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Abstract. Evolutionary Finance explores the "survival and extinction"
questions of investment strategies (portfolio rules) in the market selection
process. It models the stochastic dynamics of �nancial markets based on
behavioral and evolutionary principles, where asset prices are determined
endogenously by short-run equilibrium between supply and demand, aris-
ing from the interaction of competing portfolio rules. This paper presents
a survey of developments in Evolutionary Finance with a focus on long-
lived, dividend-paying risky securities, where the budget of each investor
comes from asset dividends and capital gains. We review several key mod-
els in this area addressing the following problems in order: 1) the most
general results under the most general assumptions; 2) global evolution-
ary stability under restrictive assumptions; 3) viewing the model from
a di¤erent, game-theoretic, perspective and examining almost sure Nash
equilibrium strategies under restrictive assumptions. A central goal of the
study is to identify an investment strategy that allows an investor to sur-
vive in the market selection process, i.e., to keep with probability one, a
strictly positive, bounded away from zero share of market wealth over an
in�nite time horizon, irrespective of the strategies used by other investors.
The main results are under general assumptions, such a survival strategy
� an analogue of the famous Kelly rule of �betting one�s beliefs�� exists
and is asymptotically unique (within a speci�c class of strategies called
basic). Moreover, under the required stronger assumptions, the Kelly rule
is globally evolutionarily stable and is the unique investment strategy that
forms a symmetric Nash equilibrium almost surely.
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1 Introduction

Conventional models of equilibrium and dynamics of asset markets are based on
the classical Walrasian general equilibrium theory (see Magill and Quinzii [75]),
which relies upon the hypothesis of full rationality of market players, who are
assumed to maximize their utilities or preferences subject to budget constraints
(i.e., well-de�ned and precisely stated constrained optimization problems). In
contrast, the present work in the �eld of Evolutionary Finance (EF)1 relaxes
these assumptions and develops an alternative equilibrium concept � behavioral
equilibrium � admitting that traders/investors may be boundedly rational and
have a whole variety of patterns of behavior determined by their individual
psychology, not necessarily describable in terms of utility maximization. Strate-
gies may involve, for instance, mimicking, satis�cing, rules of thumb (based on
experience), etc.; and, might be interactive: depending on the behaviour of
the others, and relative: taking into account the comparative performance of
the others. This approach overcomes several drawbacks of traditional theory,
particularly by eliminating the need for the �perfect foresight� assumption to
establish equilibrium and the reliance on knowledge of unobservable individual
utilities and beliefs. In this sense, it opens new possibilities for the modern
�nancial markets modeling, especially on the global level, where the main ob-
jectives might be of an evolutionary nature: domination in a market segment,
fastest capital growth, or simply survival (especially in crisis environments), etc.
EF models, through a game-theoretic lens, combine elements of the theory

of stochastic dynamic games and evolutionary game theory. The former of-
fers the general notion of a strategy and the latter suggests the game solution
concept: survival strategies. The process of market dynamics is described as a
sequence of consecutive short-run equilibria: aggregate market demand of each
asset is equal to its supply, where equilibrium asset prices in each period are
endogenously determined by the interaction of general, adaptive portfolio rules
employed by competing investors, depending on the exogenous random factors
and observed history of the game. Uncertainty in asset payo¤s at each period
is modeled via an exogenous discrete-time stochastic process that governs the
evolution of the states of the world, which aims to capture various macroeco-
nomic and business cycle variables that may a¤ect investors�behavior. There
are two fundamental types of models in EF: with short-lived (one-period) as-
sets and long-lived dividend-paying assets, see, e.g., Amir et al. [6] and [4],
respectively. For a recent comprehensive survey of developments in models with
short-lived assets, see Chen [29]. This paper focuses on models of the latter
type, where assets pay dividends that are random and depend on the process
of exogenous �states of the world,�and the budget of each investor comes from
the dividends paid by the assets and capital gains. Price changes and dividend

1Surveys describing the state of the art in EF were given in Evstigneev et al. [39, 41],
and an elementary textbook treatment of this subject can be found in Evstigneev et al. [40],
Chapter 20. For a most recent review of the development of studies related to this area see
Holtfort [58]. General perspectives of a synthesis of behavioral and mainstream economics
based on the evolutionary approach are discussed in Aumann [12].
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payments of securities induce wealth dynamics among investors using di¤erent
investment strategies (portfolio rules) in the market. These dynamics act as a
natural selection force among the portfolio rules: some prove to be successful
and �survive,� accumulating a positive fraction of total market wealth in the
limit, while the others fail and �become extinct,� with their share of market
wealth tending to zero.
The main focus of the study is to identify investment strategies that guar-

antee �long-run survival� in the market selection process, i.e., to keep with
probability one, a strictly positive, bounded away from zero share of market
wealth over an in�nite time horizon, irrespective of what strategies adopted by
others. Typical results demonstrate that such strategies exist �in particular, a
survival strategy can be formulated as the counterpart of the Kelly [60]2 port-
folio rule in the present framework �and that they are asymptotically unique
(within a speci�c class of strategies called basic) as well as easily computable.
The computations do not require, in contrast with the classical Walrasian para-
digm, the knowledge of hidden agents�characteristics such as individual utilities
and beliefs.
EF integrates modeling principles originating from the following disciplines:

(i) behavioral economics and �nance � Tversky and Kahneman [99], Shleifer
[95], Shiller [94], Thaler [98], Bachmann et al. [14]; (ii) evolutionary economics
� Alchian [1], Penrose [82], Nelson and Winter [81]; (iii) evolutionary game
theory � Maynard Smith and Price [79], Maynard Smith [78], Scha¤er [88, 89],
Weibull [101], Vega-Redondo [100], Samuelson [85], Hofbauer and Sigmund [57],
Kojima [62], Gintis [46], Sandholm [87]; (iv) games of survival � Milnor and
Shapley [80], Shubik and Thompson [96]3 ; (v) evolutionary econophysics �
Arthur et al. [9], Blume and Easley [21], Farmer and Lo [44], LeBaron et al.
[67]; (vi) capital growth theory � Shannon [93], Kelly [60], Breiman [26], Algoet
and Cover [2], Cover [31], Dempster et al. [33], MacLean et al. [73], and others.
Evolutionary ideas have a long history in the social sciences going back to

Malthus, who played an inspirational role for Darwin.4 A more recent stage of
development of these ideas began in the 1950s with the publications of Alchian
[1], Penrose [82] and others. A powerful momentum to work in this area was
given by the interdisciplinary research conducted in the 1980s and 1990s under
the auspices of the Santa Fe Institute in New Mexico, USA, where researchers of
di¤erent backgrounds � economists, mathematicians, physicists and biologists
� combined their e¤orts to study evolutionary dynamics in biology, economics
and �nance; see, e.g., Arthur et al. [10], Farmer and Lo [44], LeBaron et al.
[67], Blume and Easley [21], Blume and Durlauf [20].5

2The state of the art in this area related to the Kelly investment criterion is surveyed by
MacLean et al. [73].

3For a comprehensive discussion of game-theoretic aspects of EF in a di¤erent but closely
related model (i.e., short-lived assets) see Amir et al. [6], Sections 1 and 6.

4For a review of this subject see, e.g., Hodgeson [56].
5For other fundamental contributions to the evolutionary modeling of �nancial markets,

see, e.g., Anderson et al. [7], Bottazzi et al. [24, 25], Bottazzi and Dindo [22, 23], Brock et al.
[27], Coury and Sciubba [30], Farmer [42], Lo [68, 69, 70, 71], Lo et al. [72], Sciubba [91, 92],
and Zhang et al. [103].
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The focus on the �survival and extinction� of investment strategies in the
market selection process connects the research to evolutionary game theory,
which was initially designed for modeling biological systems and later found
fruitful applications in economics. The concept of a survival portfolio rule, stable
within the market selection process, is akin to the concepts of evolutionary stable
strategies (ESS) introduced by Maynard Smith and Price [79], and Scha¤er [88,
89]. However, there are radical di¤erences of the market selection mechanism
in EF from the typical schemes in evolutionary game theory, where species or
agents undergo repeated random matchings in large populations, leading to their
long-run survival or extinction.
The closest game-theoretic models to the setting of EF are those in capital

growth theory considered by Bell and Cover [18, 19], which demonstrate the
Kelly portfolio rule as �competitively optimal,� established via an appropri-
ate zero-sum game.6 However, there are two crucial di¤erences among them: 1)
their models assume exogenous asset prices within a standard framework of cap-
ital growth theory, while EF extends that theory to a setting with endogenous
price formation mechanism; 2) the fundamental game solution concept adopted
in EF is de�ned in terms of a property holding almost surely, rather than the
traditional notion of a Nash equilibrium involving payo¤maximization (de�ned
in terms of expectations).
This paper surveys following models with long-lived assets (LLA):
Firstly, we present a model with the most general results under the most gen-

eral assumptions. The �rst paper on the LLA model was proposed in Evstigneev
et al. [37], and the �rst substantial results were obtained in Amir et al. [4].
These results are all covered by Evstigneev et al. [35], which will serve as the
foundation for the analysis that follows. The main results show that under very
general assumptions, a survival strategy exists, is asymptotically unique (within
a speci�c class of strategies called basic), and is easily computed by solving a
stochastic equation.
Then, we examine the globally evolutionarily stable strategies under much

stronger assumptions, including: independent and identically distributed (i.i.d.)
states of the world, a restriction to the simple (�xed-mix) and completely-mixed
portfolio rules, the same investment rate for all the assets at all dates, and the
supply of each asset is constant over time, etc. In this setting, it is shown that
there is a unique portfolio rule with this property (i.e., the Kelly rule) such that
those and only those investors who belong to the group of investors adopting
this strategy survive, whereas all the others employing distinct rules from the
Kelly rule become extinct, regardless of the initial state of the market.
Further, we view the model from a di¤erent, game-theoretic, perspective

and treat the decision-theoretic framework as a game in which the payo¤s of

6For related research in capital growth theory, see Kelly [60], Latané [65], Breiman [26],
Algoet and Cover [2], Hakansson and Ziemba [50], MacLean et al. [73], Kuhn and Luenberger
[63], Ziemba and Vickson [104], MacLean and Ziemba [74], etc. For the history of these ideas
initially expressed by Claude Shannon in his lectures on investment problems [93], and for
relevant discussions, see Cover [31]. For textbook treatments towards capital growth theory,
see Cover and Thomas [32], Chapter 16; Evstigneev et al. [40], Chapter 17.

4



the players (investors) are de�ned in terms of the growth rates of their relative
wealth. The analysis is conducted under restrictive assumptions, e.g., i.i.d.
states of the world, simple (�xed-mix) portfolio rules, and the same investment
rate for all the assets. The results show that in the game under consideration
the Kelly rule forms a unique symmetric Nash equilibrium almost surely.
The paper is organized as follows. Section 1 delivers an introduction for

this research direction � EF with long-lived assets. Section 2 presents the
model under general assumptions. Section 3 studies the main results of this
model. Section 4 analyzes the property of global evolutionary stability under
more restrictive conditions. Section 5 treats the model from a game-theoretic
perspective (Nash equilibrium in a certain dynamic game). Section 6 discusses
the modeling approach, characteristic features and applications of EF. And
Section 7 concludes.

2 The Model under General Assumptions

In Sections 2 and 3, we review the study by Evstigneev et al. [35], an EF
model for long-lived assets with the most general results under the most general
assumptions.
Asset Market Settings. We consider a market where K � 2 risky assets

(securities) are traded. The market is in�uenced by random factors modeled in
terms of an exogenous stochastic process s1; s2; :::, where st is a random element
of a measurable space St (�state of the world�at date t). The market opens at
date 0 and the assets are traded at all moments of time t = 0; 1; 2; :::. At each
date t = 1; 2; :::, assets k = 1; :::;K pay dividends Dt;k(st) � 0 depending on
the history st := ( s1; :::; st) of states of the world up to date t. The functions
Dt;k(s

t) (as well as all other functions of st we will consider) are assumed to be
measurable with respect to the product �-algebra in the space S1� :::�St and
satisfy

KX
k=1

Dt;k(s
t) > 0 for all t � 1 and st: (1)

This condition means that at each date in each random situation at least one
asset yields a strictly positive dividend. The total volume (the number of units)
of asset k available in the market at date t � 1 is Vt;k(st) > 0, where Vt;k(st) is
a measurable function of st. For t = 0, the number Vt;k = V0;k > 0 is constant.
We denote by pt 2 RK+ the vector of market prices of the assets. For each

k = 1; :::;K, the coordinate pt;k of pt = (pt;1; :::; pt;K) stands for the price
of one unit of asset k at date t � 0. There are N � 2 investors (traders)
acting in the market. A portfolio of investor i at date t � 0 is speci�ed by a
vector xit = (xit;1; :::; x

i
t;K) 2 RK+ , where xit;k is the amount (�physical units�)

of asset k in the portfolio xit. All the coordinates of the vector x
i
t are non-

negative: borrowing and short sales are ruled out. The scalar product hpt; xiti =PK
k=1 pt;kx

i
t;k expresses the value of the investor i�s portfolio x

i
t at date t in

terms of the prices pt;k. The state of the market at each date t is characterized
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by the set of vectors (pt; x1t ; :::; x
N
t ), where pt is the vector of asset prices and

x1t ; :::; x
N
t are the traders�portfolios.

At date t = 0 the investors have initial endowments wi0 > 0 (i = 1; :::; N),
which form their budgets at date 0. Investor i�s budget at date t � 1 is

wit(s
t) = hDt(st) + pt(st); xit�1(st�1)i;

where Dt(st) = (Dt;1(s
t); :::; Dt;K(s

t)). It consists of two components: the
dividends hDt; xit�1i paid by the portfolio xit�1 and the market value hpt; xit�1i
of xit�1 expressed in terms of the prices pt = (pt;1; :::; pt;K) at date t.
Investment Strategies. For each t � 0, every trader i = 1; 2; :::; N selects

a vector of investment proportions �it = (�it;1; :::; �
i
t;K) according to which i

plans to distribute the available budget between assets. Vectors �it belong to
the unit simplex

�K := f(a1; :::; aK) � 0 : a1 + :::+ aK = 1g:

In terms of the game we are going to describe, the vectors �it represent the
players�(investors�) actions or control variables. The investment proportions at
each date t � 0 are selected by the N traders simultaneously and independently,
so that we deal here with a simultaneous-move N -person dynamic game. For
t � 1, players�actions might depend, generally, on the history st = (s1; :::; st) of
the realized states of the world and the history of the game (pt�1; xt�1; �t�1),
where pt�1 = (p0; :::; pt�1) is the sequence of asset price vectors up to time t�1,
and

xt�1 := (x0; x1; :::; xt�1); xl = (x
1
l ; :::; x

N
l );

�t�1 = (�0; �1; :::; �t�1); �l = (�
1
l ; :::; �

N
l );

are the sets of vectors describing the portfolios and the investment proportions
of all the players at all the dates up to t� 1. The history of the game contains
information about the market history � the sequence (p0; x0); :::, (pt�1; xt�1) of
the states of the market � and about the actions �il of all the players (investors)
i = 1; :::; N at all the dates l = 0; :::; t� 1. A vector �i0 2 �K and a sequence of
measurable functions with values in �K

�it(s
t; pt�1; xt�1; �t�1); t = 1; 2; :::

form an investment (trading) strategy �i of trader i, specifying a portfolio rule
according to which trader i selects investment proportions at each date t � 0.
This is a general game-theoretic de�nition of a strategy, assuming full informa-
tion about the history of the game, including the players�previous actions, and
the knowledge of all the past and present states of the world.
Among general portfolio rules, we will distinguish those for which �it depends

only on st, rather than on the whole market history (pt�1; xt�1; �t�1). We will
call such portfolio rules basic. They play an important role in the present
work: the survival strategy we are going to construct will belong to this class.
The essence of the main result (Theorem 2) lies in the fact that it indicates a
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relatively simple basic strategy, requiring a very limited volume of information
and guaranteeing survival in competition with any other strategies which might
use all theoretically possible information.
Transaction Costs. For each asset k = 1; :::;K, a sequence of functions

�0;k; �1;k(s
1); �2;k(s

2); ::: is given to characterize transaction costs for buying
asset k in the market under consideration. It is assumed that 0 < �t;k � 1. If
an investor i allocates wealth wit;k to asset k at time t, then the value of the kth
position of the i�s portfolio will be pt;kxit;k = �t;kw

i
t;k. The amount (1��t;k)wit;k

will cover transaction costs.
Consecutive Short-run Equilibria. Suppose that at date 0 each investor

i has selected some investment proportions �i0 = (�i0;1; :::; �
i
0;K) 2 �K . Then

the amount allocated to asset k by trader i is �i0;kw
i
0, where w

i
0 > 0 is the i�s

initial endowment, so that the value of the holding of asset k in the i�s portfolio
is �0;k�

i
0;kw

i
0. Thus the value of the total holding of asset k in all the investors�

portfolios amounts to �0;k
PN

i=1 �
i
0;kw

i
0. It is assumed that the market is always

in equilibrium (asset supply is equal to asset demand), which makes it possible
to determine the equilibrium price p0;k of each asset k from the equations

p0;kV0;k = �0;k

NX
i=1

�i0;kw
i
0; k = 1; :::;K: (2)

On the left-hand side of (2) we have the total value p0;kV0;k of all the assets
of type k in the market (recall that the total amount of asset k at date 0 is
V0;k). The investment proportions �

i
0 = (�i0;1; :::; �

i
0;K) chosen by the traders

i = 1; :::; N at date 0 determine their portfolios xi0 = (xi0;1; :::; x
i
0;K) at date 0

by the formula

xi0;k =
�0;k�

i
0;kw

i
0

p0;k
; k = 1; :::;K; i = 1; :::; N: (3)

Assume now that all the investors have chosen their investment proportion
vectors �it = (�

i
t;1; :::; �

i
t;K) at date t � 1. Then the equilibrium of asset supply

and demand determines the market clearing prices

pt;kVt;k = �t;k

NX
i=1

�it;khDt + pt; xit�1i; k = 1; :::;K: (4)

The investment budgets hDt+pt; xit�1i of the traders i = 1; :::; N are distributed
between assets in the proportions �it;k, so that the kth position of the trader i�s
portfolio xit = (x

i
t;1; :::; x

i
t;K) is

xit;k =
�t;k�

i
t;khDt + pt; xit�1i

pt;k
; k = 1; :::;K; i = 1; :::; N: (5)

Note that the price vector pt is determined implicitly as the solution to the
system of equations (4).
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Growth of Asset Supply. De�ne


t;k(s
t) =

Vt;k(s
t)

Vt�1;k(st�1)
: (6)

The number 
t;k characterizes the speed of growth of the total volume Vt;k of
asset k. It can be shown that a non-negative vector pt(st) satisfying equations
(4) exists and is unique (for any st and any feasible xit�1 and �

i
t) as long as the

following condition holds

�t;k(s
t) < 
t;k(s

t) for all t � 1 and all st. 7 (7)

This condition is implied by the basic assumptions under which the results
of this model are obtained. Note that if there are no transaction costs, i.e.,
�t;k = 1, then (7) means that the total volumes of all the assets grow in time
at a strictly positive rate. In another extreme case, when 
t;k = 1, i.e., Vt;k is
constant in t, condition (7) requires that �t;k < 1, i.e., the transaction cost rate
is non-zero. This property � termed in Mathematical Finance "e¢ cient market
friction" (see, e.g., Kabanov and Safarian [59], p. 117) � plays an important
role in various models with transaction costs, excluding phenomena like the
Saint Petersburg paradox. In our context it is indispensable since in those cases
when this assumption does not hold, a short-run equilibrium might fail to exist.
Asset Market Dynamics. Given a strategy pro�le (�1; :::;�N ) of investors

and their initial endowments w10; :::; w
N
0 , we can generate a path of the market

game by setting
�i0 = �

i
0; i = 1; :::; N; (8)

�it = �
i
t(s

t; pt�1; xt�1; �t�1); t = 1; 2; :::; i = 1; :::; N; (9)

and by de�ning pt and xit recursively according equations (2)�(5). The random
dynamical system described de�nes step by step the vectors of investment pro-
portions �it(s

t), the equilibrium prices pt(st) and the investors�portfolios xit(s
t)

as measurable vector functions of st for each moment of time t � 0. Thus we
obtain a random path of the game

(pt(s
t);x1t (s

t); :::; xNt (s
t);�1t (s

t); :::; �Nt (s
t)); t � 0; (10)

as a vector stochastic process in RK+ � RKN+ � RKN+ .
Admissible Strategy Pro�le. The above description of asset market dy-

namics requires clari�cation. Equations (3) and (5) make sense only if pt;k > 0,
or equivalently, if the aggregate demand for each asset (under the equilibrium
prices) is strictly positive. Those strategy pro�les which guarantee that the
recursive procedure described above leads at each step to strictly positive equi-
librium prices will be called admissible. In what follows, we will deal only
with such strategy pro�les. The hypothesis of admissibility guarantees that the

7For the proof of this result see Evstigneev et al. [35], Section 5, Proposition 1.
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random dynamical system under consideration is well-de�ned. Under this hy-
pothesis, we obtain by induction that on the equilibrium path all the portfolios
xit = (x

i
t;1; :::; x

i
t;K) are non-zero and the wealth

wit := hDt + pt; xit�1i (11)

of each investor is strictly positive. Further, by summing up equations (5) over
i = 1; :::; N , we �nd that

NX
i=1

xit;k =
�t;k

PN
i=1 �

i
t;khDt + pt; xit�1i
pt;k

=
pt;kVt;k
pt;k

= Vt;k (12)

(the market clears) for every asset k and each date t � 1. The analogous
relations for t = 0 can be obtained by summing up equations (3). Thus for
every equilibrium state of the market (pt; x1t ; :::; x

N
t ), we have pt > 0, xit 6= 0

and (12).
There is a simple su¢ cient condition for a strategy pro�le to be admissible.

This condition will hold for all the strategy pro�les we shall deal with in this
model, and in this sense it does not restrict generality. Suppose that some trader,
say trader 1, uses a portfolio rule that always prescribes to invest into all the
assets in strictly positive proportions �1t;k. Then a strategy pro�le containing
this portfolio rule is admissible. Indeed, for t = 0, we get from (2) that p0;k �
�0;kV

�1
0;k �

1
0;kw

1
0 > 0 and from (3) that x

1
0 = (x

1
0;1; :::; x

1
0;K) > 0 (coordinatewise).

Assuming that x1t�1 > 0 and arguing by induction, we obtain

hDt + pt; x1t�1i � hDt; x1t�1i > 0

in view of (1), which in turn yields pt > 0 and x1t > 0 by virtue of (4) and (5),
as long as �1t;k > 0.

3 The Main Results on Survival Strategies

The main results of Evstigneev et al. [35], show that under very general as-
sumptions, a survival strategy exists, is asymptotically unique (within a speci�c
class of basic strategies) and easily computable. Now this strategy is de�ned as
a solution to a certain stochastic equation, in contrast with the previous, more
specialized, models (e.g., Evstigneev et al. [37], Amir et al. [4], etc.) where it
could be represented in an explicit form as the sum of a convergent series. For
the proof of the existence and uniqueness of this solution, new mathematical
tools related to the ergodic theory of random dynamical systems: non-stationary
stochastic Perron-Frobenius theorems8 were developed.
These results are collected as follows:
Let (�1; :::;�N ) be an admissible strategy pro�le of the investors. Consider

the path (10) of the random dynamical system generated by this strategy pro�le

8For stationary versions of these results see, e.g., Babaei et al. [13].
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and the given initial endowments wi0. We are primarily interested in the long-
run behavior of the market shares rit := w

i
t=Wt of the traders, where wit is the

investor i�s wealth at date t � 0 and Wt :=
PN

i=1 w
i
t is the total market wealth.

We shall say that a portfolio rule �, or an investor i using it, survives with
probability one if

inf
t�0
rit > 0 (a.s.).

This means that for almost all realizations of the process of states of the world
s1; s2; :::, the market share of investor i using � is bounded away from zero by
a strictly positive random variable.

De�nition 1 A portfolio rule � is a survival strategy if any investor using it
survives with probability one irrespective of what portfolio rules are used by the
other investors.

A strategy �� is constructed, which will be shown to be a survival strategy.
Put

�t;k :=
�t;k

t;k

=
�t;kVt�1;k
Vt;k

; t � 1; k = 1; :::;K:

De�ne the relative dividends of the assets k = 1; :::;K by

Rt;k = Rt;k(s
t) :=

Dt;k(s
t)Vt�1;k(s

t�1)PK
m=1Dt;m(s

t)Vt�1;m(st�1)
; t � 1; k = 1; :::;K; (13)

and put Rt(st) := (Rt;1(st); :::; Rt;K(st)). The strategy �� = (�
�
t (s

t))t�0, where
��t = (�

�
t;1; :::; �

�
t;K), is de�ned as the basic strategy satisfying the equation

Et[�t+1;k�
�
t+1;k+(1�

KX
m=1

�t+1;m�
�
t+1;m)Rt+1;k] = �

�
t;k (a.s.); k = 1; :::;K: (14)

Here Et(�) = E(�jst) stands for the conditional expectation given st. Conditions
are provided below under which the strategy �� exists and is unique up to
stochastic equivalence, i.e., if � = (�t(st))t�0 is another solution to (14), then
��t = �t (a.s.) for all t.
We will assume that the following conditions hold:

(A.1) There exist constants � > 0 and l � 0 such that for each t and k, we
have

max
1�m�l

Rt+m;k � �: (15)

(A.2) There exist strictly positive constants � and � such that for all k; t:

� � �t;k � 1� �: (16)

Theorem 1 Under assumptions (A.1) and (A.2), a solution (��t )t�0 to equa-
tion (14) exists and is unique up to stochastic equivalence. There exists a con-
stant � > 0 such that ��t;k � �.

10



Let us discuss the meaning of equation (14). Suppose for the moment that
the growth rates of all the assets are the same, so that

�t;1 = �t;2 = ::: = �t;K = �t: (17)

In this case, equation (14) takes on the following form

Et[�t+1�
�
t+1;k + (1� �t+1)Rt+1;k] = ��t;k (a.s.); (18)

and it admits an explicit solution. The kth coordinate ��t;k of the vector �
�
t can

be represented as the conditional expectation of the sum of the series

��t;k = Et

1X
l=1

�ltRt+l;k ; (19)

where

�lt :=

�
1� �t+l ; if l = 1;

�t+1�t+2::::�t+l�1(1� �t+l); if l > 1:
(20)

Note that in view of (16), the series of random variables

1X
l=1

�lt = (1� �t+1) + �t+1(1� �t+2) + �t+1�t+2(1� �t+3) + :::

converges uniformly, and its sum is equal to one. Therefore the series of random
vectors

P1
l=1 �

l
tRt+l;k in (19) converges uniformly to a random vector belonging

the unit simplex �K , so that the right-hand side of (19) is well-de�ned.9

Assume that �t = � is constant. Then formula (19) can be written as

��t;k = Et

1X
l=1

[(1� �)�l�1Rt+l;k]: (21)

Further, if the random elements st are independent and identically distributed
(i.i.d.) and the relative dividends Rt;k(st) = Rk(st) depend only on the current
state st and do not explicitly depend on t, then EtRk(st+l) = ERk(st) (l � 1),
and so

��t;k = ERk(st); (22)

which means that the strategy �� is formed by the sequence of vectors (ER1(st);
:::; ERK(st)) (constant and independent of t and st). Note that in this special
case, the formula (22) for �� does not involve the factor �.
Formulas (19), (21) and (22) re�ect two general principles in Financial Eco-

nomics:
1) The strategy �� prescribes the allocation of wealth among assets in the

proportions of their fundamental values � the expectations of the future relative
(discounted, weighted) dividends.

9The derivation of equation (19) is given in Evstigneev et al. [35], Section 5, Proposition
5.
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2) The portfolio rule �� de�ned in terms of the relative dividends provides
an investment recommendation in line with the CAPM principles, emphasizing
the role of the market portfolio (see, e.g., Evstigneev et al. [40], Chapter 7).
In this connection it should be emphasized that instead of the traditional

weighing assets according to their prices, the weights in the de�nition of ��

are based on fundamentals, so that �� is an example of fundamental indexing
(Arnott et al. [8]).
As we have already noted, EF can be viewed as an extension of the classical

capital growth theory (Kelly [60], Breiman [26], Algoet and Cover [2], and oth-
ers) to the case of endogenous asset prices and returns. In the classical setting,
a central role is played by the famous Kelly portfolio rule [60] guaranteeing the
fastest asymptotic growth rate of wealth in the long run. The Kelly rule is
obtained by the maximization of the expected logarithm of the portfolio return.
It will be shown in Section 6, Proposition 4 that in the present model survival
is equivalent to the fastest relative growth of wealth in the long run. Therefore
�� may be viewed as a counterpart of the Kelly portfolio rule in the present
model. However, in the game-theoretic model at hand, where the performance
of a strategy depends not only on the strategy itself but on the whole strat-
egy pro�le, �� cannot be obtained as a solution to a single-agent optimization
problem with a logarithmic or any other objective functional.
It should be noted that in the case of di¤erent �t;k, when condition (17)

does not hold, we cannot provide an explicit formula, like (19), for the strategy
��. However, we can suggest an algorithm for computing �� converging at
an exponential rate. This algorithm is actually contained in the proof of the
existence and uniqueness of a solution to equation (14), see Evstigneev et al.
[35], Appendix B, formulas (B.9) and (B.10).
The main results of the study are formulated in Theorems 2 and 3.

Theorem 2 The portfolio rule �� is a survival strategy.

As we have already noted, the portfolio rule �� belongs to the class of basic
portfolio rules: the investment proportions ��t (s

t) depend only on the history st

of the process of states of the world and do not depend on the market history.
Note that the class of basic strategies is su¢ cient in the following sense. Any

sequence of vectors rt = (r1t ; :::; r
N
t ) (rt = rt(s

t)) of market shares generated
by some strategy pro�le (�1; :::;�N ) can be generated by a strategy pro�le
(�1t (s

t); :::; �Nt (s
t)) consisting of basic portfolio rules. The corresponding vector

functions �it(s
t) can be de�ned recursively by (8) and (9), using (2)�(5). Thus

it is su¢ cient to prove Theorem 2 only for basic portfolio rules; this will imply
that the portfolio rule (14) survives in competition with any, not necessarily
basic, strategies.
The following result shows that the survival portfolio rule �� is unique in

the class of all basic strategies.

Theorem 3 If there exists another basic survival strategy � = (�t), then:
1X
t=0

jj��t � �tjj2 <1 (a.s.):

12



It is not known whether this result remains valid for the class of general, not
necessarily basic, strategies. This question remains open; it indicates an inter-
esting direction for further research. Some examples pertaining to a di¤erent,
but closely related, model (i.e., short-lived assets) might suggest a conjecture
that the answer to this question is negative (see Amir et al. [6], Section 5).

The proofs of Theorems 1�3 are lengthy, consisting in several steps. We
outline these steps in this survey, for the details of the arguments see Evstigneev
et al. [35], pp. 126�134.
The plan of the proof of Theorem 1 is as follows.
The purpose of the proof is to show the results formulated in Step 2 below,

which implies the existence and uniqueness of the �� strategy. We will deduce
the results in Step 2 from Step 1, which represents a non-stationary version of
the stochastic Perron-Frobenius theorem. In turn, the results in Step 1 will be
obtained as a consequence of a chain of auxiliary results formulated in Lemmas
1�2 and Propositions 1�3 below.10

Denote by Mn (n > 1) the set of n � n matrices B � 0 such that Bx 6= 0
for all x 2 Q := fx : 0 6= x � 0g. For x = (x1; :::; xn) 2 Rn, de�ne jxj
= jx1j+ :::+ jxnj, x0 = x=jxj, and, for B 2Mn, put

�(B) = max
x;y2Q

j(Bx)0 � (By)0j:

Let �(B) denote the ratio of the smallest and the greatest elements of matrix
B.

Lemma 1 Let B1; B2; :::Bk 2Mn. If Bi > 0 and n > 1, then

�(Bk:::B1) � ��11 �1:::�k�1;

where
�i = n

�2�(Bi)�(Bi+1); �i = (1� 2�i):

Put � = fx = (x1; :::; xn) : xj � 0;
P
xj = 1g. Let Dn denote the set

of matrices B in Mn representing linear transformations of Rn that map �
into itself. For � > 0 we will denote by Dn� the set of matrices B 2 Dn whose
elements are not less than �.

Lemma 2 Let B1; B2; :::; Bk 2 Dn� . Then

�(Bk:::B1) < M�
k�1;

where M = n2��2 and � = 1� n�2�2.

Let B1; B2; ::: be a sequence of matrices in Dn.
10For the proofs of Lemmas 1�2 and Propositions 1�3, see Evstigneev et al. [35], Appendix

B.
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Proposition 1 There exists a sequence (y�t )t�0 such that y
�
t 2 � and

y�t = Bt+1y
�
t+1; t � 0: (23)

For each t � 1 and j � 0 denote Bt+jt = Bt:::Bt+j . For any y = (yt) 2 �1
denote by Bm

t (y) the tth term of the sequence Bm(y) 2 �1, where Bm(y) is
the mth iterate of the mapping B. Clearly, if we put ymt = Bm

t (y) (t � 0), then

y1t = Bt+1yt+1 = B
t+1
t+1yt+1; y

2
t = Bt+1y

1
t+1 = Bt+1Bt+2yt+2 = B

t+2
t+1yt+2; :::;

ymt = Bt+1Bt+2:::Bt+myt+m = B
t+m
t+1 yt+m; t � 0:

Proposition 2 Suppose there exist an integer l � 0 and a real number � > 0
such that for any t � 1 the matrix Bt+lt belongs to Dn� . Then the solution
y� = (y�t )t�0 to equation (23) is unique, and for every t � 0, the sequence
ymt = Bm

t (y) converges to y
�
t uniformly in y 2 �1.

Suppose that the matrices Bt = Bt(!) 2 Dn are random, i.e., Bt(!) for each
t = 1; 2; ::: is a measurable matrix function on the probability space (
;F ; P ).
Assume the following condition holds:
(B) For some l � 0 and � > 0, the matrix Bt+lt (!) belongs to Dn� almost

surely for all t � 1.

Proposition 3 Under assumption (B), there exists a sequence (y�t )t�0 of mea-
surable vector functions y�t (!) with values in � such that

Bt+1y
�
t+1 = y

�
t ; t � 0 (a.s.): (24)

The solution (y�t )t�0 to equation (24) is unique, and we have y
�
t (!) � �e (a.s.).

There exists a set 
1 2 F with P (
1) = 1 such that for every t � 0 and ! 2 
1
the sequence ymt (!) = B

m
t (y)(!) converges to y

�
t (!) uniformly in y 2 �1.

Proof of Theorem 1 (Outline). 1st step. Let A1(!); A2(!); ::: be a sequence of
random matrices. Consider the following condition:
(A) For each t � 1, the matrix At(!) depends Ft-measurably on !, and

there exist l � 0 and � > 0, such that the matrix At+lt (!) := At(!):::At+l(!)
belongs to Dn� almost surely for all t � 1.
By virtue of Lemmas 1�2 and Propositions 1�3, this step aims to establish

the following result:11

Under assumption (A), there exists a sequence (x�t (!))t�0 of vector functions
with values in � such that x�t (!) is Ft-measurable and

EtAt+1x
�
t+1 = x

�
t (a.s.); t � 0: (25)

This sequence is unique up to stochastic equivalence, and we have

x�t � �e (a.s.): (26)

11For the proof of this result, see Evstigneev et al. [35], Appendix B, Theorem B.1.
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2nd step. Let (�t)t�1 be a sequence of Ft-measurable random vectors �t =
(�t;1; :::; �t;n) such that 0 � �t;i � 1, and (Rt)t�1 a sequence of Ft-measurable
random vectors Rt = (Rt;1; :::; Rt;n) satisfying Rt � 0;

Pn
i=1Rt;i = 1: Recall

that �� was de�ned as the solution to equation (14). To prove that this solution
exists and is unique let us de�ne for each t � 0 the linear operator At+1:

(At+1x)i = �t+1;ixi + (
nX

m=1

xm �
nX

m=1

�t+1;mxm)Rt+1;i

= �t+1;ixi +
nX

m=1

(1� �t+1;m)xmRt+1;i:

This operator transforms � into itself, and for x 2 � we have

(At+1x)i = �t+1;ixt+1;i + (1�
nX

m=1

�t+1;mxt+1;m)Rt+1;i:

Consequently, equation (14) can be written in the form (25) (with obvious
changes in notation). Let us introduce the following condition:
(R) There exist constants 
 > 0 and l � 0 such that for each t and i, we

have
max
1�m�l

Rt+m;i � 
: (27)

Based on Step 1, the objective of this step is to conclude that:12

Suppose that condition (R) holds and there exists a constant � > 0 such that
minf�t;i; 1 � �t+1;ig � � for all t and i. Then a solution (x�t )t�0 to equation
(25) exists, is unique up to stochastic equivalence, and satis�es (26) for some
� > 0.

The plan of the proofs of Theorems 2�3 is as follows.
1st step. The system of equations governing the wealth dynamics of in-

vestors given their admissible strategy pro�le (�1; :::;�N ) can be expressed in
the following form:

wit+1 =
KX
k=1

(�t+1;kh�t+1;k; wt+1i+Dt+1;kVt;k)
�it;kw

i
t

h�t;k; wti
; i = 1; :::; N; t � 0:13

(28)
2nd step. It is su¢ cient to consider, without loss of generality, the case of two

investors. This reduces the dimension of the original random dynamical system
from a general N to N = 2. Consider the model with two traders (N = 2) using

12For the proof of this result, see Evstigneev et al. [35], Appendix B, Theorem B.2.
13For the proof of this result, see Evstigneev et al. [35], Section 5, Proposition 2.
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strategies �i = (�it;k(s
t)); i = 1; 2; and denote by xt the ratio of their market

shares:

xt =
r1t
r2t
=
w1t
w2t
:

Further, let us de�ne for i = 1; 2,

U it+1 := 1�
KX
k=1

�t+1;k�
i
t+1;k =

KX
k=1

(1� �t+1;k)�it+1;k :

In the model with two investors i = 1; 2 using the strategies � and ~�,
respectively, the wealth w1t of the �rst player coincides with the wealth w

1
t of the

�rst player in the original model, and the wealth ~w2t of the second "aggregate"
investor coincides with the total wealth w2t + ::: + w

N
t of the group of N � 1

investors i = 2; :::; N in the original model.14

3rd step. The sequence xt is generated by the following random dynamical
system

xt+1 = xt

PK
k=1[�t+1;k�

2
t+1;k +Rt+1;kU

2
t+1]

�1t;k

�1t;kxt + �
2
t;kPK

k=1[�t+1;k�
1
t+1;k +Rt+1;kU

1
t+1]

�2t;k

�1t;kxt + �
2
t;k

(t = 0; 1; :::): (29)

It describes a one-dimensional system which governs the evolution of the ratio
xt = r1t =r

2
t of the market shares of the two investors, and thus reduces the

dimension of the problem to 1.15

4th step. Our goal is to show that the random sequence (xt)t�0 de�ned
recursively by (29) is bounded away from zero almost surely. To this end it
turns out to be convenient to take a �step back�and to increase the dimension
to K (the number of assets). Assuming that the �rst trader uses the investment
proportions �1t;k = ��t;k(s

t) prescribed by the portfolio rule �� and the second
trader employs investment proportions �2t;k = �t;k(s

t) speci�ed by some other
portfolio rule �, we introduce the following change of variables

ykt = �t;k=xt ; k = 1; :::;K;

and de�ne yt := (y1t ; :::; y
K
t ). We examine the dynamics of the random vectors

yt = yt(s
t) implied by the system (29). The norm jytj :=

P
k jykt j of the vector

yt � 0 is equal to
P

k(�t;k=xt) = 1=xt, and what we need is to show that 1=jytj
is bounded away from zero (a.s.). To prove this, a stochastic Lyapunov function
� a function of yt which forms a non-negative supermartingale (�t) along a path
(yt) of the system at hand (see Lemma 5 below) � is constructed. By using the
supermartingale convergence theorem, one can prove that the stochastic process
�t converges (a.s.), which implies that it is bounded (a.s.).

14For the proof of this result, see Evstigneev et al. [35], Section 5, Proposition 4.
15For the proof of this result, see Evstigneev et al. [35], Section 5, Proposition 3.
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5th step. We complete the proof of Theorem 2 by showing that the bound-
edness of �t implies that xt = 1=jytj is bounded away from zero. By using the
above techniques, together with some additional considerations, we complete
this section with an outline of the proof of Theorem 3.
The proofs of Theorems 2�3 are based on Lemmas 3�6 below.16

Let us de�ne the non-negative random variables

Yt := ln(1 + jytj) = � ln r1t ;

Zt;k := ln(1 +
ykt
��t;k

) = ln

�
1 +

r2t�t;k
r1t�

�
t;k

�
;


t+1k;m =
1 + ymt+1=�

�
t+1;m

1 + ykt =�
�
t;k

;

and a function

f(x) =
(x� 1) lnx
x+ 2

:

Lemma 3 The function f(x) is non-negative, has a unique root x = 1 and
satis�es

x� 1 � lnx+ f(x); x 2 (�1;+1):

Lemma 4 The following inequality holds:

KX
k=1

��t+1;kZt+1;k +
KX
m=1

KX
k=1

Rt+1;k(1� �t+1;m)��t+1;mf
�

t+1k;m

�
�

KX
k=1

�t+1;k�
�
t+1;kZt;k + U

�
t+1

KX
k=1

Rt+1;kZt;k:

Put

�t :=
KX
k=1

��t;kZt;k +
KX
m=1

KX
k=1

Rt;k(1� �t;m)��t;mf
�

tk;m

�
: (30)

Lemma 5 The sequence of random variables �t (t � 1) is a non-negative su-
permartingale, and we have

�t � Et�t+1 �
KX
m=1

KX
k=1

Rt;k(1� �t;m)��t;mf
�

tk;m

�
� 0 (a.s.): (31)

Lemma 6 Let �t be a supermartingale such that inftE�t > �1. Then the
series of non-negative random variables

P1
t=0(�t � Et�t+1) converges (a.s.).

16For the proofs of Lemmas 3�6, see Evstigneev et al. [35], Appendix A.
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Proof of Theorem 2. By Lemma 5, the sequence �t de�ned in (30) is a non-
negative supermartingale. Therefore it converges (a.s.), and hence it is bounded
above (a.s.) by some random constant C:

C � �t =
KX
k=1

��t;kZt;k +
KX
m=1

KX
k=1

Rt;k(1� �t;m)��t;mf
�

tk;m

�
�

KX
k=1

��t;kZt;k =
KX
k=1

��t;k ln

�
1 +

r2t�t;k
r1t�

�
t;k

�
:

Here, we used the non-negativity of the function f established in Lemma 3
and the non-negativity of the relative dividends Rt;k, and �

�
t;m, and assumption

(A.2).
Recall that by virtue of Theorem 1, ��t;k � � for any t; k. Therefore C=� �

ln
�
1 + r2t�t;k=r

1
t�

�
t;k

�
for all t; k, and there exists some random variable H such

that H � 1 + r2t�t;k=r
1
t�

�
t;k for all t; k. Furthermore, there exists some k such

that �t;k � 1=K (since
PK

k=1 �t;k = 1). For this k the following inequality
holds:

H � 1 + r
2
t�t;k
r1t�

�
t;k

� 1 + r2t
r1t�

�
t;kK

� 1 + r2t
r1tK

= 1 +
(1� r1t )
r1tK

;

which implies r1t � (K(H � 1) + 1)�1 = � .

Proof of Theorem 3 (Outline). 1st step. Since investor 1 uses the strategy
��, by virtue of Lemma 5 the sequence �t de�ned by (30) is a non-negative
supermartingale. In view of inequality (31) and Lemma 6, we obtain

1X
t=0

KX
m=1

KX
k=1

Rt;k(1� �t;m)��t;mf
�

tk;m

�
<1,

which implies
1X
t=0

KX
m=1

KX
k=1

Rt;kf
�

tk;m

�
<1, (32)

since we have (1� �t;m) � { > 0 by assumption (A.2), and ��t;m � �. This step
aims to show that if (32) converges, then the following series converges as well:

1X
t=0

KX
m=1

KX
k=1

Rt;k(

t
k;m � 1)2 <1: (33)

2nd step. From (33), the objective of this step is to deduce that

1X
t=0

KX
m=1

KX
k=1

Rt;k
�
ymt =�

�
t;m � ykt�1=��t�1;k

�2
<1: (34)
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3rd step. At this step, by using (34), we obtain:

1X
t=0

KX
m=1

KX
k=1

�
ymt =�

�
t;m � ykt =��t;k

�2
<1:

This series can be estimated as:

1 >
1X
t=0

KX
m=1

KX
k=1

�
ymt
��t;m

� ykt
��t;k

�2

=
1X
t=0

�
r2t
r1t

�2 KX
m=1

KX
k=1

�
�t;m
��t;m

� �t;k
��t;k

�2

�
1X
t=0

�
r2t
r1t

�2 KX
k=1

�
�t;m
��t;m

� �t;k
��t;k

�2
(35)

for each m. This fact will be used at the next step.
4th step. Next we prove the following estimate for the sum involved in (35):

KX
k=1

�
�t;m=�

�
t;m � �t;k=��t;k

�2 � ��t;m=��t;m � 1�2 : (36)

Finally, by using (35) and inequality (36), we conclude

1 >
1X
t=0

�
r2t
r1t

�2 KX
m=1

KX
k=1

�
�t;m
��t;m

� �t;k
��t;k

�2

�
1X
t=0

�
r2t
r1t

�2 KX
m=1

�
�t;m
��t;m

� 1
�2

=
1X
t=0

�
r2t
r1t

�2 KX
m=1

�
�t;m � ��t;m

��t;m

�2

�
1X
t=0

�
r2t
r1t

�2 KX
m=1

�
�t;m � ��t;m

�2
=

1X
t=0

�
r2t
r1t

�2
j j�t � ��t j j2

�
1X
t=0

�2j j�t � ��t j j2;

where � > 0 is a random variable such that r2t =r
1
t � �, which exists because

� = (�t) is a survival strategy.
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4 Globally Evolutionarily Stable Strategies

On the basis of the general results obtained, this section examines the work of
Evstigneev et al. [38] on globally evolutionarily stable portfolio rules (stronger
results) under stronger assumptions, which deals with a special case of the model
in which

(i) the states of the world st are independent and identically distributed
(i.i.d.), i.e., s1; s2; ::: form a sequence of i.i.d. elements in S such that
the probability Pfst = sg is strictly positive for each s 2 S;

(ii) the relative dividends Rt;k(st) = Rk(st) depend only on the current state
st and do not explicitly depend on t;

(iii) for each k = 1; :::;K, the expectation EDt;k(st) is strictly positive, i.e.,
EDt;k(s

t) = EDk(st) > 0. This condition means that for each asset k the
probability that it pays a strictly positive dividend is strictly positive;17

(iv) all the portfolio rules under consideration are restricted to simple/�xed-
mix (prescribing to select investment proportions initially and remain
them �xed throughout the entire duration, independent of t and st) and
completely-mixed (prescribing to assign a positive percentage of wealth
�it;k(s

t) to each asset k = 1; :::;K for all t and st) portfolio rules, i.e.,
�it;k(s

t) = �ik > 0;

(v) the supply of each asset in each moment of time Vt;k is constant and, for
simplicity, normalized to 1 (implying 
t;k = Vt;k=Vt�1;k = 1);

(vi) the same investment rate for all the assets at all dates, i.e., �t;k is constant,
�t;k = � 2 (0; 1);

(vii) the functions R1(s); :::; RK(s) are linearly independent with respect to
the probability distribution of st (the absence of redundant assets), i.e.,
the equality

P
�kRk(st) = 0 holding almost surely for some constants �k

implies that �1 = ::: = �K = 0.

Model Setup. We follow the same asset market settings as in the general
case, except that the stronger assumptions (i)�(vii) are imposed. The short-run
(temporary) equilibria that determine the equilibrium asset prices are charac-
terized by the following expressions:

� For date t = 0:

p0;k = �

NX
i=1

�ikw
i
0; k = 1; :::;K: (37)

17Recall that in the general model we assume:
PK
k=1Dt;k(s

t) > 0 for all t � 1 and st, which
means that at each date in each random situation at least one asset yields a strictly positive
dividend. This assumption is fundamental and will also be imposed here:

PK
k=1Dk(s) > 0

for all s 2 S.
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xi0;k =
��ikw

i
0

p0;k
; k = 1; :::;K; i = 1; :::; N: (38)

� For dates t � 1:

pt;k = �
NX
i=1

�ikhDt + pt; xit�1i; k = 1; :::;K: (39)

xit;k =
��ikhDt + pt; xit�1i

pt;k
; k = 1; :::;K; i = 1; :::; N: (40)

From (39) and (40) we obtain

pt+1;k = �

NX
i=1

�ikhpt+1 +Dt+1; xiti = �
NX
i=1

�ikw
i
t+1 = �h�k; wt+1i;

xit;k =
��ikw

i
t

pt;k
=

�ikw
i
t

h�k; wti
;

and thus

wit+1 =

KX
k=1

[pt+1;k+Dk(st+1)]x
i
t;k =

KX
k=1

[�h�k; wt+1i+Dk(st+1)]
�ikw

i
t

h�k; wti
: (41)

By summing up these equations over i = 1; :::; N , we get

Wt+1 =
KX
k=1

[�h�k; wt+1i+Dk(st+1)]
PN

i=1 �
i
kw

i
t

h�k; wti

= �
KX
k=1

h�k; wt+1i+
KX
k=1

Dk(st+1) = �Wt+1 +
KX
k=1

Dk(st+1);

which leads to the formula

Wt+1 =

PK
k=1Dk(st+1)

1� � : (42)

From (41) and (42) we �nd

rit+1 =
KX
k=1

[�h�k; rt+1i+ (1� �)
Dk(st+1)PK
k=1Dk(st+1)

]
�ikw

i
t=Wt

h�k; wti=Wt
:

Consequently, we arrive at the system of equations:

rit+1 =
KX
k=1

[�h�k; rt+1i+ (1� �)Rk(st+1)]
�ikr

i
t

h�k; rti
; i = 1; :::; N; (43)
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where

Rk(st+1) =
Dk(st+1)PK
k=1Dk(st+1)

; k = 1; :::;K;

are the relative dividends of the assets k = 1; :::;K.
Consistent with the general model, we are primarily interested in the long-

run behavior of the market shares of the investors, i.e., in the asymptotic prop-
erties of the sequence of vectors rt = (r1t ; :::; r

N
t ) as t!1.

Global Evolutionary Stability. An investment strategy, or a portfolio
rule, is called evolutionarily stable if the following condition holds. If a group
of investors uses this rule, while all the others use di¤erent ones, those and
only those investors who belong to the former group survive. If this condition
holds regardless of the initial state of the market, the investment strategy is
called globally evolutionarily stable. If it holds under the additional assump-
tion that the group of investors using other portfolio rules (distinct from the
one we consider) possesses a su¢ ciently small initial share of market wealth,
then the above property of stability is termed local. More precisely, the global
evolutionary stability is de�ned as follows:

De�nition 2 A portfolio rule � = (�1; :::; �K) is called globally evolutionarily
stable if the following condition holds. Suppose, in a group of investors i =
1; 2; :::; J (1 � J < N), all use the portfolio rule �, while all the others, i =

J + 1; :::; N use portfolio rules �̂
i
distinct from �. Then those investors who

belong to the former group (i = 1; :::; J) survive with probability one, whereas
those who belong to the latter (i = J + 1; :::; N) become extinct with probability
one, regardless of the initial state of the market.

In the above de�nition, it is supposed that the initial state r0 in the market
selection process governed by the random dynamical system (see equations (43))
on the simplex �N = fr 2 RN jri � 0;

P
i r
i = 1g is any strictly positive

vector r0 2 �N , which is re�ected in the term �global evolutionary stability.�
An analogous local concept18 is de�ned similarly, but in the de�nition of local
evolutionary stability, the initial market share rJ+10 + ::: + rN0 of the group of

investors (i = J + 1; :::; N) who use strategies �̂
i
distinct from � is supposed to

be small enough.
Our main goal is to identify the portfolio rule which is globally evolutionarily

stable. Clearly, if it exists it must be unique. Indeed if there are two such rules,
� 6= �0, we can divide the population of investors into two groups assuming that
the �rst uses � and the second �0. Then, according to the de�nition of global
evolutionary stability, both groups must become extinct with probability one,
which is impossible since the sum of the relative wealth of all the investors is
equal to one.
Central Result. It can be shown by Theorem 4 that among all �xed-mix

and completely-mixed investment strategies considered here, the only globally
evolutionarily stable portfolio rule is to invest according to the proportions of

18See Evstigneev et al. [37], Section 3, De�nition 2.
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the expected relative dividends � analogous to the well-known Kelly�s principle
of �betting one�s beliefs.�De�ne

�� = (��1; :::; �
�
K); �

�
k = ERk(st); k = 1; :::;K: (44)

Theorem 4 The Kelly rule (44) is globally evolutionarily stable.

An earlier version of the proof for Theorem 4 was provided in Evstigneev
et al. [38], Appendix. Indeed, this result can be directly derived from the
general case (Evstigneev et al. [35]) that we introduced in Sections 2 and 3.
The derivation is given as follows:

Proof of Theorem 4. 1st step. Observe that this model (Evstigneev et al. [38])
is a special case of Evstigneev et al. [35], obtained by imposing assumptions (i)�
(vii). One can easily verify this relation by substituting these stronger conditions
into the original short-run equilibria and random dynamical system. Indeed,
since �t;k = �; �

i
t;k(s

t) = �ik; Vt;k = 1 for k = 1; :::;K; i = 1; :::; N; and t � 0,
the system of equations (2)�(5) reduces immediately to (37)�(40).
According to assumption (7), formulas (37) and (39) yield a unique equilib-

rium price vector pt at each t � 0 since the condition �t;k(st) = � < 1 = 
t;k(st)
holds for all t � 1 and all st.19
The wealth dynamics of traders in the general model is provided in (28),

since we have �t+1;k = �t+1;k=
t+1;k = �=1 = �; �it;k = �it+1;k = �ik; Vt;k =
1; Dt+1;k(s

t+1) = Dk(st+1) for each k = 1; :::;K; i = 1; :::; N; and t � 0, it
reduces to (41).
Given the random elements st are i.i.d., and the relative dividends Rt;k(st) =

Rk(st) depend only on the current state st and do not explicitly depend on t,
then EtRt+l;k(st+l) = ERk(st) (l � 1), and so the survival strategy (14) can be
simpli�ed to the following form:

��t;k = �
�
k = Et[�t+1;k�

�
t+1;k + (1�

KX
m=1

�t+1;m�
�
t+1;m)Rt+1;k]

= Et[��
�
k + (1�

KX
m=1

���m)Rt+1;k] = ��
�
k + Et[(1� �

KX
m=1

��m)Rt+1;k]

= ���k + (1� �)EtRt+1;k = ���k + (1� �)ERk(st)

(a.s.); k = 1; :::;K; which leads to the formula

��k = ERk(st); k = 1; :::;K:

It coincides with the survival strategy (44) constructed here.20

Thus, under assumptions (i)�(vii), the setup in Evstigneev et al. [35] corre-
sponds to the special case in Evstigneev et al. [38].

19 In the context of Evstigneev et al. [38], this result is shown in Section 4.1, Proposition 1.
20 In the context of Evstigneev et al. [38], it is shown in Section 4.4, Theorem 4 that the

Kelly rule (44) survives with probability one.
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2nd step. As established in Step 1, Theorem 3 remains valid in this special
case. Recall that we now restrict our consideration to the class of �xed-mix and
completely-mixed strategies. Assume that one of the investors, say investor 1,
adopts the Kelly rule ��t;k = ��k = ERk(st); k = 1; :::;K, while all the other
investors i = 2; :::; N use portfolio rules �i 6= ��. For each investor i who adopts
strategy �i, there must exist some asset k0 such that j��k0 � �ik0 j � � > 0, where
� := mink j��k � �ikj is a strictly positive constant. (Otherwise, if j��k � �ikj = 0
for all k = 1; :::;K, then �i = ��).
Then, we have

jj�� � �ijj2 =
KX
k=1

(��k � �ik)2 � (��k0 � �ik0)2 � �2;

for each date t � 0, and so
1X
t=0

jj�� � �ijj2 �
1X
t=0

�2 = �2 � 1 =1:

We apply the contrapositive of Theorem 3, for any other basic (�xed-mix
and completely-mixed) strategy �i 6= ��; i = 2; :::; N , if

1X
t=0

jj�� � �ijj2 =1 (a.s.);

then �i becomes extinct (a.s.), i.e.,

lim
t!1

rit = 0 (a.s.); i = 2; :::; N:

Since r 2 �N , and we know rit ! 0 (a.s.) for i = 2; :::; N , consequently,

r1t ! 1 (a.s.);

which means that if investor 1 uses the Kelly rule ��, while all the others use
strategies distinct from ��, then investor 1 is almost surely the single survivor
in the market selection process.
3rd step. In order to obtain the global evolutionary stability result, we have

to consider a group of investors i = 1; :::; J (1 � J < N) using the portfolio
rule ��, while all the other investors i = J +1; :::; N use portfolio rules �i 6= ��,
and show that the former group (i = 1; :::; J) survives, while the latter (i =
J + 1; :::; N) becomes extinct.
However, it is su¢ cient to prove it assuming that J = 1, in which case the

result reduces to the assertion that r1t ! 1 (a.s.). To perform the reduction
of the case J > 1 to the case J = 1, we �aggregate� the group of investors
i = 1; :::; J into one by setting

�r1t = r
1
t + :::+ r

J
t :
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By adding up equations (43) over i = 1; :::; J , we obtain

�r1t+1 =
KX
k=1

[�h�k; rt+1i+ (1� �)Rk(st+1)]
��k�r

1
t

h�k; rti
;

where

h�k; ri = ��k�r1 +
NX

i=J+1

�ikr
i:

Thus the original model reduces to the analogous one in which there areN�J+1
investors (i = 1; J + 1; :::; N) so that investor 1 uses the Kelly strategy �� and
all the others, i = J + 1; :::; N , use strategies distinct from ��.
According to Step 2, we have shown the global evolutionary stability in the

case J = 1, that is, rit ! 0 (a.s.) for all i = J+1; :::; N , and �r1t ! 1, which means
that the group of investors i = 1; :::; J (which we treat as a single, �aggregate,�
investor) accumulates in the limit all market wealth.
It remains to observe that in the original model, the proportions between

the market shares of investors i; j who belong to the group 1; :::; J using the
Kelly rule do not change in time. This is so because for all such investors, the
growth rates of their market shares are the same:

rit+1
rit

=

KX
k=1

[�h�k; rt+1i+ (1� �)Rk(st+1)]
��k

h�k; rti
; i = 1; :::; J:

Hence,
rit+1
rit

=
rjt+1

rjt
; i; j = 1; :::; J;

and so
rit+1
r1t+1

=
rit
r1t
=
ri0
r10
; i = 1; :::; J:

Consequently, rit = �ir1t (i = 1; :::; J) for all t, where �i = ri0=r
1
0 is a strictly

positive constant. Since

�r1t =
JX
i=1

rit = (
JX
i=1

�i)r1t ! 1 (a.s.),

we obtain that

rit !
�iPJ
i=1 �

i
> 0 (a.s.); i = 1; :::; J:

Therefore, all the investors i = 1; :::; J adopting the Kelly rule �� survive with
probability one, while all the other investors i = J + 1; :::; N using strategies
distinct from �� become extinct with probability one, regardless of the initial
state of the market, which gives the global evolutionary stability.
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5 Almost Sure Nash Equilibrium Strategies

In this section, we review the study conducted by Bahsoun et al. [15], which
views EF from a di¤erent perspective and treat its decision-theoretic framework
as a game in which the payo¤s of the players (investors) are de�ned in terms of
the growth rates of their relative wealth.
Game-theoretic models of asset markets dealing with relative wealth of in-

vestors were considered by Bell and Cover [18, 19]. In those models, the objec-
tives of the players were formulated through the expectations of random payo¤
functions, and the notion of a Nash equilibrium � de�ned in terms of these
expectations � was used as a game solution concept. Bahsoun et al. [15],
however, proposed a di¤erent (stronger) solution concept: the almost sure Nash
equilibrium. In such an equilibrium, any unilateral deviation from it leads to
a decrease in the random payo¤ with probability one, not only in its expected
payo¤. The main result demonstrates that, in the game under consideration,
the Kelly portfolio rule of �betting one�s beliefs� forms with probability one a
unique symmetric Nash equilibrium strategy.
The analysis is carried out under stronger assumptions than in the general

model:

(i) the states of the world st are independent and identically distributed
(i.i.d.), i.e., s1; s2; ::: form a sequence of i.i.d. elements in S such that
the probability Pfst = sg is strictly positive for each s 2 S;

(ii) the relative dividends Rt;k(st) = Rk(st) depend only on the current state
st and do not explicitly depend on t;

(iii) for each k = 1; :::;K, the expectation EDt;k(st) is strictly positive, i.e.,
EDt;k(s

t) = EDk(st) > 0;21

(iv) all the portfolio rules under consideration are restricted to simple (�xed-
mix) portfolio rules, prescribing to select investment proportions initially
and remain them �xed throughout the entire duration, i.e., �it;k(s

t) = �ik;

(v) the volume Vt;k of each asset k grows (or decreases) at the same rate

t = 
t(s

t�1) > 0, with


t =
Vt;k
Vt�1;k

(45)

for all t � 1, where the growth rate process 
t is predictable, depending
on the history st�1 of the process (st) up to time t� 1 (not t);22

21Recall that in the general model we assume:
PK
k=1Dt;k(s

t) > 0 for all t � 1 and st. This
assumption is fundamental and will also be imposed here:

PK
k=1Dk(s) > 0 for all s.

22By virtue of (45), we have

Vt;k(s
t�1) = 
t(s

t�1):::
2(s1)
1Vk; (46)

where Vk = V0;k > 0 (k = 1; :::;K) are the initial amounts of the assets. In the case of
dividend-paying assets involving investments in the real economy, assumption (45) means
that the economic system under consideration is on a balanced growth path.
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(vi) the investment rate 0 < �t(s
t�1) < 1 is the same for all traders and

assets, and is given by a predictable function �t(st�1) � depending only
on the history st�1 of the states of the world up to time t� 1 � which is
measurable (for t = 0; 1 it is constant) and satis�es

�t(s
t�1) <

Vt;k(s
t)

Vt�1;k(st�1)
; 23 (47)

(vii) there exist constants 0 < �0 < �00 < 1 such that the process

�t(s
t�1) :=

�t(s
t�1)


t(s
t�1)

(48)

satis�es �0 � �t(st�1) � �00;24

(viii) the functions R1(s); :::; RK(s) are linearly independent with respect to
the probability distribution of st (the absence of redundant assets), i.e.
the equality

P
�kRk(st) = 0 holding almost surely for some constants �k

implies that �1 = ::: = �K = 0.

Model Setup. We follow the same asset market settings as in the general
case, except that the stronger assumptions (i)�(viii) are imposed. The short-run
(temporary) equilibria that determine the equilibrium asset prices are charac-
terized by the following expressions:

� For date t = 0:

p0;kV0;k = �0

NX
i=1

�ikw
i
0; k = 1; :::;K: (49)

xi0;k =
�0�

i
kw

i
0

p0;k
; k = 1; :::;K; i = 1; :::; N: (50)

� For dates t � 1:

pt;kVt;k = �t

NX
i=1

�ikhDt + pt; xit�1i; k = 1; :::;K: (51)

xit;k =
�t�

i
khDt + pt; xit�1i

pt;k
; k = 1; :::;K; i = 1; :::; N: (52)

23Recall that in the general model, by formula (6)�(7), we assume �t;k(st) < 
t;k(s
t) =

Vt;k(s
t)=Vt�1;k(st�1) for all t � 1 and all st. Here 
t(s

t�1) and �t(st�1) are assumed to be
predictable (depending on st�1 rather than st) and same for each asset k.
24Note that here �t does not depend on k, i.e., �t;1 = ::: = �t;K = �t. And the inequality

follows from Condition (A.2) in the general model (see (16)).
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It can be shown that under assumption (47) a non-negative vector pt satisfying
these equations exists and is unique (for any st and any feasible xit�1 and �

i).25

We will need a description of a system of equations governing the dynamics
of the market shares rit = wit=

P
j w

j
t of the investors given their admissible

strategy pro�le (�1; :::; �N ). From (51) and (52), for t � 1, we have

pt;k = V
�1
t;k �t

NX
i=1

�ik


pt +Dt; x

i
t�1
�
= �tV

�1
t;k

NX
i=1

�ikw
i
t = �tV

�1
t;k h�k; wti ;

xit;k =
�t�

i
kw

i
t

pt;k
=
Vt;k�

i
kw

i
t

h�k; wti
: 26

Consequently, for t � 0, we get

wit+1 =
KX
k=1

(pt+1;k +Dt+1;k)x
i
t;k

=

KX
k=1

�
�t+1

h�k; wt+1i
Vt+1;k

+Dt+1;k

�
Vt;k�

i
kw

i
t

h�k; wti

=

KX
k=1

�
�t+1

h�k; wt+1iVt;k
Vt+1;k

+Dt+1;kVt;k

�
�ikw

i
t

h�k; wti

=
KX
k=1

�
�t+1


�1
t+1 h�k; wt+1i+Dt+1;kVt;k

� �ikw
i
t

h�k; wti

=
KX
k=1

�
�t+1 h�k; wt+1i+Dt+1;kVt;k

� �ikw
i
t

h�k; wti
: (53)

By summing up these equations over i = 1; : : : ; N , we obtain

Wt+1 =
KX
k=1

�
�t+1 h�k; wt+1i+Dt+1;kVt;k

� PN
i=1 �

i
kw

i
t

h�k; wti

=

KX
k=1

�
�t+1 h�k; wt+1i+Dt+1;kVt;k

�
= �t+1Wt+1 +

KX
k=1

Dt+1;kVt;k;

25See Amir et al. [4], Section 4.1, Proposition 1.
26The analogous formulas for t = 0,

p0;k = �0V
�1
0;k h�k; w0i ; x

i
0;k =

V0;k�
i
kw

i
0

h�k; w0i
;

follow from (49) and (50).
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since �t+1 does not depend on k (see (48)), which implies

Wt+1 =
1

1� �t+1

KX
m=1

Dt+1;mVt;m: (54)

Dividing both sides of equation (53) by Wt+1 and using (54), we get

rit+1 =
KX
k=1

"
�t+1 h�k; rt+1i+

�
1� �t+1

� Dt+1;kVt;kPK
m=1Dt+1;mVt;m

#
�ikw

i
t=Wt

h�k; wti =Wt

=
KX
k=1

[�t+1h�k; rt+1i+ (1� �t+1)Rt+1;k]
�ikr

i
t

h�k; rti
; i = 1; :::; N; t � 0: (55)

Almost Sure Nash Equilibrium. We are primarily interested in the long-
run behavior of the relative wealth of the investors (players). Given a strategy
pro�le (�1; :::; �N ), the performance of a strategy �i used by investor i will be
characterized by the following random variable

�i := lim sup
t!1

1

t
ln

witP
j 6=i w

j
t

; (56)

generally, taking values in [�1;+1]. The expression wit=
P

j 6=i w
j
t is the rel-

ative wealth of player i and the group fj : j 6= ig of i�s rivals. The random
variable �i = �i(s1;�1; :::; �N ) depends on the strategy pro�le (�1; :::; �N ) and
on the whole history s1 := (s1; s2; :::) of states of the world from time 1 to
1. In the game under consideration, �i plays the role of the (random) payo¤
function of player i.

De�nition 3 We shall say that a strategy �� forms a symmetric Nash equilib-
rium almost surely if

�i(s1; ��; :::; ��) � �i(s1; ��; :::; �; :::; ��) (a.s.) (57)

for every i, each strategy � of investor i and each set of initial endowments
w10 > 0; :::; wN0 > 0. The Nash equilibrium is called strict if the inequality in
(57) is strict for any � 6= ��.

Recall that we consider only those strategy pro�les which are admissible.
If all the players use the same strategy ��, then the strategy pro�le (��; :::; ��) is
admissible if and only if the vector �� is strictly positive. This is immediate from
formula (51).
Central Result. De�ne the relative dividends of the assets k = 1; :::;K by

Rt;k =
Dt;kVt�1;kPK

m=1Dt;mVt�1;m
=

Dt;kVkPK
m=1Dt;mVm

(58)
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(see formula (46)), where Rt;k = Rk(st) and Dt;k = Dk(st). De�ne

�� = (��1; :::; �
�
K); �

�
k = ERk(st); k = 1; 2; :::;K: (59)

As in formula (44) established in Section 4, the portfolio rule speci�ed by (59)
represents a generalization of the Kelly portfolio rule of �betting one�s beliefs�,
where the �beliefs� are expressed here in terms of the expected relative divi-
dends. Note that the vector �� has strictly positive coordinates, i.e., �� is a
completely-mixed portfolio rule, since we assume EDk(st) > 0 (which does not
depend on t because the random elements st are i.i.d.).

Theorem 5 The portfolio rule �� is a unique investment strategy forming a
symmetric Nash equilibrium almost surely. If an investor i uses any strategy �
distinct from ��, then

�i(s1;��; :::; �; :::; ��) < �i(s1;��; :::; ��) = 0 (a.s.); (60)

and so the Nash equilibrium formed by the strategy �� is strict.

The result contained in Theorem 5 implies the following property of the
portfolio rule ��. If all the investors except one, say investor i, use the strategy
�� and i uses any other strategy � distinct from ��, then the relative wealth
wit=

P
j 6=i w

j
t of i tends to zero at the exponential rate �

i < 0 (a.s.). In other
words, the group of the Kelly investors drives the non-Kelly one out of the
market, which is interpreted in Evolutionary Finance (EF) as the property of
global (holding for all initial states) evolutionary stability of ��.27

Remark 1 The result on the global evolutionary stability of �� (without an
exponential estimate of the convergence rate) follows from Theorem 4 requiring
that the state space S is �nite and all the strategies under consideration are
completely mixed. It is important to note that results of this kind cannot,
in general, be extended to settings going beyond the framework of the i.i.d.
random elements st. The reason for this lies in the fact that in more general
settings, the analogues of the Kelly portfolio rule �� do not belong to the class
of constant proportions strategies. They belong to broader classes of portfolio
rules where there might be strategies "coexisting" with the generalized version
of �� (strategies that cannot be driven by �� out of the market); see Amir et
al. [4].
Global exponential stability theorems are among the strongest mathematical

results in the theory related to EF models. They require strong assumptions
and delicate mathematical techniques. The fact of exponential convergence of
relative wealth makes it possible to derive the almost sure Nash equilibrium
property of the Kelly portfolio rule de�ned in terms of the Lyapunov exponents
(56). For a much simpler model, dealing with short-lived assets, an analogous
stability theorem was obtained in Evstigneev et al. [36] under a number of
additional assumptions (�nite space S, completely mixed strategies, etc.).

27The result is akin to a well known fact of evolutionary game theory: if a Nash equilibrium
is strict, then it is evolutionary stable (Weibull [101]).
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Remark 2 Recall that the Lyapunov exponent (56) is de�ned in terms of the
variables wit=

P
j 6=i w

j
t expressing the relative wealth of player i and the group

fj : j 6= ig of i�s rivals. In the EF literature, relative wealth is often de�ned as
rit = w

i
t=
PN

j=1 w
j
t (the market share of investor i). In many cases, results can

be equivalently formulated both in terms of relative wealth � as it is de�ned
in this section � and market shares. But this is not the case in the context of
the present section. The consideration of the Lyapunov exponent

�i := lim sup
t!1

1

t
ln

witPN
j=1 w

j
t

leads to a trivial notion of a Nash equilibrium. With the payo¤ functions �i,
any completely mixed strategy � forms a symmetric Nash equilibrium. Indeed,
�i(�; :::; �) = 0 because if all the investors use the same strategy, their market
shares remain constant (which follows from equations (55)). On the other hand,
�i is always non-positive, and so �i(�1; :::; �K) � 0 = �i(�; :::; �), which implies
that the strategy pro�le (�; :::; �) is a Nash equilibrium.

A key role in the proof of Theorem 5 is played by a lemma which is formu-
lated below. Consider a measurable vector function R(s) = (R1(s); :::; RK(s))
on S with values in �K . Assume that the coordinates Rk(s) are linearly in-
dependent with respect to the distribution of st and ERk(st) > 0. For any
� = (�1; :::; �K) 2 �K , � 2 (0; 1] and 0 < � < 1, de�ne

F�(�; �; s) :=

PK
k=1[��k + (1� �)Rk(s)]

��k
��k�+�k(1��)PK

k=1[��
�
k + (1� �)Rk(s)] �k

��k�+�k(1��)
; (61)

where ��k = ERk(s). The function F�(�; �; s) is well-de�ned and takes on �nite
non-negative values. Fix some numbers 0 < �0 < �00 < 1.

Lemma 7 For any � 2 �K distinct from �� there exist constants H > 0 and
� > 0 such that

EminfH; lnF�(�; �; s)g � � (62)

for all � 2 (0; 1] and all � 2 [�0; �00].

The proof of this lemma is routine, but rather lengthy, and we relegate it to
the Appendix of this paper.
In fact, we will show that in the proof of Theorem 5 it is su¢ cient to consider

the case of two investors (N = 2). In this case, the analysis can be reduced to
the consideration of the ratio

zt :=
r1t
r2t
=
w1t
w2t

(63)

of the market shares of investors 1 and 2 using strategies �� = (��1; :::; �
�
K) and

� = (�1; :::; �K). Applying (55) with N = 2, we get

rit+1 =
KX
k=1

h
�t+1

�
�ikr

i
t+1 + �

j
k

�
1� rit+1

��
+
�
1� �t+1

�
Rt+1;k

i �ikr
i
t

�ikr
i
t + �

j
kr
j
t

;
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where i; j 2 f1; 2g and i 6= j. Setting Cijt;k := �
i
kr
i
t=
�
�ikr

i
t + �

j
kr
j
t

�
, we obtain

rit+1

"
1 + �t+1

KX
k=1

�
�jk � �

i
k

�
Cijt;k

#
=

KX
k=1

h
�t+1�

j
k +

�
1� �t+1

�
Rt+1;k

i
Cijt;k:

Thus
rit+1

rjt+1
=
Aijt+1=B

ij
t+1

Ajit+1=B
ji
t+1

;

where

Aijt+1 :=
KX
k=1

h
�t+1�

j
k +

�
1� �t+1

�
Rt+1;k

i
Cijt;k;

Bijt+1 := 1 + �t+1

KX
k=1

�
�jk � �

i
k

�
Cijt;k:

Observe that Bjit+1 = B
ij
t+1, indeed,

Bijt+1 �B
ji
t+1 = �t+1

KX
k=1

h�
�jk � �

i
k

�
Cijt;k �

�
�ik � �

j
k

�
Cjit;k

i
= �t+1

KX
k=1

�
�jk � �

i
k

�
= �t+1

 
KX
k=1

�jk �
KX
k=1

�ik

!
= 0

because Cijt;k + C
ji
t;k = 1. Consequently,

r1t+1
r2t+1

=
A12t+1
A21t+1

=
r1t
r2t

PK
k=1

�
�t+1�

2
k +

�
1� �t+1

�
Rt+1;k

� �1k
�1kr

1
t =r

2
t+�

2
kPK

k=1

�
�t+1�

1
k +

�
1� �t+1

�
Rt+1;k

� �2k
�1kr

1
t =r

2
t+�

2
k

;

by virtue of (63), we obtain the dynamics of zt:

zt+1 = zt

PK
k=1[�t+1�k + (1� �t+1)Rt+1;k]

��k
��kzt+�kPK

k=1[�t+1�
�
k + (1� �t+1)Rt+1;k] �k

��kzt+�k

: (64)

Proof of Theorem 5. 1st step. To prove the theorem it is su¢ cient to consider
the case of two investors 1 and 2, using �� and �, and show that

lim inf
t!1

1

t
ln zt > 0 (a.s.); (65)

where zt is the ratio of the market shares of 1 and 2. To demonstrate that the
problem reduces to the case of two investors, let us �rst observe that by virtue
of symmetry, it is su¢ cient to verify the property (57) for i = N . Suppose
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investors i = 1; 2; :::; N � 1 use �� and investor N uses � 6= ��. Then the total
market share r�t := r

1
t + :::+ r

N�1
t of i = 1; 2; :::; N � 1 satis�es

r�t+1 =
KX
k=1

f�t+1[��kr�t+1 + �krNt+1] + (1� �t+1)Rt+1;kg
��kr

�
t

��kr
�
t + �kr

N
t

; (66)

which is obtained by summing up equations (55) over i = 1; 2; :::; N � 1. At the
same time, by virtue of (55), we have

rNt+1 =
KX
k=1

f�t+1[��kr�t+1 + �krNt+1] + (1� �t+1)Rt+1;kg
�kr

N
t

��kr
�
t + �kr

N
t

: (67)

Thus the vector (r�t ; r
N
t ) evolves in time as the vector (~r

1
t ; ~r

2
t ) of market shares

of two investors using the strategies �� and �, respectively. If we know that (65)
holds, then

�N (��; :::; ��; �) = lim sup
t!1

1

t
ln
wNt
w�t

= lim sup
t!1

1

t
ln
rNt
r�t

= lim sup
t!1

(�1
t
ln zt) = � lim inf

t!1
(
1

t
ln zt)

< 0 = �N (��; :::; ��; ��) (a.s.);

where the last equality holds because the market shares of all the investors
remain constant, as long as all of them use the same strategy (see (55)). Also,
this follows from the fact that if �k = ��k in (64), then zt is a constant. Thus
we have proved (60) and hence showed that �� forms a strict symmetric Nash
equilibrium.
2nd step. Let us verify (65). Put Gt = ln(zt=zt�1). Then

TX
t=1

Gt =
TX
t=1

(ln zt � ln zt�1) = ln zT � ln z0:

Therefore it su¢ ces to prove that lim infT!1 T
�1PT

t=1Gt > 0 (a.s.): For any
constant H de�ne GHt := minfGt;Hg. Since GHt � Gt it is su¢ cient to prove
that

lim inf
T!1

1

T

TX
t=1

GHt > 0 (a.s.) (68)

for some H.
By virtue of (64), we have

Gt+1 = ln
zt+1
zt

= ln

PK
k=1[�t+1�k + (1� �t+1)Rt+1;k]

��k
��kzt+�kPK

k=1[�t+1�
�
k + (1� �t+1)Rt+1;k] �k

��kzt+�k

= ln

PK
k=1[�t+1�k + (1� �t+1)Rk(st+1)]

��k
��kr

1
t+�k(1�r1t )PK

k=1[�t+1�
�
k + (1� �t+1)Rk(st+1)] �k

��kr
1
t+�k(1�r1t )

= lnF�t+1(�; r
1
t ; st+1);
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where r1t = r
1
t (s

t) and �t+1 = �t+1(s
t) (recall that the process �t is predictable).

By virtue of Lemma 7, there exist H > 0 and � > 0 such that EtGHt+1 � �,
where Et(�) = E(�jst) is the conditional expectation given st and

GHt+1(s
t+1) = minfH; lnF�t+1(st)(�; r

1
t (s

t); st+1)g:

When computing EtGHt+1 we �x s
t and take the unconditional expectation of

GHt+1 with respect to st+1, which is justi�ed because s
t and st+1 are independent.

Finally, we have

1

T

TX
t=1

GHt =
1

T

TX
t=1

Et�1G
H
t +

1

T

TX
t=1

(GHt � Et�1GHt ):

Since GHt is uniformly bounded (see (71) in the Appendix), we can apply to the
process BHt := GHt � Et�1GHt the strong law of large numbers for martingale
di¤erences (see, e.g., Hall and Heyde [51]), which yields T�1

PT
t=1B

H
t ! 0

(a.s.).28 Therefore lim infT!1 T
�1PT

t=1G
H
t � �, which proves (68).

3rd step. It remains to prove the uniqueness of a symmetric almost sure
Nash equilibrium. Suppose a strategy � 6= �� forms such an equilibrium. Then

0 = �N (s1;�; :::; �) � �N (s1;�; :::; �; ��) (a.s.); (69)

where

�N (s1;�; :::; �; ��) = lim sup
t!1

1

t
ln

rNt
1� rNt

:

By interchanging � and �� in formulas (66) and (67), we obtain that the vector
(r1t + ::: + r

N�1
t ; rNt ) evolves in time as the vector (r̂

1
t ; r̂

2
t ) of market shares of

two investors using the strategies � and ��, respectively. As we have proved
above, this implies

lim inf
t!1

1

t
ln

rNt
1� rNt

> 0 (a.s.):

Thus �N (s1;�; :::; �; ��) > 0, which yields the inequality "<" in (69). This is a
contradiction.

6 Discussion

Based on the discussions in Evstigneev et al. [35], this section presents several
key comments on the modeling approach, characteristic features and applica-
tions of EF.

1. Marshallian temporary equilibrium. In the general methodological
perspective, the modeling framework at hand relies upon the Marshallian [77]

28As is well known, the �niteness of expectations is not enough for the validity of this version
of the law of large numbers, but the boundedness of the random variables is fully su¢ cient �
hence the truncation of F by H.
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principle of temporary equilibrium. The dynamics of the asset market in this
framework are similar to the dynamics of the commodity market as outlined in
the classical treatise by Alfred Marshall [77] (Book V, Chapter II �Temporary
Equilibrium of Demand and Supply�). The ideas of Marshall were developed
in the framework of mathematical economics by Samuelson [86]. As it was
noticed by Samuelson and discussed in detail by Schlicht [90], in order to study
the process of market dynamics by using the Marshallian �moving equilibrium
method,�one needs to distinguish between at least two sets of economic variables
changing with di¤erent speeds. Then the set of variables changing slower (in our
case, the set xt = (x1t ; ::::; x

N
t ) of investors�portfolios) can be temporarily �xed,

while the other (in our case, the asset prices pt) can be assumed to rapidly
reach the unique state of partial equilibrium. Samuelson [86], pp. 321�323,
writes about this approach:

I, myself, �nd it convenient to visualize equilibrium processes of quite
di¤erent speed, some very slow compared to others. Within each long
run there is a shorter run, and within each shorter run there is a still
shorter run, and so forth in an in�nite regression. For analytic purposes
it is often convenient to treat slow processes as data and concentrate upon
the processes of interest. For example, in a short run study of the level
of investment, income, and employment, it is often convenient to assume
that the stock of capital is perfectly or sensibly �xed.

As it follows from the above citation, Samuelson thinks about a hierarchy of
various equilibrium processes with di¤erent speeds. In our model, it is su¢ cient
to deal with only two levels of such a hierarchy. EF leaves the price adjustment
process, which leads to the solution of the partial equilibrium problem (4), be-
yond the scope of the model. It can be shown, however, that this equilibrium
will be reached at an exponential rate in the course of a naturally de�ned tâton-
nement procedure. This can be demonstrated by using the contraction property
of the operator

qk = �t;kV
�1
t;k

NX
i=1

�it;khDt + p; xit�1i

involved in the equilibrium pricing equation (4). Our framework makes it pos-
sible to admit a whole spectrum of mechanisms leading to an equilibrium in
the short run. In reality, various auction-type mechanisms are used for the pur-
pose of equilibrating bids and o¤ers, resulting in market clearing. An analysis
of several types of such mechanisms and their implications for the structure of
trading in �nancial markets has been performed by Bottazzi et al. [25].
A rigorous mathematical treatment of the above multiscale approach, involv-

ing �rapid�and �slow�variables, is provided within continuous-time settings in
the theory of singular perturbations, see e.g., Smith [97], Kevorkian and Cole
[61]. In connection with economic modeling, questions of this kind are consid-
ered in detail in the monograph by Schlicht [90]. The equations on pp. 29�30
in Schlicht [90] are direct continuous-time (deterministic) counterparts of our
equations (4) and (5).
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The term "temporary equilibrium" was apparently coined for the �rst time
by Marshall. However, in the last decades this term has been associated basi-
cally with a di¤erent, non-Marshallian notion, going back to Lindahl [66] and
Hicks [54]. This notion was developed in formal settings by Grandmont, Hilden-
brand and others [47, 48, 49]. The characteristic feature of the Lindahl-Hicks
temporary equilibrium is the idea of forecasts or beliefs about the future states
of the world, which the market participants possess and which are formalized in
terms of stochastic kernels (transition functions) conditioning the distributions
of future states of the world upon the agents�private information. A compre-
hensive discussion of this direction of research is provided by Magill and Quinzii
[76]. In this work, we pursue a completely di¤erent approach. Our model might
indirectly take into account agents�forecasts or beliefs, but they can be only im-
plicitly re�ected in the agents�investment strategies. We do not need to model
in formal terms how the market players form, update and use these beliefs in
their investment decisions.

2. In order to survive you have to win! One might think that the focus
on survival substantially restricts the scope of the analysis, since "one should
care about survival only if things go wrong". It turns out, however, that the
class of survival strategies in most of the EF models coincides with the class of
unbeatable strategies. A strategy is considered unbeatable if, in the long run,
it performs no worse in terms of wealth accumulation than any other strategy
competing in the market. More precisely, we de�ne unbeatable strategies as
follows:

De�nition 4 Suppose investor i employs unbeatable strategy �, while all other
investors j 6= i employ arbitrary strategies. Then, the wealth process wjt of
investor j cannot grow asymptotically faster than that of investor i, wit, i.e.,

wjt � Cwit (a.s.) (70)

for each t � 0, where C > 0 is some random constant.

The proposition below demonstrates that survival strategies are those and
only those that are unbeatable: in order to survive, you have to win!

Proposition 4 A portfolio rule is a survival strategy if and only if it is unbeat-
able.

Proof of Proposition 4. If the market share rit of investor i satis�es r
i
t =

wit=Wt � c (a.s.), where c is a strictly positive random variable and Wt =PN
j=1 w

j
t , then w

i
t � cWt � cwjt (a.s.) for all j. Thus w

j
t � c�1wit (a.s.), and so

(70) holds. Conversely, if wjt � Hwit (a.s.) for some random constant H > 0,
then Wt � [(N � 1)H + 1]wit (a.s.), which yields r

i
t � [(N � 1)H + 1]�1 (a.s.),

where [(N � 1)C + 1]�1 is a strictly positive constant.
Indeed, the notion of unbeatable strategies can be formalized as a game-

theoretic solution concept, which was introduced in Amir et al. [6] and developed
in Amir et al. [5].
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Consider an abstract game of N players (in our case, investors) i = 1; :::; N
selecting strategies �i in some set L. Let wi = wi(�1; :::;�N ) 2 W be the
outcome of the game for player i given the strategy pro�le (�1;�2; :::�N ) of the
players. Suppose a preference relation

wj � wi; wi; wj 2W

is given comparing relative performance of players i and j. A strategy � of
player i is called unbeatable if for any feasible strategy pro�le (�1; :::�N ) in
which �i = �, we have

wj(�1; :::;�N ) � wi(�1; :::;�N ) for all j 6= i:

Thus, if player i uses �, he/she cannot be outperformed by any other player
j 6= i, no matter what strategies the rivals use.
In the context of the models considered in EF, the outcome of the game for

investor i is the random wealth process wi = (wit). The preference relation �
is de�ned as follows. For two sequences of positive random numbers wi = (wit)
and wj = (wjt ), we de�ne

(wjt ) � (wit) i¤ w
j
t � Cwit (a.s.) for all t = 1; 2; :::

for some random variable C > 0. The relation (wjt ) � (wit) means that w
j
t does

not grow asymptotically faster than wit almost surely.
The fundamental solution concepts in evolutionary game theory, known as

evolutionary stable strategies (ESS) as introduced by Maynard Smith and Price
[79], Maynard Smith [78], and Scha¤er [88], can be viewed as conditionally
unbeatable strategies, under the condition that the number of mutants is su¢ -
ciently small or they are identical. Unconditional versions of the standard ESS
were studied by Kojima [62].

3. Evolutionary portfolio theory. One of the sources of motivation for
EF has always been related to quantitative applications of the results to portfo-
lio selection problems. The data of EF models needed for quantitative �nancial
analysis are essentially the same as those needed for the applications of the
theory of derivative securities pricing (e.g., the Black-Scholes formula) in Math-
ematical Finance/Financial Engineering. They do not need the knowledge, or
the algorithms for revealing, hidden agents�characteristics such as their utilities
and beliefs. The model and the results are described in operational terms and
require only statistical estimates of objectively observable asset data.
A crucial role in the applications of EF to portfolio selection is played by

the discovery of investment factors that deliver returns in excess of the market.
For example, Basu [17] found the so-called value factor, according to which
investing into equities with a high book-to-market ratio delivers higher returns
than the market. Banz [16] found that the same is true if one invests into
equities with small market capitalization. Carhart [28] found the momentum
factor according to which investing in equities that have recently gone up delivers
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excess returns. Moreover even though by now hundreds of investment factors
have been proposed, Harvey et al. [52] have shown that only a few factors are
needed to understand the dynamics of equity returns. The current state of these
discoveries is summarized in the Fama-French [43] �ve-factor model. According
to these empirical results, the return of every portfolio selection strategy can be
decomposed into its allocation to a few investment factors. Thus, it is natural
to model the dynamics of equity markets by modeling the dynamic interaction
of those investment factors. And this is what EF is perfectly suited for. In
the EF framework, an investment factor de�nes a strategy determining the
corresponding investment proportions. Note that investment factors are not
based on individuals�utility functions and subjective probabilities! EF can then
be used to compute what impact the increase in relative wealth corresponding
to one factor has on any other factor. In particular, the impact of a factor
on itself gives a model-based measure of the capacity of the factor. This is
very practical information since investors should avoid being stuck in crowded
strategies. Also, when a certain investment factor gets fashionable this has cross
impacts on other factors that one can compute based on the EF model. For
example, in recent years investing according to ESG (Environmental, Social, and
Corporate Governance) criteria has become fashionable, and the EF approach
shows that this has a strong negative impact on the momentum factor. Finally,
based on this approach one can compute the dynamics of the relative wealth, so
that one can use the EF model to determine which investment factors survive
in the long run. A �rst paper systematically developing these ideas and opening
up a new realm of fruitful applications of EF to portfolio selection problems was
Hens et al. [53].

7 Conclusion

This paper reviews several key models with long-lived dividend-paying assets
in the �eld of Evolutionary Finance (EF), which focuses on �survival and ex-
tinction�questions of investment portfolio rules in the market selection process.
The models we examine, through a game-theoretic lens, bridge two fundamental
paradigms: stochastic dynamic games (strategic frameworks) and evolutionary
game theory (solution concepts).
The conventional theory of asset pricing currently prevailing in Financial

Economics is based on the Walrasian equilibrium paradigm going back to Leon
Walras, one of the classics of economic thought of the 19th century. Equilibrium
models of this kind typically describe the world of small investors who strive to
maximize their individual utilities of consumption subject to budget constraints.
Market equilibrium is understood as a situation in which the goals and interests
of such economic agents are equilibrated by the market clearing prices (see,
e.g., Flåm [45]). In contrast with EF, where equilibrium is de�ned in short-run
terms, consecutively from time t to time t+ 1, in the classical setting one deals
with a long-run notion of equilibrium de�ned for the whole time horizon.
EF depicts a world radically di¤erent from the Walrasian one � a world of
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large, even super large (primarily institutional) investors who may act on the
global level, and whose fundamental objectives are of an evolutionary charac-
ter: e.g., survival, domination and fastest capital growth. In fact, fastest capital
growth is often related, and in our models is equivalent, to survival (see Propo-
sition 4). These factors, rather than the utilities of individual consumption (one
gets immeasurably more than one can consume!) come to the fore. Within
this framework, investment decisions made by each of the market players might
substantially a¤ect the equilibrium prices, in contrast with a variety of classical
market models where the in�uence of every particular individual is negligible.
The primary goal of the studies is to identify investment strategies that

guarantee �long-run survival�, i.e., keeping a strictly positive, bounded away
from zero, share of market wealth over an in�nite time horizon, irrespective of
what strategies used by others. It turns out that there always exists a portfolio
rule guaranteeing unconditional long-run survival. This rule is an analogue of
the well-known Kelly criterion of �betting one�s beliefs�in the present framework
and is asymptotically unique within a certain class of basic strategies. This
survival strategy is de�ned as the solution to an easily computable stochastic
equation under general assumptions; in more specialized models with stronger
assumptions (e.g., Evstigneev et al. [37], Amir et al. [4], etc.), it reduces to an
explicit form as the sum of a convergent series; and in models with even more
restrictive assumptions (e.g., i.i.d. states of the world, �xed-mix strategies, etc.;
see Evstigneev et al. [38], Bahsoun et al. [15], etc.), it further simpli�es to a
form expressed in terms of the expected relative dividends.
In particular, this paper surveys two stronger solution concepts � globally

evolutionarily stable strategies and almost sure Nash equilibrium strategies �
developed under stronger assumptions. It is shown that under the assumptions
(i)�(vii) we listed in Section 4, if a group of investors adopts the Kelly rule while
all the others use di¤erent ones, those and only those investors who belong to the
former group survive, regardless of the initial state of the market; and under
the assumptions (i)�(viii) we listed in Section 5, the Kelly rule is the unique
investment strategy forming a symmetric Nash equilibrium almost surely, i.e.,
if all the investors except one (say, investor i) use the Kelly rule while i adopts
any other di¤erent strategy, then the relative wealth of investor i converges to
zero at an exponential rate almost surely.
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Appendix

Proof of Lemma 7. We �rst observe that the function F�(�; �; s) satis�es

F�(�; �; s) > c
2; (71)

where c := mink �
�
k (> 0). Indeed, F�(�; �; s) = A=B, where A > c, and

�0c < B < c�1: (72)

Case 1. Assume that at least one of the coordinates of � is zero, so that
K := fk : �k = 0g 6= ;. Then

A = (1� �) 1
�

X
k2K

Rk(s) +
X
k=2K

[��k + (1� �)Rk(s)]
��k

��k�+ �k(1� �)

and

B =
X
k=2K

[���k + (1� �)Rk(s)]
�k

��k�+ �k(1� �)
:

Since ERk(st) > 0, there exists � > 0 such that
P

k2KRk(s) � � for all s in a
set �S with P ( �S) > 0. Therefore d1��11 �S(s) � A < ��1D1, where 1 �S(s) is the
indicator function of the set �S, d1 := (1 � �00)� and D1 := 1 + (mink=2K �k)�1.
Also, we have d2 < B < D2, where d2 := �0cmink=2K �k and D2 := c�1 (see
(72)). Thus

��1d1 �S(s) < F�(�; �; s) < �
�1D; (73)

where d := d1=D2 and D := D1=d2. From the �rst of these inequalities and (71)
we obtain (ln d� ln�)1 �S(s)+ (2 ln c)(1� 1 �S(s)) < lnF�(�; �; s), and so

Emin[H; lnF�(�; �; s)] � 2 ln c+min(H; ln d� ln�)P ( �S):

De�ne

�� := exp[ln d� 1� 2 ln c
P ( �S)

]; H := lnD � ln ��; (74)

and observe that if 0 < � < ��, then

Emin[H; lnF�(�; �; s)] � 2 ln c+ (ln d� ln ��)P ( �S) = 1 (75)

by virtue of the inequality d < D. If � � ��, then lnF�(�; �; s) < lnD � ln� �
lnD � ln �� = H, and so min[H; lnF�(�; �; s)] = lnF�(�; �; s). Thus in order
to complete the proof of the lemma in the case when � has zero coordinates it
remains to show that

inf
�2[��;1]; �2[�0;�00]

E lnF�(�; �; s) > 0 (76)

for each �� 2 (0; 1]. Indeed, then H can be de�ned by (74) and � can be de�ned
as the minimum of 1 (see (75)) and the in�mum in (76).
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By virtue of (71) and (73), the function E lnF�(�; �; s) is continuous on the
compact set [�0; �00]� [��; 1] and hence it attains its minimum on this set. Thus,
in order to establish (76) it is su¢ cient to prove that E lnF�(�; �; s) > 0 for
each � 2 [0; 1) and � 2 (0; 1].
By applying Jensen�s inequality, we �nd

E ln
KX
k=1

[��k + (1� �)Rk(s)]
��k

��k�+ �k(1� �)

� � ln
KX
k=1

�k�
�
k

��k�+ �k(1� �)
+ (1� �)E ln

KX
k=1

Rk(s)
��k

��k�+ (1� �)�k

� � ln
KX
k=1

�k�
�
k

��k�+ �k(1� �)
+ (1� �)

KX
k=1

��k ln
��k

��k�+ (1� �)�k
; (77)

and

E ln
KX
k=1

[���k + (1� �)Rk(s)]
�k

��k�+ �k(1� �)

< lnf
KX
k=1

E[���k + (1� �)Rk(s)]
�k

��k�+ �k(1� �)
g = ln

KX
k=1

�k�
�
k

��k�+ �k(1� �)
:

(78)

The inequality in (78) is strict because there is no constant � such that

KX
k=1

[���k + (1� �)Rk(s)]
�k

��k�+ �k(1� �)
= � (a.s.): (79)

Indeed, if (79) holds, then

KX
k=1

[���k + (1� �)Rk(s)]'k = 0 (a.s.); (80)

where 'k := �k[�
�
k�+�k(1��)]�1�� . Observe that at least one of the numbers

'k is not equal to zero. Otherwise �k = � [��k� + �k(1 � �)] for all k, and by
summing these equalities over k, we get � = 1, which yields �k = �

�
k�+ �k(1�

�), ��k� = �k�, and �
�
k = �k (recall that � 6= 0). This is a contradiction

because � 6= ��. Thus ' = ('1; :::; 'K) 6= 0, and
PK

k=1Rk(s)'k = b (a.s.),
where b is some constant. This constant is not zero because the functions Rk(s)
are linearly independent. By setting '0k := 'k=b, we obtain that the non-
zero vector '0 = ('01; :::; '

0
K) satis�es

PK
k=1Rk(s)'

0
k = 1 (a.s.), which yieldsPK

k=1Rk(s)('
0
k�1) = 0 (a.s.). In view of the linear independence of Rk(s), this

implies '01 = ::: = '
0
K = 1. Since 'k = b'

0
k = b, we obtain that the left-hand

side of (80) is equal to b 6= 0, which is a contradiction.
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From (77) and (78) we get

E lnF�(�; �; s) > (1� �)[
KX
k=1

��k ln
��k

��k�+ (1� �)�k
� ln

KX
k=1

�k�
�
k

��k�+ �k(1� �)
]:

(81)
Denote the expression in the square brackets in (81) by ��(�). It is proved in
Evstigneev et al. [36], Appendix, Lemma 3.1, that

��(�) � 0 for each � 2 [0; 1] (82)

for any � = (�k) 2 �K with � > 0. Furthermore, if � 6= ��, then ��(�) > 0:
Therefore ��(�(1�")+"��) > 0 for each " 2 (0; 1). The function ��(�) is �nite
and continuous on �K (because ��k > 0 and � > 0). Consequently, ��(�) =
lim"#0 ��(�(1� ") + "��) � 0. By using (81), we obtain that E lnF�(�; �) > 0
for all � 2 [0; 1) and � 2 (0; 1]. This completes the proof of the lemma in the
case when the vector � has zero coordinates.
Case 2. Now assume that �k > 0 for each k. Then the function lnF�(�; �; s)

is well-de�ned, �nite, continuous with respect to (�; �) on the set [�0; �00]� [0; 1]
(including � = 0) and uniformly bounded:

2 ln c < lnF�(�; �; s) < ln(min
k
�k)

�2.

To complete the proof it is su¢ cient to show that the in�mum in (76) with
�� = 0 is strictly positive (then � can be de�ned as this in�mum and H as
2j ln cj+ 2j lnmink �kj). In view of the continuity of E lnF�(�; �; s) this will be
proved if we establish the inequality E lnF�(�; �; s) > 0 for each � 2 [0; 1) and
� 2 [0; 1]. If � > 0, this inequality is proved by exactly the same arguments
as above � by deriving relations (77), (78), (81) and using (82). If � = 0, we
change the above arguments as follows: instead of strict, we establish non-strict
inequalities in (78) and show that the right-hand side of (81) is strictly positive,
because �0(�) =

PK
k=1 �

�
k ln(�

�
k=�k) > 0.
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