MANCHESTER
1824

The University of Manchester

Economics
Discussion Paper
Series

EDP-2501

Evolutionary Finance:
Models with Long-Lived Assets

Zerong Chen

October 2025

Economics

School of Social Sciences
The University of Manchester
Manchester M13 9PL



Evolutionary Finance: Models with Long-Lived
Assets

Zerong Chen*

Abstract. Evolutionary Finance explores the "survival and extinction"
questions of investment strategies (portfolio rules) in the market selection
process. It models the stochastic dynamics of financial markets based on
behavioral and evolutionary principles, where asset prices are determined
endogenously by short-run equilibrium between supply and demand, aris-
ing from the interaction of competing portfolio rules. This paper presents
a survey of developments in Evolutionary Finance with a focus on long-
lived, dividend-paying risky securities, where the budget of each investor
comes from asset dividends and capital gains. We review several key mod-
els in this area addressing the following problems in order: 1) the most
general results under the most general assumptions; 2) global evolution-
ary stability under restrictive assumptions; 3) viewing the model from
a different, game-theoretic, perspective and examining almost sure Nash
equilibrium strategies under restrictive assumptions. A central goal of the
study is to identify an investment strategy that allows an investor to sur-
vive in the market selection process, i.e., to keep with probability one, a
strictly positive, bounded away from zero share of market wealth over an
infinite time horizon, irrespective of the strategies used by other investors.
The main results are under general assumptions, such a survival strategy
— an analogue of the famous Kelly rule of “betting one’s beliefs” — exists
and is asymptotically unique (within a specific class of strategies called
basic). Moreover, under the required stronger assumptions, the Kelly rule
is globally evolutionarily stable and is the unique investment strategy that
forms a symmetric Nash equilibrium almost surely.
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1 Introduction

Conventional models of equilibrium and dynamics of asset markets are based on
the classical Walrasian general equilibrium theory (see Magill and Quinzii [75]),
which relies upon the hypothesis of full rationality of market players, who are
assumed to maximize their utilities or preferences subject to budget constraints
(i.e., well-defined and precisely stated constrained optimization problems). In
contrast, the present work in the field of Evolutionary Finance (EF)! relaxes
these assumptions and develops an alternative equilibrium concept — behavioral
equilibrium — admitting that traders/investors may be boundedly rational and
have a whole variety of patterns of behavior determined by their individual
psychology, not necessarily describable in terms of utility maximization. Strate-
gies may involve, for instance, mimicking, satisficing, rules of thumb (based on
experience), etc.; and, might be interactive: depending on the behaviour of
the others, and relative: taking into account the comparative performance of
the others. This approach overcomes several drawbacks of traditional theory,
particularly by eliminating the need for the “perfect foresight” assumption to
establish equilibrium and the reliance on knowledge of unobservable individual
utilities and beliefs. In this sense, it opens new possibilities for the modern
financial markets modeling, especially on the global level, where the main ob-
jectives might be of an evolutionary nature: domination in a market segment,
fastest capital growth, or simply survival (especially in crisis environments), etc.

EF models, through a game-theoretic lens, combine elements of the theory
of stochastic dynamic games and evolutionary game theory. The former of-
fers the general notion of a strategy and the latter suggests the game solution
concept: survival strategies. The process of market dynamics is described as a
sequence of consecutive short-run equilibria: aggregate market demand of each
asset is equal to its supply, where equilibrium asset prices in each period are
endogenously determined by the interaction of general, adaptive portfolio rules
employed by competing investors, depending on the exogenous random factors
and observed history of the game. Uncertainty in asset payoffs at each period
is modeled via an exogenous discrete-time stochastic process that governs the
evolution of the states of the world, which aims to capture various macroeco-
nomic and business cycle variables that may affect investors’ behavior. There
are two fundamental types of models in EF: with short-lived (one-period) as-
sets and long-lived dividend-paying assets, see, e.g., Amir et al. [6] and [4],
respectively. For a recent comprehensive survey of developments in models with
short-lived assets, see Chen [29]. This paper focuses on models of the latter
type, where assets pay dividends that are random and depend on the process
of exogenous “states of the world,” and the budget of each investor comes from
the dividends paid by the assets and capital gains. Price changes and dividend

ISurveys describing the state of the art in EF were given in Evstigneev et al. [39, 41]
and an elementary textbook treatment of this subject can be found in Evstigneev et al. [40],
Chapter 20. For a most recent review of the development of studies related to this area see
Holtfort [58]. General perspectives of a synthesis of behavioral and mainstream economics
based on the evolutionary approach are discussed in Aumann [12].



payments of securities induce wealth dynamics among investors using different
investment strategies (portfolio rules) in the market. These dynamics act as a
natural selection force among the portfolio rules: some prove to be successful
and “survive,” accumulating a positive fraction of total market wealth in the
limit, while the others fail and “become extinct,” with their share of market
wealth tending to zero.

The main focus of the study is to identify investment strategies that guar-
antee “long-run survival” in the market selection process, i.e., to keep with
probability one, a strictly positive, bounded away from zero share of market
wealth over an infinite time horizon, irrespective of what strategies adopted by
others. Typical results demonstrate that such strategies exist — in particular, a
survival strategy can be formulated as the counterpart of the Kelly [60]*> port-
folio rule in the present framework — and that they are asymptotically unique
(within a specific class of strategies called basic) as well as easily computable.
The computations do not require, in contrast with the classical Walrasian para-
digm, the knowledge of hidden agents’ characteristics such as individual utilities
and beliefs.

EF integrates modeling principles originating from the following disciplines:
(i) behavioral economics and finance — Tversky and Kahneman [99], Shleifer
[95], Shiller [94], Thaler [98], Bachmann et al. [14]; (ii) evolutionary economics
— Alchian [1], Penrose [82], Nelson and Winter [81]; (iii) evolutionary game
theory — Maynard Smith and Price [79], Maynard Smith [78], Schaffer [88, 89],
Weibull [101], Vega-Redondo [100], Samuelson [85], Hofbauer and Sigmund [57],
Kojima [62], Gintis [46], Sandholm [87]; (iv) games of survival — Milnor and
Shapley [80], Shubik and Thompson [96]*; (v) evolutionary econophysics —
Arthur et al. [9], Blume and Easley [21], Farmer and Lo [44], LeBaron et al.
[67]; (vi) capital growth theory — Shannon [93], Kelly [60], Breiman [26], Algoet
and Cover [2], Cover [31], Dempster et al. [33], MacLean et al. [73], and others.

Evolutionary ideas have a long history in the social sciences going back to
Malthus, who played an inspirational role for Darwin.* A more recent stage of
development of these ideas began in the 1950s with the publications of Alchian
[1], Penrose [82] and others. A powerful momentum to work in this area was
given by the interdisciplinary research conducted in the 1980s and 1990s under
the auspices of the Santa Fe Institute in New Mexico, USA, where researchers of
different backgrounds — economists, mathematicians, physicists and biologists
— combined their efforts to study evolutionary dynamics in biology, economics
and finance; see, e.g., Arthur et al. [10], Farmer and Lo [44], LeBaron et al.
[67], Blume and Easley [21], Blume and Durlauf [20].5

2The state of the art in this area related to the Kelly investment criterion is surveyed by
MacLean et al. [73].

3For a comprehensive discussion of game-theoretic aspects of EF in a different but closely
related model (i.e., short-lived assets) see Amir et al. [6], Sections 1 and 6.

4For a review of this subject see, e.g., Hodgeson [56].

5For other fundamental contributions to the evolutionary modeling of financial markets,
see, e.g., Anderson et al. [7], Bottazzi et al. [24, 25], Bottazzi and Dindo [22, 23], Brock et al.
[27], Coury and Sciubba [30], Farmer [42], Lo [68, 69, 70, 71], Lo et al. [72], Sciubba [91, 92]
and Zhang et al. [103].



The focus on the “survival and extinction” of investment strategies in the
market selection process connects the research to evolutionary game theory,
which was initially designed for modeling biological systems and later found
fruitful applications in economics. The concept of a survival portfolio rule, stable
within the market selection process, is akin to the concepts of evolutionary stable
strategies (ESS) introduced by Maynard Smith and Price [79], and Schaffer [88,
89]. However, there are radical differences of the market selection mechanism
in EF from the typical schemes in evolutionary game theory, where species or
agents undergo repeated random matchings in large populations, leading to their
long-run survival or extinction.

The closest game-theoretic models to the setting of EF are those in capital
growth theory considered by Bell and Cover [18, 19], which demonstrate the
Kelly portfolio rule as “competitively optimal,” established via an appropri-
ate zero-sum game.5 However, there are two crucial differences among them: 1)
their models assume exogenous asset prices within a standard framework of cap-
ital growth theory, while EF extends that theory to a setting with endogenous
price formation mechanism; 2) the fundamental game solution concept adopted
in EF is defined in terms of a property holding almost surely, rather than the
traditional notion of a Nash equilibrium involving payoff maximization (defined
in terms of expectations).

This paper surveys following models with long-lived assets (LLA):

Firstly, we present a model with the most general results under the most gen-
eral assumptions. The first paper on the LLA model was proposed in Evstigneev
et al. [37], and the first substantial results were obtained in Amir et al. [4].
These results are all covered by Evstigneev et al. [35], which will serve as the
foundation for the analysis that follows. The main results show that under very
general assumptions, a survival strategy exists, is asymptotically unique (within
a specific class of strategies called basic), and is easily computed by solving a
stochastic equation.

Then, we examine the globally evolutionarily stable strategies under much
stronger assumptions, including: independent and identically distributed (i.i.d.)
states of the world, a restriction to the simple (fixed-mix) and completely-mixed
portfolio rules, the same investment rate for all the assets at all dates, and the
supply of each asset is constant over time, etc. In this setting, it is shown that
there is a unique portfolio rule with this property (i.e., the Kelly rule) such that
those and only those investors who belong to the group of investors adopting
this strategy survive, whereas all the others employing distinct rules from the
Kelly rule become extinct, regardless of the initial state of the market.

Further, we view the model from a different, game-theoretic, perspective
and treat the decision-theoretic framework as a game in which the payoffs of

6For related research in capital growth theory, see Kelly [60], Latané [65], Breiman [26],
Algoet and Cover [2], Hakansson and Ziemba [50], MacLean et al. [73], Kuhn and Luenberger
[63], Ziemba and Vickson [104], MacLean and Ziemba [74], etc. For the history of these ideas
initially expressed by Claude Shannon in his lectures on investment problems [93], and for
relevant discussions, see Cover [31]. For textbook treatments towards capital growth theory,
see Cover and Thomas [32], Chapter 16; Evstigneev et al. [40], Chapter 17.



the players (investors) are defined in terms of the growth rates of their relative
wealth. The analysis is conducted under restrictive assumptions, e.g., i.i.d.
states of the world, simple (fixed-mix) portfolio rules, and the same investment
rate for all the assets. The results show that in the game under consideration
the Kelly rule forms a unique symmetric Nash equilibrium almost surely.

The paper is organized as follows. Section 1 delivers an introduction for
this research direction — EF with long-lived assets. Section 2 presents the
model under general assumptions. Section 3 studies the main results of this
model. Section 4 analyzes the property of global evolutionary stability under
more restrictive conditions. Section 5 treats the model from a game-theoretic
perspective (Nash equilibrium in a certain dynamic game). Section 6 discusses
the modeling approach, characteristic features and applications of EF. And
Section 7 concludes.

2 The Model under General Assumptions

In Sections 2 and 3, we review the study by Evstigneev et al. [35], an EF
model for long-lived assets with the most general results under the most general
assumptions.

Asset Market Settings. We consider a market where K > 2 risky assets
(securities) are traded. The market is influenced by random factors modeled in
terms of an exogenous stochastic process s1, ss, ..., where s; is a random element
of a measurable space S; (“state of the world” at date t). The market opens at
date 0 and the assets are traded at all moments of time ¢ = 0,1,2,.... At each
date t = 1,2, ..., assets k = 1,..., K pay dividends D; ;(s') > 0 depending on
the history s := (s1,..., ;) of states of the world up to date t. The functions
Dy (s') (as well as all other functions of s* we will consider) are assumed to be
measurable with respect to the product o-algebra in the space S7 x ... X .Sy and
satisfy

K
ZDt7k(st) >0 for all t > 1 and s. (1)
k=1

This condition means that at each date in each random situation at least one
asset yields a strictly positive dividend. The total volume (the number of units)
of asset k available in the market at date ¢t > 1 is V; x(s*) > 0, where V, j(s") is
a measurable function of st. For t = 0, the number Vik = Vo,i > 0 is constant.

We denote by p; € Rf the vector of market prices of the assets. For each
k = 1,..,K, the coordinate p,r of p, = (pr1,...,pt, i) stands for the price
of one unit of asset k at date t > 0. There are N > 2 investors (traders)
acting in the market. A portfolio of investor i at date t > 0 is specified by a
vector z} = (z} ,, ,x;K) € RE, where x;k is the amount (“physical units”)
of asset k in the portfolio #i. All the coordinates of the vector z! are non-
negative: borrowing and short sales are ruled out. The scalar product (p;, z¢) =
Zszl ptykxf;’k expresses the value of the investor i’s portfolio ¢ at date t in
terms of the prices p; ;. The state of the market at each date ¢ is characterized



by the set of vectors (py, z}, ...,z ), where p; is the vector of asset prices and
x}, ...,z are the traders’ portfolios.
At date t = 0 the investors have initial endowments wly > 0 (i = 1,...,N),

which form their budgets at date 0. Investor i’s budget at date ¢ > 1 is
wi(s") = (De(s") + pe(s"), 211 (7)),

where Dy(s') = (Dy1(s),..., Dy k(s')). It consists of two components: the
dividends (Dy,zi_;) paid by the portfolio zi_; and the market value (p;, i ;)
of z_, expressed in terms of the prices p; = (pt1, ..., pr. i) at date .
Investment Strategies. For each ¢ > 0, every trader i = 1,2, ..., N selects
a vector of investment proportions A: = ( ;17...&\;[() according to which ¢

plans to distribute the available budget between assets. Vectors )\i belong to
the unit simplex

AR = {(a1,...,ax) >0: a1 + ... +ax = 1}.

In terms of the game we are going to describe, the vectors )\i represent the
players’ (investors’) actions or control variables. The investment proportions at
each date t > 0 are selected by the N traders simultaneously and independently,
so that we deal here with a simultaneous-move N-person dynamic game. For
t > 1, players’ actions might depend, generally, on the history st = (sq, ..., s;) of
the realized states of the world and the history of the game (p'~%, at=1, )\t_l),
where p'~1 = (po, ..., pr_1) is the sequence of asset price vectors up to time ¢ —1,
and

o= (X0, @1, ey Xe1), T = (xll,...,mfv),

Atil = ()\07A1,...,)\t—1)7 )\l = ()\llv ’)\ZJV)7

are the sets of vectors describing the portfolios and the investment proportions
of all the players at all the dates up to ¢ — 1. The history of the game contains
information about the market history — the sequence (po, o), ..., (Pt—1,Tt—1) of
the states of the market — and about the actions A} of all the players (investors)
i=1,...,N at all the dates | = 0,...,t — 1. A vector A} € AX and a sequence of
measurable functions with values in AX

Ai(st,pt_lwt_l, )\t_l), t=1,2,..

form an investment (trading) strategy A* of trader i, specifying a portfolio rule
according to which trader ¢ selects investment proportions at each date ¢t > 0.
This is a general game-theoretic definition of a strategy, assuming full informa-
tion about the history of the game, including the players’ previous actions, and
the knowledge of all the past and present states of the world.

Among general portfolio rules, we will distinguish those for which A! depends
only on s’, rather than on the whole market history (p'~*, 2*~1, )\t_l). We will
call such portfolio rules basic. They play an important role in the present
work: the survival strategy we are going to construct will belong to this class.
The essence of the main result (Theorem 2) lies in the fact that it indicates a



relatively simple basic strategy, requiring a very limited volume of information
and guaranteeing survival in competition with any other strategies which might
use all theoretically possible information.

Transaction Costs. For each asset £ = 1,..., K, a sequence of functions
0.k, 01 k(81), g k(s%), ... is given to characterize transaction costs for buying
asset k in the market under consideration. It is assumed that 0 < oy < 1. If
an investor ¢ allocates wealth w; i, to asset k at time ¢, then the value of the kth
position of the i’s portfolio will be pukxﬁ’k = ozt,kw;k. The amount (1 —ozt,;g)w;k
will cover transaction costs.

Consecutive Short-run Equilibria. Suppose that at date 0 each investor
¢ has selected some investment proportions )\é = ( 6,1, ""Ag,K) € AKX, Then
the amount allocated to asset k by trader i is )\f)’kwf), where w > 0 is the 4’s
initial endowment, so that the value of the holding of asset k in the ¢’s portfolio
is o,k A pwh. Thus the value of the total holding of asset & in all the investors’
portfolios amounts to ag x Zf\; )\67 R Wh. It is assumed that the market is always

in equilibrium (asset supply is equal to asset demand), which makes it possible
to determine the equilibrium price pg ; of each asset k from the equations

N
pO,kVO,k = Oéo,k Z A&,ﬁué, k = 1, ceey K. (2)

i=1
On the left-hand side of (2) we have the total value po Vp i of all the assets
of type k in the market (recall that the total amount of asset k at date 0 is
Vo,k)- The investment proportions Ay = (A 1,..-, A\g i) chosen by the traders
i =1,..,N at date 0 determine their portfolios zf = (zf 1, ...,z{ r) at date 0
by the formula
O‘O,k)‘é,kwé

Top = ——""", k=1,.,K, i=1,...,N. (3)
Do,k

Assume now that all the investors have chosen their investment proportion
K3

vectors Al = ( E1s s )\;K) at date ¢ > 1. Then the equilibrium of asset supply
and demand determines the market clearing prices

N
PeaVerk = ek Y AN p(Di+peaj_y), k=1, K. (4)
i=1
The investment budgets (D; +ps, 2¢_,) of the traders i = 1, ..., N are distributed
between assets in the proportions )\iyk, so that the kth position of the trader ¢’s
portfolio z} = (z} ,, ,xiK) is
o A (Ds 4 i)

Ty = ,k=1,..,.K, 1=1,...,N. (5)
Ptk

Note that the price vector p; is determined implicitly as the solution to the
system of equations (4).



Growth of Asset Supply. Define

%,k(st) = VtVf:Ezt)l) (6)

The number v, characterizes the speed of growth of the total volume V; j of
asset k. It can be shown that a non-negative vector p;(s') satisfying equations
(4) exists and is unique (for any s and any feasible 2! | and \!) as long as the
following condition holds

ap (s') <y p(s') for all £ > 1 and all s*. 7 (7)

This condition is implied by the basic assumptions under which the results
of this model are obtained. Note that if there are no transaction costs, i.e.,
oy, = 1, then (7) means that the total volumes of all the assets grow in time
at a strictly positive rate. In another extreme case, when v, , = 1, i.e., Vi is
constant in ¢, condition (7) requires that a; j < 1, i.e., the transaction cost rate
is non-zero. This property — termed in Mathematical Finance "efficient market
friction" (see, e.g., Kabanov and Safarian [59], p. 117) — plays an important
role in various models with transaction costs, excluding phenomena like the
Saint Petersburg paradox. In our context it is indispensable since in those cases
when this assumption does not hold, a short-run equilibrium might fail to exist.
Asset Market Dynamics. Given a strategy profile (A!, ..., A™V) of investors
and their initial endowments w{, ..., w)’, we can generate a path of the market

game by setting '
o=Aj, i=1,..,N, (8)

Moo= Al pt Nt =1,2,., i =1,.., N, (9)

and by defining p; and z! recursively according equations (2)—(5). The random
dynamical system described defines step by step the vectors of investment pro-
portions A (s?), the equilibrium prices p;(s*) and the investors’ portfolios z(s?)
as measurable vector functions of st for each moment of time ¢t > 0. Thus we
obtain a random path of the game

(pe(s"); 2t (), ey Y () A0 (51), o, AT (8)), 820, (10)

as a vector stochastic process in Rf X ]RfN X RfN.

Admissible Strategy Profile. The above description of asset market dy-
namics requires clarification. Equations (3) and (5) make sense only if p; ; > 0,
or equivalently, if the aggregate demand for each asset (under the equilibrium
prices) is strictly positive. Those strategy profiles which guarantee that the
recursive procedure described above leads at each step to strictly positive equi-
librium prices will be called admissible. In what follows, we will deal only
with such strategy profiles. The hypothesis of admissibility guarantees that the

"For the proof of this result see Evstigneev et al. [35], Section 5, Proposition 1.



random dynamical system under consideration is well-defined. Under this hy-
pothesis, we obtain by induction that on the equilibrium path all the portfolios
xy = (Ty 1, Tp ) are non-zero and the wealth

wi := (D¢ + pg, w}_1) (11)

of each investor is strictly positive. Further, by summing up equations (5) over
1=1,..., N, we find that

N .
Z o kY img A (Dt + pes T 1) _ Dtk Vi k

= Vik (12)
Dtk Ptk

)

(the market clears) for every asset k and each date ¢ > 1. The analogous
relations for ¢ = 0 can be obtained by summing up equations (3). Thus for
every equilibrium state of the market (p,z}, ...,z ), we have p; > 0, 2t # 0
and (12).

There is a simple sufficient condition for a strategy profile to be admissible.
This condition will hold for all the strategy profiles we shall deal with in this
model, and in this sense it does not restrict generality. Suppose that some trader,
say trader 1, uses a portfolio rule that always prescribes to invest into all the
assets in strictly positive proportions )\tl,k. Then a strategy profile containing
this portfolio rule is admissible. Indeed, for t = 0, we get from (2) that po; >
a0k Vo Ao pwp > 0 and from (3) that 2§ = (¢f 1, ..., 7 ) > 0 (coordinatewise).
Assuming that z}_; > 0 and arguing by induction, we obtain

(D¢ +pe, i) > (Dy, 1) >0

in view of (1), which in turn yields p; > 0 and z; > 0 by virtue of (4) and (5),
as long as )\tlyk > 0.

3 The Main Results on Survival Strategies

The main results of Evstigneev et al. [35], show that under very general as-
sumptions, a survival strategy exists, is asymptotically unique (within a specific
class of basic strategies) and easily computable. Now this strategy is defined as
a solution to a certain stochastic equation, in contrast with the previous, more
specialized, models (e.g., Evstigneev et al. [37], Amir et al. [4], etc.) where it
could be represented in an explicit form as the sum of a convergent series. For
the proof of the existence and uniqueness of this solution, new mathematical
tools related to the ergodic theory of random dynamical systems: non-stationary
stochastic Perron-Frobenius theorems® were developed.

These results are collected as follows:

Let (A',...,AY) be an admissible strategy profile of the investors. Consider
the path (10) of the random dynamical system generated by this strategy profile

8TFor stationary versions of these results see, e.g., Babaei et al. [13].



and the given initial endowments wj. We are primarily interested in the long-
run behavior of the market shares ri := wi/W; of the traders, where w} is the
investor ¢’s wealth at date ¢ > 0 and W, := vazl w! is the total market wealth.
We shall say that a portfolio rule A, or an investor ¢ using it, survives with
probability one if

inf r; > 0 (a.s.).

infr; >0 (as)
This means that for almost all realizations of the process of states of the world
81, S2, ..., the market share of investor ¢ using A is bounded away from zero by
a strictly positive random variable.

Definition 1 A portfolio rule A is a survival strategy if any investor using it
survives with probability one irrespective of what portfolio rules are used by the
other investors.

A strategy A* is constructed, which will be shown to be a survival strategy.

Put v
At | At | Vi—1k
Py pi= 2 = TBRIEELE s k=1, K.
t,k ’7t7k ‘/t,k IR}

Define the relative dividends of the assets k = 1, ..., K by

Dy o (s))Vi1 i (s'71)
S D () Vi1 (s171)

and put Ry(s') := (Ry1(s"), ..., Re ik (s')). The strategy A* = (A} (s"))i>0, where
Af = (M1, Afx), is defined as the basic strategy satisfying the equation

Ruk = Rt,k(st) =

t>1, k=1,..,K, (13)

K
Et[pt+1,k)‘:+1,k+(17 Z pt+1,m./\’tk+1,m)Rt+1,k] = A:,k (a.s.), k= 15 7K (14)

m=1

Here E;(-) = E(+|s") stands for the conditional expectation given s‘. Conditions
are provided below under which the strategy A* exists and is unique up to
stochastic equivalence, i.e., if A = (A(s"))¢>0 is another solution to (14), then
A =\ (a.s.) for all ¢.
We will assume that the following conditions hold:

(A.1) There exist constants v > 0 and ! > 0 such that for each ¢ and k, we
have

12173}%1&*””””“ > 0. (15)

(A.2) There exist strictly positive constants x and « such that for all k,¢:
a<p<1—k (16)

Theorem 1 Under assumptions (A.1) and (A.2), a solution (X} )i>o to equa-
tion (14) exists and is unique up to stochastic equivalence. There exists a con-
stant § > 0 such that \j , > 0.

10



Let us discuss the meaning of equation (14). Suppose for the moment that
the growth rates of all the assets are the same, so that

Pt = Pe2 = -+ = Pr,k = Pt (17)

In this case, equation (14) takes on the following form

Et[pt+1)‘:+17k + (1 - Pt+1)Rt+17k] = )‘;k (a.s.), (18)

and it admits an explicit solution. The kth coordinate A; ; of the vector A\; can
be represented as the conditional expectation of the sum of the series

AN =EY piRisik (19)
=1

where
pl;:{ 1= prays if =1,
K Pi+1Pit2.. Prri—1(1 = peyy), 1> 1

Note that in view of (16), the series of random variables

(20)

o0
ZP% = (1= py1) + P11 = pry2) + prsaPra(l — prys) + -
=1

converges uniformly, and its sum is equal to one. Therefore the series of random

vectors Y 0, ph Rty k in (19) converges uniformly to a random vector belonging

the unit simplex AX | so that the right-hand side of (19) is well-defined.’
Assume that p, = p is constant. Then formula (19) can be written as

Ay =E Y [(1=p)p' " Riyil- (21)
=1

Further, if the random elements s; are independent and identically distributed
(i.i.d.) and the relative dividends Ry (s') = Ry(s:) depend only on the current
state s; and do not explicitly depend on ¢, then E;Ry(st41) = ER(s:) (1 > 1),
and so

e = ERi(st), (22)

which means that the strategy A* is formed by the sequence of vectors (E Ry (st),
...y ERk(s¢)) (constant and independent of ¢ and s'). Note that in this special
case, the formula (22) for A* does not involve the factor p.

Formulas (19), (21) and (22) reflect two general principles in Financial Eco-
nomics:

1) The strategy A* prescribes the allocation of wealth among assets in the
proportions of their fundamental values — the expectations of the future relative
(discounted, weighted) dividends.

9The derivation of equation (19) is given in Evstigneev et al. [35], Section 5, Proposition
5.
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2) The portfolio rule A* defined in terms of the relative dividends provides
an investment recommendation in line with the CAPM principles, emphasizing
the role of the market portfolio (see, e.g., Evstigneev et al. [40], Chapter 7).

In this connection it should be emphasized that instead of the traditional
weighing assets according to their prices, the weights in the definition of A*
are based on fundamentals, so that A* is an example of fundamental indexing
(Arnott et al. [8]).

As we have already noted, EF can be viewed as an extension of the classical
capital growth theory (Kelly [60], Breiman [26], Algoet and Cover [2], and oth-
ers) to the case of endogenous asset prices and returns. In the classical setting,
a central role is played by the famous Kelly portfolio rule [60] guaranteeing the
fastest asymptotic growth rate of wealth in the long run. The Kelly rule is
obtained by the maximization of the expected logarithm of the portfolio return.
It will be shown in Section 6, Proposition 4 that in the present model survival
is equivalent to the fastest relative growth of wealth in the long run. Therefore
A* may be viewed as a counterpart of the Kelly portfolio rule in the present
model. However, in the game-theoretic model at hand, where the performance
of a strategy depends not only on the strategy itself but on the whole strat-
egy profile, A* cannot be obtained as a solution to a single-agent optimization
problem with a logarithmic or any other objective functional.

It should be noted that in the case of different p, ,, when condition (17)
does not hold, we cannot provide an explicit formula, like (19), for the strategy
A*. However, we can suggest an algorithm for computing A* converging at
an exponential rate. This algorithm is actually contained in the proof of the
existence and uniqueness of a solution to equation (14), see Evstigneev et al.
[35], Appendix B, formulas (B.9) and (B.10).

The main results of the study are formulated in Theorems 2 and 3.

Theorem 2 The portfolio rule A* is a survival strategy.

As we have already noted, the portfolio rule A* belongs to the class of basic
portfolio rules: the investment proportions A} (s!) depend only on the history s
of the process of states of the world and do not depend on the market history.

Note that the class of basic strategies is sufficient in the following sense. Any
sequence of vectors 7y = (r},...,7N) (r; = r4(s?)) of market shares generated
by some strategy profile (A!,...,A™) can be generated by a strategy profile
(A (s, ..., )\iv (s!)) consisting of basic portfolio rules. The corresponding vector
functions A}(s') can be defined recursively by (8) and (9), using (2)—(5). Thus
it is sufficient to prove Theorem 2 only for basic portfolio rules; this will imply
that the portfolio rule (14) survives in competition with any, not necessarily
basic, strategies.

The following result shows that the survival portfolio rule A* is unique in
the class of all basic strategies.

Theorem 3 If there exists another basic survival strategy A = (\y), then:

ZH/\Z‘ —M||? < 00 (a.s.).
=0

12



It is not known whether this result remains valid for the class of general, not
necessarily basic, strategies. This question remains open; it indicates an inter-
esting direction for further research. Some examples pertaining to a different,
but closely related, model (i.e., short-lived assets) might suggest a conjecture
that the answer to this question is negative (see Amir et al. [6], Section 5).

The proofs of Theorems 1-3 are lengthy, consisting in several steps. We
outline these steps in this survey, for the details of the arguments see Evstigneev
et al. [35], pp. 126-134.

The plan of the proof of Theorem 1 is as follows.

The purpose of the proof is to show the results formulated in Step 2 below,
which implies the existence and uniqueness of the A* strategy. We will deduce
the results in Step 2 from Step 1, which represents a non-stationary version of
the stochastic Perron-Frobenius theorem. In turn, the results in Step 1 will be
obtained as a consequence of a chain of auxiliary results formulated in Lemmas
1-2 and Propositions 1-3 below.!”

Denote by M™ (n > 1) the set of n x n matrices B > 0 such that Bz # 0
forall . € Q := {x : 0 # 2 > 0}. For z = (z},...,2") € R", define ||
= |zl + ... + |27, 2° = x/|z|, and, for B € M", put

~(B) = max |(Bz)° - (By)".

Let ¢(B) denote the ratio of the smallest and the greatest elements of matrix
B.

Lemma 1 Let By, Bs,..By, € M™. If B; >0 andn > 1, then
Ii(Bk-...Bl) S pflél...ék_l,

where
Pi = n_2¢(Bi)¢(Bi+1)v 6; = (1—2p;).
Put A = {z = (21,...,2,) : ; > 0, Y x; = 1}. Let D" denote the set
of matrices B in M™ representing linear transformations of R™ that map A

into itself. For § > 0 we will denote by Dy the set of matrices B € D™ whose
elements are not less than §.

Lemma 2 Let By, By, ..., B, € D}. Then
#(By...By) < MpF=1,
where M =n26"2 and p=1—n"25°.

Let Bq, Bs, ... be a sequence of matrices in D".

10For the proofs of Lemmas 1-2 and Propositions 1-3, see Evstigneev et al. [35], Appendix
B.
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Proposition 1 There exists a sequence (y; )i>o0 such that yf € A and
yi = Bt+1y2‘+1, t>0. (23)

For each t > 1 and j > 0 denote B{*/ = B,...B;, ;. For any y = (y;) € A®
denote by B7"(y) the tth term of the sequence B (y) € A, where B (y) is
the mth iterate of the mapping B. Clearly, if we put yJ* = B"(y) (¢ > 0), then

1 _ _ t+1 2 1 _ _ t+2
Yr = Bit1yer1 = By, Yp = Beyyiyr = By Bipoyir2 = B Y42, -
t
y!" = Biy1Biio. . BiymYiim = B Yigm, t > 0.

Proposition 2 Suppose there exist an integer | > 0 and a real number § > 0
such that for any t > 1 the matrix Bf“ belongs to Dy. Then the solution
y* = (yf)t>0 to equation (23) is unique, and for every t > 0, the sequence
yir = B (y) converges to yi uniformly in y € A,

Suppose that the matrices By = By(w) € D™ are random, i.e., By(w) for each
t =1,2,... is a measurable matrix function on the probability space (2, F, P).
Assume the following condition holds:

(B) For some I > 0 and § > 0, the matrix B! (w) belongs to D almost
surely for all ¢t > 1.

Proposition 3 Under assumption (B), there exists a sequence (y; )i>o of mea-
surable vector functions y; (w) with values in A such that

Byl =yi, t >0 (a.s.). (24)

The solution (y;)i>0 to equation (24) is unique, and we have y;(w) > de (a.s.).
There exists a set Q1 € F with P(Qq) = 1 such that for everyt > 0 and w €
the sequence y;"(w) = B (y)(w) converges to y;(w) uniformly in y € A>.

Proof of Theorem 1 (Outline). 1st step. Let Aj(w), Az(w), ... be a sequence of
random matrices. Consider the following condition:

(A) For each t > 1, the matrix A;(w) depends Fy-measurably on w, and
there exist [ > 0 and § > 0, such that the matrix A7(w) == A (w)...A41(w)
belongs to D§ almost surely for all ¢ > 1.

By virtue of Lemmas 1-2 and Propositions 1-3, this step aims to establish
the following result:'!

Under assumption (A), there exists a sequence (x} (w))¢>0 of vector functions
with values in A such that z}(w) is Fy-measurable and

EtAH_le_l = Ir (a.s.), t> 0. (25)
This sequence is unique up to stochastic equivalence, and we have

x; > de (a.s.). (26)

' For the proof of this result, see Evstigneev et al. [35], Appendix B, Theorem B.1.
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2nd step. Let (p;)i>1 be a sequence of Fy-measurable random vectors p, =
(Pt,15 -+ Ptn) Such that 0 < p, ; <1, and (R;)s>1 a sequence of JF;-measurable
random vectors Ry = (Ry1,..., Ry ;) satisfying Ry > 0, > | Ry; = 1. Recall
that A* was defined as the solution to equation (14). To prove that this solution
exists and is unique let us define for each ¢ > 0 the linear operator A;y1:

(A1) = pryrii + (O T — > pry1m®m) Risi
m=1

m=1
n

= Pry1,:Ti + Z (1= pry1m)TmBugr,i

m=1

This operator transforms A into itself, and for x € A we have

n
(At+12)i = ppyg iTes1 + (1= Z Prot,mTt+1,m) Rt 1,i-

m=1

Consequently, equation (14) can be written in the form (25) (with obvious
changes in notation). Let us introduce the following condition:

(R) There exist constants v > 0 and ! > 0 such that for each ¢ and i, we
have

Ry s > . 27
X Repmi 27 (27)

Based on Step 1, the objective of this step is to conclude that:'?

Suppose that condition (R) holds and there exists a constant § > 0 such that
min{p, ;, 1 — p;41,;} > 0 for all ¢ and i. Then a solution (z});>0 to equation
(25) exists, is unique up to stochastic equivalence, and satisfies (26) for some
0>0.m

The plan of the proofs of Theorems 2-3 is as follows.

1st step. The system of equations governing the wealth dynamics of in-
vestors given their admissible strategy profile (A, ..., AV) can be expressed in
the following form:

K

Wiy = Z(pt+1,k<)‘t+1,k7wt+1> + Dt+1,kv;f,k)<7
k=1

i=1,.,N, t>013

(28)

2nd step. 1t is sufficient to consider, without loss of generality, the case of two
investors. This reduces the dimension of the original random dynamical system
from a general N to N = 2. Consider the model with two traders (N = 2) using

12For the proof of this result, see Evstigneev et al. [35], Appendix B, Theorem B.2.
I3For the proof of this result, see Evstigneev et al. [35], Section 5, Proposition 2.
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strategies A’ = (Ai,k(st)), i = 1,2, and denote by z; the ratio of their market
shares:

o= T W
TR w
Further, let us define for i =1, 2,
K K
Utl—i-l =1- Zpt-&-l,k)‘;-&-l,k- = Z(l - pt-&-l,k))‘;—&-l,k- .
k=1 k=1
In the model with two investors i = 1,2 using the strategies A and A,

respectively, the wealth w; of the first player coincides with the wealth w;} of the
first player in the original model, and the wealth @3 of the second "aggregate"
investor coincides with the total wealth w? + ... + w{¥ of the group of N — 1
investors ¢ = 2, ..., N in the original model.'*

3rd step. The sequence x; is generated by the following random dynamical
system

1
Atk
) 3
ALkt + AL
3
Af ke

1 2
)\t,kxt + )\t,k

K
Zk:l[pH»l,k)‘?Jrl,k + R,k UR ]

Ti41 = Tt (t = 0, 1, ) (29)

K 1
Yokt P 1k T Rern w Ul ]

It describes a one-dimensional system which governs the evolution of the ratio
z; = r}/r? of the market shares of the two investors, and thus reduces the
dimension of the problem to 1.1°

4th step. Our goal is to show that the random sequence (x¢);>¢ defined
recursively by (29) is bounded away from zero almost surely. To this end it
turns out to be convenient to take a “step back” and to increase the dimension
to K (the number of assets). Assuming that the first trader uses the investment
proportions /\}k = Af1(s") prescribed by the portfolio rule A* and the second
trader employs investment proportions )‘ik = Atk (s") specified by some other
portfolio rule A, we introduce the following change of variables

yf = At,k/l‘t, k‘ = 1,...,K,

and define y; := (y},...,yX). We examine the dynamics of the random vectors
yr = y+(s') implied by the system (29). The norm |y| := >, |yr| of the vector
yr > 01is equal to >, (A¢k/x:) = 1/, and what we need is to show that 1/|y,|
is bounded away from zero (a.s.). To prove this, a stochastic Lyapunov function
— a function of y; which forms a non-negative supermartingale ({,) along a path
(y¢) of the system at hand (see Lemma 5 below) — is constructed. By using the
supermartingale convergence theorem, one can prove that the stochastic process
¢, converges (a.s.), which implies that it is bounded (a.s.).

M For the proof of this result, see Evstigneev et al. [35], Section 5, Proposition 4.
15For the proof of this result, see Evstigneev et al. [35], Section 5, Proposition 3.
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5th step. We complete the proof of Theorem 2 by showing that the bound-
edness of ¢, implies that x; = 1/|y:| is bounded away from zero. By using the
above techniques, together with some additional considerations, we complete
this section with an outline of the proof of Theorem 3.

The proofs of Theorems 2-3 are based on Lemmas 3-6 below.!

Let us define the non-negative random variables

Yi o= In(1+ yi]) = — v},
k

2)
Zip=In(1+2) = <1 + ok i’k) :
tk Tt >‘t,k

41 L +y211//\2k+1,m.

Voym = 7 L hyE )
k. 1+ yf/At,k
and a function (1)1
z—1)Inz
o ="—=55

Lemma 3 The function f(z) is non-negative, has a unique root x = 1 and
satisfies

x—1>Ilnz+ f(z), z € (—o0,+00).

Lemma 4 The following inequality holds:

K K K
Z )\I+1,th+17k + Z ZRt+1,k(1 - pt+1,m))‘:+l7mf ('Y?nll)

k=1 m=1 k=1

K K
< Z Prat e N1k Zth + Ul Z Riy1,12t k-

Put

K K K
Ct = /\:,th,k + Z Z Rt7k(1 - pt,rrL)/\:,mf (’ﬁg,m) . (30)
1

k= m=1k=1

Lemma 5 The sequence of random variables ¢, (t > 1) is a non-negative su-
permartingale, and we have

K K
Gt — By > Z ZRt,k(l - pt,m)Ar}mf ('72,m> >0 (a.s.). (31)

m=1 k=1

Lemma 6 Let (, be a supermartingale such that inf; E(, > —oco. Then the
series of non-negative random variables Y, (¢, — Ey(, ) converges (a.s.).

16For the proofs of Lemmas 3-6, see Evstigneev et al. [35], Appendix A.
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Proof of Theorem 2. By Lemma 5, the sequence ¢, defined in (30) is a non-
negative supermartingale. Therefore it converges (a.s.), and hence it is bounded
above (a.s.) by some random constant C":

C > Ct Z)\t thk + Z ZRtk pt m) tm-f (Vz,m)

m=1 k=1
K 2\
* * t \t,k
>3 A Zek = Z)\t,kln (1 + T ) :
k=1 k=1 £tk

Here, we used the non-negativity of the function f established in Lemma 3
and the non-negativity of the relative dividends Ry j, and A} ,,, and assumption
(A.2).

Recall that by virtue of Theorem 1, A{; > ¢ for any ¢, k. Therefore C'/d >
In (1 + 12Xk /Th f k) for all ¢, k, and there exists some random variable H such
that H > 1477\, /ri A7), for all ¢, k. Furthermore, there exists some k such
that A, > 1/K (since Zéil Aty = 1). For this k the following inequality
holds:

t,m»

H>1+

P2\ 2 2 1— gl
Tt Atk Tt ( Tt)
7*_14' = > 1+ =1+ -—=,
tltk )‘tkK tK Tth

which implies 7} > (K(H - 1)+ 1)1 =7. m
Proof of Theorem 8 (Outline).  1st step. Since investor 1 uses the strategy

A*, by virtue of Lemma 5 the sequence (, defined by (30) is a non-negative
supermartingale. In view of inequality (31) and Lemma 6, we obtain

oo K K
Z Z Z Rt,k pt,m))‘:,mf (’Yi:m) < 0,

t=0 m=1 k=1

which implies

m=1k=1

o K K

ZZZR“J ’ykm < 0, (32)
t=0

> x

since we have (1—p; ) > 0 by assumption (A.2), and A;,, > d. This step

aims to show that if (32) converges, then the following series converges as well:

oo K
5303 Ruslrhn =1 <. )

o K K
Z Z ZRU{ (" N — Y1/ M k)2 < o0. (34)
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3rd step. At this step, by using (34), we obtain:

oo K K
> Z S W N — )
t=0 m=1 k=1

This series can be estimated as:

SR E)
1 * *
—o \Tt =11 )‘t,nL )‘t,k
e’} 2 2 K 2

1 )\t,m )\t,k
>3 () D) 2

* *
t,m t,k

for each m. This fact will be used at the next step.
4th step. Next we prove the following estimate for the sum involved in (35):

K
ST e/ Mom = Ak /A k)" = /A —1)° (36)
k=1

Finally, by using (35) and inequality (36), we conclude

t=0 m=1 k=1

0 /.2 2 K At 2
>3 () 3 (R
t—o \'t m=1 )‘fvm

oo 7"2 2 K )\t,m_)\*m 2
£ £
t=0 t m=1 t,m

[e%s) 2 2 K

rt * 2

=D (1) 2 Gum =)
t=0 t m=1

[e%s) 2\ 2
=Z(T§) PYESHIE

t=0 \"t

APl
t=0

where ¢ > 0 is a random variable such that r?/r] > ¢, which exists because
A = (\;) is a survival strategy. m
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4 Globally Evolutionarily Stable Strategies

On the basis of the general results obtained, this section examines the work of
Evstigneev et al. [38] on globally evolutionarily stable portfolio rules (stronger
results) under stronger assumptions, which deals with a special case of the model
in which

(i) the states of the world s; are independent and identically distributed
(iid.), ie., s1,$2,... form a sequence of i.i.d. elements in S such that
the probability P{s; = s} is strictly positive for each s € S;

(ii) the relative dividends Ry j(s') = Ry(s¢) depend only on the current state
s¢ and do not explicitly depend on t;

iii) for each k = 1,..., K, the expectation ED; (s) is strictly positive, i.e.,
) y
ED (s') = EDg(s¢) > 0. This condition means that for each asset k the
probability that it pays a strictly positive dividend is strictly positive;!”

(iv) all the portfolio rules under consideration are restricted to simple/fized-
miz (prescribing to select investment proportions initially and remain
them fixed throughout the entire duration, independent of ¢ and s!) and
completely-mized (prescribing to assign a positive percentage of wealth

iyk(st) to each asset k = 1,..., K for all ¢ and s*) portfolio rules, i.e.,

Lk(s) = AL > 0;

(v) the supply of each asset in each moment of time V; ;, is constant and, for
simplicity, normalized to 1 (implying v, , = Vi x/Vi—1k = 1);

(vi) the same investment rate for all the assets at all dates, i.e., ay x is constant,
Q= p € (07 1);

(vii) the functions Rj(s),..., Rx(s) are linearly independent with respect to
the probability distribution of s; (the absence of redundant assets), i.e.,
the equality Y 6 Rk (s¢) = 0 holding almost surely for some constants 6y,
implies that 8, = ... =0 = 0.

Model Setup. We follow the same asset market settings as in the general
case, except that the stronger assumptions (i)—(vii) are imposed. The short-run
(temporary) equilibria that determine the equilibrium asset prices are charac-
terized by the following expressions:

e For date t = 0:

N
Dok = pZALwé, k=1,.. K. (37)
i=1

17Recall that in the general model we assume: Zszl Dy (s*) > Oforallt > 1 and s*, which
means that at each date in each random situation at least one asset yields a strictly positive
dividend. This assumption is fundamental and will also be imposed here: Zle Dy(s) >0
for alls € S.
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_ pawh

P ,k=1,.,K, i=1,..,N. (38)
’ Do,k
e For dates t > 1:
N .
Pk =p > MDi+pnai ), k=1,..K (39)
=1
, A (D i
gl =" WDt peTiod e 1N (40)
’ Dtk

From (39) and (40) we obtain

N N
Perik =P Y No(Pra1 + Degr,wh) = p )y Nawpyy = p(Ak, wera),

i=1 i=1
i P N
Ty = = ’
’ Ptk Ak, we)
and thus
L& x s
Wiy = Z[pt—i-l k+Dr(s41)] Z (A, wegr) + D (5¢41)] Oy i) (41)
k=1 k=1 ke T
By summing up these equations over ¢ = 1,..., N, we get
% N i
Dim1 AWy
Wi = A, W + Di(s == = -
141 ;[0( ko Wet1) + Di(se41)] O wn)
K K K
Z Meswi1) + Y Di(si41) = pWegr + > Di(se11),
k=1 k=1
which leads to the formula
2k—1 Dr(5t41)
Wis1 = 42
i = AL (42)
From (41) and (42) we find
. K Dk(8t+1) )\zw%’/Wt
Tiv1 = ) [Pk, rer1) + (1 —p) :
o ; Sy Dilserr)” (Pwwi) /Wy
Consequently, we arrive at the system of equations:
K i’ri
7ﬂilt+l = Z[p<)‘k7rt+1> + (1 - p)Rk(5t+1)] <)\: ;t>7 1= 1; "'7N7 (43)
k=1 ’
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where
Dy (s¢41)

Ykt Dilsia1)’
are the relative dividends of the assets k =1, ..., K.

Consistent with the general model, we are primarily interested in the long-
run behavior of the market shares of the investors, i.e., in the asymptotic prop-
erties of the sequence of vectors 7y = (r},...,7}) as t — oo.

Global Evolutionary Stability. An investment strategy, or a portfolio
rule, is called evolutionarily stable if the following condition holds. If a group
of investors uses this rule, while all the others use different ones, those and
only those investors who belong to the former group survive. If this condition
holds regardless of the initial state of the market, the investment strategy is
called globally evolutionarily stable. If it holds under the additional assump-
tion that the group of investors using other portfolio rules (distinct from the
one we consider) possesses a sufficiently small initial share of market wealth,
then the above property of stability is termed local. More precisely, the global
evolutionary stability is defined as follows:

Rk(5t+1) = ]{3 = 1, ...,K,

Definition 2 A portfolio rule A = (A1,..., Ak) is called globally evolutionarily
stable if the following condition holds. Suppose, in a group of investors i =
1,2,..,J (1 <J < N), all use the portfolio rule A, while all the others, i =

J +1,...,N use portfolio rules X' distinct from X. Then those investors who
belong to the former group (i = 1,...,J) survive with probability one, whereas
those who belong to the latter (i = J + 1,..., N ) become extinct with probability
one, regardless of the initial state of the market.

In the above definition, it is supposed that the initial state r¢ in the market
selection process governed by the random dynamical system (see equations (43))
on the simplex AN = {r € RN|rt > 0,3, 7" = 1} is any strictly positive
vector 79 € AN, which is reflected in the term “global evolutionary stability.”
An analogous local concept!® is defined similarly, but in the definition of local
evolutionary stability, the initial market share 7'0‘] o+ 7" of the group of

investors (¢ = J + 1, ..., N) who use strategies A" distinct from ) is supposed to
be small enough.

Our main goal is to identify the portfolio rule which is globally evolutionarily
stable. Clearly, if it exists it must be unique. Indeed if there are two such rules,
A # X, we can divide the population of investors into two groups assuming that
the first uses A and the second \'. Then, according to the definition of global
evolutionary stability, both groups must become extinct with probability one,
which is impossible since the sum of the relative wealth of all the investors is
equal to one.

Central Result. It can be shown by Theorem 4 that among all fixed-mix
and completely-mixed investment strategies considered here, the only globally
evolutionarily stable portfolio rule is to invest according to the proportions of

18See Evstigneev et al. [37], Section 3, Definition 2.
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the expected relative dividends — analogous to the well-known Kelly’s principle
of “betting one’s beliefs.” Define

A= (A1, M%), Ar = ERk(st), k=1,..., K. (44)
Theorem 4 The Kelly rule (44) is globally evolutionarily stable.

An earlier version of the proof for Theorem 4 was provided in Evstigneev
et al. [38], Appendix. Indeed, this result can be directly derived from the
general case (Evstigneev et al. [35]) that we introduced in Sections 2 and 3.
The derivation is given as follows:

Proof of Theorem 4. 1st step. Observe that this model (Evstigneev et al. [38])
is a special case of Evstigneev et al. [35], obtained by imposing assumptions (i)—
(vii). One can easily verify this relation by substituting these stronger conditions
into the original short-run equilibria and random dynamical system. Indeed,
since ayp = p, Aji(s’) =X, Vig=1fork=1,..,K, i=1,..,N,and t >0,
the system of equations (2)—(5) reduces immediately to (37)—(40).

According to assumption (7), formulas (37) and (39) yield a unique equilib-
rium price vector p; at each ¢ > 0 since the condition oy i (s") = p < 1 =, ,.(s")
holds for all £ > 1 and all st.19

The wealth dynamics of traders in the general model is provided in (28),
since we have py iy = Qur1k/Vegr e = P/ =P Ak = Mgap = Moo Vi =
1, Diy1x(s'™) = Dg(st41) for each k = 1,..., K, i = 1,..,N, and ¢t > 0, it
reduces to (41).

Given the random elements s; are i.i.d., and the relative dividends Rtvk(st) =
Ry(s:) depend only on the current state s; and do not explicitly depend on t,
then By Ry 4 1 (s't!) = ERk(s;) (I > 1), and so the survival strategy (14) can be
simplified to the following form:

K
)‘;k = )\Z =FE; [thrl,k)‘:Jrl,k + (1 - Z pt+1,m>‘:+1,m)Rt+1,k?]

m=1
K K
= EifpXi + (1= pAs)Risrn] = pAi + E(1—p Y Xj)Riga i)
m=1 m=1

=pAp+ (L= p)ERey1 s = pAp + (1 — p) ERk(s)
(a.s.), k=1,..., K, which leads to the formula
A, = ERp(s1), k=1,..., K.

It coincides with the survival strategy (44) constructed here.2’
Thus, under assumptions (i)—(vii), the setup in Evstigneev et al. [35] corre-
sponds to the special case in Evstigneev et al. [38].

19In the context of Evstigneev et al. [38], this result is shown in Section 4.1, Proposition 1.
20Tn the context of Evstigneev et al. [38], it is shown in Section 4.4, Theorem 4 that the
Kelly rule (44) survives with probability one.
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2nd step. As established in Step 1, Theorem 3 remains valid in this special
case. Recall that we now restrict our consideration to the class of fixed-mix and
completely-mixed strategies. Assume that one of the investors, say investor 1,
adopts the Kelly rule A\, = A\, = ERg(s¢), k = 1,..., K, while all the other
investors i = 2, ..., N use portfolio rules \’ # \*. For each investor 7 who adopts
strategy A’, there must exist some asset &’ such that |}, — A\i,| > & > 0, where
§ := ming |\} — \i| is a strictly positive constant. (Otherwise, if [A} — Ai| = 0
for all k = 1,..., K, then A" = \*).

Then, we have

K
X = NP =3O8 =M = (O = A)? 2 6%
k=1

for each date ¢ > 0, and so

SN = NP =D 6% =600 = o0
t=0 t=0

We apply the contrapositive of Theorem 3, for any other basic (fixed-mix
and completely-mixed) strategy \' # \*, i =2,..., N, if

SO = N2 = 00 (as.),
t=0

then A’ becomes extinct (a.s.), i.e.,

lim ri =0 (a.s.), i =2,..., N.

t—oo
Since 7 € AV, and we know ri — 0 (a.s.) for i = 2, ..., N, consequently,
ry — 1 (as.),

which means that if investor 1 uses the Kelly rule A*, while all the others use
strategies distinct from \*, then investor 1 is almost surely the single survivor
in the market selection process.

3rd step. In order to obtain the global evolutionary stability result, we have
to consider a group of investors ¢ = 1,....,J (1 < J < N) using the portfolio
rule \*, while all the other investors i = J + 1, ..., N use portfolio rules A’ # N\,
and show that the former group (i = 1,...,J) survives, while the latter (i =
J+1,...,N) becomes extinct.

However, it is sufficient to prove it assuming that J = 1, in which case the
result reduces to the assertion that r} — 1 (a.s.). To perform the reduction
of the case J > 1 to the case J = 1, we “aggregate” the group of investors
1 =1,...,J into one by setting

=1 1 J
Ty =T ...+ T
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By adding up equations (43) over ¢ = 1, ..., J, we obtain

K , 1

Tin = Z[p<)‘k77"t+1> + (1 = p)Ri(st41)]
k=1

where

N
Neor) = N+ D A
i=J+1

Thus the original model reduces to the analogous one in which there are N —J+1
investors (1 = 1,J + 1,..., N) so that investor 1 uses the Kelly strategy A* and

all the others, ¢ = J + 1, ..., N, use strategies distinct from \*.

According to Step 2, we have shown the global evolutionary stability in the
case J = 1, that is, ! — 0 (a.s.) foralli = J+1,..., N, and 7} — 1, which means
that the group of investors ¢ = 1, ..., J (which we treat as a single, “aggregate,”

investor) accumulates in the limit all market wealth.

It remains to observe that in the original model, the proportions between

the market shares of investors i, j who belong to the group 1,

..., J using the

Kelly rule do not change in time. This is so because for all such investors, the

growth rates of their market shares are the same:

K

i *
= i) + (- R =

Hence,

and so

7 ) 7
T T T
t+1 .
e L R T

1 -1 1
T Tt To

1., J.

Consequently, ri = B} (i = 1,...,J) for all t, where ' = ré/rd is a strictly

positive constant. Since

J J
7= Zr,ﬁ = (Z Brt — 1 (as.),
i=1 i=1
we obtain that )
) ﬂz
= —5—— >0 (as), i=1,..,J
Zi:l /8

Therefore, all the investors ¢ = 1, ..., J adopting the Kelly rule A* survive with
probability one, while all the other investors ¢ = J 4 1,..., N using strategies
distinct from A\* become extinct with probability one, regardless of the initial
state of the market, which gives the global evolutionary stability. m
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5 Almost Sure Nash Equilibrium Strategies

In this section, we review the study conducted by Bahsoun et al. [15], which
views EF from a different perspective and treat its decision-theoretic framework
as a game in which the payoffs of the players (investors) are defined in terms of
the growth rates of their relative wealth.

Game-theoretic models of asset markets dealing with relative wealth of in-
vestors were considered by Bell and Cover [18, 19]. In those models, the objec-
tives of the players were formulated through the expectations of random payoff
functions, and the notion of a Nash equilibrium — defined in terms of these
expectations — was used as a game solution concept. Bahsoun et al. [15],
however, proposed a different (stronger) solution concept: the almost sure Nash
equilibrium. In such an equilibrium, any unilateral deviation from it leads to
a decrease in the random payoff with probability one, not only in its expected
payoff. The main result demonstrates that, in the game under consideration,
the Kelly portfolio rule of “betting one’s beliefs” forms with probability one a
unique symmetric Nash equilibrium strategy.

The analysis is carried out under stronger assumptions than in the general
model:

(i) the states of the world s; are independent and identically distributed
(iid.), ie., s1,82,... form a sequence of i.i.d. elements in S such that
the probability P{s; = s} is strictly positive for each s € S;

(ii) the relative dividends Ry x(s') = Ry(s:) depend only on the current state
s¢ and do not explicitly depend on ¢;

(iii) for each k = 1,..., K, the expectation ED; j(s') is strictly positive, i.e.,
EDt’k(St) = EDk(St) > 0;21

(iv) all the portfolio rules under consideration are restricted to simple (fized-
miz) portfolio rules, prescribing to select investment proportions initially
and remain them fixed throughout the entire duration, i.e., A ,(s") = Ay;

(v) the volume V;j of each asset k grows (or decreases) at the same rate
¥ =Y, (s'71) > 0, with
Vi
i Vicik

for all ¢ > 1, where the growth rate process v, is predictable, depending
on the history s~ of the process (s;) up to time t — 1 (not t);?2

(45)

21 Recall that in the general model we assume: Zle Dy i (st) > 0 for all t > 1 and s?. This
assumption is fundamental and will also be imposed here: ST)_, Dy(s) > 0 for all s.
22By virtue of (45), we have

Ver(s'™1) = 7,(s")va(51)71 Vi (46)

where Vi, = Vo > 0 (k = 1,...,K) are the initial amounts of the assets. In the case of
dividend-paying assets involving investments in the real economy, assumption (45) means
that the economic system under consideration is on a balanced growth path.
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(vi) the investment rate 0 < ayu(st™1) < 1 is the same for all traders and

assets, and is given by a predictable function ay(s'~!) — depending only
on the history s'~! of the states of the world up to time ¢t — 1 — which is
measurable (for t = 0,1 it is constant) and satisfies

_ Vik(sh) .
t—1 t,k .23 47
O(t(s ) < ‘/tfl,k(st_l)7 ( )
(vii) there exist constants 0 < p’ < p”" < 1 such that the process
t—1
(st 1) = 2T (48)

satisfies p' < p,(st71) < p";#

(viii) the functions R;(s),..., Rx(s) are linearly independent with respect to
the probability distribution of s; (the absence of redundant assets), i.e.
the equality > 0 Ry (s:) = 0 holding almost surely for some constants 6y,
implies that ; = ... =g = 0.

Model Setup. We follow the same asset market settings as in the general
case, except that the stronger assumptions (i)—(viii) are imposed. The short-run
(temporary) equilibria that determine the equilibrium asset prices are charac-
terized by the following expressions:

e For date t = 0:

N
P0,kVo,k = Zx\zwé, k=1,.. K. (49)
=1
wh = 200 kK, i=1,..,N. (50)
’ Po,k
e For dates t > 1:
N .
PeaVer = 3 N(De+prai ), k=1,.., K. (51)
i=1
, Aio(Dy + e, T
i, = QMDA PTG ey N (52)
’ Dtk

23Recall that in the general model, by formula (6)-(7), we assume oy x(s*) < Yek(sh) =
Vi (8)/Vie1 k(st=1) for all t > 1 and all st. Here v,(s'~1) and oy (s~1) are assumed to be
predictable (depending on st~! rather than s?) and same for each asset k.

24 Note that here p; does not depend on k, i.e., py 1 = ... = p; g = p;. And the inequality
follows from Condition (A.2) in the general model (see (16)).
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It can be shown that under assumption (47) a non-negative vector p; satisfying
these equations exists and is unique (for any s* and any feasible zi_; and \").?5

We will need a description of a system of equations governing the dynamics
of the market shares 7{ = wj/ > ;w] of the investors given their admissible

strategy profile (A', ..., AN). From (51) and (52), for t > 1, we have

N N
Pk =V o > N {pe 4+ Drxpy) = bV Y Now) = ap V! O wy)
i=1 1=1

_aNwy Vi Aywy o6

. DPt.k B (Ag,we)

Consequently, for t > 0, we get

%

K
Wiy = (Peyrk + Depr) Ty
k=1
K . .
(A, Wit1) Vi kAL wi
= Z app1———— + D1k |
— Vit1,k (Aks we)
K P
Ak wit1) Vg kWt
= Z (%4—1” + D1 wVir )| v+ ——~
P Vit1,k (Al we)
K ;‘Cwi
—1 t
= Z (w17 ks wig1) + Dig1 i Vi)
k=1 <Ak7 wt)
K i
k%t
= Z (Pr1 s wir1) + Dia 1 Vi) - (53)
=1 <>\k7 wt>
By summing up these equations over ¢ = 1,..., N, we obtain
K N i
Dim1 AWy
Wip1 = Z (Pt+1 (Aky Weg1) + Dt+1,kvi,k) ===
1 <Aka ’lUt>
K
= (Pry1 Mk wig1) + Deg1kVir)
k=1
K
= P Wit + Z Dyy11Vik,
k=1
25See Amir et al. [4], Section 4.1, Proposition 1.
26The analogous formulas for t = 0,
. Vo s Aew?
-1 i 0,k %o
Po.k = Vg (Akswo)s To g = s
0 0,k ( ) 0,k O wo)

follow from (49) and (50).
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since p; ., does not depend on k (see (48)), which implies

K
1
Wi oy > DesimV, (54)

m=1

Dividing both sides of equation (53) by W;41 and using (54), we get

K

] Dy1,kVik Aewi /Wi
i = Ak, T +(1— AR
i+l ; pt+1 < F t+1> ( pt+1) 25:1 Dt+1,m‘/i,m <Ak7 wt> /Wt
K i i
= [per1 e res) + (1= poy ) Reprn] s, i=1,...,N, £ > 0. (55)

1 <)\k; Tt) ’
Almost Sure Nash Equilibrium. We are primarily interested in the long-

run behavior of the relative wealth of the investors (players). Given a strategy

profile (/\17 AN ), the performance of a strategy A" used by investor ¢ will be

characterized by the following random variable

w;

; 1
& :=limsup - In = (56)

t—o0 Z];ﬁz wt

generally, taking values in [—oo,4+00]. The expression wi/ > it w! is the rel-
ative wealth of player ¢ and the group {j : j # i} of i’s rivals. The random
variable £ = £%(s>; \!, ..., \") depends on the strategy profile (\', ..., A"Y) and
on the whole history s := (s1, 82, ...) of states of the world from time 1 to
co. In the game under consideration, &' plays the role of the (random) payoff
Sfunction of player 3.

Definition 3 We shall say that a strategy A forms a symmetric Nash equilib-
rium almost surely if

EN(s®: N, .y ) > fi(soo; A Ay A) (as)) (57)

for every i, each strateqgy M\ of investor i and each set of initial endowments
w§ > 0,...,wév > 0. The Nash equilibrium is called strict if the inequality in
(57) is strict for any X\ # A.

Recall that we consider only those strategy profiles which are admissible.
If all the players use the same strategy A, then the strategy profile (X, ..., ) is
admissible if and only if the vector A is strictly positive. This is immediate from
formula (51).

Central Result. Define the relative dividends of the assets k = 1,..., K by

Dy Vi Dy 1.V
Rt,k _ - t,kVi—1,k _ - t,kVEk (58)
Zmzl Dt,mv;f—l,’m Zmzl Dt,m‘/m
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(see formula (46)), where R, , = Ri(s;) and Dy = Dy(s;). Define
A = (A1, A%), AL =ERk(s), k=1,2,.... K. (59)

As in formula (44) established in Section 4, the portfolio rule specified by (59)
represents a generalization of the Kelly portfolio rule of “betting one’s beliefs”,
where the “beliefs” are expressed here in terms of the expected relative divi-
dends. Note that the vector \* has strictly positive coordinates, i.e., \* is a
completely-mixed portfolio rule, since we assume EDj/(s;) > 0 (which does not
depend on t because the random elements s; are i.i.d.).

Theorem 5 The portfolio Tule \* is a unique investment strategy forming a
symmetric Nash equilibrium almost surely. If an investor i uses any strategy A
distinct from \*, then

ENS N A AT < EN(s AT, L N) =0 (as.), (60)
and so the Nash equilibrium formed by the strateqy \* is strict.

The result contained in Theorem 5 implies the following property of the
portfolio rule \*. If all the investors except one, say investor 4, use the strategy
A" and ¢ uses any other strategy A distinct from A", then the relative wealth
wi/ D it w] of i tends to zero at the exponential rate &' < 0 (a.s.). In other
words, the group of the Kelly investors drives the non-Kelly one out of the
market, which is interpreted in Evolutionary Finance (EF) as the property of
global (holding for all initial states) evolutionary stability of \*.27

Remark 1 The result on the global evolutionary stability of A* (without an
exponential estimate of the convergence rate) follows from Theorem 4 requiring
that the state space S is finite and all the strategies under consideration are
completely mixed. It is important to note that results of this kind cannot,
in general, be extended to settings going beyond the framework of the i.i.d.
random elements s;. The reason for this lies in the fact that in more general
settings, the analogues of the Kelly portfolio rule A* do not belong to the class
of constant proportions strategies. They belong to broader classes of portfolio
rules where there might be strategies "coexisting" with the generalized version
of \* (strategies that cannot be driven by A* out of the market); see Amir et
al. [4].

Global exponential stability theorems are among the strongest mathematical
results in the theory related to EF models. They require strong assumptions
and delicate mathematical techniques. The fact of exponential convergence of
relative wealth makes it possible to derive the almost sure Nash equilibrium
property of the Kelly portfolio rule defined in terms of the Lyapunov exponents
(56). For a much simpler model, dealing with short-lived assets, an analogous
stability theorem was obtained in Evstigneev et al. [36] under a number of
additional assumptions (finite space S, completely mixed strategies, etc.).

27The result is akin to a well known fact of evolutionary game theory: if a Nash equilibrium
is strict, then it is evolutionary stable (Weibull [101]).
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Remark 2 Recall that the Lyapunov exponent (56) is defined in terms of the
variables wi/ Y i w] expressing the relative wealth of player ¢ and the group
{j : § # i} of ¥’s rivals. In the EF literature, relative wealth is often defined as
ri=wi/ Z;VZI w! (the market share of investor 7). In many cases, results can
be equivalently formulated both in terms of relative wealth — as it is defined
in this section — and market shares. But this is not the case in the context of
the present section. The consideration of the Lyapunov exponent
X3
n' := lim sup 1 In 7;% >
tmeo j=1 Wi

leads to a trivial notion of a Nash equilibrium. With the payoff functions n?,
any completely mixed strategy A forms a symmetric Nash equilibrium. Indeed,
nt(A, ..., A) = 0 because if all the investors use the same strategy, their market
shares remain constant (which follows from equations (55)). On the other hand,
n' is always non-positive, and so n*(\', ..., A®¥) < 0 = n?(A, ..., \), which implies
that the strategy profile (A, ..., A) is a Nash equilibrium.

A key role in the proof of Theorem 5 is played by a lemma which is formu-
lated below. Consider a measurable vector function R(s) = (R1($), ..., Rk (s))
on S with values in AX. Assume that the coordinates Ry(s) are linearly in-
dependent with respect to the distribution of s; and ERy(s;) > 0. For any
A=(A1,.., k) € AK k€ (0,1] and 0 < p < 1, define

K AL
21 [Pk + (1 = p)Ri(s)] /\:n-i-kz(l—ﬂ)

K * .
YictlPAk + (1= p)Ri(8) semmaii=ay

where A\;; = ERy(s). The function F, (), k; s) is well-defined and takes on finite
non-negative values. Fix some numbers 0 < p’ < p” < 1.

Fy(\ ks 8) = , (61)

Lemma 7 For any A € AX distinct from \* there exist constants H > 0 and
0 > 0 such that

Emin{H,InF,(\,k;s)} > ¢ (62)
for all k € (0,1] and all p € [¢', p"].

The proof of this lemma is routine, but rather lengthy, and we relegate it to
the Appendix of this paper.

In fact, we will show that in the proof of Theorem 5 it is sufficient to consider
the case of two investors (N = 2). In this case, the analysis can be reduced to
the consideration of the ratio

1 1
Tt Wy

== == 63

“t r?  w? (63)

of the market shares of investors 1 and 2 using strategies A\* = (A], ..., A} ) and
A= (A1,..., k). Applying (55) with N = 2, we get

i,
kTt

K
Tip1 = Z [pt+1 ()\27”;4-1 + A (1- 7"§+1)) + (1= piga) Rt+1,k} m,

k=1
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where 4,7 € {1,2} and i # j. Setting C’ij =2 ( Pt )\iv"g>7 we obtain

K K
Tipr |1+ Prsa Z ()\ - Az) C Z [Pt+1>\ + (1= pps1) Rey, k} ngk
k=1 k=1
Thus
7"2+1 _ AiJrl/BgH
7"?+1 t+1/Bt+1 7
where
K
A = Z [ptH)\i. + (1= pey1) Rt+1,k} Ct”k,
k=1

K
By =14 pea Y (M= AL) Gl

Observe that B', = B’ |, indeed,
By = Bl = pe 3 |(M = A) 68— (M= M) ¢
k=1
K ‘ K K
+1 Z ()‘fc - Ai) = Pt (Z N Z Mﬂ)
k=1 k=1 k=1
because C’t (A Ctjk = 1. Consequently,
>\l

K 2
rig A ﬁde [preaMi + (1= pig1) Revr] NI

2 21 T .2 2 ’
rZ2., A ri K 1 A2
t+l e T [P Ak (U= peg) Rega] N T/rTTAl

by virtue of (63), we obtain the dynamics of z;:

K .
Yot Pepi Ak + (1 — pt-l-l)Rt-&-l,k]m
e ] : (64)
+ K - -
2ok=tlperi Ak + (U= pr ) Rev ey

Proof of Theorem 5. 1st step. To prove the theorem it is sufficient to consider
the case of two investors 1 and 2, using A* and A, and show that

1
hmmf Inz, >0 (as.), (65)

t—oo

where z; is the ratio of the market shares of 1 and 2. To demonstrate that the
problem reduces to the case of two investors, let us first observe that by virtue
of symmetry, it is sufficient to verify the property (57) for ¢ = N. Suppose
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investors ¢ = 1, 2,. N -1 use )\ and investor NV uses A # A*. Then the total
market share r; :=r} 4+ ...+ 7 "1 of i = 1,2,..., N — 1 satisfies

K

Tiyq = Z{Ptﬂ[)‘zrfﬂ + )\krﬁl] + (L= pp1) Revr )
k=1

* ok
AT

_ 66
Nors + Ay (66)

which is obtained by summing up equations (55) over ¢ = 1,2,..., N — 1. At the
same time, by virtue of (55), we have

N
L
krt + )‘k’rt

7"t+1 Z{pf+1 ARTier + )‘krt-s-l] (1- Pt+1)Rt+1,k} (67)
k=1

Thus the vector (7}, 7)) evolves in time as the vector (7;,72) of market shares

of two investors using the strategies A* and A, respectively. If we know that (65)
holds, then

1wy 1.y
EN(O, ., A%, A) = limsup - In —L = limsup
t—oo Wy t— o0 Ty

1 1
= limsup(—=-Inz) = — hmmf( In z;)
t—00 t t—oo ¢

<0=eNOF 0N (as.),
where the last equality holds because the market shares of all the investors
remain constant, as long as all of them use the same strategy (see (55)). Also,
this follows from the fact that if Ay, = A} in (64), then z; is a constant. Thus
we have proved (60) and hence showed that \* forms a strict symmetric Nash
equilibrium.
2nd step. Let us verify (65). Put Gy = In(2/2¢—1). Then

ZG,: Z (Inz —Inz;—1) = Inzp — In 2.
t=1

Therefore it suffices to prove that liminfr_ oo 771 ZtT:1 Gy > 0 (a.s.). For any
constant H define G := min{Gy, H}. Since G < G, it is sufficient to prove
that

T
| H
I}TIILIOI})f T ;Zl G, >0 (as.) (68)
for some H.
By virtue of (64), we have
N
I I 2 oy Zk WP Ak + (1= pyypr) Reva i) 7)\;:Zti)\k
t+1 = =
2t Zk:l[pt+1)‘k (1- Pt+1)Rt+1,k]7)\;2i,\k

K AL
W D oheilPer1 e + (1= pyyq)Rie (StHHW
- K *
Zk:l[pt+1)‘k +(

1.
=In Fﬂt+1 ()\’ Ts St+1)7

1=p1)R (5t+1)}m
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where r} = r}(s') and p; . = p,41(s") (vecall that the process p, is predictable).

By virtue of Lemma 7, there exist H > 0 and § > 0 such that Ethil >0,
where E;(-) = E(:|s') is the conditional expectation given st and

Gg1(5t+1) = min{H, In Fpt+1(8‘) (A7 Ttl (St)a St+1)}'

When computing Ethfrl we fix s and take the unconditional expectation of
Gﬁ_l with respect to s;y 1, which is justified because s* and s;,1 are independent.
Finally, we have

1 <& 1 <& 1 &
GE==-N"F,_GF + = GE — E,_,GI).

el

Since GH is uniformly bounded (see (71) in the Appendix), we can apply to the
process Bff := GI — E;_1GH the strong law of large numbers for martingale
differences (see, e.g., Hall and Heyde [51]), which yields T7-' Y./ BF — 0
(a.s.).28 Therefore liminfr o, T~ S 1, GF > §, which proves (68).

3rd step. It remains to prove the uniqueness of a symmetric almost sure
Nash equilibrium. Suppose a strategy A # \* forms such an equilibrium. Then

0=¢EV(s% 0., A) = V(2N AN (as.), (69)
where
V(s \, .., A, A7) = limsu L
(RO AR R - tﬂoopt 1_,ri7\/'

By interchanging A and A* in formulas (66) and (67), we obtain that the vector
(rt + ...+ N1 rN) evolves in time as the vector (7#},72) of market shares of
two investors using the strategies A and \*, respectively. As we have proved
above, this implies

o1 rév

liminf = In [N~ 0 (a.s.).

t—o0 — Tt

Thus &V (875 A, ..., A, A") > 0, which yields the inequality "<" in (69). This is a
contradiction. m

6 Discussion

Based on the discussions in Evstigneev et al. [35], this section presents several
key comments on the modeling approach, characteristic features and applica-
tions of EF.

1. Marshallian temporary equilibrium. In the general methodological
perspective, the modeling framework at hand relies upon the Marshallian [77)

28 As is well known, the finiteness of expectations is not enough for the validity of this version
of the law of large numbers, but the boundedness of the random variables is fully sufficient —
hence the truncation of F' by H.
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principle of temporary equilibrium. The dynamics of the asset market in this
framework are similar to the dynamics of the commodity market as outlined in
the classical treatise by Alfred Marshall [77] (Book V, Chapter II “Temporary
Equilibrium of Demand and Supply”). The ideas of Marshall were developed
in the framework of mathematical economics by Samuelson [86]. As it was
noticed by Samuelson and discussed in detail by Schlicht [90], in order to study
the process of market dynamics by using the Marshallian “moving equilibrium
method,” one needs to distinguish between at least two sets of economic variables
changing with different speeds. Then the set of variables changing slower (in our
case, the set z; = (2}, ....,z)) of investors’ portfolios) can be temporarily fixed,
while the other (in our case, the asset prices p;) can be assumed to rapidly
reach the unique state of partial equilibrium. Samuelson [86], pp. 321-323,
writes about this approach:

I, myself, find it convenient to visualize equilibrium processes of quite
different speed, some very slow compared to others. Within each long
run there is a shorter run, and within each shorter run there is a still
shorter run, and so forth in an infinite regression. For analytic purposes
it is often convenient to treat slow processes as data and concentrate upon
the processes of interest. For example, in a short run study of the level
of investment, income, and employment, it is often convenient to assume
that the stock of capital is perfectly or sensibly fixed.

As it follows from the above citation, Samuelson thinks about a hierarchy of
various equilibrium processes with different speeds. In our model, it is sufficient
to deal with only two levels of such a hierarchy. EF leaves the price adjustment
process, which leads to the solution of the partial equilibrium problem (4), be-
yond the scope of the model. It can be shown, however, that this equilibrium
will be reached at an exponential rate in the course of a naturally defined tdton-
nement procedure. This can be demonstrated by using the contraction property

of the operator
N

ar = @i Vi Y Ma{De +poais)
i=1
involved in the equilibrium pricing equation (4). Our framework makes it pos-
sible to admit a whole spectrum of mechanisms leading to an equilibrium in
the short run. In reality, various auction-type mechanisms are used for the pur-
pose of equilibrating bids and offers, resulting in market clearing. An analysis
of several types of such mechanisms and their implications for the structure of
trading in financial markets has been performed by Bottazzi et al. [25].

A rigorous mathematical treatment of the above multiscale approach, involv-
ing “rapid” and “slow” variables, is provided within continuous-time settings in
the theory of singular perturbations, see e.g., Smith [97], Kevorkian and Cole
[61]. In connection with economic modeling, questions of this kind are consid-
ered in detail in the monograph by Schlicht [90]. The equations on pp. 29-30
in Schlicht [90] are direct continuous-time (deterministic) counterparts of our
equations (4) and (5).
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The term "temporary equilibrium" was apparently coined for the first time
by Marshall. However, in the last decades this term has been associated basi-
cally with a different, non-Marshallian notion, going back to Lindahl [66] and
Hicks [54]. This notion was developed in formal settings by Grandmont, Hilden-
brand and others [47, 48, 49]. The characteristic feature of the Lindahl-Hicks
temporary equilibrium is the idea of forecasts or beliefs about the future states
of the world, which the market participants possess and which are formalized in
terms of stochastic kernels (transition functions) conditioning the distributions
of future states of the world upon the agents’ private information. A compre-
hensive discussion of this direction of research is provided by Magill and Quinzii
[76]. In this work, we pursue a completely different approach. Our model might
indirectly take into account agents’ forecasts or beliefs, but they can be only im-
plicitly reflected in the agents’ investment strategies. We do not need to model
in formal terms how the market players form, update and use these beliefs in
their investment decisions.

2. In order to survive you have to win! One might think that the focus
on survival substantially restricts the scope of the analysis, since "one should
care about survival only if things go wrong". It turns out, however, that the
class of survival strategies in most of the EF models coincides with the class of
unbeatable strategies. A strategy is considered unbeatable if, in the long run,
it performs no worse in terms of wealth accumulation than any other strategy
competing in the market. More precisely, we define unbeatable strategies as
follows:

Definition 4 Suppose investor i employs unbeatable strategy A, while all other
investors j # i employ arbitrary strategies. Then, the wealth process w;] of
investor j cannot grow asymptotically faster than that of investor i, wy, i.e.,

wl < Cw! (a.s.) (70)
for each t > 0, where C > 0 is some random constant.

The proposition below demonstrates that survival strategies are those and
only those that are unbeatable: in order to survive, you have to win!

Proposition 4 A portfolio rule is a survival strategy if and only if it is unbeat-
able.

Proof of Proposition 4.  If the market share r! of investor i satisfies ri =
wi/W; > ¢ (as.), where ¢ is a strictly positive random variable and W, =
Z;-V:l w!, then wi > ¢W, > cw! (a.s.) for all j. Thus w! < ¢ 'w! (a.s.), and so
(70) holds. Conversely, if w! < Huw! (a.s.) for some random constant H > 0,
then W; < [(N — 1)H + 1Jw! (a.s.), which yields ri > [(N — 1)H + 1]~} (a.s.),
where [(N —1)C + 1] " is a strictly positive constant. m

Indeed, the notion of unbeatable strategies can be formalized as a game-
theoretic solution concept, which was introduced in Amir et al. [6] and developed
in Amir et al. [5].
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Consider an abstract game of N players (in our case, investors) i = 1,..., N
selecting strategies A® in some set £. Let w® = w'(Aq,...,Ay) € W be the
outcome of the game for player ¢ given the strategy profile (A1, As,...Ax) of the
players. Suppose a preference relation

w 2w, whw eWw

is given comparing relative performance of players ¢ and j. A strategy A of
player i is called unbeatable if for any feasible strategy profile (Aq,...An) in
which A’ = A, we have

w/(Aq, ..., AN) 2w (Aq, ..., Ay) for all j # i.

Thus, if player i uses A, he/she cannot be outperformed by any other player
j # 1, no matter what strategies the rivals use.

In the context of the models considered in EF, the outcome of the game for
investor 4 is the random wealth process w? = (w{). The preference relation <
is defined as follows. For two sequences of positive random numbers w’ = (w})
and w’ = (w}), we define

(wl) = (w}) iff w! < Cw! (as.) forall t = 1,2, ...

for some random variable C' > 0. The relation (w!) < (w!) means that w/ does
not grow asymptotically faster than w! almost surely.

The fundamental solution concepts in evolutionary game theory, known as
evolutionary stable strategies (ESS) as introduced by Maynard Smith and Price
[79], Maynard Smith [78], and Schaffer [88], can be viewed as conditionally
unbeatable strategies, under the condition that the number of mutants is suffi-
ciently small or they are identical. Unconditional versions of the standard ESS
were studied by Kojima [62].

3. Evolutionary portfolio theory. One of the sources of motivation for
EF has always been related to quantitative applications of the results to portfo-
lio selection problems. The data of EF models needed for quantitative financial
analysis are essentially the same as those needed for the applications of the
theory of derivative securities pricing (e.g., the Black-Scholes formula) in Math-
ematical Finance/Financial Engineering. They do not need the knowledge, or
the algorithms for revealing, hidden agents’ characteristics such as their utilities
and beliefs. The model and the results are described in operational terms and
require only statistical estimates of objectively observable asset data.

A crucial role in the applications of EF to portfolio selection is played by
the discovery of investment factors that deliver returns in excess of the market.
For example, Basu [17] found the so-called value factor, according to which
investing into equities with a high book-to-market ratio delivers higher returns
than the market. Banz [16] found that the same is true if one invests into
equities with small market capitalization. Carhart [28] found the momentum
factor according to which investing in equities that have recently gone up delivers
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excess returns. Moreover even though by now hundreds of investment factors
have been proposed, Harvey et al. [52] have shown that only a few factors are
needed to understand the dynamics of equity returns. The current state of these
discoveries is summarized in the Fama-French [43] five-factor model. According
to these empirical results, the return of every portfolio selection strategy can be
decomposed into its allocation to a few investment factors. Thus, it is natural
to model the dynamics of equity markets by modeling the dynamic interaction
of those investment factors. And this is what EF is perfectly suited for. In
the EF framework, an investment factor defines a strategy determining the
corresponding investment proportions. Note that investment factors are not
based on individuals’ utility functions and subjective probabilities! EF can then
be used to compute what impact the increase in relative wealth corresponding
to one factor has on any other factor. In particular, the impact of a factor
on itself gives a model-based measure of the capacity of the factor. This is
very practical information since investors should avoid being stuck in crowded
strategies. Also, when a certain investment factor gets fashionable this has cross
impacts on other factors that one can compute based on the EF model. For
example, in recent years investing according to ESG (Environmental, Social, and
Corporate Governance) criteria has become fashionable, and the EF approach
shows that this has a strong negative impact on the momentum factor. Finally,
based on this approach one can compute the dynamics of the relative wealth, so
that one can use the EF model to determine which investment factors survive
in the long run. A first paper systematically developing these ideas and opening
up a new realm of fruitful applications of EF to portfolio selection problems was
Hens et al. [53].

7 Conclusion

This paper reviews several key models with long-lived dividend-paying assets
in the field of Evolutionary Finance (EF), which focuses on “survival and ex-
tinction” questions of investment portfolio rules in the market selection process.
The models we examine, through a game-theoretic lens, bridge two fundamental
paradigms: stochastic dynamic games (strategic frameworks) and evolutionary
game theory (solution concepts).

The conventional theory of asset pricing currently prevailing in Financial
Economics is based on the Walrasian equilibrium paradigm going back to Leon
Walras, one of the classics of economic thought of the 19th century. Equilibrium
models of this kind typically describe the world of small investors who strive to
maximize their individual utilities of consumption subject to budget constraints.
Market equilibrium is understood as a situation in which the goals and interests
of such economic agents are equilibrated by the market clearing prices (see,
e.g., Flam [45]). In contrast with EF, where equilibrium is defined in short-run
terms, consecutively from time ¢ to time ¢ + 1, in the classical setting one deals
with a long-run notion of equilibrium defined for the whole time horizon.

EF depicts a world radically different from the Walrasian one — a world of
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large, even super large (primarily institutional) investors who may act on the
global level, and whose fundamental objectives are of an evolutionary charac-
ter: e.g., survival, domination and fastest capital growth. In fact, fastest capital
growth is often related, and in our models is equivalent, to survival (see Propo-
sition 4). These factors, rather than the utilities of individual consumption (one
gets immeasurably more than one can consume!) come to the fore. Within
this framework, investment decisions made by each of the market players might
substantially affect the equilibrium prices, in contrast with a variety of classical
market models where the influence of every particular individual is negligible.

The primary goal of the studies is to identify investment strategies that
guarantee “long-run survival”, i.e., keeping a strictly positive, bounded away
from zero, share of market wealth over an infinite time horizon, irrespective of
what strategies used by others. It turns out that there always exists a portfolio
rule guaranteeing unconditional long-run survival. This rule is an analogue of
the well-known Kelly criterion of “betting one’s beliefs” in the present framework
and is asymptotically unique within a certain class of basic strategies. This
survival strategy is defined as the solution to an easily computable stochastic
equation under general assumptions; in more specialized models with stronger
assumptions (e.g., Evstigneev et al. [37], Amir et al. [4], etc.), it reduces to an
explicit form as the sum of a convergent series; and in models with even more
restrictive assumptions (e.g., i.i.d. states of the world, fixed-mix strategies, etc.;
see Evstigneev et al. [38], Bahsoun et al. [15], etc.), it further simplifies to a
form expressed in terms of the expected relative dividends.

In particular, this paper surveys two stronger solution concepts — globally
evolutionarily stable strategies and almost sure Nash equilibrium strategies —
developed under stronger assumptions. It is shown that under the assumptions
(i)—(vii) we listed in Section 4, if a group of investors adopts the Kelly rule while
all the others use different ones, those and only those investors who belong to the
former group survive, regardless of the initial state of the market; and under
the assumptions (i)—(viii) we listed in Section 5, the Kelly rule is the unique
investment strategy forming a symmetric Nash equilibrium almost surely, i.e.,
if all the investors except one (say, investor i) use the Kelly rule while i adopts
any other different strategy, then the relative wealth of investor ¢ converges to
zero at an exponential rate almost surely.
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Appendix

Proof of Lemma 7. We first observe that the function F},(\, k; s) satisfies
Fy(\ k;8) > (71)

where ¢ := ming A;, (> 0). Indeed, F,,()\, k;s) = A/B, where A > ¢, and

pe<B<c . (72)

Case 1. Assume that at least one of the coordinates of A is zero, so that
K:={k: A, =0} #0. Then

A=) 3 R+ o+ (= AR g

keK k¢K

and

x Ak
B= SN - Rl

Since ERy(s¢) > 0, there exists 6 > 0 such that ), i« Ri(s) > 6 for all s in a
set S with P(S) > 0. Therefore djx 11g(s) < A < k= 1Dy, where 1g(s) is the
indicator function of the set S, dy := (1 — p”)0 and Dy := 1 + (minggx Ax) "'
Also, we have do < B < Ds, where dy := p’cmink¢K Ar and Dy := ¢! (see
(72)). Thus

Kk ldlg(s) < F,(\, k;8) < k™D, (73)

where d := dy/Dg and D := D, /dy. From the first of these inequalities and (71)
we obtain (Ind —Ink)15(s)+ (2Inc)(1 —15(s)) < In F, (A, k;s), and so
Emin[H,In F,(\, k;s)] > 2Inc+ min(H,Ind — In k) P(S).

Define 1-91
R :=exp[lnd — Z_DT{IC], H:=1lnD —Ing, (74)

and observe that if 0 < kK < R, then
Emin[H,InF,(\,k;8)] > 2Inc+ (Ind — Ink)P(S) = 1 (75)

by virtue of the inequality d < D. If k > R, then In F,(\, k;8) <InD —Ink <
InD —Ink = H, and so min[H,In F,(\, k;s)] = InF,(\,k;s). Thus in order
to complete the proof of the lemma in the case when A has zero coordinates it
remains to show that

inf ElnF,(\ k;s) >0 (76)
wE[R,1], pElp’,p"]

for each & € (0, 1]. Indeed, then H can be defined by (74) and ¢ can be defined
as the minimum of 1 (see (75)) and the infimum in (76).
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By virtue of (71) and (73), the function E1n F, (), £;s) is continuous on the
compact set [p/, p”'] X [R, 1] and hence it attains its minimum on this set. Thus,
in order to establish (76) it is sufficient to prove that E'ln F,(\, k;s) > 0 for
each p € [0,1) and x € (0, 1].

By applying Jensen’s inequality, we find

K
Ak
Fl 1-— _
n;[ﬂ)\k + ( P)Rk(s)]xkﬂ W
AR A i
>pl p)E1 —_—
pnz)\kka—i—)\k 1- ) nZRk Ak + (1 — R)Ag
K *
Ak}‘k * )‘k
> pl _— 1-— Al —/—— ———— 77
an}\k i T p); vy s s W G
and
< A
El Ax 1- —k
- A A
1 E * 1— A, kAE
< n{; Ol vy W pn ZAk/ﬁ—k)\k 1—r)
(78)
The inequality in (78) is strict because there is no constant 7 such that
K
> loAs + ( R()]*ZT(&S) (79)
k:lp k PEINEE + M (1= ) e
Indeed, if (79) holds, then
K
> oAk + (1= p)Ri(s)lpy, = 0 (as.), (80)
k=1

where ¢, := M\ [Afk+ Ak (1—k)] 71 —7. Observe that at least one of the numbers
¢, 1s not equal to zero. Otherwise A, = 7[ALx + A\ (1 — k)] for all k, and by
summing these equalities over k, we get 7 = 1, which yields Ay = Apk + Mg (1 —
K), Apk = Ak, and A, = A; (recall that x # 0). This is a contradiction
because A # A*. Thus ¢ = (¢q,....,¢x) # 0, and Zkl,(zl Ry (s)p, = b(as.),
where b is some constant. This constant is not zero because the functions Ry (s)
are linearly independent. By setting gpk = ¢, /b, we obtain that the non-
zero vector ¢ = (¢, ..., ¢ ) satisfies Zk 1 Ri(s)¢), = 1(a.s.), which yields
Zszl Ri(s)(¢), —1) = 0(a.s.). In view of the linear independence of Ry (s), this
implies ¢} = ... = ¢ = 1. Since g, = by} = b, we obtain that the left-hand
side of (80) is equal to b # 0, which is a contradiction.
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From (77) and (78) we get

K * *

* )‘k )\k)\k
ElnF,(\, k: L=p)) Aln—r 1 NP W EEALA
n p( ;KJ’S>>( p)[kZI k n)\}ihj‘i’(l*lﬁ))\k n; >\* ( )]

(81)
Denote the expression in the square brackets in (81) by ®,(A). It is proved in
Evstigneev et al. [36], Appendix, Lemma 3.1, that

®,. () > 0 for each x € [0,1] (82)

for any pu = () € AK with g > 0. Furthermore, if  # \*, then ®, (1) > 0.
Therefore @, (A(1—¢)+eA™) > 0 for each € € (0,1). The function ®,(A) is finite
and continuous on A (because A\ > 0 and & > 0). Consequently, ®,(\) =
lim. o @, (A(1 — &) +eX™) > 0. By using (81), we obtain that Eln F,(\, ) >0
for all p € [0,1) and « € (0,1]. This completes the proof of the lemma in the
case when the vector A has zero coordinates.

Case 2. Now assume that Ay > 0 for each k. Then the function In F,(, &; s)
is well-defined, finite, continuous with respect to (p, ) on the set [p’, p”] x [0, 1]
(including x = 0) and uniformly bounded:

2lnc <InF,(\ k;8) < ln(mkin o) 72

To complete the proof it is sufficient to show that the infimum in (76) with
kE = 0 is strictly positive (then § can be defined as this infimum and H as
2|In¢| + 2| Inming Ag|). In view of the continuity of Eln F, (), ; s) this will be
proved if we establish the inequality E1n F,()\, k;s) > 0 for each p € [0,1) and
k € [0,1]. If K > 0, this inequality is proved by exactly the same arguments
as above — by deriving relations (77), (78), (81) and using (82). If kK = 0, we
change the above arguments as follows: instead of strict, we establish non-strict
inequalities in (78) and show that the right-hand side of (81) is strictly positive,
because ®g(A\) = S0, AiIn(A\f/Ax) > 0. m
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