represented by the sample unique records but
now allows for the risk arising from records which are not population unique. Itis
defined as the proportion of correct matches amongst those records in the population
which match a sample unigue microdata record and is denoted 6. The basic ideawas

introduced by Elliot (2000). We discuss these three measures further in Section 2.

We claim two advantages for the third measure. First, we suggest that it may be amore
realistic measure of disclosure risk. The second advantage and the main contribution of
this paper isto show in Section 3 that 6 may be estimated consistently by a simple point
estimator without strong modelling assumptions and that a sSimple consistent variance
estimator isalso available. Thisisasurprising finding since it contrasts with the property
discussed in Section 2, that consistent estimation of the ‘similar’ measures Pr(PU) or
Pr(PUISU) from sample data is problematic in the absence of strong modelling
assumptions. For acensus, these measures may be calculated by the census office from
the population data, even if amicrodatafileisreleased only for asample. For asample

survey, it is necessary to make inference about the measure from sample data.

It is desirable when measuring disclosure risk to take account of possible risk reducing
effects of measurement error in the identifying variables, first because measurement error
occurs naturally in surveys and second because it may be used as a masking technique
(Fuller, 1993; Fienberg et al, 1997). In Section 4 we show how measurement error may
be alowed for in 8. Theresultsin Section 3 assume Bernoulli sampling. The extension

of these results to other designsis considered in Section 5. A numerical study of the



properties of the estimation procedures of Section 3 is presented in Section 6. Some

concluding remarks are made in Section 7.

2. M easur es of Disclosur e Risk

In this section we first set out the basic framework and notation. We then define the three
measures of disclosure risk, introduced in Section 1. Finally, we compare the three
measures, commenting on some advantages of interpretation of the third measure and on
difficulties in estimating the first two measures from sample data. The estimation of the

third measure will be considered in Section 3.

2.1. Framework and Notation

Let the microdatafile consist of aset of records, each corresponding to aunitin a
microdata sample s, selected from afinite population U (s O U). Let nand N denote the
numbers of unitsin sand U respectively. We assume that each record contains the values
for the unit on the categorical identifying variables, assumed given. The categorical
variable formed by cross-classifying all the identifying variables is denoted X, with
values denoted 1, ...., J. Each of these values corresponds to a possible combination of
values of the identifying variables. For example, if the identifying variables are sex, age,
occupation and marital status then a possible value of X might be (female, 38 years,
medical professional, divorced). In practice we may expect J, the number of categories of

X, to belarge.

Let X; denote the value of X for population uniti. Let the population frequenciesfor the

different values of X be denoted

F=310¢=)  ,  j=L..3,
iou



where I(.) istheindicator function : I(A)=1if A istrue and I(A)=0 otherwise. Any

categories with zero counts are excluded so that F =1 for j=1,...,J. Let the population

frequencies of frequencies be denoted
J
N, =>I(F =r) : r=12,..
=1
For example, N1 isthe number of values of X which are unique in the population. We

refer to such avaue of X (with F, =1) as population unique. We also describe a unit as

population unique if its value is population unique. Note that
>N, =J : YIN, =N . (1)

The sample quantities f; and n, are defined analogously to Fj and N,, respectively. Thus,

the sample frequency for valuej of X is denoted

f; :igsl(xi =0, j=1..,J
and the sampl e freguencies of frequencies are denoted
n =31(f =r) , r=012..

A valuej of X iscaled sample unique if fi=1. Similarly, aunit is called sample unique if

itsvalue of X is sample unique.

2.2. ThreeMeasuresof Disclosure Risk
The first measure of disclosure risk to be considered is N1/N, the proportion of unitsin
the population, which are population unique. We write

Pr(PU) =N, /N = YI(F, =)/ N

as the probability of population uniqueness (PU) for a unit randomly drawn (with equal
probabilities) from the population. The second measure of disclosure risk to be

considered is given by



Pr(PU|SU) = S I(f, =LF, =1/ SI(f, =D).

Thisisthe conditional probability that, for aunit randomly drawn from the population,

the unit is population unique given that the unit is sample unique.

Finally, the proposed measure of disclosurerisk is given by
G:jZI(fj zl)/szjl(fj =1) (2

To interpret 8, suppose that a unit is drawn randomly (with equal probabilities) from the
population. Call thisthe chosen unit. Suppose the value of X for the chosen unit is
matched to the value of X for each unit in the microdata sample s. A unigue match is said
to be established if thereis just one unit in swith the same value of X. Call thisthe
matching unit. A unique match is said to be a correct match if the matching unit and the
chosen unit areidentical. The number of possible chosen units for which a unique match

will existis 3 FI(f; =1), the denominator of 6, and the number of these units for which

the matchiscorrectis 3 I(f; =1), the numerator of 6. Hence we may write

0 =Pr (correct match | unique match)

and interpret 6 asthe conditional probability that a unique match will be correct.

2.3  Discussion and Comparison of Three Measures

Let usfirst consider the measure Pr(PU). Any population unique microdata record might
be viewed as ‘risky’. For, if anintruder were able to link such arecord to an identifiable
unit in the population and know that the unit was population unique then the intruder
would know that the link was correct. Thus, one interpretation of Pr(PU) isthat it isthe
expected proportion of sample units which are ‘at risk of’ disclosure (under sampling
with equal inclusion probabilities). One problem with this interpretation as a common

measure of risk for al microdata recordsis that not al microdata records are ‘equally



likely’ to be population unique. In particular, if arecord isnot sample unique then it
cannot be population unigque (assuming no misclassification). Thus the proportion of
population uniques among all microdata records (which approximates Pr(PU) under
sampling with equal inclusion probabilities) will not exceed Pr (PU|SU), the proportion of
population uniques among sample unique microdatarecords. The measure Pr(PU) may
therefore be rejected in favour of Pr(PU|SU) on the grounds that Pr(PU) is too optimistic

ameasure.

It is possible to extend this argument to argue that not all sample unique microdata
records are equally likely to be population unique (Skinner and Holmes, 1998). Such
extensions involve modelling complications, however, which we wish to avoid. We

restrict attention to measures which take a single value for the microdatafile.

Note that the definition of Pr(PU|SU) (like 8) depends upon the sample s and Pr(PU|SU)
is thus not a conventional finite population parameter of the kind considered in survey
sampling (Cochran, 1977). The sample-dependent nature of Pr(PU|SU) is, however,
natural here since disclosure is conceived of as a property of the sample data rather than

the population.

Let us now consider further the adequacy of Pr(PU|SU) as a measure of risk. It seems
desirable to interpret Pr(PU|SU) relative to a scenario of attack, according to which an
intruder may attempt disclosure. We suggest that the most natural method of attack for

which Pr(PU|SU) isrelevant is as follows.

Attack Method A: Theintruder draws one microdata record at random (with equal

probabilities) from the sample unique records and searches through the population at

random until aunit is located which matches the selected record.



Under this method, the intruder knows that the probability that the selected record is
population unique is Pr(PU|SU) and hence that the probability, P, that the selected record

belongs to the located unit is at least Pr(PU|SU). For, we may write

P=YI(f, =)F*/ 3 I(f, =1) (3)

J J
25 I(f, =LF =1/ 3 1(f, =1) =Pr(PU |SU)
J J

It may be argued, on the basis of thisinequality, that Pr(PU|SU) is an over-optimistic
measure of disclosure risk sinceit failsto reflect the risk arising from values of X which
aretwins (F=2), triples (F;=3) and so forth. A more appropriate measure under method A

isthe expression, P, in (3), which may be interpreted as Pr (correct match | unique match)

under this method. Note, however, that P is not the same as 0 in (2).

Let usturn then to the third measure 6. Thiswill be equal to Pr(correct match | unique

match) under the following two methods of attack, which are essentially identical.

Attack Method B: The intruder draws one unit at random from the population and

matches this to the microdata. The intruder repeats this process until aunique match is

found.

Attack Method B": The intruder takes the whole microdata file and searches through the

population at random until a unit is found which uniquely matches one of the microdata

records.

Whether 6 or P isamore appropriate measure of risk depends on the method of attack.
We suggest that method B' is more plausible than method A since the intruder makes
fuller use of al the microdatainformation in the former method B'. For example, this

method is similar to that employed by Blien et al. (1992), who matched all recordsin the



microdata against all recordsin an external file. We therefore claim that 6 isauseful
measure of disclosure risk. Having argued that 6 has some advantages of interpretation
as ameasure of disclosure risk compared to Pr(PU) and Pr(PU|SU), we now comment on

the estimation of these two measures from sample data.

The estimation of Pr(PU) or Pr(PU|SU) appears to be an intrinsically difficult problem.
Assuming that N is known, the estimation of Pr(PU) reduces to the estimation of N,
which appears to share similar problems to the well-known difficultiesinvolved in

estimating J= Y rN, (Bunge and Fitzpatrick, 1993). A natural approach isto write

E(n,) =X N.F r=12,.. (4)

where E(.) is the expectation with respect to sampling and the coefficients P,s are known
for sampling schemes such as simple random sampling or Bernoulli sampling (Goodman,
1949). The solution of these equations for N, with E(n;) replaced by n;, gives unbiased
estimators of Jand N1 under apparently weak conditions (Goodman, 1949).
Unfortunately, Goodman finds the estimator of J can be ‘very unreasonable’ and the same
appears to be the case for the corresponding estimator of N1 (given in his Theorem 4).
Oneinterpretation is that thisis a problem of collinearity between the equationsin (4).

An alternative ‘ non-parametric’ estimator of Ny has been proposed by Zayatz (1991) and
Greenberg and Zayatz (1992) but appears to be subject to serious upward bias for small

sampling fractions (Chen and Keller-McNulty, 1998).

One way of addressing the estimation difficulties is to make stronger modelling
assumptions. Bethlehem et al (1990) set out one approach based upon the Poisson-
gamma model but this approach appears not to be robust, as discussed by Skinner et a
(1994) and Chen and Keller-McNulty (1998). The latter authors proposed an estimator

based upon a slide negative binomial model which improved on the Poisson-gamma

10



model but still had upward bias for small sampling fractions when Jis known and was
found to be unstable for small sampling fractions when Jis unknown (the usua case).
Samuels (1998) discusses the point estimation of Pr(PU|SU) based on a Poisson-Dirichlet
model. Although obtaining some encouraging results, he finds substantial
underestimation when the sampling fraction is low and comments (in his Section 6) on
theintrinsic difficulties in estimating Pr (PU|SU) from sample data in certain situations.
In summary, we suggest that no estimation procedure is currently available which
robustly estimates Pr (PU) or Pr (PU|SU) across the wide range of possible population
structures that may exist in surveys and for small sampling fractions. In the next section
we show how 6 may be estimated without strong modelling assumptions. Thisisa
surprising finding since 6 appearsto bea‘similar’ parameter to the first two measures. A
heuristic explanation for this finding is that inference about 8 may essentially be
achieved by solving only the second of the estimating equations defined by (4) (see

Proposition 2) rather than the entire set as required for the estimation of N; or J.

3. Estimation of the Proposed Measure

In this section we consider the estimation of 6 in (2). We assume that the sample
frequencies of frequencies n;, r=1,2 ... are known but that the F; and N, are unknown. We
adopt a design-based survey sampling framework in which the finite population quantities
F; and N, are fixed and the only source of randomness comes in the selection of the
sample, s. As aconsequence, not only are the sample quantities f; and n, random but so
too isthe ‘parameter’ 6 of interest (see discussion in section 2.3). For simplicity, we
shall assume Bernoulli sampling in which all population units are sampled independently

with a common probability Tt We consider extensions to other sampling designsin

11



Section 5. In particular, the Bernoulli sampling assumption implies that the f; are
independently binomially distributed:

f, ~Bin(F,m j=1...,J (5
To motivate our point estimator of 6, we consider asimulation-based estimator. Thisis
based upon a sample-based analogue of Scenario B in Section 2, referred to here as Data

Intrusion Smulation.

Data Intrusion Simulation

Repeat the following steps (independently) for k=1, 2, ...., K

Step 1: remove 1 unit at random (with equal probabilities) from the sample;

Step 2: copy the unit back into the sample with probability Tt;

Step 3: record whether the removed unit has a unique match on X with a sample unit
(Ru=1 if so, R=0 otherwise) and, if so, whether this match is correct (Rx=1 if s0, R=0
otherwise)

The estimator of 0 isthen the proportion of unique matches which are correct:
A~ K K
B(K) =2 RyRy/ IRy - (6)
k=1 k=1

Step 1 simulates arandom drawing of one unit from the population, asin Scenario B,
since the sample units are assumed to be drawn with equal probabilities. Likewise, Step 2

simulates the fact that the population unit selected by the intruder will be included in the
sample with probability 1. The estimator é(K) isformed from the usual ‘analogue’

principle that a sample quantity is anatural estimator of the corresponding popul ation

quantity. This principle does not generate a sensible estimator of Pr(PU) or Pr(PU|SU),
however, and so it is natural to be sceptical initially as to whether é(K) will be asensible

estimator of 0.

12



Having used the Data Intrusion Simulation and the analogue principle to motivate the
form of é(K),We note that the limit of é(K) as K - oo can, in fact, be expressed simply

in closed form.

Proposition 1: é(K) ~ fas (with respect to the randomisation in the simulation), where
8=m,/Bm, 2(1 -in,A (7)

The proofs of this and subsequent propositions are given in the Appendix.

Since n; and n, are easy to compute and Tt is known, 0 isaso easy to compute and, we

propose, is used in practice rather than é(K) . The latter estimator has been introduced

only to motivate 6 and possible extensions (see Section 4).

We now assess Whether 6 in (7) isasensible estimator of 0 in(2). To consider this, 0

and 6 may be re-expressed as:
A — - _1\J
6=n/my +2(1-mn,/ 7§ . 0=n,/m, +3(F -1)i(f, =1

Hence 8 will be a sensible estimator of 8 if N, is a sensible estimator of

Tt Z(Fj —1)I (f j =1)/ E2(1 - 1jg. The unbiasedness of the latter estimator with respect to

the Bernoulli sampling isimplied by the following result.

Proposition2: ER2(1-m)n, / 18 =E§_§(Fj 4)I(f, =1)§ ©)
J

In order to demonstrate the consistency of 6 asan estimator of 0, we consider an

asymptotic framework defined by a sequence of populations indexed by increasing J.

13



In practice Jwill usually be large, for exampleit is 4.3x10° in the application in Section

6 (including catgegories with zero counts). We conceive of anincreasein Jas

corresponding to an increase in the number of identifying variables, associated with an

increase in the population size (N =3 JFj) in such away that the maximum value of F;

remains bounded. The expected sample size E(n) = TiN (from (5)) will increasein
proportion to the population size (with Tt treated as fixed).
Proposition 3: Under Bernoulli sampling with sampling fraction 11, 0 < 11 <1, and assuming that

the F; are bounded above, we have é—ezop(l) , (Ae—e)/v% ~N(0,1)) as) - »

where v =c ,—i':j(':i _1)(”:1' -3n+2)(1 _,)[Fj—l

c=F Rn(1-7""HH 3 11 —)F'Ez

Thus, under the given asymptotic framework, 6 isconsistent for 8, in the sense that
6-0 converges in probability to zero, and 0-0is asymptotically normal. A simple

consistent estimator of the variance of 6 -0 is given by

_ 2 2(1-m (L -nn, {2 9,5
- Am, +2(1- Tbnzg ?

Its consistency for v is now demonstrated.

<>

Proposition 4. Under the assumptions of Proposition 3, V=V +0, (J‘l)

A corollary of Propositions 3 and 4 is, from Slutsky’s Theorem, that

(é—e)/v/z ~ N(0,2) as J - c.

14



For the disclosure control application, an agency might adopt a conservative approach by
considering the upper bound of a one-sided confidence interval é+zl_a\71/2 , Where z_, is
the 100z,_, percentage point of the standard normal distribution, and requiring this bound

to be sufficiently low, say below 0.1.
4. Misclassification

In this section we extend the definition of 8 =Pr (correct match | unique match) to
accommodate misclassification and show that the Data Intrusion Simulation approach of
Section 3 may be naturally extended to estimate 6 consistently. To allow for

misclassification, we now let X denote the combination of values of the identifying

variables as recorded in the microdataand X denote the corresponding variable as

measured by a potential intruder using external information. We say that
misclassification occurs for unit i if X, # X,. We do not assume that either X or X
measures ‘truth’. They simply reflect two ways of classifying the same quantity. In

particular, it is possible that either X or X is subject to measurement error and that X is

subject to deliberate perturbation as a means of disclosure control.

By analogy with the definitionsof F,f;,N, and n;in Section 2.1, we let
F=51(%=i).f=31(X =)). N,zjzl(ﬁj =r).A, :jzl(fj =r).

We define © again as Pr (correct match | unique match) under attack method B of Section

2.3, thatis

© = Pr (correct match | unique match) == (10)

15



Notethat 8 isthe sameasin (2) if thereisno misclassification. In order to estimate 6

we assume that misclassification takes place according to a random mechanism in which
Pr(X, = *|X, =j) =M j=1.J , j=1.J,i0U (11)
where the matrix M = EM ;.H isa JxJ misclassification matrix. We further assume that

M isknown. In practice, an agency will not know M exactly, but may conduct a

sensitivity analysis for various plausible values of M (c.f. Kuha and Skinner 1997). In

order to obtain a point estimator of 6 of 6 weadd astep to the Data Intrusion Simulation

of Section 3.

Data Intrusion Simulation under Misclassification

Repeat the following steps (independently) for k=1, ..., K.
Step 1: remove 1 unit at random from the sample;
Step 2: determine the value of X for this unit randomly using M, that isset X = j* with

probability M .. , wherej isthe unit’svaue of X;

jj* )
Step 3: copy the unit back into the sample with probability 1t (keeping its original value
of X);

Step 4: record whether the value X of the removed unit matches uniquely the value of X

for asample unit (R, =1 if so) and, if so, whether this match is correct (R, =1 if s0).

The resulting estimator of 6 isagain given by é(K) in (6). Asbeforewe may obtain a
closed form expression, 0, asthe limit of é(K) as K - o, Events1 and 2 in the proof

of Proposition 1 now require correct classification at Step 2 (which occurs with

probability M ;) for the match to be unique. A third possible event when a unique match

arises must also be considered, that in Step 2 X is misclassified to avalue j which

16



corresponds to a sample unique in the microdata at Step 3. This event occurs with

probability

A:ziMxiil(Xi #j)1(f; =1)/n

iOs§ 1

Following an anal ogous argument to the proof of Proposition 1, we obtain

nyI(f, =1)Mm;

e:nZI(fJ— =M, +2(1-1) J(f; 2)M; A

(12)

Note that, in the absence of misclassification, M; =1, A=0 and 0 reducesto the

expression in (7). The expression for A reduces in general to
A=STE, (f;) =M (f; =2)/n, (13)
where E,, () denotes the expected value with respect to the misclassification mechanism.

The consistency of 6 for © isnow shown.

Proposition 5: 0-6 =0,(1) , under the probability distribution induced by both the

Bernoulli sampling and the misclassification mechanismin (11), where 6and O are

defined in (12) and (10) respectively and the assumptions of Proposition 3 hold.

5. Complex Sampling Designs

The results so far have assumed Bernoulli sampling for simplicity. In this section we

consider the extension to other survey sampling designs.

5.1. Simple Random Sampling Without Replacement

Under simple random sampling of size n, the binomial distribution of f; in (5) is replaced

by the hypergeometric distribution with parameters (N, n,F ) . Wedefine 8 asin @)

17



with Tt=n/N. Proposition 2 no longer holds exactly but it is straightforward to verify
that it does so approximately in an asymptotic framework where n — o, N - o,

n/N - Tt (fixed) and the Fj are bounded. Using this result, we may extend the argument

in Proposition 3 to show that 6 remains consistent for 8 under simple random sampling
within this framework. This follows more directly by noting that, under this asymptotic

framework, the hypergeometric distribution for f; is approximated by the binomial

distribution in (5) and the f; are approximately independent (j=1,...,J).

5.2  Proportionate Stratification

Suppose now that the population consists of H strata of sizes N,,...,N,, and that
independent simple random samples of sizes n,,...,n,, are drawn from these strata.

Letting f,; and F; be defined analogously to f; and F within stratum h (so that

>ty =f, 20 K =F), thedistribution of f,, isnow hypergeometric with parameters
(Nh,nh,th). Weassume n, / N, = 1t and define 6 asin (7). If we assume an
asymptotic framework in which n, - o,N, - o,n, /N, - 1 (fixed) and F is bounded
(h=1,..,H,j=1.J) then, asin Section 5.1, the f,; will be approximately independently
binomially distributed with parameters (th , n) . Under independent sampling in different

strata, the distribution of f; will again be asin (5) and the consistency of 6 holds.

5.3  Unequal Probability Sampling
Suppose now that the sample inclusion probabilities Tt of different population units may

now be unequal. The simplest case is Poisson sampling when different units are selected
independently. The definition of 8 remains unchanged, since Pr (correct match | unique

match) is not defined with respect to the sampling mechanism. It is not possible,
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however, to maintain the definition of 6 in (7), since it depends on 11, an assumed

common inclusion probability. It does not appear to be straightforward to modify 6 to
achieve consistent estimation of 6 under general unequal probability designs. Perhaps

the most natural modification of the Data Intrusion Simulation in Section 3 would be to

modify Step 1 to remove the sample unit i with probability T/ 3 17" (in order to mimic

selecting one unit with equal probability from the population) and to modify Step 2 to

copy this unit back into the sample with probability 1t. The properties of the resulting

estimator, 8, require further research.

54  Cluster Sampling

Under cluster sampling, it is possible for 0 in (7) to be serioudly inconsistent for 6, even
if all units have acommon inclusion probability Tt.

Example Suppose the population is partitioned into clusters of size 1 or 2 and cluster
sampling is employed with equal inclusion probability 1. Suppose X takes a common
value for two units in the same cluster but different values for two unitsin different

clusters, Hence F =1 or 2 and fi=0 or F for all j. It followsfrom (2) that 6=1. But n,

will not in general be zero and the probability limit of 6 will in general belessthan 1 and

may be arbitrarily close to 0, dependent on Tt and the proportion of clustersof size2in

the population. It is clear that 0 may be a poor estimator of 0 in thisexample.

To obtain a heuristic guide to the impact of cluster sampling, note that for 0 tobea

reasonable estimator of 8, the ratios Pr(f; = 2)/Pr(f; =1) should roughly follow that for

the binomial distribution of (5) (so that Proposition 2 holds approximately). If the

clusters are defined in away that isfairly unrelated to X then this condition may hold and
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it seems plausible that thiswill be the case for many social surveys. The estimator 6 will

be most harmed when the cluster sampling has a clear direct effect on the Pr (f j =1) or

Pr (f = 2) . Consider, for example, a survey of adults in which households form clusters

(al adultsin the household are sampled) and the variables defining X are all defined at

the household level, even though 68 isdefined at the individual level. Thisform of

sampling may tend to distort theratio Pr (f | = 2)/ Pr (f j =1) relative to what would be

expected under Bernoulli sampling of individuals.

6. Numerical Study

The aim of this section isto provide some numerica evidence on the properties of the
procedures described in Section 2 and 3. We use data from the 1991 Population Census
of Great Britain on all enumerated individuals in one area of around N=450,000 people.
The variable X was formed by cross-classifying the following potential identifying
variables (with numbers of categories in parentheses): age group (94), sex (2), marital
status (5), ethnic group (10), primary economic status (11), country of birth (42). This
choice of identifying variables was based upon the discussion of possible scenarios of
attack by an intruder in Elliot and Dale (1999). Many different cross-classifications have
also been investigated and have yielded similar results to those presented here.

Samples were drawn from this population using systematic sampling of 1in L unitsfor
L=10, 20 and 50 i.e. with 11=0.1,0.05 and 0.02, within geographical strata.

The stratification follows that used to draw the individual Sample of Anonymised
Records, a microdata file released from the 1991 Census (Marsh, 1993). Hence, this
study provides evidence on the extent to which users of such microdata could infer the
value of 8 under different sampling fractions (the sampling fraction used in 1991 for

individual microdatawas 0.02). Within the strata, the individuals in the population are
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ordered by geography for the systematic sampling and, in this way, further implicit
stratification by geography is achieved. By departing from the Bernoulli sampling
assumption, this study provides some evidence on the robustness of the results of Section
3 to dternative sampling assumptions. A further advantage of the use of systematic
sampling is that we may evaluate the exact bias and variance of 6 and its standard error

estimator v by enumerating all L possible samples.

Table 1 contains the means and standard deviations across the L systematic samples for
0,0 and V” definedin (2), (7) and (9) respectively. Considering the measure of
disclosurerisk 0 first, werecall that it isnot afixed population parameter but is sample
dependent. Asexpected, O tendsto decrease as 1t decreases, reflecting the disclosure
protection of sampling. For afixed sample size, however, the results do not indicate great
sampling variation in 8. For example, for a 2% sampling fraction, 6 varies only

between 4.1% and 4.6% across the 50 possible systematic samples.

Turning to the estimator 0, we may define its bias by the mean of 6-0. Weseethat for
each sampling fraction the (absolute) biasis smaller than 16% of the standard error and is

never greater than 0.1% in absolute terms. This seems likely to be acceptably small for

most practical applications. Furthermore, the standard error of 0 (s.d. (é - 9)) isaso

small relative to the mean of 8. The coefficient of variation of 0 is 5.8%, 4.8% and
3.1% for 11=0.02, 0.05 and 0.10 respectively so 0 isafai rly stable estimator of 6 here.

A

The estimator ¢* of the standard error of 6 does appear to be approximately unbiased.
Thereisadight upward bias (implying V isaconservative variance estimator) arising

perhaps from the stratified systematic design reducing the variance of 6-0. The
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coefficient variation of V” is7.6%, 8.7% and 3.2% for 1= 0.02, 0.05 and 0.10

respectively and so V isalso afairly stable estimator of the variance of 6-0 here.

7. Concluding Remarks

In this paper, we have proposed a measure of disclosure risk for sample microdata based
on the probability that an observed match between a microdata record and an external
record is correct. We have argued that this measure has a clear and useful interpretation
and that it may be estimated ssimply from sample microdata. The proposed approach to
estimation has been shown to possess desirable theoretical properties and to perform well
in anumerical study based upon census data for a population of 450,000 individuals from

an areain Great Britain.

The proposed measure might be used by a statistical agency trying to choose between
alternative ways of releasing microdata from a sample survey. For example; the agency

may consider more or less detailed classifications of potential identifying variables, such

as area of residence or occupation. The value of 6 could be calculated for each

aternative form of release. The upper bound of a one-sided confidence interval for 6

(say B + 2.3 ¥ for a99% interval) might also be computed. Disclosure risk may be

assessed either in arelative way, by comparing alternative release strategies, or in an

~ALlh

absolute way, for example by requiring that 0 (or 0 +237¥ ) may not exceed some

specified probability, for example 0.1.

We have shown that our approach may also be extended to allow for misclassification of
potential identifying variables. Empirical investigation of this extension remains to be
undertaken. We have shown theoretically that our approach can accommodate Bernoulli,

simple random or proportionate stratified sampling and have shown numerically that it
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can accommodate stratified systematic sampling. The extension of our approach to
unequal probability sampling and multi-stage sampling requires further research.
Nevertheless, our approach may be applied within strata when stratum sampling fractions
are unequal and we conjecture that our approach will be reasonably robust under a self-
weighting multi-stage design, where the multi-stage units are not strongly related to the

categories of X defined by potential identifying variables.

Appendix : Proofs

Proof of Proposition 1: Observefirst that R =0 at iteration k unless either of the
following two events occur: event 1, asample unique unit (f;=1) isdrawn at Step 1 and
is copied back at Step 2, so that Ru=1, Ru=1; event 2, asampletwin (fj=2) is drawn at

Step 1 and is not copied back at Step 2, so that Ryk=1, R=0. Hence at each iteration
Pr(R, =1) =Fm, +2(1 -1n,@/n , Pr(Ry =1|R, =1) =8 (A.1)
Since the pairs (Rek,Ruk) are independent and identically distributed, the proposition

follows from the strong law of large numbers, provided Pr (Ruk = 1) IS non-zero.

Proof of Proposition 2: It follows from (5) that both sides of (8) equal
GR et
Outline Proof of Proposition 3: We may write 6-6 =g(T,), where T, =3 Y, and
Y, = B(fj :1), I (fj :2),Fjl (fj :1)5'. The assumptions of the proposition are sufficient
for a central limit theorem for the independent random vectors Y, ..., Y, giving
V, [T, -] = N(0,1) as J - o where p, =E(T,) and V, =var(T,) are defined with

respect to the binomial distributionsin (5). It follows by the delta method that

@—G—Q(pJ)H/V% -~ N(0,)
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where v =var {1 (T;- u,)Hand B= g'(u,) isthe vector of derivatives of g(T,)
evaluated at T, =p,. Writing W, = (Ky, My, Hys)' and @=2(1-1)/ T note first that

Ma _ﬂ =

g\, )=
(J) Myt QM My

since, from Proposition 2, [, =y + @, . Next, note that

O
|:|J__ B (puJZ 2_ i - (‘lel =, Hll |:|
aun + (p“Jz) His ( My + (sz) “Ja E

=Uphy  [-L-91 , using again the fact that Py, =y + @, -
2\? '
Hence v = (UJ1UJ3 ) Var(_TJl Ty, +TJ3) , Where T, = (TJl’T.]Z’TJ3) ' (A.2)
Now —T, —@T,, + T, = Jz(FJ -1)1(f; =1) -gn,.
Using Proposition 2, we have

var (~T, T, +T,,) = szgFj Ai(f, =) -off, 2

EgF 1 f—lD+(p2Pr( =2)

%(F 1) Frl-1"" +¢F(F 2) W1 -yt"/2
=3F(F-1)@-7"" {7 1) ne( -
=3R(F-1)(% Br2) ¥ (3

Finally the expression for v in the Proposition is obtained from (A.2) and (A.3) by noting

b= RML-0T L e = IR -

Outline Proof of Proposition 4: Notethat 6 = M/ s +0,(D)
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A, +2(1-1)n, B/ =1 /3 e,(1) and
(-, +(2 - hngd 3R (F 1) Bre)(L - F ] WG -k )

It follows that
U= R (R -1) (R 8n)(L - X H 6,07

and the result follows since ¢ = qu/qu;.

Outline Proof of Proposition 5: Note first that by taking expectations of the numerator
and denominators of (10) with respect to the misclassification mechanism and using
independence between j we have

6= jzl(fj :1)|\/|jj/jz|(fj =1)E, (F) +o,® (A.4)
By comparing expressions (12) and (A.4) it is sufficient to show that
St =M, /n+21-1n/ 8 A(f, 2)M;/n A/
J J

=§|(1=j =1)E, (F)/n+0, (A.5)
This may be shown using the following results
EH(f, =)M,H=Fn1-1"" M,
EB(fJ ZZ)MHE:OH:] (Fj _1) T(L-1"M,

l = =

E[A] = E%ﬁ%ermﬁl (f, =1)E/n = > E, (F) -FM,HF (L ¥ /n
(=9 (F =t e F)

where the expectations E(.) are with respect to the Bernoulli sampling.
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Tablel. Meansand Standard Deviations of Different Quantities
Across All Possible Systematic Samples of a Specified Sampling Fraction from
Census Population of 450,000 individuals

Risk Measure, 6

A

Estimator, 6

A

Error, 6-0

S.E. Estimator, V"

Mean

s.d.

Mean

s.d.

Mean

s.d.

Mean

s.d.

Sampling Fraction 1

0.02 0.05 0.10
0.0426 0.1047 0.1985
0.0012 0.0051 0.0027
0.0429 0.1055 0.1990
0.0020 0.0058 0.0045
0.0004 0.0008 0.0005
0.0025 0.0051 0.0061
0.0028 0.0052 0.0072
0.0002 0.0004 0.0002
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