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At the most fundamental level econometrics is the development of statistical techniques

suited primarily to answering economic questions and testing economic theories. For

example to answer the question ‘what is the return to an extra years education?’ or

‘what will inflation be next quarter given past economic fundamentals?’ Alternatively we

may wish to test the implications of some economic theory or idea, for example to test

the Efficient Market Hypothesis or whether consumers make decisions that satisfy the

classical axioms of choice.

The most used and studied statistical technique is the Linear Model, in particular Ordi-

nary Least Squares (OLS) which this note will recap. The linearity assumption (defined

below) is largely made for simplicity than reality, as establishing the properties of esti-

mators of linear models is more tractable and has a clear visual interpretation.

Commonly we wish to look at the relationship between a a set of variables xi (known as

the Dependent Variable) and yi (known as the Independent Variable). For example we

may wish to estimate the effect of an extra years education on wages, the effect of an

increase in taxation of number of cigarettes consumed.

The Linear Model assumes that

Linear in Parameters(LIP) yi = x′iβ0 + ui (1)

for every observation in the population where the subscript i may refer to an individual,

a country or such like.1 Here yi is the scalar dependent variable, xi is a p × 1 vector of

dependent variables and β0 a p × 1 vector known as the ‘true parameter’ where ui is a

scalar unobserved variable that generates yi over and above xi. Here xi = (xi1, .., xip)
′

and β0 = (β01, .., β0p)
′ where x′iβ0 =

∑p
j=1 xijβ0j .

1The discussion here is not solely linked to Cross Sectional Data. The same argument made here

holds for Time Series Data if the assumptions here hold for the time series data considered. Issues arise

for Time Series Data which don’t often occur in most cross section settings and as such are studied

separately. To focus discussion we will consider Cross Section Data where Time Series Data will be

studied in ECON61001. Panel Data will not be covered in ECON61001.
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We firstly provide discussion on the Ordinary Least Squares Estimator which is one of the

most popular estimation techniques in econometrics. OLS (defined below) is an estimator

based on the assumption that ui is unrelated with xi. More formally when

Zero Conditional Mean (ZCM) E[ui|xi] = 0 (2)

i.e that ui is mean independent of xi. An implication of ZCM is that ui and xi are

statistically orthogonal, i.e

Exogeneity E[uixi] = 0 (3)

where E[·] is the expectation taken over the distribution of (ui, xi). Intuitively this is the

average of uixi, across the whole of the population and is sometimes referred to as the ‘pop-

ulation average’. This assumption is known as the exogeneity condition and intuitively

says that xi are ui do not move together on average. In the case xi includes a constant

(as is usually the case in practise) then E[uixi] = 0 is equivalent to Corr(xij , ui) = 0 for

all j = {1, .., p} [see Exercise Sheet on OLS]. In essence Exogeneity says the correlation

between the regressors and the unobservable is 0.2

Exogeneity intuitively says that all the unobserved variables (or variables we observe but

have not been included) are uncorrelated with the dependent variables xi. In practise we

must use economic intuition or otherwise to justify whether this assumption is likely to

hold. In many cases it may not (see the discussion on wage-schooling regressions below).

Assuming LIP then taking conditional expectations on both sides of (1)

E[yi|xi] = x′iβ0 + E[ui|xi] (4)

where under ZCM E[ui|xi] = 0 and hence E[yi|xi] = x′iβ0. An equivalent way of thinking

about the ZCM and LIP assumption (the crucial assumptions underpinning OLS) is that

the conditional mean of yi given a particular value of xi is x′iβ0. This says the average

value of yi for an individual with a particular xi is x′iβ0. So for example in the wage-

schooling equation in (9) if ei = 10 then E[yi|xi] = β01 + 10β02 − 102β03. Once we know

the parameters β0 we know the average wages of people with different levels of education.

OLS is a method to estimate these parameters which provides valid inference under a host

2Often these two assumptions are taken to mean the same thing. Though not technically the case,

in that ZCM implies exogeneity but not the reverse and hence is a stronger assumption, the difference

between the two assumptions in practise is often irrelevant. Discussion of these finer points will be made

in ECON61001
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of conditions- the crucial ones being LIP and Exogeneity. The LIP assumption is crucial

in determining the properties in OLS (defined below) with which to base inference and

is somewhat restrictive. LIP does not rule out non linearities in the relationship between

the independent and dependent variable, just that the parameters β0 enter linearly and

also the unobservable ui impacts yi separate to xi (known as additive separability). For

example LIP rules out the case where

yi =
1

1 + x′iβ0
+ ui (5)

or where the unobserved variables impact yi in a non-superable way (i.e separate to the

effects of xi), for example if

yi = x′iβ0ui (6)

or more generally where

yi = f(xi, ui) (7)

for some function f(·) where f(xi, ui) 6= x′iβ0 + ui for any β0. In essence OLS requires

E[yi|xi] = x′iβ0 which can be restrictive.

For example if we are interested in the wage return (wi) to an extra year of education

(ei) we may assume

wi = β01 + β02ei + ui (8)

so that yi = wi and xi = (1, ei)
′ so that β02 is the return to an extra year of education (all

other things held constant). We may believe that the effect of an extra year of education

on wages may not be linear. Namely the marginal effect of an extra year of education is

likely to decrease at higher levels of education. It may be that

wi = β01 + β02ei + β03e
2
i + ui (9)

where β02 > 0, β03 < 0 so that returns to education increases in ei up to a point then

begin to decrease. LIP allows this case as the parameters β01, β02, β03 all enter linearly.

LIP is a strong assumption which provides a lot of structure with which to estimate the

paramaters of interest. However without further information on the distribution of ui

and its relationship to xi we have no way of identifying what is β0. Many different forms

of estimators exist which provide valid inference on β0 under different assumptions on ui
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(esp. in relation to the dependence with xi). In practise we try to choose an estimator

which will work given what we assume is true about the distribution of ui.

We now outline the OLS estimator. Define ui(β) = yi − x′iβ so that yi = x′iβ + ui(β)

(which can always be performed for any β, breaking up yi in to x′iβ and the residual

ui(β)). Given a dataset of (yi, xi) for i = {1, .., n} (i.e sample of size n) the Sum Of

Squared Residuals (SSR) for a particular β is

SSR(β) =
1

n

n∑
i=1

ui(β)2 (10)

and is the average of the deviation of yi from x′iβ squared. The OLS estimator of β0

(defined as β̂OLS) is the minimiser of the sum of squared residuals which we can show is

equal to

β̂OLS =

(
1

n

n∑
i=1

xix
′
i

)−1
1

n

n∑
i=1

yixi. (11)

You will likely have seen the formula for the OLS estimator in the case of a Simple Linear

Regression (sometimes known as a Univariate Regression) where xi includes a constant

and one variable. The OLS Exercise Sheets asks you to show the general OLS formula is

equivalent to the OLS formula in the simple linear regression.

OLS may be viewed as the ‘line of best fit’ to a set of data points. The closer x′iβ is to

yi across i = {1, .., n} the smaller is SSR(β). In essence OLS chooses β to make x′iβ as

close as possible to yi. This method also performs the decomposition of yi in to a function

of x′iβ̂OLS and the residual ui(β̂OLS) which are uncorrelated in the sample. Hence they

mimic the exogeneity condition where ui = ui(β0) is uncorrelated with x′iβ0.

Another way to view OLS is that it enforces the moment condition E[uixi] = 0 in the

sample. Namely under LIP and Exogeneity E[xiui(β)] = 0 at β = β0 with solution

β0 = E[xix
′
i]
−1E[yixi] (12)

when E[xix
′
i] is full rank.3 OLS solves the sample version of this moment condition,

namely it solves 1
n

∑n
i=1 xiui(β) = 0 at β = β̂OLS . This sample moment condition is

the first order condition of the minimisation of the sum of squared residuals and the two

interpretations are equivalent. The ECON61001 goes in to these issues in more details.

To study the statistical properties of OLS for large sample sizes we must make further

assumptions on the distribution of (yi, xi, ui) for i = {1, .., n}. If the data are independent

3This is known as the no perfect multicollinearity assumption and says we do not include redundant

linear combinations of variables. For example including the same dependent variable twice.
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and identically distributed (i.i.d) then as n increases 1
n

∑n
i=1 xix

′
i converges in probability

to E[xix
′
i] and similarly 1

n

∑n
i=1 yixi converges in probability to E[yixi].

4 Intuitively

this says as the sample size increases the sample average becomes closer and closer to

the population moment with increasing probability. These concepts will be explained

formally and in more detail in the Econometric Methods course (ECON61001).

The OLS estimator will provide a ‘good’ estimator of β0 under the assumptions above,

where the crucial and most stringent assumptions are the LIP and Exogeneity (or the

stronger condition ZCM) such that β0 satisfies (12). By a good estimator we mean one

which satisfies a set of favourable statistical conditions for example that the OLS estimator

is consistent (i.e β̂OLS is ‘close’ to β0 for n large).5

The Exogeneity Assumption, much like the LIP assumption may not hold in practise

and is largely made for simplicity. For example in the wage-education regressions above

we have not controlled for natural ability. As such natural ability (along with a host of

other factors) are in ui (all other variables driving wages over and above education). It

is likely that more able people earn more and are also more likely to have higher levels of

education. Hence if ei increases on average it is likely that ui increases (as people with

more education tend to be more able on average) and as such the OLS estimator will

likely overestimate the true return to education.

This is the classic example of Endogeneity, where E[uixi] 6= 0 (i.e the exogeneity condition

does not hold). The issue of endogeneity is one of the most commonly faced problems in

applied econometric research such that OLS is often not a ‘good’ estimator of β0 since

the OLS estimator is built to work well under the exogeneity assumption. In this case

alternative (often more general) estimators are required that provide valid inference in

more general settings than OLS often under a further set of assumptions. The classic

example is the Instrumental Variables (IV) Estimator which you should have covered in

your undergraduate notes. The IV (and more general the 2 Stage Least Squares estimator)

4The i.i.d assumption is a sufficient condition for this result. A similar result can be found under

different conditions to allow for example dependent data. Commonly the i.i.d assumption as with the

other assumptions is made as a starting point for simplicity to simplify proofs of the statistical properties

of OLS. The ECON61001 course will start making the simplest assumptions known as the Classical OLS

Conditions and then weaken these assumptions to allow for example dependent data, non linear models

and violations of exogeneity. It is crucial that you understand the basics of OLS under the simplest

assumptions and revise your undergraduate econometrics notes before starting the course.
5Specifically ECON61001 will provide conditions and (sketches of) proofs that the OLS estimator is

Consistent, Unbiased and Asymptotically Normally Distributed. See Greene reference below.
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will be covered in detail in ECON61001 and it is also advisable you refresh yourself with

the basic ideas of these techniques.

Note that ECON61001 is predominantly a technical course with strong emphasis on

derivations of results. Some of the more advanced proofs are omitted and emphasis is

placed on providing an intuition and a sketch of the results which requires a good ability

for technical and abstract thought. There are some applied examples in the course (for

example applications of the Instrument Variables Estimator) though these mainly serve

to highlight the theoretical results and are not the main focus of the course.

As a broad overview of the main topics covered in ECON61001 (in order)

• OLS under the Classical Assumptions (4 Lectures, properties of multivariate OLS

studied likely more formally than you have seen at Undergrad writing the prob-

lem in matrix form. Covering consistency, unbiasedness, asymptotic normality

and inference (the t and F-test covered more formally, not just memorizing how to

perform the test in practise).

• Robust OLS (1 lecture, relaxes classical assumptions to allow heteroskedasticity and

serially correlated errors. Introduces the Weighted Least Squares Estimator)

• Instrumental Variables (2 lectures, covers IV/2SLS, also covers the intuition of the

weak instrument problem and endogeneity).

• Maximum Likelihood (1 Lecture outlines the Maximum Likelihood estimator with

applications to non-linear models (specifically binary choice models- Logit/Probit)

• Time Series (1 Lecture- measures of dependence, AR/MA/ARMA modelling).

Preparation for ECON61001

The above is a broad sketch of the intuition of OLS. The first half of ECON61001 course

will derive the statistical properties of OLS under a set of conditions (many of them listed

above).

For those that must take ECON61001 it is highly advised that you recap and get up

to speed with intermediate econometrics at the undergraduate level, especially the basic

properties and ideas behind OLS. A good undergrad textbook is Introductory Economet-

rics by Wooldridge. The textbook used in ECON61001 is Greene, Econometric Analysis.
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It may be useful to read through the first few chapters of this book on linear models and

OLS. The more prepared you are before starting the course the more likely you are to

perform well in the final exams/coursework. ECON61001 is quite a challenging fast paced

course and is taught based on the assumption of a solid understanding at a minimum of

Intermediate Econometrics with basic statistics and linear algebra. If you do not possess

this knowledge it greatly increases your chance of falling behind with the work.

OLS Excercise

Consider the Linear Model

yi = x′iβ0 + ui (13)

where yi is the scalar dependent variable, xi is a p× 1 vector of dependent variables and

β0 a p× 1 vector known as the ‘true parameter’ where ui is a scalar unobserved variable

that generates yi over and above xi. Here xi = (xi1, .., xip)
′ and β0 = (β01, .., β0p)

′. Define

the residual ui(β) for a particular β as ui(β) = yi − x′iβ and SSR(β) = 1
n

∑n
i=1 ui(β)2.

Define β̂OLS =
(

1
n

∑n
i=1 xix

′
i

)
1
n

∑n
i=1 yixi.

1. If xi = (1, wi)
′ where wi is a scalar and β̂OLS = (β̂1, β̂2)′ show that β̂1 = ȳ − β̂1w̄,

β̂2 =
1
n

∑n
i=1(wi−w̄)(yi−ȳ)

1
n

∑n
i=1(wi−w̄)2

where ȳ = 1
n

∑n
i=1 yi, w̄ = 1

n

∑n
i=1wi.

2. Show if xi = (1, wi)
′ for some (p − 1) × 1 vector (i.e xi includes a constant) that

E[uixi] = 0 implies Corr(xij , ui) = 0 for all j = {1, .., p}.

Solutions to Excercise

1. Note that xi = (1, wi)
′ hence xix

′
i =

 1 wi

wi w2
i

 so that

1

n

n∑
i=1

xix
′
i =

 n w̄

w̄ 1
n

∑n
i=1w

2
i

 (14)

Also xiyi =

 yi

wiyi

 so that

1

n

n∑
i=1

xiyi =

 ȳ

1
n

∑n
i=1wiyi

 (15)
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Using (14), (15) in β̂OLS then

β̂OLS =

(
1

n

n∑
i=1

xix
′
i

)−1
1

n

n∑
i=1

yixi (16)

=

 n w̄

w̄ 1
n

∑n
i=1w

2
i

−1 ȳ

1
n

∑n
i=1wiyi

 (17)

=
1∑n

i=1w
2
i − w̄2

 1
n

∑n
i=1w

2
i −w̄

−w̄ n

 ȳ

1
n

∑n
i=1wiyi

 (18)

=
1∑n

i=1w
2
i − w̄2

 1
n

∑n
i=1w

2
i ȳ − w̄ 1

n

∑n
i=1wiyi∑n

i=1wiyi − ȳw̄

 (19)

where (18) holds using the inverse of a 2-2 matrix namely

 a b

c d

 = 1
ad−bc

 d −b

−c a


and (19) holds by matrix multiplication. By further algebraic manipulation of

the first and second element of (19) the result follows.

2. Since xi = (1, wi)
′ then xiui = (ui, wiui) and E[xiui] = (E[ui], E[uiwi]) = 0

implies E[ui] = 0 and E[wiui] = 0. Then by definition Cov(xij , ui) = E[xijui]−

E[xij ]E[ui]. Since E[wiui] = 0 and E[ui] = 0 then for any xij (i.e any element

of wi) then Cov(xij , ui) = E[xijui]− E[xij ]E[ui] = 0 establishing the result.
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