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Abstract 

 

Faced with a global emissions problem such as climate change we know that if countries’ 

emissions decisions are made in an independent and self-interested fashion the outcome can be 

very far from optimal. One proposed solution is to have countries act more morally by co-

operating and so taking account of the impact of their emissions decisions on the welfare of 

other countries. However, if the decision to co-operate is made in a self-interested fashion the 

standard non-cooperative model of IEAs yields the pessimistic conclusion that the more serious 

the environmental problem the smaller will be the equilibrium membership of an IEA. Our 

paper examines the implications for emissions, IEA membership and welfare of assuming that 

countries make both emissions and IEA membership decisions in the alternative moral fashion 

of acting as imperfect Kantians as defined by Alger and Weibull (2013).  A similar approach 

has been taken in Eichner and Pethig (2022) who show that the grand coalition (and first-best) 

can be achieved when countries have a weight on Kantian behaviour greater than a critical 

value below 2/3. We argue that their approach to modelling the membership decision of 

imperfect Kantians is problematic and propose an alternative approach. We show that (i) for 

any weight attached to Kantian behaviour, the equilibrium level of IEA membership and 

resulting global welfare is higher using our model; (ii) consequently achieving the grand 

coalition and hence first-best does not require such a high weight on Kantian behaviour; (iii) 

acting cooperatively and in a Kantian fashion are complementary rather than substitute moral 

approaches to achieving the first best.  
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1 Introduction 
 

Climate scientists predict that with high probability there will be potentially catastrophic 

damage unless global emissions of greenhouse gases are rapidly reduced down to net zero 

emissions per annum by 2050 (UNEP 2019). Economists emphasise that, in the absence of a 

global government, the global externality nature of the problem means that individual countries 

acting independently and in a purely self-interested fashion will make significantly smaller 

reductions in emissions than those required to achieve the global optimum solution. Acting in 

a purely self -interested fashion means that (i) a country cares only about its own welfare; (ii) 

it chooses the action that maximise this welfare without any regard to the decisions of other 

countries.   

 

A long-standing proposal for addressing this problem has been the creation of an International 

Environmental Agreement (IEA) whereby countries act in a cooperative fashion and agree to 

set their individual emissions to achieve the best collective outcome for all participating 

countries. By making emissions decisions in this way countries are acting neither 

independently nor in the first sense of self-interest, so, in that sense, could be said to be acting 

more morally with regard to their emissions decisions. Indeed, it is well known that if all 

countries were to enter such an agreement, then the global optimum could be achieved since 

countries would be effectively internalising the externality1.  

 

The problem arises if countries make the decision to join an IEA in a self-interested fashion2. 

For then the workhorse two-stage non-cooperative game model3, yields the pessimistic 

conclusion that the more serious is the environmental problem, (i.e. the greater is the gap 

between the non-cooperative and the fully cooperative outcomes) the smaller will be the size 

of a stable IEA. The intuition is that, for any membership size, fringe countries are always 

better off than coalition countries, and, the more serious is the environmental problem, the 

larger are the gains to fringe countries from free-riding on the emissions reductions of IEA 

members4,5.   

 

                                                           
1 See Finus and Caparros, (2015) for a recent survey of the literature. 
2 By definition the decision to join an IEA has to made independently otherwise there would be some prior 

agreement. 
3  In this model countries, acting in a self-interested fashion, decide first whether to join or leave a coalition and 

then their emissions – see, for example, Barrett (1994). 
4 Similar results are derived in Hoel (1992), Carraro and Siniscalco (1993), Rubio and Casino (2002), Finus and 

Rundshagen (2001), De Cara and Rotillon (2001), and Eichner and Pethig (2015).. 
5 A related strand of literature has assumed that in the Stage 2 emissions game, the IEA acts as Stackelberg leader 

with respect to the fringe and shows that it may be possible to achieve the grand coalition (Diamantoudi and 

Sarzetakis 2006, Rubio and Ulph 2006, Nkuyia, 2020, Finus, Furini and Rohrer, 2021a, 2021b. In this paper we 

assume a Nash equilibrium in the emissions game. 



2 
 

There have been two approaches to obviating this pessimistic conclusion. The first explores 

richer forms of cooperative behaviour with respect to membership decisions6.  

 

The second approach continues to employ a non-cooperative Nash equilibrium to study 

membership decisions, but assumes that countries do not pursue their own self-interest but act 

in a moral fashion when making both their membership and emissions decisions.7  

 

A number of papers have studied how different forms of moral behaviour might allow IEAs to 

achieve better outcomes - in some cases the grand coalition8.  In this paper we study non-

cooperative IEAs when countries adopt an imperfect Kantian form of moral reasoning, in 

which they give some weight, 𝜅, 0 ≤ 𝜅 ≤ 1, to the Kantian categorical imperative9 (Kant, 

1785) to “act only according to that maxim through which you can at the same time will that it 

become a universal law”10, which we call acting as a perfect Kantian, and the weight (1− 𝜅) to 

acting in a self-interested fashion11. As such this form of behaviour is clearly not self-interested 

in the second sense identified above. With one exception which we mention below, this 

approach has not so far been studied in the context of IEAs.  

 

To understand how outcomes in terms of emissions and welfare might depend on whether it is 

the emissions or IEA membership decision to which this calculus is applied we adopt the 

general approach of allowing countries to apply different Kantians weights to each type of 

                                                           
6 The 𝛾-core model (see for example, Chander and Tulkens 1997), assumes that when a country leaves a coalition 

all other countries leave; under appropriate assumptions, this punishment is sufficient to sustain the grand 

coalition. The literature on farsighted equilibria (see, for example, de Zeeuw, 2008, Diamantoudi and Sartzetakis 

2015, 2018) takes an approach intermediate between the fully cooperative and non-cooperative approaches. 

Farsighted countries ask:  if one or more leave/join an IEA of a given membership. will that trigger other countries 

to modify their membership decisions; if so, will that in turn trigger further changes in membership decisions. An 

IEA is farsightedly stable if there is no finite chain of membership decisions that would lead to another stable 

IEA. Under appropriate assumptions this can result in all countries being members of a stable IEA – the grand 

coalition.    
7 This approach draws on empirical evidence that agents act in a moral fashion when their actions have 

implications for the well-being of others. For evidence on ethical consumer behaviour see Sudbury-Riley and 

Kohlbacher (2016) and White, Habib and Hardy (2019). Evidence on how ethical behaviour influences 

government policymaking is found in Nawrotzki (2012), Kamarack (2019) and Romeijn (2020). The link between 

governments’ willingness to act morally and their electorates willingness is emphasised in Bernauer et al (2016) 
8 Specific forms of moral behaviour affecting IEAs include: modesty (Finus and Maus, 2018); preference for 

equity (Lange and Vogt, 2003, Vogt, 2016, Rogna and Vogt, 2020); altruism (van der Pol et al,. 2012), 

reciprocity (Nyborg, 2018b, Bucholz et al, 2018). Much of the evidence for these forms of moral behaviour stem 

from social surveys or laboratory experiments.  See also van Long, 2016, Dasgupta, Southerton, Ulph and Ulph, 

2016, and Nyborg 2018a for useful surveys.  
9 This is the ‘Universal Law’ formulation of Kant’s categorical imperative. He proposed two other formulations: 

the ‘Humanity as an End in Itself’ and the ‘Kingdom of Ends’.   
10 Since one of the choices to which we want to apply this approach is that of emissions levels and since it only 

makes sense to have a given level of emissions be a universal law if countries are identical, for the purposes of 

this paper we confine attention to the case of identical countries.  We leave it future research to investigate Kantian 

emissions policies for non-identical countries.  
11 This formulation of imperfect Kantian reasoning draws on the seminal analysis of Alger and Weibull (2013, 

2016, 2020) who use evolutionary game theory models of aggregative games with assortative matching to show 

that the unique evolutionary stable preferences are imperfect Kantian. 
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decision.  So 𝜅   , 0 ≤ 𝜅  ≤ 1 (resp. 𝜅𝜇  , 0 ≤ 𝜅𝜇  ≤ 1) denotes the Kantian weight to the 

emissions (resp. membership) decision.   

 

We are interested in the question of whether moral behaviour in the form of (imperfect) Kantian 

behaviour is a substitute or complement for co-operative behaviour.  To address this question, 

we start with the second (emissions) stage of the game and analyse how equilibrium emissions 

of a coalition country, a fringe country, and an ‘average country’ vary with respect to the size 

of the coalition and the Kantian weight on emissions. We show that if countries act as perfect 

Kantians then, whatever the size of the coalition, the first-best is achieved, while, if there is full 

cooperation (the grand coalition) then, whatever the Kantian weight on emissions, once again 

the first-best is achieved.  In that sense they are substitute forms of behaviour.  More generally 

we would expect average equilibrium emissions to decline with respect to both factors, and, 

we show that this is the case, albeit using specific functional forms12.  

 

Turning to the first (membership) stage of the game we examine what values of the Kantian 

weights on emissions and membership will enable the grand coalition – and hence first-best to 

be achieved. We show that this can arise with Kantian weights that are positive but significantly 

less than one.  So, in that sense a Kantian form of behaviour promotes co-operation making the 

two types of behaviour complements13.   

 

Our paper relates to the recent paper by Eichner and Pethig (2022). However it differs in a 

number of respects.  First, we explicitly capture the idea that coalition members have as their 

objective the total welfare of the coalition – and so are not self-interested in the first sense.  

Second, we employ the imperfect Kantian approach to the membership and emissions decisions 

in a nested fashion which allows each stage to be modelled using the binary imperfect Kantian 

payoff function derived by Alger and Weibull (2013, 2016, 2020). Thus, at Stage 1 countries 

make their membership decisions in an imperfect Kantian fashion, recognising that at Stage 2 

both coalition and fringe countries will make their emissions decisions in an imperfect Kantian 

fashion. Third, and relatedly, we use a different approach when modelling the (imperfect 

Kantian) membership decision. Here, when a coalition (fringe) country assumes that all other 

countries have made the same membership decision as it has made it also assumes that  the 

appropriate second stage emissions will apply (fully-cooperative for a coalition country, non-

cooperative for a fringe country).  Fourth, since it is difficult to derive results using general 

functional forms, we have to turn to special functional forms, but ours is more general than 

theirs since we assume the damage cost function is quadratic, not linear14. Fifth while Eisner 

                                                           
12 However, matters are more complex when we look at the emissions of fringe and coalition countries. \we 

show that a fringe country’s emissions increase with membership, while, for specific values of parameters, a 

coalition country’s emissions also increase with both factors. 
13 The poor track record of successive COP meetings in tackling climate change has led some commentators (for 

example, Nowakowski and Oswald 2020) to argue that environmental economists should focus more on how to 

change individual behaviour to act more morally, and less on designing complicated theoretical interventions, 

such as the farsighted model of IEAs or tradable emission permits However, leaving aside the point that co-

operation involves some form of moral behaviour, this conclusion suggests that it is wring to pose these as 

substitute rather than complementary approaches. 
14 Results using the same special case as Eichner and Pethig (2022) are available in an online Appendix.  
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and Pethig focus solely on how the different values of the Kantian weights affect the 

equilibrium size of the IEA we look at the impact on the gap in welfare between the non-

cooperative outcome and the first best.   

, 

Finally, given all these differences in approach, we show that for the same values of Kantian 

weights, (a) our model results in higher equilibrium coalition membership and global welfare; 

(b) consequently the grand coalition, and hence the first-best outcome, can be achieved with 

lower Kantian weights.  

 

The structure of the paper is as follows. Section 2 sets out our theoretical analysis. After setting 

out our model and some key benchmark equilibria, we analyse the non-cooperative equilibrium 

with Kantian behaviour; the following sub-section summarises the analysis of IEAs with our 

simple model of Kantian behaviour, establishing the pessimistic conclusion. The final 

theoretical sub-section sets out two more general models of IEAs with Kantian behaviour; after 

summarising the results in Eichner and Pethig (2022), we set out our general model and show 

how it addresses some issues we raise about Eichner and Pethig’s model. In Section 3 we 

analyse the outcomes that arise for the special case of quadratic benefit function and damage 

cost functions, comparing the results from our general model with those derived from Eichner 

and Pethig15. Section 4 concludes with suggestions for further work. 

 

2 Theoretical Results.  

 

There are n > 3 identical countries, 𝑖 ∈ 𝑁, 𝑁 = {1, … , 𝑛}, where n is a large number16.  We 

denote by 𝑒𝑖 the level of emissions of country i of a global pollutant, such as greenhouse gases, 

and 𝒆 = (𝑒1, … 𝑒𝑖, … 𝑒𝑛) the vector of emissions by all countries.  The associated level of 

welfare of country i is:  

   𝑊𝑖(𝒆) ≡ 𝐵(𝑒𝑖) − 𝐷[∑ 𝑒𝑗𝑗∈𝑁 ].     (1) 

 B(ei) is the level of net benefit (excluding environmental damages) country i derives from 

whatever production and consumption decisions give rise to its emissions ei, and 𝐷(∑ 𝑒𝑗)𝑗∈𝑁  

is the level of damage costs it incurs from global emissions, ∑ 𝑒𝑗𝑗∈𝑁 . We make the standard 

assumptions that 𝐵(0) ≥ 0, 𝐵′(. ) > 0, 𝐵"(. ) < 0, 𝐷(0)0, 𝐷′(. ) > 0, 𝐷"(. ) ≥ 0. 

We now set out two benchmark outcomes. The first-best, or social optimum, is achieved when 

the emissions of each country i , 𝑒𝑖
𝑆𝑂, are chosen to maximise total welfare ∑ 𝑊𝑗(𝒆)𝑗∈𝑁 , giving 

rise to f.o.c.: 

   𝐵′(𝑒𝑖
𝑆𝑂) = ∑ 𝐷′

𝑗∈𝑁 (∑ 𝑒𝑘
𝑆𝑂

𝑘∈𝑁 ),    𝑖 ∈ 𝑁   (2a) 

Imposing symmetry, 𝑒𝑖
𝑆𝑂 = 𝑒𝑆𝑂, satisfying: 

                                                           
15 Eichner and Pethig (2022) produce numerical results using quadratic benefit function and linear damage cost 

function. Our Online Appendix presents numerical results for our model using a linear damage cost function. 
16 In Section 3 we will present numerical results where we assume n = 100. 
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   𝐵′(𝑒𝑆𝑂) = 𝑛𝐷′(𝑛𝑒𝑆𝑂)     (2b) 

The resulting common first-best, or socially-optimal, welfare is: 

 𝑊𝑆𝑂 = 𝐵(𝑒𝑆𝑂) − 𝐷(𝑛𝑒𝑆𝑂).      (2c) 

If countries act in a fully-cooperative fashion, whereby each country chooses the emissions that 

would maximise total welfare of all countries, it is clear that, in the symmetric model, the fully-

cooperative level of emissions for a country, 𝑒𝐹𝐶 , is identical to the social optimum, 𝑒𝐹𝐶 =

𝑒𝑆𝑂, with resulting welfare 𝑊𝐹𝐶 = 𝑊𝑆𝑂.  

If each country acts in a non-cooperative fashion, choosing its emissions to maximise its own 

welfare, taking as given the emissions of other countries, the resulting non-cooperative 

equilibrium emissions, 𝑒𝑖
𝑁𝐶 , 𝑖 ∈ 𝑁, satisfy: 

   𝐵′(𝑒𝑖
𝑁𝐶) = 𝐷′(∑ 𝑒𝑗

𝑁𝐶
𝑗 ),    𝑖 ∈ 𝑁   (3a) 

Imposing symmetry, 𝑒𝑖
𝑁𝐶 = 𝑒𝑁𝐶 , 𝑖 ∈ 𝑁, yields: 

   𝐵′(𝑒𝑁𝐶) = 𝐷′(𝑛𝑒𝑁𝐶)     (3b) 

with resulting  non-cooperative welfare:   

   𝑊𝑁𝐶 = 𝐵(𝑒𝑁𝐶) − 𝐷(𝑛𝑒𝑁𝐶)    (3c). 

Given our assumptions, it is clear that 𝑒𝑁𝐶 > 𝑒𝑆𝑂 , 𝑊𝑁𝐶 < 𝑊𝑆𝑂. Since we are interested in 

challenging global environmental issues such as climate change, we assume that these 

differences are large. 

We now turn to the issue of how far the gaps in emissions and welfare between the non-

cooperative equilibrium and the social optimum, i.e (𝑒𝑁𝐶 − 𝑒𝑆𝑂), ( 𝑊𝑆𝑂−𝑊𝑁𝐶) might be 

closed by countries (a) acting in a more moral (Kantian) fashion; (b) seeking to form an IEA; 

(c) doing both.  

2.1 Non-Cooperative Equilibrium When Countries Act in an Imperfect Kantian Fashion 

Following Alger and Weibull (2013, 2016, 2020), we denote by 𝜅, 0 < 𝜅 ≤ 1 the weight a 

country attaches to the payoff it would get if it acted as a perfect Kantian, and a weight (1 – κ) 

to the payoff it would get if it acted in a self-interested fashion.  A perfect Kantian country i, 

acting non-cooperatively, asks what emissions it should set, acting on the Kantian hypothesis 

that all other countries choose the same level of emissions as it. Thus, the behaviour of a perfect 

Kantian country i can be characterised by saying it acts to maximise its perfect Kantian payoff 

function: 

 Π𝑖
𝑁𝐶𝐾(𝒆; 1) = 𝐵(𝑒𝑖) − 𝐷(∑ 𝑒𝑖𝑗∈𝑁 ) = 𝐵(𝑒𝑖) − 𝐷(𝑛𝑒𝑖).   (4) 

We emphasise that while the perfect Kantian payoff function is used to characterise the 

behaviour of countries acting in a Kantian fashion, we will continue to assess the well-being 

of countries using their welfare functions defined in (1). 
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However, just as it is unrealistic that independent countries would act in a fully cooperative 

fashion, it is also unrealistic to assume that countries act as perfect Kantians. Therefore, we 

explore the implications of having countries act non-cooperatively, but as imperfect Kantians. 

Following Alger and Weibull (2013, 2016, 2020), an imperfect Kantian country gives a 

Kantian weight, κ, 0 ≤ κ ≤ 1, to acting in a perfect Kantian fashion, and weight (1 – κ) to acting 

in a self-interested non-cooperative fashion. An imperfect Kantian country i seeks to maximise 

its imperfect Kantian payoff function:  

              Π𝑖
𝑁𝐶𝐾(𝒆; 𝜅) = 𝜅[𝐵(𝑒𝑖) − 𝐷(∑ 𝑒𝑖𝑗∈𝑁 )] + (1 − 𝜅){𝐵(𝑒𝑖) − 𝐷[𝑒𝑖 + ∑ 𝑒𝑗𝑗∈𝑁,𝑗≠𝑖 ]}   

                     = 𝐵(𝑒𝑖) − 𝜅𝐷(𝑛𝑒𝑖) − (1 − 𝜅)𝐷[𝑒𝑖 + ∑ 𝑒𝑗𝑗∈𝑁,𝑗≠𝑖 ]            (5a) 

We denote the resulting equilibrium emissions by 𝑒𝑖
∗(𝜅) which satisfies: 

𝐵′[𝑒𝑖
∗(𝜅)] = 𝜅𝑛𝐷′[𝑛𝑒𝑖

∗(𝜅)] + (1 − 𝜅)𝐷′[𝑒𝑖
∗(𝜅) + ∑ 𝑒𝑗

∗(𝜅)]𝑗∈𝑁,𝑗≠𝑖     𝑖 = 1, … , 𝑛  (5b) 

Imposing symmetry, the non-cooperative Kantian equilibrium level of emissions, which we 

denote 𝑒∗(𝜅), solves  

  𝐵′[𝑒∗(𝜅)] = [𝜅𝑛 + (1 − 𝜅)]𝐷′[𝑛𝑒∗(𝜅)]    (5c) 

with the resulting imperfect Kantian non-cooperative equilibrium payoff and welfare, which 

we denote by Π∗(𝜅), 𝑊∗(𝜅) respectively: 

  Π∗(𝜅) = 𝑊∗(𝜅) = 𝐵[𝑒∗(𝜅)] − 𝐷[𝑛𝑒∗(𝜅)]    (5d) 

It is clear from (5c) that a country acting as a perfect Kantian would choose emissions 𝑒∗(1) =

𝑒𝑆𝑂, while a country acting as a non-Kantian would choose emissions 𝑒∗(0) = 𝑒𝑁𝐶. So, the 

first best can be achieved either by having all countries act in a fully cooperative fashion in 

setting emissions, or by having all countries acting non-cooperatively but as perfect Kantians. 

If countries are perfect Kantians, there is no need to try to form an IEA: seeking to get countries 

to act morally, as perfect Kantians, is a substitute to seeking to get all countries to join an IEA 

as an approach for tackling climate change.  

Result 1.  

In the imperfect Kantian non-cooperative equilibrium, as κ increases from 0 to 1, 

(i) 𝑒∗(𝜅) falls from the conventional non-Kantian non-cooperative level of emissions 

(𝑒∗(0) = 𝑒𝑁𝐶) to the first-best level of emissions (𝑒∗(1) = 𝑒𝐹𝐶 = 𝑒𝑆𝑂); 

(ii) the imperfect Kantian payoff and welfare, Π∗(𝜅) = 𝑊∗(𝜅), increase from the non-

cooperative level (Π∗(0) = 𝑊∗(0) = 𝑊𝑁𝐶) to the first-best level (Π∗(1) =

𝑊∗(1) = 𝑊𝑆𝑂). 

2.2 IEAs with Imperfect Kantian Behaviour 

We employ the two-stage non-cooperative model of IEAs, stemming from Carraro and 

Siniscalco (1993), Barrett (1994), in which in Stage 1 countries determine the equilibrium 

membership of a coalition or fringe and in Stage 2 they determine their equilibrium emissions. 

We denote by C (F), the set of countries which belong to the coalition (fringe) respectively 
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following in Stage 2, where 𝐶 ∪ 𝐹 = 𝑁, and by 𝐶−𝑖  (𝐹−𝑖) the set of countries belonging to the 

coalition (fringe) excluding country i.  For the case of identical countries, we denote by m the 

number of countries in the coalition, so, n - m is the number of countries in the fringe; if m = 

n, all countries are in the coalition, while if m = 1 all countries are in the fringe. In this sub-

section we examine four models, which depend on whether or not countries act as imperfect 

Kantians with respect to emissions, membership, none, or both. We denote by 𝜅, 0 ≤  𝜅 ≤   1 

the Kantian weight a country acting as an imperfect Kantian attaches to acting as a perfect 

Kantian with respect to emissions, membership or both. As noted above, the first three models 

appear also in Eichner and Pethig (2022). 

2.2.1  IEAs: Countries Are Self-Interested (Non-Kantian 𝜅 = 0) – Model ν  

The payoff function for a typical country i is given by17:  

Π𝑖
𝜈(𝒆; 0) = 𝐵(𝑒𝑖) − 𝐷(∑ 𝑒𝑗 + ∑ 𝑒𝑘)        𝑖 ∈ 𝑁𝑘∈𝐹𝑗∈𝐶 , 

 where the term 0 in Π𝑖
𝜈(𝒆; 0) denotes the value of κ. 

Stage 2: Equilibrium Emissions 

If country i is a member of some given coalition, C, it chooses its emission ei to maximise 

𝐵(𝑒𝑖) + ∑ 𝐵(𝑒𝑗) − ∑ 𝐷(∑ 𝑒𝑗 + ∑ 𝑒𝑘)𝑘∈𝐹𝑗∈𝐶𝑗∈𝐶𝑗∈𝐶−𝑖
 with resulting first-order condition:  

  𝐵′(𝑒𝑖) = ∑ 𝐷′
𝑗∈𝐶 (∑ 𝑒𝑗 + ∑ 𝑒𝑘)𝑘∈𝐹𝑗∈𝐶     𝑖 ∈ 𝐶   (6a) 

If country i is a member of the fringe, F, it chooses its emissions ei to maximise 𝐵(𝑒𝑖) −

𝐷(∑ 𝑒𝑗 + ∑ 𝑒𝑘)𝑘∈𝐹𝑗∈𝐶  with resulting first-order condition: 

 𝐵′(𝑒𝑖) = 𝐷′(∑ 𝑒𝑗 + ∑ 𝑒𝑘)𝑘∈𝐹𝑗∈𝐶              𝑖 ∈ 𝐹                   (6b) 

For the case of identical countries, the first-order conditions become: 

  𝐵′[𝑒𝑐] = 𝑚𝐷′[𝑚𝑒𝑐 + (𝑛 − 𝑚)𝑒𝑓]    𝑖 ∈ 𝐶    (6c) 

   𝐵′[𝑒𝑓] = 𝐷′[𝑚𝑒𝑐 + (𝑛 − 𝑚)𝑒𝑓]    𝑖 ∈ 𝐹      (6d) 

Solving (6c) and (6d) yields equilibrium emissions �̂�𝑐(𝑚; 0), �̂�𝑓(𝑚; 0); the resulting Stage 2 

equilibrium payoffs are: 

 Π̂𝑗(𝑚; 0) = 𝐵[�̂�𝑗(𝑚; 0)] − 𝐷[𝑚�̂�𝑐(𝑚; 0) + (𝑛 − 𝑚)�̂�𝑓(𝑚; 0)], 𝑗 = 𝑐, 𝑓  (6e) 

From (6a) and (6b), it is clear that, for all m = 2,..,n – 1,  �̂�𝑓(𝑚; 0) > �̂�𝑐(𝑚; 0), and hence, 

from (6e), Π̂𝑓(𝑚; 0) > Π̂𝑐(𝑚; 0), the standard free-rider advantage for fringe countries. If m 

= n, the grand coalition, all countries are coalition members and only (6a) applies, so 

�̂�𝑐(𝑛; 0) = 𝑒𝑆𝑂 , Π̂𝑐(𝑛; 0) = 𝑊𝑆𝑂.  If m = 1, all countries are in the fringe and only (6b) applies, 

so  �̂�𝑓(1; 0) = 𝑒𝑁𝐶 , Π̂𝑓(1; 0) = 𝑊𝑁𝐶.   

                                                           
17 For the non-Kantian model, the payoff function is equal to the welfare function. 
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Stage 1: Equilibrium Membership  

Equilibrium membership of the IEA, �̂�, is determined as a non-cooperative equilibrium in 

which no coalition country would wish to unilaterally leave the current coalition of size �̂� and 

join the fringe (Internal Stability), and no fringe country would wish to unilaterally leave the 

fringe of size 𝑛 − �̂�  and join the coalition (External Stability), i.e.  

   Π̂𝑐[�̂�] ≥ Π̂𝑓[�̂� − 1]   (7a) 

   Π̂𝑓[�̂�] ≥ Π̂𝑐[�̂� + 1]   (7b) 

Equivalently, we define the stability function: 𝜎(𝑚) ≡ Π̂𝑐(𝑚) − Π̂𝑓(𝑚 − 1), and say that a 

coalition of size �̂� is stable iff  

   𝜎[�̂�] ≥ 0,   𝜎[�̂� + 1) ≤ 0  (7c) 

The overall equilibrium for model ν, where countries are non-Kantians, is characterised by the 

key outcomes: the size of the stable IEA, �̂�𝜈; the resulting equilibrium emissions and welfare 

of coalition and fringe countries: �̂�𝜈
𝑗

= �̂�𝑗[�̂�𝜈; 0], �̂�𝜈
𝑗

= Π̂𝑗[�̂�𝜈; 0], 𝑗 = 𝑐, 𝑓.  

As we noted in Section 1, it is well known that, for a wide class of functional forms for benefit 

and damage cost functions, when countries act in a self-interested manner, we get the 

pessimistic conclusion that, because of the free-rider benefits accruing to fringe countries, the 

size of the stable IEA, �̂�𝜈, is small18. Applying this conclusion to problems like climate change 

involving a large number of countries, may seem to support the argument of Nowakowski and 

Oswald (2020) environmental economists’ focus on how to secure an IEA to tackle climate 

change, rather than on changing individuals’ behaviour, may be misplaced.   

2.2.2 IEAs: Countries Are Kantians with Respect to Emissions Only: Model ε  

We begin with the case where all countries are perfect Kantians with respect to emissions. A 

typical country i has payoff function: 

 Π𝑖 (𝒆; 1) = 𝐵(𝑒𝑖) − 𝐷(𝑛𝑒𝑖)          𝑖 ∈ 𝑁       (8a) 

where the term 1 in  Π𝑖 (𝒆; 1) denotes the value of κ. At Stage 2, whatever coalition, C, has 

formed at Stage 1, a coalition country i chooses its emissions, ei, to maximise: 

 𝐵(𝑒𝑖) − 𝐷(𝑛𝑒𝑖) + ∑ [𝐵(𝑒𝑗) − 𝐷(𝑛𝑒𝑗)𝑗∈𝐶−𝑖
]   𝑖 ∈ 𝐶   (8b) 

The objective function takes this form because, while country i seeks to maximise the total 

payoff of all coalition countries, it has no agency over the emissions decisions of other coalition 

members. Similarly, a fringe country, i, chooses its emissions ei to maximise: 

 𝐵(𝑒𝑖) − 𝐷(𝑛𝑒𝑖)                       𝑖 ∈ 𝐹    (8c)  

                                                           
18 Typically, in the range 2-4, see Diamantoudi and Sartzetakis (2006) 
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Therefore, at Stage 2, a country which is a perfect Kantian with respect only to emissions will 

set �̂�𝑐(𝑚; 1) = �̂�𝑓(𝑚; 1) = 𝑒𝑆𝑂, the socially optimal level of emissions, irrespective of 

whether it is a member of the coalition or fringe and independent of the size of the coalition.  

It follows that, at Stage 1, the stability function is: 𝜎(𝑚) = 0 , 𝑚 = 2, … , 𝑛. Therefore, any m 

= 2, …,n can be a stable IEA, and we apply equilibrium selection to say that the stable IEA is 

the grand coalition. Thus, the equilibrium for Model 휀 when κ = 1 is characterised by 

�̂� = 𝑛; �̂�
𝑗(1) = �̂�𝑗(𝑛; 1) = 𝑒𝑆𝑂;  �̂�

𝑗(1) = �̂�𝑗(𝑛; 1) = 𝑊𝑆𝑂; 𝑗 = 𝑐, 𝑓 . Thus, with perfect 

Kantian behaviour with respect to emissions only, the outcome is the same as in Section 2.1 

when countries act non-cooperatively; forming an IEA is essentially irrelevant. 

In the case where countries are imperfect Kantians with respect to emissions only, 0 < κ < 1, 

country i’s payoff function is: 

 Π𝑖 (𝒆; 𝜅) = 𝐵(𝑒𝑖) − 𝜅𝐷(𝑛𝑒𝑖) − (1 − 𝜅)𝐷[∑ 𝑒𝑗 + ∑ 𝑒𝑗]𝑗∈𝐹𝑗∈𝐶      𝑖 ∈ 𝑁     (9a) 

 Eichner and Pethig (2022) noted that (9a) can be written as: 

  Π𝑖 (𝒆; 𝜅 ) = �̆�(𝑒𝒊) − �̆�[∑ 𝑒𝑗 + ∑ 𝑒𝑗]𝑗∈𝐹𝑗∈𝐶      𝑖 ∈ 𝑁       (9b) 

where  �̌�(𝑒𝑖) = 𝐵(𝑒𝑖) − 𝜅𝐷(𝑛𝑒𝑖);  �̌�[. ] = (1 − 𝜅)𝐷[. ]. It is clear that �̆�(. ), �̆�(. ) have the 

same properties as B(.), D[.]. The IEA game where countries are imperfect Kantians with 

respect to emissions only is isomorphic to the standard game in 2.2.1 above, and so, again, we 

get the pessimistic conclusion that the stable IEA with be small. Thus, as Eichner and Pethig 

(2022) noted, equilibrium membership in the emissions only special case has a knife-edge 

property. While Kantian behaviour with respect to emissions only leads to the pessimistic 

conclusion with respect to membership, equilibrium Stage 2 emissions, �̂�𝑐(𝑚, 𝜅), �̂�𝑓(𝑚, 𝜅) 

obviously depend on the Kantian weight κ. In Section 4 we will analyse how equilibrium 

emissions vary with parameters m and κ; as we would expect, as κ increases, total emissions 

of all countries will fall and total welfare of all countries will increase, reaching social optimum 

when 𝜅 = 1, but the story is richer for individual countries. Thus, the implications of this model 

of IEAs for welfare are significant if κ is large. However, the important point is that, with a 

small equilibrium membership, the outcome will be only slightly better than in the 

corresponding non-cooperative Kantian equilibrium.  

2.2.3 IEAs: Countries Are Kantians with Respect to Membership Only: Model μ 

We start with perfect Kantian behaviour with respect to membership. No matter what coalition, 

C, has formed at Stage 1, at Stage 2 a coalition (fringe) country i which is a perfect Kantian 

with respect to membership only, acts on the counter-factual hypothesis that all other countries 

have joined the coalition (fringe). Hence, it’s payoff function is: 

    Π𝑖
𝜇(𝒆; 1) = 𝐵(𝑒𝑖) − 𝐷[∑ (𝑒𝑗)]𝑗∈𝑁               𝑖 ∈ 𝑁       (10a) 

Thus, a perfect Kantian coalition country i chooses ei to maximise: 

 ∑ Π𝑖
𝜇

𝑗∈𝑁 (𝒆; 1) = 𝐵(𝑒𝑖) + ∑ 𝐵(𝑒𝑗)𝑗∈𝑁−𝑖 − ∑ 𝐷[𝑒𝑖 + ∑ 𝑒𝑘]𝑘∈𝑁−𝑖
 𝑖 ∈ 𝐶𝑗∈𝑁      (10b 

with first-order condition: 
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  𝐵′(𝑒𝑖) = ∑ 𝐷′(∑ 𝑒𝑘)𝑘∈𝑁𝑗∈𝑁            (10c) 

With identical countries, each coalition member sets equilibrium emissions �̂�𝑐(𝑚; 1) to satisfy  

  𝐵′[ �̂�𝑐(𝑚; 1)] = 𝑛𝐷′[𝑛 �̂�𝑐(𝑚; 1)] ⟹  �̂�𝑐(𝑚; 1) = 𝑒𝑆𝑂  

Therefore, whatever the number of countries in the coalition, m = 2,…,n, each coalition country 

sets the socially optimal level of emission, and believes it will receive Stage 2 equilibrium 

payoff  Π̂𝑐(𝑚; 1) = 𝑊𝑆𝑂 .     

 By a similar argument, at Stage 2, a fringe country i which is a perfect Kantian with respect to 

membership only, acts on the hypothesis that all other countries have joined the fringe, and 

chooses its emissions to maximise the payoff function: 

   Π𝑖
𝜇(𝒆; 1) = 𝐵(𝑒𝑖) − 𝐷[𝑒𝑖 + ∑ 𝑒𝑗]𝑗∈𝑁,𝑗≠𝑖     𝑖 ∈ 𝐹    (10d) 

Therefore, whatever the number of countries in the fringe, n-m = 1, …, n-1, each fringe country 

sets the non-cooperative level of emissions: �̂�𝑓(𝑚; 1) = 𝑒𝑁𝐶 and believes it will receive Stage 

2 equilibrium payoff Π̂𝑓(𝑚; 1) = 𝑊𝑁𝐶  .     

For any membership m, the Stage 1 stability function is 𝜎(𝑚; 1) = 𝑊𝑆𝑂 − 𝑊𝑁𝐶 > 0 .Hence 

the unique stable coalition is the grand coalition. Put simply, if a country believes all other 

countries will make the same membership decision as it, then it calculates that it would get a 

higher payoff by joining the coalition and getting the socially-optimal payoff rather than joining 

the fringe and getting the non-cooperative payoff. 

We now turn to imperfect Kantian behaviour with respect to membership, where countries 

attach weight 𝜅 to acting as a perfect Kantian with respect to membership. Whatever coalition 

C has formed at Stage 1, the payoff function of a coalition (fringe) country i is: 

 Π𝑖
𝜇(𝒆; 𝜅) = 𝜅[𝐵(𝑒𝑖) − 𝐷(∑ (𝑒𝑗)] + (1 − 𝜅){𝐵(𝑒𝑖) − 𝐷[∑ 𝑒𝑗 + ∑ 𝑒𝑓]}𝑘∈𝐹   𝑗∈𝐶𝑗∈𝑁     (11a) 

At Stage 2, a coalition country i chooses its emissions ei to maximise: 

𝜅[𝐵(𝑒𝑖) − ∑ 𝐷(∑ 𝑒𝑘)] + (1 − 𝜅)[𝐵(𝑒𝑖) − ∑ 𝐷(∑ 𝑒𝑗 + ∑ 𝑒𝑓)]𝑘∈𝐹𝑗∈𝐶𝑗∈𝐶𝑘∈𝑁𝑗∈𝑁          (11b) 

With identical countries, the first-order condition for a coalition country can be written as: 

 𝐵′(𝑒𝑐) = 𝜅𝑛𝐷′(𝑛𝑒𝑐) + (1 − 𝜅)𝑚𝐷′[𝑚𝑒𝑐 + (𝑛 − 𝑚)𝑒𝑓]                (11c) 

Similarly, a fringe country i chooses its emissions ei to maximise: 

 𝜅[𝐵(𝑒𝑖) − 𝐷(∑ 𝑒𝑘)] + (1 − 𝜅)[𝐵(𝑒𝑖) − 𝐷(∑ 𝑒𝑗 + ∑ 𝑒𝑘)]𝑘∈𝐹𝑗∈𝐶𝑘∈𝑁     (11d) 

and , with identical countries, the first-order condition can be written as: 

 𝐵′(𝑒𝑓) = 𝜅𝐷′(𝑛𝑒𝑓) + (1 − 𝜅)𝐷′[𝑚𝑒𝑐 + (𝑛 − 𝑚)𝑒𝑓]       (11e) 

Solving (11c) and (11e) simultaneously yields equilibrium emissions: �̂�𝑗(𝑚; 𝜅)  j=c,f.  

It is clear that the first-order conditions (11c) and (11e) for Model μ are not iso-morphic to (6c) 

and (6d) for the self-interested Model ν, so we cannot conclude that Model μ yields the 
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pessimistic conclusion with respect to equilibrium membership. The full analysis of Model μ 

can be found in Eichner and Pethig (2022). For the special case of quadratic benefit function 

and linear damage cost function, they find that for Model μ the size of the stable IEA increases 

as κ increases, and, the grand coalition can be stable with a value of κ which tends to 0.5 as n 

tends to infinity.  

2.2.4 IEAs: Countries Are Kantians with Respect to Emissions and Membership: Model 휀𝜇 

Eichner and Pethig (2022) do not consider this case. A coalition (fringe) country i which is a 

perfect Kantian with respect to both emissions and membership acts on the hypotheses that all 

other countries have joined the coalition (fringe) and that they will set the same emissions as 

it. From (8a), (10a) and (10d) it’s Stage 2 payoff function is: 

 Π𝑖
𝜇(𝒆;  1) = 𝐵(𝑒𝑖) − 𝐷(𝑛𝑒𝑖)  𝑖 ∈ 𝑁.                         (12a) 

A coalition country chooses its emissions, ei, to maximise the joint payoff of all members of it 

hypotheses to belong to the coalition, i.e. all countries in N, namely: 

 𝐵(𝑒𝑖) − 𝐷(𝑛𝑒𝑖) + ∑ [𝐵(𝑒𝑗) − 𝐷(𝑛𝑒𝑗)]𝑗∈𝑁−𝑖
   (12b) 

A fringe country i takes as given the emissions of all other members it hypotheses belong to 

the fringe, i.e all other countries in N, and chooses its emissions, ei, to maximise: 

 𝐵(𝑒𝑖) − 𝐷(𝑛𝑒𝑖)      (12c) 

From (12b) and (12c), it is clear that, at Stage 2, for whatever coalition (fringe) has actually 

formed at Stage 1, any country, i, whether a member of the coalition or fringe, will set socially 

optimal emissions, i.e.  �̂� 𝜇
𝑐 = �̂� 𝜇

𝑓
= 𝑒𝑆𝑂. Hence, as in 2.2.2, at Stage 1, any IEA with 

membership m = 2,…, n is stable and we choose the grand coalition. Thus, the full equilibrium 

when countries are perfect Kantians with respect to both emissions and membership is the 

social optimum.  

From (9a), (11a) and (11d), a country i which is an imperfect Kantian (0 < κ < 1) with respect 

to emissions and membership has the payoff function: 

Π𝑖
𝜇(𝒆;  𝜅) = 𝐵(𝑒𝑖) − 𝜅𝐷(𝑛𝑒𝑖) − (1 − 𝜅)𝐷[∑ 𝑒𝑗 + ∑ 𝑒𝑗]𝑗∈𝐹𝑗∈𝐶  ∀𝑖 ∈ 𝑁       (12d). 

This has the same isomorphism property as (9a), so: 

  Π𝑖
𝜇(𝒆; 𝜅 ) = �̆�(𝑒𝒊) − �̆�[∑ 𝑒𝑗 + ∑ 𝑒𝑗]𝑗∈𝐹𝑗∈𝐶         (12e) 

where  �̌�(𝑒𝑖) = 𝐵(𝑒𝑖) − 𝜅𝐷(𝑛𝑒𝑖);  �̌�[. ] = (1 − 𝜅)𝐷[. ]. Thus, when countries are imperfect 

Kantians with respect to both emissions and membership, we again get the pessimistic 

conclusion with respect to membership, although, as we noted at the end of Section 2.2.2,  as 

the Kantian weight κ → 1, emissions and hence welfare tend to the social optimum. 

We summarise the outcomes of the models studied in Section 2 as follows: 
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Result 2 

(i) If countries are non-Kantians with respect to both emissions and membership, for 

a wide class of functional forms, the size of the equilibrium membership is small 

and welfare is close to the level in the non-cooperative non-Kantian equilibrium. 

(ii) If countries act as perfect Kantians with respect to emissions only or with respect 

to emissions and membership, any coalition with membership m, 2 ≤ m ≤ n, is stable 

and achieves the socially optimal outcome; we select the grand coalition as the 

stable equilibrium.  

(iii) If countries act as imperfect Kantians with respect to emissions only, or with respect 

to emissions and membership, for a wide class of functional forms, equilibrium 

membership is small, though as the Kantian weight tends to 1, emissions and 

welfare tend to the social optimum.   

(iv) If countries act as perfect Kantians with respect to membership only, the grand 

coalition is the unique stable IEA, attaining the socially optimal outcome. 

(v) If countries act as imperfect Kantians with respect to membership only, the iso-

morphism property does not apply. For the special case of quadratic benefits and 

linear damage costs, as the Kantian weight κ increases, the size of the stable IEA 

increases, reaching the grand coalition for values of κ which exceeds a critical 

value which tends to 0.5 as n tends to infinity.       

This is a disappointing result. We believe: (a) it is unrealistic to expect that countries would act 

as Kantians with respect to only emissions or only membership, so we should assume they act 

as Kantians in making both decisions; (b) it is unrealistic to expect that they act as perfect 

Kantians, for which the issue of forming an IEA is effectively irrelevant. Hence, the outcome 

for membership of this simple approach to IEAs with Kantian behaviour is the same pessimistic 

conclusion as in models of self-interested behaviour.  In the next section we consider two 

approaches which assume that the model of Kantian behaviour with respect to both emissions 

and membership is richer than that presented above.   

2.3 IEAs with Kantian Behaviour – Richer Models. 

In this section, it will be useful to distinguish the Kantian weight for decisions on emissions, 

𝜅 , and the Kantian weight for decisions taken on membership, 𝜅𝜇. We recognise that, there is 

a strong argument that an agent should take the same moral stance to all decisions, implying 

𝜅 = 𝜅𝜇; we do not preclude this possibility. One reason for thinking that the weights might 

differ is that membership and emission decisions involve somewhat different agents: decisions 

about membership of international partnerships are clearly the remit of national governments; 

while national governments’ policies can strongly influence domestic greenhouse gas 

emissions in the production, retail and domestic sectors, households’ carbon footprints also 

depend on individual and household decisions such as diet and transport which are less 

amenable to national government interventions. Thus, we allow for the possibility that 𝜅 ≠

 𝜅𝜇, with either  𝜅 <  𝜅𝜇,   or 𝜅 >  𝜅𝜇
19.                  

                                                           
19 For example, households’ decisions on diet, where to live and where to work, how long to use appliances.  
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2.3.1 The Model of Eichner and Pethig (2022) 

We begin by briefly outlining the approach of Eichner and Pethig (2022). They depart from the 

Alger and Weibull (2013, 2016, 2020) approach to imperfect Kantian behaviour, which we 

applied in 2.1. and 2.2 above, whereby the payoff function of country i is a weighted average 

of the perfect Kantian payoff and the non-Kantian payoff. Instead, they use a payoff function 

which is a weighted average of the payoffs of a perfect Kantian with respect to emissions only, 

a perfect Kantian with respect to membership only, and a non-Kantian. Thus, a country i, 

whether a member of the coalition or fringe, has the payoff function: 

   Π𝑖
𝐸𝑃(𝒆;  𝛼, 𝜅 , 𝜅𝜇) = 𝛼Π𝑖

𝜇(𝒆; 𝜅 ) + (1 − 𝛼)Π𝑖 (𝒆; 𝜅𝜇)   (13a) 

where 0 ≤  𝛼, 𝜅 , 𝜅𝜇 ≤ 1;  a special parameter subset is (0.5, κ, κ). (13a) can be expanded as 

follows: 

i.e.  Π𝑖
𝐸𝑃(𝒆;  𝛼, 𝜅 , 𝜅𝜇) = 𝛼𝜅𝜇[𝐵(𝑒𝑖) − 𝐷(∑ 𝑒𝑗)] + (1 −𝑗∈𝑁 𝛼)𝜅 [𝐵(𝑒𝑖) − 𝐷(𝑛𝑒𝑖)] 

  +[𝛼(1 − 𝜅𝜇) + (1 − 𝛼)(1 − 𝜅 )][𝐵(𝑒𝑖) − 𝐷(∑ 𝑒𝑗 + ∑ 𝑒𝑘)]𝑘∈𝐹𝑗∈𝐶    (13b) 

After studying the special cases of non-Kantian (𝜅 = 𝜅𝜇 = 0 as in Section 2.2.1 above), 

emissions only (0 < 𝜅 ≤ 1, 𝜅𝜇 = 0, as in Section 2.2.2 above), and membership only (0 <

𝜅𝜇 ≤ 1, 𝜅 = 0, as in Section 2.2.3 above), they study their general model, and show, 

importantly, that the iso-morphism result does not apply. For the special case of quadratic 

benefit and linear damage cost functions for different sets of parameter values, they show: first, 

that equilibrium membership, �̂�𝐸𝑃(𝛼, 𝜅 , 𝜅𝜇), is increasing in all three parameters, and, for the  

special parameter set, is increasing in κ; second, they study parameter values for which  the 

grand coalition can be achieved, and show that, there are critical values of 𝛼 and 𝜅𝜇, denoted 

�̂�(𝜅 , 𝜅𝜇, 𝑛)  �̂�𝜇(𝛼, 𝜅 , 𝑛) respectively, lying between 0 and 1, such that the grand coalition can 

be achieved if 𝛼 ≥  �̂�(.), or 𝜅𝜇 ≥  �̂�𝜇(. ); for the special parameter set (0.5, κ, κ) there is a 

critical value �̂�(𝑛) such that the grand coalition can be achieve if 𝜅 ≥ �̂�(𝑛), where �̂�(𝑛) tends 

to 2/3 as n tends to infinity.20 

In the next section we set out our general model, and argue why we believe it provides a more 

appropriate approach to capturing Kantian behaviour in IEAs. Furthermore, we believe the 

parameter α to be superfluous. The key ethical parameters are the Kantian weights, 𝜅 , 𝜅𝜇. As 

we noted in the opening paragraph of Section 2.3, arguments can be advanced for why these 

might differ from each other. However, it is not clear what moral arguments can be advanced 

for a choice of α other than 0.5, which makes α superfluous. For example, if one accepts 

arguments for having 𝜅𝜇 > 𝜅 , what additional arguments could be advanced for choosing α 

such that 𝛼𝜅𝜇 < (1 − 𝛼)𝜅 ? We will come back to this issue in Section 3 when we seek to 

compare the results from our model with those from Eichner and Pethig (2022). 

 

                                                           
20For later purposes, we note that �̂�(100) = 0.6644. 
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2.3.2 Our General Model 

We now turn to the main section of this paper. Our general model differs from Eichner and 

Pethig (2022) in two key respects. First, we employ the imperfect Kantian approach to the 

membership and emissions decisions in a nested fashion which allows each stage to be 

modelled using the binary imperfect Kantian payoff function derived by Alger and Weibull 

(2013, 2016, 2020). By this we mean that, at Stage 1, countries make their membership 

decisions in an imperfect Kantian fashion with Kantian weight 𝜅𝜇, recognising that at Stage 2 

they will make their emissions decisions in an imperfect Kantian fashion with Kantian weight 

𝜅 . This has the important implication that, unlike Eichner and Pethig (2022), the weights 𝜅 , 𝜅𝜇 

do not have to sum to 1. The second important difference from Eichner and Pethig (2022) is 

that we use a different approach to modelling membership decisions in which a coalition 

(fringe) country acting as perfect Kantians, assumes that all other countries have made the same 

membership decision and chooses the appropriate emissions. By appropriate we mean that 

they take account of what they hypothesise about membership and the Kantian weight on 

emissions.   

We now set out the payoff functions for coalition and fringe countries. It follows from the 

previous paragraph that it is necessary to distinguish between two sets of emission decisions, 

reflecting the difference between acting as imperfect Kantians with respect to emissions and 

with respect to membership. We denote by 𝑒𝑖  the emissions of country i in the emissions game, 

and by 𝑒𝑖
𝜇

 the emissions country i would set in the membership game when it assumes that, 

hypothetically, all other countries have made the same membership decision. Although we 

distinguish between two sets of emissions, we note shortly that, in equilibrium, countries emit 

only one level of emissions which depends on the equilibrium membership. The payoff 

function is: 

Π𝑖(𝒆 , 𝒆𝜇; 𝜅 , 𝜅𝜇) = 𝜅𝜇{𝜅 [𝐵(𝑒𝑖
𝜇

) − 𝐷(∑ 𝑒𝑖
𝜇

)]𝑗∈𝑁 + (1 − 𝜅 )[𝐵(𝑒𝑖
𝜇

) − 𝐷(∑ 𝑒𝑗
𝜇

)]𝑗∈𝑁 }   

+(1 − 𝜅𝜇){𝜅 [𝐵(𝑒𝑖 ) − 𝐷(∑ 𝑒𝑖 )]𝑗∈𝑁  

  +(1 − 𝜅 )[𝐵(𝑒𝑖 ) − 𝐷(∑ 𝑒𝑖 + ∑ 𝑒𝑘)]}𝑘∈𝐹𝑗∈𝐶    𝑖 ∈ 𝑁         (14)      

In (14) the two terms in the first curly brackets are the payoffs country i receives if it 

acts as a perfect Kantian with respect to membership, so assumes all other countries 

have made the same membership decision as country i. The first of these two terms, 

with weight 𝜅 , is the payoff it receives if it acts as a perfect Kantian with respect to 

emissions, while the second term, with weight 1 − 𝜅 , is the payoff it receives if it 

chooses emissions in a non-Kantian fashion. The two terms in the second curly bracket 

are the payoffs it receives if it acts as a non-Kantian with respect to membership. The 

first of these two terms, with weight 𝜅 , is the payoff it receives if it acts as a perfect 

Kantian with respect to emissions. The second term, with weight 1 − 𝜅  is just the 

payoff country i would receive in the standard non-cooperative game with self-

interested countries, depending whether it is in set C or set F.  

We now solve the game.  
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2.3.2.1  Stage 2- Equilibrium Emissions 

We solve first for the equilibrium emissions 𝑒𝑖
𝜇

, when countries act as perfect Kantians 

with respect to membership, so 𝜅𝜇 = 1. From (14), a coalition country i takes as given 

𝑒𝑗
𝜇

, 𝑗 ≠ 𝑖, and chooses 𝑒𝑖
𝜇

 to maximise: 

𝜅 {𝐵(𝑒𝑖
𝜇

) − 𝐷(𝑛𝑒𝑖
𝜇

) + ∑ [𝐵(𝑒𝑗
𝜇

) − 𝐷(𝑛𝑒𝑗
𝜇

)]} +𝑗∈𝑁−𝑖

                           (1 − 𝜅 ){∑ [𝐵(𝑒𝑗
𝜇

) − 𝐷(∑ 𝑒𝑘
𝜇

)]}𝑘∈𝑁𝑗∈𝑁     𝑖 ∈ 𝐶   (15a) 

for which the first-order condition is:  

 𝐵′(𝑒𝑖
𝜇

) = 𝜅 𝑛𝐷′(𝑛𝑒𝑖
𝜇

) + (1 − 𝜅 ) ∑ 𝐷′(∑ 𝑒𝑘
𝜇

)𝑘∈𝑁𝑗∈𝑁    𝑖 ∈ 𝐶 (15b) 

Imposing symmetry, equilibrium coalition emissions, �̃�𝜇
𝑐 ≡ �̃�𝜇

𝑐(𝑛; 𝜅 , 1) solve: 

 𝐵′(�̃�𝜇
𝑐) = 𝑛𝐷′(𝑛�̃�𝜇

𝑐) ⟹ �̃�𝜇
𝑐 = 𝑒𝑆𝑂       𝑖 ∈ 𝐶         (15c) 

so, as we noted at the start of Section 2, when countries act as if all are in coalition, 

they set the fully cooperative, socially optimal level of emissions.    

A fringe country takes as given 𝑒𝑗
𝜇

, 𝑗 ≠ 𝑖, and chooses 𝑒𝑖
𝜇

 to maximise: 

       𝜅 [𝐵(𝑒𝑖
𝜇

) − 𝐷(𝑛𝑒𝑖
𝜇

)] + (1 − 𝜅 )[𝐵(𝑒𝑖
𝜇

) − 𝐷(∑ 𝑒𝑗
𝜇

)]   𝑖 ∈ 𝐹𝑗∈𝑁                     (15d) 

for which the first-order condition is: 

 𝐵′(𝑒𝑖
𝜇

) = 𝜅 𝑛𝐷′(𝑛𝑒𝑖
𝜇

) + (1 − 𝜅 )𝐷′(∑ 𝑒𝑘
𝜇

)𝑘∈𝑁   𝑖 ∈ 𝐹  (15e) 

Imposing symmetry, equilibrium fringe emissions, �̃�𝜇
𝑓

≡ �̃�𝜇
𝑓

(1; 𝜅 , 1) solve: 

 𝐵′(�̃�𝜇
𝑓

) = [𝜅 𝑛 + (1 − 𝜅 )]𝐷′(𝑛�̃�𝜇
𝑓

) ⟹ �̃�𝜇
𝑓

= 𝑒∗(𝜅 )    (15f) 

so, as we noted in Section 2.1, when countries act as if all countries are in the fringe, 

they set emissions equal to those in the non-cooperative Kantian equilibrium with 

Kantian weight 𝜅 .   

We now solve for the equilibrium emissions 𝑒𝑖 , when countries act as non-Kantians 

with respect to membership, so 𝜅𝜇 = 0. We deal first with the case where both C and 

F are non-empty (i.e. 2 ≤ m ≤ n – 1). From (14), a coalition country i takes as given 

𝑒𝑗
𝜇

, 𝑗 ≠ 𝑖, and chooses 𝑒𝑖  to maximise: 

𝜅 {𝐵(𝑒𝑖 ) − 𝐷(𝑛𝑒𝑖 ) + ∑ [𝐵(𝑒𝑗 ) − 𝐷(𝑛𝑒𝑗 )]} + 𝑗∈𝑁−𝑖
              

                 (1 − 𝜅 ){∑ [𝐵(𝑒𝑗 ) − 𝐷(∑ 𝑒𝑘 + ∑ 𝑒𝑙𝑙∈𝐹 )]}𝑘∈𝐶𝑗∈𝑁     𝑖 ∈ 𝐶         (16a)  

for which the first-order condition is:  

    𝐵′(𝑒𝑖 ) = 𝜅 𝑛𝐷′(𝑛𝑒𝑖 ) + (1 − 𝜅 ) ∑ 𝐷′(∑ 𝑒𝑘
𝑒 + ∑ 𝑒𝑙𝑙∈𝐹 )𝑘∈𝐶𝑗∈𝐶    𝑖 ∈ 𝐶 (16b) 

A fringe country takes as given 𝑒𝑗 , 𝑗 ≠ 𝑖, and chooses 𝑒𝑖  to maximise: 
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 𝜅 [𝐵(𝑒𝑖 ) − 𝐷(𝑛𝑒𝑖 )] + (1 − 𝜅 )[𝐵(𝑒𝑖 ) − 𝐷(∑ 𝑒𝑘 + ∑ 𝑒𝑙𝑙∈𝐹 )]   𝑖 ∈ 𝐹𝑘∈𝐶            (16c) 

for which the first-order condition is: 

     𝐵′(𝑒𝑖
𝜇

) = 𝜅 𝑛𝐷′(𝑛𝑒𝑖
𝜇

) + (1 − 𝜅 )𝐷′(∑ 𝑒𝑘
𝜇

+ ∑ 𝑒𝑙𝑙∈𝐹 )𝑘∈𝐶   𝑖 ∈ 𝐹 (16d) 

Imposing symmetry, equilibrium coalition and fringe emissions, �̃�𝑐 ≡ �̃�𝑐(𝑛; 𝜅 , 0),  

�̃�
𝑓

≡ �̃�
𝑓

(1; 𝜅 , 0),  solve the simultaneous equations: 

𝐵′(�̃�𝑐) = 𝜅 𝑛𝐷′(𝑛�̃�𝑐) + (1 − 𝜅 )𝑚𝐷′[𝑚�̃�𝑐 + (𝑚 − 𝑛)�̃�
𝑓

]                           (17a) 

𝐵′(�̃�
𝑓

) = 𝜅 𝑛𝐷′(𝑛�̃�
𝑓

) + (1 − 𝜅 )𝐷′[𝑚�̃�𝑐 + (𝑚 − 𝑛)�̃�
𝑓

]                            (17b) 

It is clear that, when m = n, equilibrium coalition emissions when countries act as non-Kantians 

with respect to membership are the same as when they act as perfect Kantians with respect to 

membership, i.e.  �̃�𝑐(𝑛; 𝜅 , 0) = �̃�𝜇
𝑐(𝑛; 𝜅 , 1) = 𝑒𝑆𝑂, the socially optimal level of emissions. 

Similarly, when m = 1, equilibrium fringe emissions when countries act as non-Kantians with 

respect to membership are the same as when they act as perfect Kantians with respect to 

membership, i.e. �̃�
𝑓(1; 𝜅 , 0) = �̃�𝜇

𝑓(1;  𝜅 , 1). So, as we noted above, in equilibrium, the 

distinction between emissions related to Kantian behaviour with respect to emissions and 

membership is effectively redundant, so that for all values of m = 1,…,n, we will refer simply 

to equilibrium Stage 2 emissions: �̃�𝑐(𝑚, 𝜅 ), �̃�𝑓(𝑚, 𝜅 ) for coalition and fringe countries. The 

associated equilibrium payoff functions are: Π̃𝑐(𝑛, 𝜅 ) = 𝐵[�̃�𝑐(𝑛, 𝜅 )] − 𝐷[𝑛�̃�𝑐(𝑛, 𝜅 )] =

𝑊𝑆𝑂; for 2 ≤ m ≤ n – 1,  Π̃
𝑗(𝑚, 𝜅 ) = 𝐵[�̃�𝑗(. )] − 𝜅 𝐷[𝑛�̃�𝑗(. )] − (1 − 𝜅 )𝐷[𝑚�̃�𝑐(. ) +

(𝑛 − 𝑚)�̃�𝑓(. )],  j = c, f ; Π̃𝑓(1, 𝜅 ) = 𝐵[�̃�𝑓(1, 𝜅 )] − 𝐷[𝑛�̃�𝑓(1, 𝜅 )] = 𝑊∗(𝜅 ).  

The overall equilibrium payoff functions from Stage 2 are given by: 

Π̃𝑐(𝑚, 𝜅 , 𝜅𝜇) = 𝜅𝜇Π̃𝑐(𝑛, 𝜅 ) + (1 − 𝜅𝜇)Π̃𝑐(𝑚, 𝜅 )                                           (18a) 

Π̃𝑓(𝑚, 𝜅 , 𝜅𝜇) = 𝜅𝜇Π̃𝑓(1, 𝜅 ) + (1 − 𝜅𝜇)Π̃𝑓(𝑚, 𝜅 )          (18b) 

We know that: 

Π̃𝑐(𝑚, 1) = Π̃𝑓(𝑚, 1) = 𝑊𝑆𝑂 , 1 ≤ 𝑚 ≤ 𝑛;                      (19a) 

Π̃𝑐(𝑛, 𝜅 ) = 𝑊𝑆𝑂 > Π̃𝑓(1, 𝜅 ) = 𝑊∗(𝜅 ), 0 ≤ 𝜅 < 1;           (19b) 

Π̃𝑐(𝑚, 𝜅 ) < Π̃𝑓(𝑚, 𝜅 ), 0 ≤ 𝜅 < 1;                (19c) 

(19a) says that when countries are perfect Kantians with respect to emissions, 𝜅 = 1, then, no 

matter what size the coalition is, fringe and coalition countries get the social optimum payoff, 

because they generate the social optimum emissions. When 𝜅 < 1, (19b) says that a country    

is better off when all, or act as if all, are in the grand coalition compared to when all are, or act 

as if all, are in the fringe, though this gap narrows as 𝜅  increases. (19c) is just the standard 

free-rider benefit that fringe countries derive in the conventional model of IEAs, when not 

acting as Kantians with respect to membership. The key point of our model of Kantian IEAs is 

that, with weight κμ, this free-riding effect is offset by the benefit coalition countries derive 
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from asking what benefit would they get if, hypothetically, all countries were in the coalition 

and set the appropriate emissions, compared to the benefit fringe countries would get if, 

hypothetically, all countries were in the fringe and set the appropriate emissions. 

2.3.2.2  Stage 1: Equilibrium Membership 

We now determine, for all values of 𝜅 , 𝜅𝜇, the size of the equilibrium membership, �̃� =

�̃�(𝜅 , 𝜅𝜇). The stability function is:  

    𝜎(𝑚, 𝜅 , 𝜅𝜇) = Π̃𝑐(𝑚, 𝜅 , 𝜅𝜇) − Π̃𝑓(𝑚 − 1, 𝜅 , 𝜅𝜇)      (20)                                          

A coalition of size �̃�, 2 ≤  �̃�  ≤ 𝑛 − 1 is stable if 𝜎(�̃�, 𝜅 , 𝜅𝜇) ≥ 0, and 𝜎(�̃� + 1, 𝜅 , 𝜅𝜇) ≤

0; the grand coalition is stable if  𝜎(𝑛, 𝜅 , 𝜅𝜇) ≥ 0. 

With the general functional forms we have used in Section 2, it is not possible to derive general 

results about the existence of an equilibrium coalition, whether it is unique, and how big it 

might be. However, we can illustrate one important implication of our model by writing the 

stability function as: 

 𝜎(𝑚, 𝜅 , 𝜅𝜇) = 𝜅𝜇[Π̃𝑐(𝑛, 𝜅 ) − Π̃𝑓(1, 𝜅 )] + (1 − 𝜅𝜇)[Π̃𝑐(𝑚, 𝜅 ) − Π̃𝑓(𝑚 − 1, 𝜅 )]     

                        = 𝜅𝜇[𝑊𝑆𝑂 − 𝑊∗(𝜅 )] + (1 − 𝜅𝜇)[Π̃𝑐(𝑚, 𝜅 ) − Π̃𝑓(𝑚 − 1, 𝜅 )]       (21) 

The second term on the RHS of (21) is the standard stability function when countries act as 

non-Kantians, and, as we argued in 2.2.1, for a class of commonly employed functional forms 

for benefits and damage cost functions, becomes negative for values of m greater than a small 

number, typically no greater than 4. The first term in square brackets is the difference in welfare 

between the fully-co-operative equilibrium and the non-cooperative Kantian equilibrium with 

Kantian weight 𝜅 . It captures the difference between the full benefit of joining the coalition 

and the full benefit of joining the fringe, where, by full benefit we mean the benefit of assuming, 

hypothetically, that all countries make the same membership decision and set their emissions 

consistent with that assumption. As 𝜅𝜇 increases more weight is given to the positive first term 

and less to the possibly negative second term, suggesting that the size of the stable IEA should 

increase. The one specific result we can derive, from (19a), is that, when 𝜅 = 1, both terms in 

(21) are zero, so any coalition is stable, and we select the grand coalition as the equilibrium.  

Result 3   

For our general model of IEAs with Kantian behaviour towards emissions and membership, 

when countries are perfect Kantians with respect to emissions (𝜅 = 1), then, for any possible 

value of the Kantian weight on membership (𝜅𝜇), the stable IEA is the grand coalition, 

achieving the social optimum level of welfare, WSO.  

2.3.2.3 Overall Equilibrium.  

Having derived equilibrium membership, �̃�(𝜅 , 𝜅𝜇) of the IEA, we can derive the overall 

equilibrium emissions of a coalition or fringe country (i = c, f): 
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 �̃�𝑖(𝜅 , 𝜅𝜇) = �̃�𝑖[�̃�(𝜅 , 𝜅𝜇), 𝜅 ],   (22a)   

and the overall welfare of a coalition or fringe country:  

  �̃�𝑖(𝜅 , 𝜅𝜇) = 𝐵[�̃�𝑖(𝜅 , 𝜅𝜇)] − 𝐷{�̃�(𝜅 , 𝜅𝜇)�̃�𝑐(𝜅 , 𝜅𝜇) + [𝑛 − �̃�(𝜅 , 𝜅𝜇)]�̃�𝑓(𝜅 , 𝜅𝜇)}  (22b) 

As we have noted, to derive further results for our model, we need to turn to specific functional 

forms for the benefit and damage cost functions.     

3 Results for Specific Functional Forms. 

Eichner and Pethig (2022) derive more specific numerical results concerning equilibrium IEA 

membership by employing the special case where the benefit function is quadratic and the 

damage cost function is linear. In the Online Appendix B to this paper, we present results for 

our model using the same functional forms. In this paper, we employ a broader set of functional 

forms by assuming that the damage cost function is also quadratic. In Section 3.1 we present a 

range of results for our model concerning Stage 2 equilibrium emissions, Stage 1 equilibrium 

IEA membership, and a range of other significant outcomes. In Section 3.2 we compare the 

key results from our model with those derived from the model of Eichner and Pethig (2022), 

and show that, on 3 key metrics, the results from our model outperform those from the model 

of Eichner and Pethig.  

In our numerical results we will assume that the number of countries, n, equals 100 (which we 

take to be a ‘large’ number of countries), but employ a wide range of values of the key 

parameters (𝜅 , 𝜅𝜇). The results address the following four questions. 

(1) How do Stage 2 equilibrium emissions �̃�𝑐(𝑚, 𝜅 ), �̃�𝑓(𝑚, 𝜅 ) vary as m, 𝜅  vary?  

(2) What is the size of the equilibrium coalition? In particular, for what values of (𝜅 , 𝜅𝜇) 

is the equilibrium the grand coalition?  

(3) For given values of (𝜅 , 𝜅𝜇), to what extent does our model of IEAs with imperfect 

Kantian behaviour close the gaps in emissions and welfare between the non-cooperative 

and social optimum outcomes for a coalition country, a fringe country, for all countries?  

(4) Aggregating across all countries, what is the relative contribution of Kantian behaviour 

and IEA formation to closing the gaps in emissions and welfare between the non-

cooperative non-Kantian equilibrium and first-best. This addresses the question raised 

by Nowakowski and Oswald (2020) of what weight policy-makers should give to trying 

to influence individuals to make consumption choices which have lower carbon 

footprints compared to trying to persuade national governments to join an IEA.  

To address questions (3) and (4), it will be useful to construct measures of equilibrium 

emissions and welfare of an average country defined as:  

    �̃�𝑎(𝜅 , 𝜅𝜇) ≡ {�̃�(𝜅𝑒, 𝜅𝜇)�̃�𝑐(𝜅 , 𝜅𝜇) + [𝑛 − �̃�(𝜅 , 𝜅𝜇)]�̃�𝑓(𝜅 , 𝜅𝜇)}/𝑛           (23a) 

   �̃�𝑎(𝜅 , 𝜅𝜇) ≡ {�̃�(𝜅𝑒 , 𝜅𝜇)�̃�𝑐(𝜅 , 𝜅𝜇) + [𝑛 − �̃�(𝜅 , 𝜅𝜇)]�̃�𝑓(𝜅 , 𝜅𝜇)}/𝑛       (23b)           

It will also be useful to construct measures of how far non-cooperative Kantian behaviour, or 

the formation of an IEA with different degrees of Kantian weights, closes the gaps between 
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non-cooperative non-Kantian emissions and welfare [𝑒𝑁𝐶 = �̂�(0), 𝑊𝑁𝐶 = �̂�(0)] and social 

optimal  emissions and welfare [𝑒𝑆𝑂 = �̂�(1), 𝑊𝑆𝑂 = �̂�(1)]  . We define these measures as: 

 �̂̂�(𝜅) ≡
𝑒𝑁𝐶−�̂�(𝜅)

𝑒𝑁𝐶−𝑒𝑆𝑂
;     �̂̂�(𝜅) ≡

�̂�(𝜅)−𝑊𝑁𝐶

𝑊𝑆𝑂−𝑊𝑁𝐶
            (23c) 

for the non-cooperative Kantian equilibrium, and  

           �̃̃�𝑗(𝜅 , 𝜅𝜇) ≡
𝑒𝑁𝐶−�̃�𝑗(𝜅 ,𝜅𝜇)

𝑒𝑁𝐶−𝑒𝑆𝑂 ;     �̃̃�𝑗(𝜅 , 𝜅𝜇) ≡
�̃�𝑗(𝜅 ,𝜅𝜇)−𝑊𝑁𝐶

𝑊𝑆𝑂−𝑊𝑁𝐶      𝑗 = 𝑐, 𝑓, 𝑎     (23d) 

for the equilibrium of an IEA. 

As we will see, another benefit of employing these measures of emissions and welfare gaps in 

is that they are less dependent on some of parameters used in our specific functional forms.  

3.1 Results with Quadratic Benefit Function and Quadratic Damage Cost Function 

We assume that the benefit function takes the form 𝐵(𝑒𝑖) = 𝛽𝑒𝑖 − 0.5𝑒𝑖
2 and the damage cost 

function takes the form: 𝐷[∑ 𝑒𝑗𝑗∈𝑁 ] = 0.5𝛿[∑ 𝑒𝑗𝑗∈𝑁 ]2. To ensure non-negative emissions for 

coalition countries, we show in Appendix A that the damage cost parameter must satisfy: 𝛿 <

𝛿 ≡ 4/(𝑛 − 1)2. Appendix A presents the key results for the first-best, non-cooperative self-

interested equilibrium, the non-cooperative equilibrium with Kantian behaviour, and our model 

of IEAs with Kantian behaviour towards emissions and membership. We are able to obtain 

analytical results only for equilibrium Stage 2 emissions; so, the remaining results in this sub-

section are derived numerically. Many of the key results we derived from the model with linear 

damage costs still apply with quadratic damage costs, so we will focus on the additional results 

that arise with quadratic damage costs. 

3.1.1. Question (1): Stage 2 Equilibrium Emissions. 

For m = 1, all countries are in the fringe, so  �̃�𝑓(1, 𝜅 ) =   �̂�(𝜅 ); for m = n, all countries are in 

the (grand) coalition, so  �̃�𝑐(𝑛, 𝜅 ) =  𝑒𝑆𝑂 . For 2 ≤  m  ≤  n – 1, we first define: 𝜙(𝜅 ) =
1+𝛿𝜅 𝑛2

(1−𝜅 )𝛿
. 

Equilibrium Stage 2 emissions are:   

�̃�𝑐(𝑚, 𝜅 ) =
𝛽[𝜙(𝜅 )−(𝑛−𝑚)(𝑚−1)]

(1+𝛿𝜅 𝑛2)[𝜙(𝜅 )+(𝑛+𝑚2−𝑚)]
> 0;    (24a) 

�̃�𝑓(𝑚, 𝜅 ) =
𝛽[𝜙(𝜅 )+𝑚2−𝑚]

(1+𝛿𝜅𝑒𝑛2)[𝜙(𝜅 )+(𝑛+𝑚2−𝑚)]
 >0;               (24b) 

          �̃�𝑎(𝑚, 𝜅 ) = [𝑚 ∗ �̃�𝑐(𝑚, 𝜅 ) + (𝑛 − 𝑚)�̃�𝑓(𝑚, 𝜅 )]/𝑛   

                            =
𝛽𝑛𝜙(𝜅 )

(1+𝛿𝜅𝑒𝑛2)[𝜙(𝜅 )+(𝑛+𝑚2−𝑚)]
                              (24c) 

It is straightforward to see that �̃�𝑓(𝑚, 𝜅 ) > �̃�𝑐(𝑚, 𝜅 ), 2 ≤ 𝑚 ≤ 𝑛 − 1.  

We first consider how equilibrium emissions vary as the size of the IEA, m, varies. The 

interesting case is the behaviour of �̃�𝑐(𝑚, 𝜅 ). In Appendix A we define a key value of 

𝜅 , �̅� , 0 < �̅� < 1, and, for, 0 ≤ 𝜅 < �̅� , two key values of m, 𝑚(𝜅 ), �̂�(𝜅 ), where 0 <

𝑚(𝜅 ) < �̂�(𝜅 ) < 𝑛. Then we have: 
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Result 4(a)  

Varying membership affects Stage 2 equilibrium emissions as follows21: 

(i) 
𝜕�̃�𝑎

𝜕𝑚
< 0      ∀𝑚, 𝜅 

(ii) 
𝜕�̃�𝑓

𝜕𝑚
> 0      ∀𝑚, 𝜅 

(iii) For 1 > 𝜅 ≥ �̅� , 
𝜕�̃�𝑐

𝜕𝑚
< 0, ∀𝑚, 2 ≤ 𝑚 ≤ 𝑛 − 1 

(iv) For  0 < 𝜅 < �̅�   
𝜕�̃�𝑐

𝜕𝑚
≤ 0 ⟺ 2 ≤ 𝑚 < �̂�(𝜅 );  

𝜕�̃�𝑐

𝜕𝑚
> 0 ⟺ �̂�(𝜅 ) ≤ 𝑚 ≤ 𝑛.   

(v) For  0 < 𝜅 < �̅�   �̃�𝑐(𝑚, 𝜅 ) ≤ 𝑒𝑆𝑂 ⟺ 𝑚(𝜅 ) ≤ 𝑚 ≤ 𝑛 

As we would expect, average (and hence total) emissions fall as the IEA gets larger. However, 

each fringe country increases its emissions22, essentially because the incentive to free ride gets 

bigger as the coalition gets. As noted, the interesting case is the effect of rising membership on 

�̃�𝑐(𝑚, 𝜅). If 𝜅 ≥ �̅�  then, as membership increases, each coalition country cuts its emissions 

from the non-cooperative level to the socially optimal level, both because it places a high 

Kantian weight on emissions, and because that ensures that average emissions fall despite each 

fringe country increasing its emissions. However, if 𝜅 < �̅� , then the cut in emissions by each 

coalition country as membership rises now requires that when membership reaches a critical 

level,  𝑚(𝜅 ), coalition countries cut their emissions below the socially optimal level, and this 

continues until each coalition country’s emissions reach a minimum when membership is 

�̂�(𝜅 ), and then each coalition country increases its emissions to ensure that its emissions reach 

the socially optimal level when the grand coalition forms. This effect is larger the lower is the 

value of 𝜅 .        

To get a feel for the values of �̅� , �̂�(𝜅 ) that arise in the analysis of 
𝜕�̃�𝑐

𝜕𝑚
, we take parameters n 

= 100 (i.e. a ‘large’ number of countries), and 𝛿 = 0.9𝛿̅, (i.e. damage costs are large). From 

equation (A5) in Appendix A, we calculate �̅� = 0.3542. In Table 1(a) for a range of values 

of 𝜅 < �̅�  we present the corresponding values of 𝑚(𝜅 ), �̂�(𝜅 ), and �̂̂�𝑐[�̂�(𝜅 ), 𝜅 ], which 

measures the maximum extent to which a coalition country cuts its emissions from the non-

cooperative equilibrium relative to the gap needed to reduce emissions to the socially optimal 

level; a value greater than 1 indicates that it cuts emissions to a level below the social optimum.  

Thus, for 𝜅 = 0.15, for example, when membership increases from 2 to 48, a coalition country’s 

emissions fall, but are still above the social optimum of emissions. When membership rises 

above 48 a coalition country’s emissions continue to fall, but are now below the socially 

optimal level. Coalition country’s emissions continue to fall until membership reaches 69, at 

which point the cut in emissions has reached 3.89% above the level needed to reach the socially 

optimal level of emissions. When membership rises above 69, a coalition county’s emissions 

start to rise until they reach the socially optimal level when the grand coalition forms. When 

𝜅 > �̅� = 0.3615, coalition emissions fall steadily as membership rises, reaching the social 

level when the grand coalition forms.  

                                                           
21 We recognise that the partial derivatives treat m as a real variable when it is an integer variable. This can be 

problematic if n is small, but we assume that it is large. Moreover, the key results are supported by numerical 

simulations. 
22 As we show in the Online Appendix B, in the special case with linear damage costs, fringe country emissions 

are independent of the size of the coalition. 
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Table 1(a): Effects on Equilibrium Stage 2 Coalition Emissions of Variations in Membership 

This raises the question of how it can be the case that average emissions can be falling 

throughout as membership rises, when, for some parameter values, both coalition and fringe 

countries are increasing their emissions. The answer is that coalition emissions are well below 

fringe emissions, so as membership increases, this can still be compatible with average 

emissions falling. 

We now turn to the effects of variation in the Kantian weight 𝜅  on equilibrium emissions.  In 

Appendix A, for values of m, 2 ≤ m ≤ n we define a key value of 𝜅 , �̌� (𝑚), and prove the 

following result. 

Result 4(b) 

The effect of variations in the Kantian weight on emissions, 𝜅 , on Stage 2 equilibrium 

emissions are as follows: 

(i) 
𝜕�̃�𝑎

𝜕𝜅
≤ 0 ⇔ 𝑚 ≤ 𝑛, ∀𝜅  

(ii) 
𝜕�̃�𝑓

𝜕𝜅
< 0      ∀𝑚, 𝜅  

(iii) If �̌�𝑒(𝑚) ≤ 0,
𝜕�̃�𝑐

𝜕𝜅
< 0 ∀𝜅 ; if �̌� (𝑚) > 0,

𝜕�̃�𝑐

𝜕𝜅
≤ 0 ⟺ 1 ≥ 𝜅 ≥ �̌� (𝑚) 

As with Result 4(a), average, and hence total, emissions fall as the Kantian weight increases. 

This also applies to emissions of a fringe country, and, if �̌�𝑒(𝑚) is not positive, the emissions 

of a coalition country23. However, when �̌�𝑒(𝑚) is positive, emissions of a coalition country 

increase as 𝜅  increases for values of 𝜅 < �̌�𝑒(𝑚), and then fall when 𝜅 ≥ �̌�𝑒(𝑚).The 

intuition behind this result stems from the result that coalition emissions are always less than 

fringe emissions.  When m is small, there is not much scope for free riding by the fringe, so the 

gap between coalition and fringe emissions is small. Since overall emissions and fringe 

emissions fall as 𝜅 increases, coalition emissions must also fall. However, when m becomes 

larger, there is more scope for free riding by fringe countries, so the gap between emissions of 

a fringe coalition country gets larger, giving scope for coalition countries to increase their 

emissions, but this can only go so far because fringe emissions are falling as κ increases, 

reducing the scope for coalition emissions to increase while remaining below fringe emissions, 

so coalition emissions must fall as κ increases beyond this critical value. 

                                                           
23 In the Online Appendix B we show that these results also apply to the special case with linear damage costs. 

𝜅  𝑚(𝜅 ) �̂�(𝜅 ) �̂̂�𝑐[�̂�(𝜅 ), 𝜅 ]  
0.010 29 52 1.2116 

0.050 34 57 1.1317 

0.100 41 63 1.0726 

0.150 49 69 1.0389 

0.200 59 76 1.0197 

0.250 69 82 1.0090 

0.300 81 89 1.0036 

0.350 95 97 1.0015 
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To get a feel for the values of �̌�(𝑚) we again take the case where n =100, 𝛿 = 0.95𝛿̅. Table 2 

presents values of �̌�(𝑚) for a range of values of m between 2 and 99.  

,  

 

 

 

 

 

Table 1(b):  Values of �̌�(𝑚) for Different Values of m 

Thus, when m lies below 14, coalition emissions always fall as 𝜅 increases. For larger values 

of m, there is a critical positive value of κ such that coalition emissions increase if 𝜅 lies below 

that critical value, and this critical rises from about 0.05 to 0.85 as m increases from 15 to 99.  

To summarise: (i) average (total) emissions fall as both membership and Kantian weight on 

emissions increase, so, seeking to form a larger coalition and increasing Kantian weight on 

moral behaviour are substitute approaches to cutting emissions at Stage 2;  (ii) a fringe 

country’s emissions rise as membership increases but fall as the Kantian weight on emissions 

rises; (iii)  a coalition country’s emissions rise and fall as both membership and the Kantian 

weight on emissions increase, depending on precise parameter values. Interestingly, there are 

parameter values for which the emissions of both a fringe country and a coalition country 

increase as membership increases, although average emissions fall.  

 3.1.2  Question (2): Size of Equilibrium IEA 

In the Online Appendix, we show that with a linear damage cost function, the stability function 

is effectively independent of 𝛿 and 𝜅 , and is decreasing in the size of IEA membership, m, so, 

for given parameters 𝜅 , 𝜅𝜇 there is a unique stable IEA. 

With quadratic damage costs, the stability function does depend on δ and 𝜅 , and is initially 

decreasing and then increasing in m. We illustrate the implications in Figure 2, for n = 100, 

𝛿 = 0.9𝛿̅ and 𝜅 = 0.05. When 𝜅𝜇 = 0.15, the stability function intersects the horizontal axis 

once, so there is a unique stable IEA with 26 members. When 𝜅𝜇 = 0.23, the stability function 

intersects the horizontal axis twice; the lower value results in a stable IEA of size 41; the upper 

intersection, with m approximately 0.89, does not yield a stable IEA, but the grand coalition is 

a second stable IEA; we apply an equilibrium selection rule of selection the higher stable IEA, 

the grand coalition. With 𝜅𝜇 = 0.3, the stability function does not intersect the horizontal axis 

so the unique stable IEA is the grand coalition.  

m �̌�(𝑚) m �̌�(𝑚) m �̌�(𝑚) m �̌�(𝑚) 

2 -1.9969 20 0.2594 50 0.6883 80 0.8095 

5 -1.0056 25 0.3925 55 0.7172 85 0.8216 

10 -0.2879 30 0.4866 60 0.7415 90 0.8324 

13 -0.0570 35 0.5565 65 0.7623 95 0.8420 

14 0.0031 40 0.6105 70 0.7802 97 0.8455 

15 0.0565 45 0.6534 75 0.7958 99 0.8490 
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Table 2:  Range of values of Kantian weight on membership with two stable IEAs 

Table 2 shows the range of values of 𝜅𝜇 for which we obtain two stable IEAs (the higher being 

the grand coalition), using two values of 𝛿 = 0.9𝛿̅, 𝛿 = 0.5𝛿̅, and values of 𝜅  between 0.0 

and 0.20. We also used the value of  𝛿 = 0.25𝛿̅ and the same values of 𝜅 , but there were no 

instances of two stable IEAs. As Table 2 shows, instances of two stable IEAs arise with high 

values of damage costs and low values of the Kantian weight on emissions.  

Result 5 

With quadratic benefit function and damage cost function, the stability function is initially 

decreasing in m and then increasing; for large values of 𝜅𝜇 and low values of 𝜅  there can be 

two stable IEAs, one relatively small, the other the grand coalition. 

We now determine the minimum value of 𝜅𝜇 needed to secure the grand coalition. In the Online 

Appendix we show that with linear damage costs this minimum value, 𝜅𝜇(𝑛), depends only on 

n, and tends to 0.5 as 𝑛 ⟶ ∞, with 𝜅𝜇(100) = 0.495. With quadratic damage costs, this 

minimum value of 𝜅𝜇 it also depends on 𝜅  and δ, so we define the minimum value as 

𝜅𝜇(𝑛, 𝜅 , 𝛿). In Figure 3 we fix n = 100, and show the values of 𝜅𝜇(100, 𝜅 , 𝛿) for values of 𝜅  

between 0.00 and 1.00 and 𝛿 = 0.9𝛿̅, 0.5𝛿̅, and 0.25𝛿̅. We see that (i)  𝜅𝜇(100, 𝜅 , 𝛿) is 

increasing in 𝜅 ; but, (ii), decreasing in 𝛿. Thus, the grand coalition can now be achieved with 

much smaller Kantian weights: e.g.  𝜅𝜇(100,0.0,0.9𝛿) = 0.2.  

𝛿 0.9𝛿̅ 0.5𝛿̅ 
𝜅  𝜅𝜇 𝜅𝜇 

0.00 0.19-0.24 0.26-0.27 

0.05 0.22-0.25 0.28 

0.10 0.24-0.26 .. 

0.20 0.28 .. 



24 
 

 

The rationale for (i) is that an increase in 𝜅  increases the emissions that all countries would 

carry out in the absence of an IEA, reducing the conventional benefits of joining an IEA, so a 

higher weight on membership is needed to offset that effect. The rationale for (ii) is that, with 

quadratic damage costs, an increase in the level of damage costs significantly increases the 

benefit of securing the grand coalition, and so requires a lower Kantian weight on membership 

to achieve that outcome.  

Finally, in Figure 4, we again fix n = 100, set 𝛿 = 0.9𝛿, and plot the size of the stable IEA 

�̃�(𝜅 , 𝜅𝜇) for values of 𝜅𝜇 between 0 and 0.5 (we know the grand coalition is stable for 𝜅𝜇 >

0.5), and 𝜅  = 0.1, 0.3, and 0.5.  

     

As expected, for any value of 𝜅 , the size of equilibrium IEA membership is increasing in the 

Kantian weight on membership, 𝜅𝜇. But if we compare these curves for two different values of 

𝜅 , we see that they intersect. There are three factors leading to this result. (i) We know that as 

𝜅 , 𝜅𝜇 ⟶ 0, �̃�(𝜅 , 𝜅𝜇) ⟶ 2. (ii) For a given but low value of 𝜅𝜇, an increase in  𝜅  causes 

coalition countries to cut their emissions by less fringe countries, since they are already acting 

to cut emissions, causing the stability function and hence the size of a stable IEA to increase. 

(iii) Finally, we showed above that 𝜅𝜇(𝑛, 𝜅 , 𝛿) is decreasing in 𝜅 . Putting these three 

arguments together produces the result in Figure 4, where, for values of 𝜅𝜇 < 0.25,  �̃�(𝜅 , 𝜅𝜇) 

is increasing across the 3 values of 𝜅 , while for values of 𝜅𝜇 > 0.30,  �̃�(𝜅 , 𝜅𝜇) is decreasing 

across the 3 values of 𝜅 .  
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Result 6 

With quadratic benefit function and damage cost function, the size of the stable IEA, �̃�(𝜅 , 𝜅𝜇) 

is increasing in 𝜅𝜇 but for values of 𝜅𝜇 above a critical level, is decreasing in 𝜅 . The grand 

coalition is always stable with 𝜅𝜇 ≥ 0.5, but can be achieved with much smaller values, e.g 

𝜅𝜇 = 0.2, 𝜅 = 0.0.  

This completes the analysis of the size of the stable IEA and we now turn to the extent to which 

the stable IEA is able to close the emissions and welfare gaps.  

3.1.3 Question (3): Closure of Emissions and Welfare Gaps of Coalition and Fringe Countries 

We consider first the closure of emission gaps, starting with the emissions gap for a coalition 

country. Values of �̃̃�𝑐(𝜅 , 𝜅𝜇), are plotted in Fig 5a, using the same range of values for 𝜅 , 𝜅𝜇 

as for Figure 4. 

 

For low values of 𝜅𝜇, the extent to which the coalition emission gap is closed is increasing in 

the two Kantian weights24 𝜅 , 𝜅𝜇. However, there are two important differences for higher 

values of for higher values of 𝜅𝜇. First, it is now possible that  
𝜕�̃̃�𝑐(.)

𝜕𝜅
< 025. The rationale is that, 

as we saw in Section 3.1.2, the grand coalition is achieved with smaller values of the Kantian 

weight on membership. Second, as we noted in Section 3.1.1, for sufficiently low values of 𝜅 , 

it is possible that �̃̃�𝑐(. ) > 100%.  This arises in Figure 5a: when 𝜅 = 0.1, the grand coalition 

is achieved when 𝜅𝜇=0.24; when 𝜅𝜇=0.23, �̃̃�𝑐(0.1, 0.23) = 100.45. This does not arise for the 

higher values of 𝜅  we have used.  

The emissions gap for a fringe country, �̃̃�𝑓(𝜅 , 𝜅𝜇) is plotted in Figure 5b.  

 

                                                           
24 Similar to the case with linear damage costs, as we show in the Online Appendix.  
25 with linear damage costs, �̃̃�𝑐(𝜅 , 𝜅𝜇) rises steadily towards 100% as the Kantian weight on membership rises. 
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It looks as if the extent to which the emissions gap of a fringe country is closed is again 

independent of 𝜅𝜇, though with a value significantly greater than 𝜅 . Figure 5c shows the result 

for 𝜅  = 0.3, but with significantly magnified scale on the vertical axis. This shows that 

�̃̃�𝑓(0.3, 𝜅𝜇) falls from 65.89 to 65.57 as 𝜅𝜇 rises from 0.01 to 0.31 (the grand coalition is 

achieved when 𝜅𝜇 = 0.32). Thus, the size of the emissions gap of a fringe country increases, 

slightly, as the Kantian weight on membership increases.  

 

We now turn to closure of welfare gaps26. Values of  �̃̃�𝑐(𝜅 , 𝜅𝜇) are plotted in Figure 6a. For 

high values of 𝜅  (0.3, 0.5) and low values of 𝜅𝜇 (< 0.2) coalition welfare can fall as 𝜅𝜇 

increases; in the Online Appendix B, we show that this also occurs when damage costs are 

linear, and, as we explain there, it arises when the equilibrium membership is below a critical 

value, which can be the case with small values of 𝜅𝜇. Values of �̃̃�𝑓(𝜅 , 𝜅𝜇) are plotted in 

Figure 6b. For high values of 𝜅  (0.3, 0.5) and 𝜅𝜇, �̃̃�𝑓(𝜅 , 𝜅𝜇) can exceed 100%, though not 

exceeding 103% for the values in Fig 6a27. This  

                                                           
26 As we show in the Online Appendix B, the main results are similar to the case with linear damage costs. 
27 Again, we show in the Online Appendix B that this can also occur with linear damage costs, though the 

margin can be much higher, up to 130%.  
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We summarise these findings in Result 7. 

Result 7 

With quadratic benefit function and quadratic damage cost function: 

(i) The emissions gap for a coalition country is decreasing in 𝜅𝜇, but, for large values 

of 𝜅𝜇, may be increasing in 𝜅 ; emissions of a coalition country could fall below 

first-best for values of 𝜅𝜇 close to that which secures the grand coalition; 

(ii) The emissions gap for a fringe country is decreasing in 𝜅  but is increasing, slightly, 

in 𝜅𝜇; 

(iii) The welfare gap for a coalition country decreases with increases in both Kantian 

weights, except for relatively high values of 𝜅  ( ≥ 0.3 ) and low values of 𝜅𝜇 (< 0.2) 

when it increases in 𝜅𝜇; 

(iv) The welfare gap for a fringe country is decreasing in 𝜅 , 𝜅𝜇; welfare of a fringe 

country can exceed first-best, though to a smaller extent than with a linear damage 

cost function. 

3.1.4 Question (4): Extent to which Overall Emissions and Welfare Gaps are Closed by 

Countries Acting in a Kantian Fashion and by Forming an IEA 

Finally, we address the questions of the extent to which the emissions and welfare gaps are 

closed by countries acting in a Kantian fashion in a non-cooperative equilibrium and what 
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additional contribution is made by countries seeking to form an IEA.  The results are shown in 

Tables 3a and 3b for emissions and welfare respectively.   

The main result is that the non-cooperative equilibrium makes significant contributions to 

closing the emissions and, particularly, welfare gaps28. Thus, the additional contribution of 

forming an IEA gets squeezed. This is particularly true for welfare where, for all three values 

of 𝜅 , the non-cooperative equilibrium contributes over 50% to closing the welfare gap. 

Nevertheless, it is still the case that changing moral attitudes and negotiating an IEA are 

complementary approaches to tackling climate change, not substitutes. 

 

 

 

 

 

 

Table 3a:  Contribution of Changing Moral Attitudes and Negotiating IEAs to Reducing 

Global Emissions  

 

 

 

 

 

 

Table 3b:  Contribution of Changing Moral Attitudes and Negotiating IEAs to Raising Global 

Welfare 

 

3.2 Comparison of Results From Our Model With Those From Eichner and Pethig (2022) 

In this section, we use the model in Section 3.1 with quadratic benefit and damage cost 

functions to compare results derived from our model of IEAs (denoted UU) with those derived 

from the model of IEAs in Eichner and Pethig (2022) (denoted EP). To make such comparison 

we need to choose parameter values for 𝜅 , 𝜅𝜇 which are applicable to both models. EP use 

three parameters, 𝛼, 𝜅 , 𝜅𝜇 , where: 0 ≤ 𝛼 ≤ 1; 0 ≤ 𝜅 ≤ 1;  0 ≤ 𝜅𝜇 ≤1. We argued that the 

parameter α is effectively redundant, so we will work just with the parameters 𝜅 , 𝜅𝜇, but the 

                                                           
28 We show in the Online Appendix B that the contribution of the non-cooperative Kantian equilibrium to 

closing the emissions and welfare gaps are smaller with linear damage costs, and hence the contribution of 

forming an IEA is larger, for all values of the Kantian weights, except 𝜅 = 0.1, 𝜅𝜇 = 0.3. 

𝜅  Imperfect 

Kantian 

Non-Coop 

Equilibrium 

IEAs- 𝜅𝜇 

0.1 0.3 0.5 

0.1 33.37 41.95 100.00 100.00 

0.3 65.89 70.12 88.97 100.00 

0.5 81.84 84.01 91.94 100.00 

𝜅  Imperfect 

Kantian 

Non-Coop 

Equilibrium 

IEAs- 𝜅𝜇 

0.1 0.3 0.5 

0.1 55.61 65.61 100.00 100.00 

0.3 88.37 90.99 97.75 100.00 

0.5 96.70 97.44 99.13 100.00 
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constraint on the value of α is replaced by the constraint that 0 ≤ 𝜅 + 𝜅𝜇 ≤1. We will choose 

parameter values that satisfy this constraint.     

We choose the high damage cost parameter 𝛿 = 0.9𝛿̅,𝜅 = 0.1, 0.3 and 0.5, with 𝜅𝜇 ranging 

between 0.05 and 0.429. We focus on 3 key measures of performance of these models: the size 

of the equilibrium IEA, the % of the emissions gap closed by the equilibrium IEA and the % 

of the welfare gap closed by the equilibrium IEA. The results are shown in Tables 4a, 4b, 4c.  

 

 

 

 

 

 

 

 

 

Table 4a: Comparison of Size of Equilibrium IEA in Models UU and EP 

 

 

 

 

 

 

 

 

 

Table 4b: Comparison of % of Emissions Gap Closed in Models UU and EP 

 

 

 

                                                           
29 We did the calculations also for the values of 𝜅𝜇 = 0.45 and 0.5, but the results are the same as for 𝜅𝜇 = 0.4 so 

we do not present them here. 

 

𝜅𝜇 

Size of Equilibrium IEA 

𝜅 = 0.1 𝜅 = 0.3 𝜅 = 0.5 

UU EP UU EP UU EP 

0.05 14 10 17 12 20 11 

0.10 21 15 25 16 28 13 

0.15 28 22 33 20 37 14 

0.20 36 32 41 27 45 16 

0.25 100 100 53 38 54 21 

0.30 100 100 70 63 66 30 

0.35 100 100 100 100 82 54 

0.40 100 100 100 100 100 100 

 

𝜅𝜇 

% of Emissions Gap Closed by IEA 

𝜅 = 0.1 𝜅 = 0.3 𝜅 = 0.5 

UU EP UU EP UU EP 

0.05 37.29 36.10 67.88 67.32 82.96 82.43 

0.10 41.95 39.41 70.12 68.62 84.01 82.85 

0.15 47.78 44.67 72.98 70.12 85.53 83.20 

0.20 55.18 52.77 76.25 72.71 87.12 83.69 

0.25 100.00 100.00 81.09 76.94 89.10 84.66 

0.30 100.00 100.00 88.97 86.70 91.94 86.39 

0.35 100.00 100.00 100.00 100.00 95.81 91.04 

0.40 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 4c: Comparison of % of Welfare Gap Closed in Models UU and EP 

We see that, for all three measures of the effectiveness of IEAs, and for all values of the Kantian 

weights, the model employed in this paper (UU) are greater than for the model employed in 

Eichner and Pethig (2022). We believe that this is because our model captures the full benefit 

of deciding to be a member of an IEA compared to being a member of the fringe by choosing 

emissions appropriate to those decisions.    

4 Conclusions 
 

This paper contributes to a literature which seeks to overcome the pessimistic conclusion drawn 

from standard non-cooperative two-stage game models of IEAs that the number of countries 

who join an IEA is small precisely when the potential gains from achieving the grand coalition 

are large. In the standard model, agents act in a self-interested manner. We draw on the 

important work of Alger and Weibull (2013, 2016, 2020) who used evolutionary game theory 

to demonstrate that, in a wide range of contexts, the evolutionary stable forms of behaviour 

derive from either self-interested motivation or application of the Kantian categorical 

imperative to “act only according to that maxim through which you can at the same time will 

that it become a universal law”. More generally, they suggest that individuals might act as 

imperfect Kantians, using an objective function which is a weighted average of the objective 

functions underlying the two stable forms of behaviour. In this paper we have explored the 

implications of assuming that countries act as imperfect Kantians in taking their decisions on 

emissions and membership. 

  

Another motivation for this paper is the empirical observation that a growing number of people, 

notably young people, deliberately reduce their carbon footprint in an effort to do the morally 

right thing with regard to the imminent serious world-wide climate damage although they know 

that their emission reduction has hardly any effect on global emissions and reduces their non-

Kantian utility. In their role as voters, they call on their governments to be serious about the 

reduction of domestic emissions and to play an active role towards an effective international 

climate agreement. Against this background, our paper also addresses the issue of whether 

trying to tackle problems such as climate change is best handled through government-level 

actions rather than persuading individuals, especially consumers, to make their choices in a 

 

𝜅𝜇 

% of Welfare Gap Closed by IEA 

𝜅 = 0.1 𝜅 = 0.3 𝜅 = 0.5 

UU EP UU EP UU EP 

0.05 60.53 59.07 89.68 89.31 97.10 96.91 

0.10 65.61 62.77 90.99 90.08 97.44 97.05 

0.15 71.01 67.93 92.43 90.88 97.87 97.16 

0.20 76.73 74.70 93.84 92.12 98.25 97.29 

0.25 100.00 100.00 95.57 93.89 98.66 97.54 

0.30 100.00 100.00 97.75 97.08 99.13 97.94 

0.35 100.00 100.00 100.00 100.00 99.62 98.85 

0.40 100.00 100.00 100.00 100.00 100.00 100.00 
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more moral form. We posed this as a question whether seeking to encourage individuals to act 

more morally is a substitute or complement to government-level actions to join an IEA. 

 

Our key findings are that when countries act as imperfect Kantians with respect only to 

emissions, the resulting IEA game is iso-morphic to the conventional model in which countries 

act in a self-interested fashion, with the same pessimistic conclusion about IEA membership. 

When countries also act as imperfect Kantians with respect only to membership, we show that 

it is always possible to achieve the grand coalition when the weight given to acting in a Kantian 

fashion never exceeds 0.5 and, for some cases, could be less than 25%. The important 

implication of this result is that trying to form IEAs and trying to encourage individuals and 

their governments to act more morally are complementary approaches to trying to achieve the 

first-best outcome, not substitutes. 

 

There are a number of important areas for future research, and we note three. The first is that 

we have assumed that all countries are identical, and it would obviously be important to explore 

the implications of what would happen when countries differ some respect but seek to act in a 

Kantian fashion. An obvious source of difference between countries is their size, their benefit 

functions and damage cost functions.  The assumption made in this paper that perfect Kantians 

do the same thing may not make sense when countries differ in such respects. Van Long (2021) 

cites the relevant literature and applies that to his study of dynamic models of exploitation of a 

renewable resource, and it might be appropriate to apply his approach to our two-stage game 

model of IEA formation. A further aspect of enriching the model in this way would be to 

recognise that damage costs experienced by a country can be moderated  

 

A second extension is that we treat countries as a single entity, whereas emissions are the results 

of decisions by a large number of organisations (households, producers, retailers etc) 

influenced, to different extents, by government policies. This may matter less given our 

assumption that countries are identical, but becomes important when countries differ in various 

respects. One important difference concerns the degree of democracy, where more autocratic 

can enforce policies in ways not available to more democratic governments.   

 

A final extension, motivated by the argument in de Zeeuw (2008) that it is important to study 

the implications of adopting a more cooperative model of government behaviour using a 

dynamic model of environmental damages, would be to study the implications of imperfect 

Kantian behaviour when damage costs depend on the stock of greenhouse gases, not the flow 

of such gases.  
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Appendix A:  Equilibrium Outputs of Model with Quadratic Benefit Function and 

Quadratic Damage Cost Function. 

From the definition of B(.) and D(.) it is straightforward to derive the following. 

First Best, Fully Cooperative and Self-Interested Non-Cooperative Equilibria 

 𝑒𝑆𝑂 = 𝑒𝐹𝐶 =
𝛽

(1+𝛿𝑛2)
;  𝑊𝑆𝑂 = 𝑊𝐹𝐶 =

0.5𝛽2

(1+𝛿𝑛2)2   

  𝑒𝑁𝐶 =
𝛽

(1+𝛿𝑛)
> 𝑒𝑆𝑂;   𝑊𝑁𝐶 =

0.5𝛽2(1+2𝛿𝑛−𝛿𝑛2)

(1+𝛿𝑛)2 < 𝑊𝑆𝑂          

Imperfect Kantian Non-Cooperative Equilibrium 

�̂�(𝜅) =
𝛽

1+𝛿[𝜅𝑛2+(1−𝜅)𝑛]
. It is clear that 

𝜕�̂�(.)

𝜕𝜅
< 0, falling from �̂�(0) = 𝑒𝑁𝐶 to �̂�(1) = 𝑒∗ . 

We do not give an explicit expression for welfare as it is rather messy.   

IEAs with Kantian Behaviour – Stage 2 Equilibrium Emissions 

For m = 1, all countries are in the fringe, so  �̃�𝑓(1, 𝜅 ) =   �̂�(𝜅 ); for m = n, all countries are in 

the (grand) coalition, so  �̃�𝑐(𝑛, 𝜅 ) =  𝑒𝑆𝑂 . 

For 2 ≤  m  ≤  n – 1, the first-order conditions are: 

 𝛽 − [1 + 𝛿𝜅 𝑛2 + (1 − 𝜅 )𝛿𝑚2]𝑒𝑐 − [(1 − 𝜅 )𝛿𝑚(𝑛 − 𝑚)]𝑒𝑓 = 0  (A1a) 

𝛽 − [1 + 𝛿𝜅 𝑛2 + (1 − 𝜅 )𝛿(𝑛 − 𝑚)]𝑒𝑓 − (1 − 𝜅 )𝛿𝑚𝑒𝑐 = 0   (A1b) 

Define: 

 𝜙(𝜅 ) =
1+𝛿𝜅 𝑛2

(1−𝜅 )𝛿
;  𝜙′(𝜅 ) =

1+𝛿𝑛2

𝛿(1−𝜅 )2 > 0;  𝜙(0) =
1

𝛿
> 0.25(𝑛 − 1)2; 𝜅 → 1 ⟹ 𝜙(. ) → ∞  

  Solving (A1a,b) yields: 

�̃�𝑐(𝑚, 𝜅 ) =
𝛽[𝜙(𝜅 )−(𝑛−𝑚)(𝑚−1)]

(1+𝛿𝜅 𝑛2)[𝜙(𝜅 )+(𝑛+𝑚2−𝑚)]
> 0;    (A2a) 

�̃�𝑓(𝑚, 𝜅 ) =
𝛽[𝜙(𝜅 )+𝑚2−𝑚]

(1+𝛿𝜅𝑒𝑛2)[𝜙(𝜅 )+(𝑛+𝑚2−𝑚)]
 >0;               (A2b) 

          �̃�𝑎(𝑚, 𝜅 ) = [𝑚 ∗ �̃�𝑐(𝑚, 𝜅 ) + (𝑛 − 𝑚)�̃�𝑓(𝑚, 𝜅 )]/𝑛   

                            =
𝛽𝑛𝜙(𝜅 )

(1+𝛿𝜅𝑒𝑛2)[𝜙(𝜅 )+(𝑛+𝑚2−𝑚)]
                              (A2c) 

It is straightforward to see that �̃�𝑓(𝑚, 𝜅 ) > �̃�𝑐(𝑚, 𝜅 ), 2 ≤ 𝑚 ≤ 𝑛 − 1. 

We now determine the signs of 
𝜕�̃�𝑖(.)

𝜕𝑥
, 𝑖 = 𝑐, 𝑓, 𝑎; 𝑥 = 𝑚, 𝜅 . We ignore the parameter β which 

is a simple scaling factor. To save notation, we will also ignore the superscript ~ on equilibrium 

emissions, and the subscript ε on κε. 
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Variations with respect to m.  

It is straightforward to see that 
𝜕𝑒𝑓(.)

𝜕𝑚
> 0;  

𝜕𝑒𝑎(.)

𝜕𝑚
< 0   ∀ 2 ≤ 𝑚 ≤ 𝑛 − 1; 0 < 𝜅 < 1. 

 
𝜕𝑒𝑐

𝜕𝑚
= −

[𝜙(𝜅)+𝑛+𝑚2−𝑚](𝑛+1−2𝑚)+[𝜙(𝜅)−(𝑛−𝑚)(𝑚−1)](2𝑚−1)

[𝜙(𝜅)+𝑛+𝑚2−𝑚]2   (A3) 

The sign of 
𝜕𝑒𝑐

𝜕𝑚
 depends on the sign of the numerator in (A3), which we denote  by 𝜒(𝑚, 𝜅).  After 

some simplification: 

𝜒(𝑚, 𝜅) = 𝑛[𝜙(𝜅) + 𝑛 − 𝑚2]    (A4) 

Define: �̅� 𝑠. 𝑡.  𝜙(�̅�) + 𝑛 − (𝑛 − 1)2 = 0; after some rearrangement we have: 

 �̅� =
(𝑛−1)2(1−

�̅�

4𝛿
)−𝑛

𝑛2+(𝑛−1)2−𝑛
      (A5)  

For 0 < 𝜅 < �̅� , from (A4) define �̂�(𝜅) as the smallest integer greater than or equal to 

√𝜙(𝜅) + 𝑛, the value of m as a real variable that solves 𝜒(𝑚, 𝜅) = 0, and hence the value of 

m at which 
𝜕𝑒𝑐

𝜕𝑚
 reaches a minimum.  

Finally, we ask if there is a range of values of m for which 𝑒𝑐(𝑚, 𝜅) ≤ 𝑒𝑆𝑂, which clearly must 

include �̂�(𝜅).  So we ask: for any given 𝜅, 0 < 𝜅 < �̅�, for what values of m does 𝑒𝑐(𝑚, 𝜅) =

𝑒𝑆𝑂? Thus we require: 

 
𝜙(𝜅)−(𝑛−𝑚)(𝑚−1)

(1+𝛿𝜅𝑛2)[𝜙(𝜅)+𝑛+𝑚2−𝑚)]
=

1

1+𝛿𝑛2 

i.e. 𝑚2 − 𝜈𝑚 + 𝜇 = 0      (A6i) 

where: 𝜈 = 1 +
1+𝛿𝑛2

𝛿(1−𝜅)𝑛
;    𝜇 = 𝜙(𝜅) + 𝑛)    (A6ii) 

Thus 𝑒𝑐(𝑚, 𝜅) ≤ 𝑒𝑆𝑂 ⟺ 𝑚(𝜅) ≤ 𝑚 ≤ 𝑚(𝜅) where: 

𝑚(𝜅) = 0.5[𝜈 − √𝜈2 − 4𝜇];      (A7i) 

𝑚(𝜅) = 0.5[𝜈 + √𝜈2 − 4𝜇];  and    (A7ii) 

Now it is straightforward to check that 𝑚 = 𝑛 solves (A6i) for all κ so we can set �̅�(𝜅) = 𝑛. 

We summarise the results for the effects of variations in m on equilibrium Stage 2 emissions.  

Result A1 

Varying membership affects Stage 2 equilibrium emissions as follows: 

(i) 
𝜕�̃�𝑎

𝜕𝑚
< 0      ∀𝑚, 𝜅 

(ii) 
𝜕�̃�𝑓

𝜕𝑚
> 0      ∀𝑚, 𝜅 

(iii) For 1 > 𝜅 ≥ 𝜅, 
𝜕�̃�𝑐

𝜕𝑚
< 0, ∀𝑚, 2 ≤ 𝑚 ≤ 𝑛 − 1 

(iv) For  0 < 𝜅 < 𝜅,̅   
𝜕�̃�𝑐

𝜕𝑚
≤ 0 ⟺ 2 ≤ 𝑚 < �̂�(𝜅);  

𝜕�̃�𝑐

𝜕𝑚
> 0 ⟺ �̂�(𝜅) ≤ 𝑚 ≤ 𝑛.   

(v) For  0 < 𝜅 < 𝜅,̅  �̃�𝑐(𝑚, 𝜅) ≤ 𝑒𝑆𝑂 ⟺ 𝑚(𝜅) ≤ 𝑚 ≤ 𝑛 
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 Variations with respect to κ . 

We consider first 
𝜕𝑒𝑎

𝜕𝜅
; from (A2c) we have: 

𝜕𝑒𝑎

𝜕𝜅
=

𝜙(𝜅)+𝑛+𝑚2−𝑚−(1−𝜅)𝜙′

[(1−𝜅)(𝜙(𝜅)+𝑛+𝑚2−𝑚]2     (A8) 

The sign of 
𝜕𝑒𝑎

𝜕𝜅
 depends on the sign of the numerator in (A8) which we denote 𝜓(𝑚, 𝜅) where 

𝜓(𝑚, 𝜅) =
(1 + 𝛿𝜅𝑛2)

𝛿(1 − 𝜅)
+ 𝑛 + 𝑚2 − 𝑚 −

(1 − 𝜅)(1 + 𝛿𝑛2)

𝛿(1 − 𝜅)2
 

  = 𝑛 + 𝑚2 − 𝑚 − 𝑛2 = 𝑚(𝑚 − 1) − 𝑛(𝑛 − 1) 

Hence:  ∀𝜅   
𝜕𝑒𝑎

𝜕𝜅
≤ 0    ⇔ 𝑚 ≤ 𝑛. 

We now consider 
𝜕𝑒𝑓

𝜕𝜅
. From (A2b) we have: 

𝜕𝑒𝑓

𝜕𝜅
=

𝑛(1+𝛿𝜅𝑛2)𝜙′−𝛿𝑛2[𝜙(𝜅)+𝑚2−𝑚][𝜙(𝜅)+𝑛+𝑚2−𝑚]

[(1+𝛿𝜅𝑛2)(𝜙(𝜅)+𝑛+𝑚2−𝑚)]2     (A9a) 

The sign of 
𝜕𝑒𝑓

𝜕𝜅
 depends on the sign of the numerator in (A9a), which, ignoring a common 

factor, nδ, we denote by 𝜔(𝑚, 𝜅) where: 

𝜔(𝑚, 𝜅) =
(1+𝛿𝜅𝑛2)(1+𝛿𝑛2)

𝛿2(1−𝜅)2 − 𝑛[𝜙(𝜅) + 𝑚(𝑚 − 1)][𝜙(𝜅) + 𝑛 + 𝑚(𝑚 − 1)]    (A9b) 

Note that 1 + 𝛿𝑛2 = 1 + 𝛿𝜅𝑛2 + 𝛿𝑛2(1 − 𝜅) 

Then (A9b) becomes: 

𝜔(𝑚, 𝜅) = 𝜙(𝜅)[𝜙(𝜅) + 𝑛2] 

            −𝑛[𝜙(𝜅)2 + 2(𝑚2 − 𝑚)𝜙(𝜅) + 𝑛𝜙(𝜅) + (𝑚2 − 𝑚)(𝑛 + 𝑚2 − 𝑚)] (A9c) 

𝜔(𝑚, 𝜅) = −(𝑛 − 1)𝜙(𝜅)2 − 2𝑛(𝑚2 − 𝑚)𝜙(𝜅) − 𝑛(𝑚2 − 𝑚)(𝑛 + 𝑚2 − 𝑚)     (A9d) 

Hence:     

  
𝜕𝑒𝑓

𝜕𝜅
< 0      ∀𝑚, 𝜅 

Finally, we consider 
𝜕𝑒𝑐

𝜕𝜅
. To save notation, denote 𝜆 = 𝜆(𝑚) = (𝑛 − 𝑚)(𝑚 − 1) < 𝑚𝑛. Then: 

𝜕𝑒𝑐

𝜕𝜅
=

𝑚𝑛(1+𝛿𝜅𝑛2)𝜙′−𝛿𝑛2[𝜙(𝜅)−𝜆][𝜙(𝜅)−𝜆+𝑚𝑛)]

[(1+𝛿𝜅𝑛2)(𝜙(𝜅)+𝑛+𝑚2−𝑚)]2
     (A10a) 

The sign of 
𝜕𝑒𝑐

𝜕𝜅
 depends on the sign of the numerator in (A10a), which, ignoring a common 

factor, nδ, we denote by 𝜑(𝑚, 𝜅) where: 

𝜑(𝑚, 𝜅) = 𝑚
(1+𝛿𝜅𝑛2)(1+𝛿𝑛2)

𝛿2(1−𝜅)2
𝑛[𝜙(𝜅) − 𝜆][𝜙(𝜅) + (𝑚𝑛 − 𝜆)]       (A10b) 

As in (A9b), (A10b) becomes 
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𝜑(𝑚, 𝜅) = 𝑚𝜙(𝜅)(𝜙(𝜅) + 𝑛2) − 

𝑛[𝜙(𝜅)2 − 𝜙(𝜅)(2𝜆 − 𝑚𝑛) + 𝜆(𝜆 − 𝑚𝑛)] 

𝜑(𝑚, 𝜅) = −(𝑛 − 𝑚)𝜙(𝜅)2 + 2𝑛𝜆𝜙(𝜅) + 𝑛𝜆(𝑛 + 𝑚2 − 𝑚)  (A10c) 

Substituting back for 𝜆 and ignoring a common term, (n – m) we get 

𝜑(𝑚, 𝜅) = −[𝜙(𝜅)]2 + 2𝜙(𝜅)𝑛(𝑚 − 1) + 𝑛(𝑚 − 1)(𝑛 + 𝑚2 − 𝑚)           (A10d) 

The sign of 𝜑(𝑚, 𝜅) is ambiguous. We know that 𝜅 ⟶ 1 ⇒ 𝜙(𝜅) ⟶ ∞ ⇒ 𝜑(𝑚, 𝜅) < 0 ∀𝑚. 

However, for lower values of κ, and for relatively large values of m, 𝜑(𝑚, 𝜅) could be positive. 

To investigate further, define �̌�(𝑚) as the value of κ for which 𝜑(𝑚, 𝜅) = 0. We determine 

this in two stages. First, we solve (A10d) for the value of �̌�(𝑚) for which 𝜑(𝑚, 𝜅) = 0. So: 

 �̌�(𝑚) = 𝑛(𝑚 − 1) + √[𝑛(𝑚 − 1)]2 + [𝑛(𝑚 − 1)][𝑛 + 𝑚2 − 𝑚].       (A10e) 

We now solve for value of �̌�(𝑚) for which 𝜙[�̌�(𝑚)] = �̌�(𝑚). Hence: 

 �̌�(𝑚) =
�̌�(𝑚)−1/𝛿

�̌�(𝑚)+𝑛2              (A10f) 

It is straightforward to see that �̌�′(. ) > 0, �̌�′(𝑚) > 0. (A10f) confirms that if m, and hence 

�̌�(𝑚), is sufficiently small then �̌�(𝑚) can be negative, in which case 
𝜕𝑒𝑐

𝜕𝜅
< 0   ∀𝜅 ≥ 0. For 

larger values of m, �̌�(𝑚) > 0, in which case 
𝜕𝑒𝑐

𝜕𝜅
> 0, 0 ≤ 𝜅 < �̌�(𝑚), and 

𝜕𝑒𝑐

𝜕𝜅
≤ 0, �̌�(𝑚) ≤

𝜅 ≤ 1.   

We summarise the results for the effects of variations in κ on equilibrium Stage 2 emissions as 

follows. 

Result A2 

(i) 
𝜕𝑒𝑎

𝜕𝜅
≤ 0 ⇔ 𝑚 ≤ 𝑛, ∀𝜅 

(ii) 
𝜕𝑒𝑓

𝜕𝜅
< 0      ∀𝑚, 𝜅 

(iii) If �̌�(𝑚) ≤ 0,
𝜕𝑒𝑐

𝜕𝜅
< 0 ∀𝜅; if �̌�(𝑚) > 0,

𝜕𝑒𝑐

𝜕𝜅
≤ 0 ⟺ 1 ≥ 𝜅 ≥ �̌�(𝑚) 

This completes the proofs of Results 4(a) and 4(b) in Section 3.1.1. 
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ONLINE APPENDIX B 

 RESULTS USING QUADRATIC BENEFIT FUNCTION, AND LINEAR DAMAGE 

COST FUNCTION 

In this Online Appendix we present results for our model using a linear damage cost function 

rather than the quadratic damage cost function used in Section 3 of our paper. This is the same 

damage cost function used by Eichner and Pethig (2022) to derive their numerical results. We 

assume that 𝐵(𝑒) = 𝛽𝑒 − 0.5𝑒2 and 𝐷[∑ 𝑒𝑗𝑗∈𝑁 ] = 𝛿[∑ 𝑒𝑗𝑗∈𝑁 ]. To ensure we always have non-

negative emissions, we assume that 0 < 𝛿 < 𝛽/𝑛. The key results for the first-best, non-

cooperative self-interested equilibrium, the non-cooperative equilibrium with Kantian 

behaviour, and our model of IEAs with Kantian behaviour towards emissions and membership 

are derived in Appendix C. As we note there, all the key outputs, �̂̂�(𝜅), �̂̂�(𝜅),  

�̃̃�𝑗(𝜅 , 𝜅𝜇), �̃̃�𝑗(𝜅 , 𝜅𝜇) 𝑗 = 𝑐, 𝑓, 𝑎 do not depend on the parameters 𝛽, 𝛿. 

We begin by presenting the equilibrium outputs for the non-cooperative equilibrium with 

Kantian behaviour, namely �̂̂�(𝜅) = 𝜅,   �̂̂�(𝜅) = 1 − (1 − 𝜅)2. The proportion of the emissions 

gap closed increases linearly in 𝜅, while the proportion of the welfare gap closed increases at 

a decreasing rate as κ increases.  

We now turn to address the four questions discussed in Section 3 of our paper.  

Question (1):  Behaviour of Stage 2 Equilibrium Emissions and Welfare. 

From Appendix C we have: 

�̃�𝑐(𝑚, 𝜅 ) = 𝑒𝑆𝑂 + 𝛿(1 − 𝜅 )(𝑛 − 𝑚); �̃�𝑓(𝑚, 𝜅 ) = 𝑒𝑆𝑂 + 𝛿(1 − 𝜅 )(𝑛 − 1) 

�̃�𝑎(𝑚, 𝜅) = 𝑒𝑆𝑂 + (
𝛿

𝑛
) [(1 − 𝜅)(𝑛 − 𝑚)(𝑛 + 𝑚 − 1)]; 

�̃�𝑐(𝑚, 𝜅) = 𝑊𝑠𝑜 − 0.5𝛿2(1 − 𝜅)[(1 − 𝜅)(𝑛 − 𝑚)2 + 2(𝑛 − 𝑚)(𝑚 − 1)]; 

�̃�𝑓(𝑚, 𝜅) = 𝑊𝑠𝑜 − 0.5𝛿2(1 − 𝜅)[(1 − 𝜅)(𝑛 − 1)2 − 2𝑚(𝑚 − 1)]; 

�̃�𝑎(𝑚, 𝜅) = 𝑊𝑠𝑜 − 0.5𝛿2(1 − 𝜅)2(𝑛 − 𝑚) [
𝑚(𝑛 − 𝑚) + (𝑛 − 1)2

𝑛
] ; 

where: 𝑒𝑆𝑂 = 𝛽 − 𝛿𝑛;  𝑊𝑆𝑂 = 0.5(𝑒𝑆𝑂)2 

Then it is straightforward to show that: 

Result B1 

The effects of variations in membership (m) and Kantian weight on emissions ( 𝜅 ) on Stage 2 

equilibrium and welfare are as follows:   

𝜕�̃�𝑐(𝑚,𝜅)

𝜕𝜅
= −𝛿(𝑛 − 𝑚) < 0;   

𝜕�̃�𝑐(𝑚,𝜅)

𝜕𝑚
= −𝛿(1 − 𝜅) < 0;   B1(i) 

𝜕�̃�𝑓(𝑚,𝜅)

𝜕𝜅
= −𝛿(𝑛 − 1) < 0;  

𝜕�̃�𝑓(𝑚,𝜅)

𝜕𝑚
= 0;     B1(ii) 
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𝜕�̃�𝑎(𝑚,𝜅)

𝜕𝜅
= −

𝛿

𝑛
(𝑛 − 𝑚)(𝑛 + 𝑚 − 1) < 0;       B1(iii) 

𝜕�̃�𝑎(𝑚,𝜅)

𝜕𝑚
= −

𝛿

𝑛
(1 − 𝜅)(1 − 2𝑚𝜅) < 0     B1(iv) 

𝜕�̃�𝑐(𝑚,𝜅)

𝜕𝜅
= 𝛿2[(𝑛 − 𝑚)(1 − 𝜅) + (𝑚 − 1)] > 0;     B1(v) 

 
𝜕�̃�𝑐(𝑚,𝜅)

𝜕𝑚
= 0.5𝛿2(1 − 𝜅)[(𝑛 − 1) − 2𝜅(𝑛 − 𝑚)];     B1(vi) 

 
𝜕�̃�𝑓(𝑚,𝜅)

𝜕𝜅
= (

𝛿

𝑛−1
)2 [1 − 𝜅 −

𝑚(𝑚−1)

(𝑛−1)2 ]             B1(vii) 

  
𝜕�̃�𝑓(𝑚,𝜅)

𝜕𝑚
= 𝛿2[(1 − 𝜅)(2𝑚 − 1)] > 0;      B1(viii) 

𝜕�̃�𝑎(𝑚,𝜅)

𝜕𝜅
= 𝛿2(1 − 𝜅)(𝑛 − 𝑚) [

𝑚(𝑛−𝑚)+(𝑛−1)2

𝑛
] > 0;    B1(ix) 

𝜕�̃�𝑎(𝑚,𝜅)

𝜕𝑚
=

𝛿2

2𝑛
(1 − 𝜅)2[2𝑚(𝑛 − 𝑚) + (𝑛 − 1)2 − (𝑛 − 𝑚)2] > 0;  

Emissions fall steadily from non-cooperative to fully cooperative level as κ rises for coalition 

and fringe countries and hence for an average country. Emissions for a coalition country fall 

as membership increases, but, for a fringe country, emissions are independent of membership 

size; obviously average emissions fall as membership rises.  

Welfare is more interesting. For an average country welfare rises with both κ and m. For a 

coalition country, welfare rises with Kantian weight, but it increases with membership iff 

𝜅(𝑛 − 𝑚) < 0.5(𝑛 − 1); the intuition is that because fringe countries keep emissions constant, 

as membership increases the gap between coalition and fringe country emissions widens, i.e. 

free riding increases, so this hurts coalition countries. Consequently, welfare of a fringe country 

rises as membership increases. But, when κ increases, welfare of a fringe country falls when κ 

is larger than a critical level 𝜅(𝑚, 𝑛) where: 

𝜅(𝑚, 𝑛) = 1 −
𝑚(𝑚−1)

(𝑛−1)2 . 

For large n and small m, then in the imperfect Kantian emissions only model, 𝜅(𝑚, 𝑛) will be 

quite close to 1. The intuition is related to the fact that fringe countries are free riding the 

emission reductions of coalition countries, and can get welfare which exceeds first-best when 

m is high.   

Question (2): Size of Equilibrium IEA. 

The second question is what is the size of the equilibrium IEA, and for what parameter values 

is the grand coalition an equilibrium. In Appendix C we show that the stability function is:  

𝜎(𝑚, 𝜅 , 𝜅𝜇) = 0.5𝛿2(1 − 𝜅 )2[𝜅𝜇(𝑛 − 1)2 − (1 − 𝜅𝜇)(𝑚 − 1)(𝑚 − 3)]            (B1) 

It is straightforward to confirm the following special cases: 

(a) Non-Kantian: 𝜎(𝑚, 0,0) = (𝑚 − 1)(3 − 𝑚) ⟹ �̃�(0,0) = 3; 

(b) Perfect Kantian wrt emissions only: 𝜎(𝑚, 1, 𝜅𝜇) = 0 ⟹ �̃�(1, 𝜅𝜇) = 𝑛; 
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(c) Perfect Kantian wrt membership only: 𝜎(𝑚, 𝜅 , 1) = (1 − 𝜅 )2(𝑛 − 1)2 ⟹ 

�̃�(𝜅 , 1) = 𝑛.  

(d) Perfect Kantian wrt emissions and membership: 𝜎(𝑚, 1, 𝜅𝜇) = 0 ⟹ �̃�(1, 𝜅𝜇) =

𝑛; 

For the general case, 0 < 𝜅 , 𝜅𝜇 < 1, it is clear from (B1) that (i) 𝜎(. ) > 0, 𝑚 ≤ 3; (ii)  
𝜕𝜎(.)

𝜕𝑚
<

0, 𝑚 > 2, so there is a unique stable IEA no less than 3; (iii) the size of the stable IEA, defined 

as �̃�(𝜅𝜇), depends only on 𝜅𝜇. We show in Appendix C that 
𝑑�̃�(𝜅𝜇)

𝑑𝜅𝜇
> 0 and that �̃�(0.5) = 𝑛, 

so the grand coalition is the stable equilibrium when 𝜅𝜇 is at least 0.5. To get further results it 

is useful to define 𝜅𝜇(𝑚) as the minimum value of 𝜅𝜇 required to stabilise an IEA of size m 

out of n countries, m = 4,…,n. Then, from (B1), 

  𝜅𝜇(𝑚) =
(𝑚−1)(𝑚−3)

(𝑛−1)2+(𝑚−1)(𝑚−3)
.    (B2) 

It is clear that  𝜅𝜇(𝑚) is increasing in m, so, not surprisingly, a higher Kantian weight on 

membership is needed to stabilise a larger coalition. In the limit, the minimum Kantian weight 

needed to make the grand coalition stable is: 

𝜅𝜇(𝑛) =
(𝑛−3)

2(𝑛−2)
< 0.5       (B3) 

Hence: 

Result B2  

With quadratic benefit function and linear damage cost function:  

(i)  the size of the equilibrium IEA depends only on the Kantian weight on membership, 

𝜅𝜇, and is an increasing function of that weight; 

(ii) the Kantian weight on emissions needed to secure the grand coalition increases 

from 0.25 as the number of countries increases from 4, but never exceeds 0.5. 

Thus, we have the important result that the first-best outcome can be achieved with a Kantian 

weight on membership that never exceeds 0.5.  

Question 3:  Extent to which IEAs with Imperfect Kantian Behaviour Close the Emissions 

and Welfare Gaps of Coalition and Fringe Countries. 

Looking first at emissions gaps for coalition and fringe countries, Appendix C shows that: 

�̃̃�𝑐(𝜅 , 𝜅𝜇) = 1 −
(1−𝜅 )(𝑛−�̃�(𝜅𝜇))

(𝑛−1)
;    

𝜕�̃̃�𝑐

𝜕𝜅
> 0;     

𝜕�̃̃�𝑐

𝜕𝜅𝜇
> 0 ;   �̃̃�𝑓(𝜅 ) = 𝜅 ;    

𝜕�̃̃�𝑓

𝜕𝜅
> 0 

Thus, the emissions gap for fringe countries is constant, and equal to that which would arise in 

the Kantian non-cooperative equilibrium when 𝜅 = 𝜅 . If �̃�(𝜅𝜇) = 1, the emissions gap for 

coalition countries would also be 𝜅 , and as 𝜅𝜇 rises the coalition’s emissions gap shrinks, with 

�̃̃�𝑐(. ) reaching 1 when �̃�(𝜅𝜇) = 𝑛, so the grand coalition is attained and first-best emissions 

is attained.  
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Turning to the welfare gaps for coalition and fringe countries, Appendix C presents the 

formulae for  �̃̃�𝑐(𝜅 , 𝜅𝜇), �̃̃�𝑓(𝜅 , 𝜅𝜇). We show that 
𝜕�̃̃�𝑗(.)

𝜕𝜅
> 0,  j = c,f.  Beginning with a 

fringe country, if �̃�(𝜅𝜇) = 1, its welfare gap equals the level that would arise in the Kantian 

non-cooperative equilibrium when 𝜅 = 𝜅 , as we would expect.  As 𝜅𝜇 increases, the extent to 

which a fringe country’s welfare gap shrinks increases, 
𝜕�̃̃�𝑓

𝜕𝜅𝜇
> 0. Indeed, as we will show 

below, it is possible that for larger values of 𝜅𝜇, but not so large that the grand coalition is an 

equilibrium,  �̃̃�𝑓(𝜅 , 𝜅𝜇) can exceed 1, so fringe welfare rises above the first-best level of 

welfare. The rationale is simply that fringe countries free-ride on the efforts of coalition 

countries to cut their emissions (as we have seen, fringe countries keep their emissions constant 

at the level in the non-cooperative Kantian equilibrium), so, as the size of the coalition 

increases, the free-riding benefits from a larger coalition are shared by a smaller number of 

fringe countries, and so can exceed first-best welfare.     

Turning to coalition countries, if �̃�(𝜅𝜇) = 𝑛,  then the welfare gap for a coalition country is 

fully closed: �̃̃�𝑐(. ) = 1, as we would expect. To assess how the welfare of a coalition country 

varies with the Kantian weight on membership, we show, in Appendix C, that 
𝜕�̃̃�𝑐

𝜕𝜅𝜇
=

𝜒[�̃�(𝜅𝜇) −
1+𝑛𝜅𝜖

1+𝜅
], where 𝜒 is positive. It follows that the sign of  

𝜕�̃̃�𝑐

𝜕𝜅𝜇
is ambiguous; if  𝜅𝜇 is 

small relative 𝜅 , and hence �̃�(𝜅𝜇) is small relative to n, the expression in square brackets may 

be negative and so �̃̃�𝑐(. ) may be initially decreasing in 𝜅𝜇.  

To summarise: 

Result B3  

With quadratic benefit function and linear damage cost function: 

(i) the emission gaps of coalition and fringe countries decrease as the Kantian 

weights 𝜅 , 𝜅𝜇 increase; 

(iii)  the welfare gap of a fringe country decreases as 𝜅 , 𝜅𝜇 increase; for values 𝜅𝜇 

tending towards the value for which the grand coalition forms, the welfare gap of a 

fringe country may be negative, i.e. welfare of a fringe country exceeds first-best;  

(iv) the welfare gap of a coalition country decreases as 𝜅  increases; however, for 

values of �̃�(𝜅𝜇) <  
1+𝑛𝜅

1+𝜅
  the welfare gap of a coalition is increasing in 𝜅𝜇.  

To provide more detail on how coalition and fringe welfare vary with 𝜅𝜇, it is simplest to use 

some numerical illustrations. In Figure 1a we plot the extent of closure of the welfare gap of a 

coalition country, �̃̃�𝑐(𝜅 , 𝜅𝜇), for 20 values of 𝜅𝜇 between 0 and 0.5 for 3 different values of 

𝜅  = 0.1, 0.3 and 0.530. As we see, when 𝜅  = 0.1, coalition welfare increases for all values of 

𝜅𝜇; when 𝜅  = 0.3, then coalition welfare decreases between 𝜅𝜇 = 0.01 and 0.05 and then rises 

                                                           
30 We present the data on welfare in % terms, rather than between 0 and 1. 
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till 𝜅𝜇 = 0.5 when the grand coalition forms; when 𝜅  = 0.5, then coalition welfare decreases 

between 𝜅𝜇 = 0.01 and 0.10, and then increases until the grand coalition forms. The rationale 

is that larger values of 𝜅  mean all countries are making significant cuts in emissions; when 𝜅𝜇 

is small, so there are relatively few coalition countries, the extra burden of cutting emissions 

with no contribution from fringe countries, means coalition countries experience a modest 

decrease in equilibrium welfare; this is offset as 𝜅𝜇, and hence the equilibrium size of the  

 

coalition increases. 

Figure 1b shows data for fringe country welfare for the same values of 𝜅 , 𝜅𝜇. As we know, a 

fringe countries welfare increases for all values of 𝜅𝜇. When 𝜅  = 0.1, fringe welfare rises 

above 100% when 𝜅𝜇 reaches 0.35 and tends towards 200% as 𝜅𝜇 tends to 0.49. For values of 

𝜅  = 0.3 and 0.5, fringe welfare exceeds 100% at lower values of 𝜅𝜇 but tends to a lower limit 

as 𝜅𝜇 tends to 0.49.     

 

For both coalition and fringe countries welfare increases significantly with 𝜅 .  

Question 4: Extent to which Overall Emissions and Welfare Gaps are closed by Countries 

Acting in an Imperfect Kantian Fashion and by Forming an IEA. 
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In this section we address the question posed by Nowakowski and Oswald (2021) about the 

extent to which climate change is better addressed by focusing on influencing individuals’ 

behaviour by making them act more morally with respect to their consumption and production 

decisions, rather than trying to form global coalitions of countries. To analyse this question, 

we assume that individual moral attitudes are captured by 𝜅 , while government moral attitudes 

are captured by 𝜅𝜇. In the absence of any attempts by governments to form IEAs, the outcome 

in terms of emissions and welfare is captured by an average country’s emissions and welfare 

in a Kantian non-cooperative equilibrium. It is simplest to address this question numerically, 

using 3 values for 𝜅  and 𝜅𝜇: 0.1, 0.3, 0.5. Table B1a presents the data for emissions. 

As we see, if 𝜅 = 𝜅𝜇, then changing individual behaviour and negotiating an IEA make 

roughly equal contributions to closing the gap between the self-interested non-cooperative 

outcome and first best. However, if 𝜅𝜇 < 𝜅 ,  then, not surprisingly trying to form an IEA, 

contributes significantly less than changing individual moral attitudes. On the other hand, if 

𝜅𝜇 > 𝜅  the reverse is true; in the extreme case where 𝜅𝜇 = 0.5, 𝜅 = 0.1, trying to form an 

IEA increases the reduction in emissions from 10% to 100%. 

 

 

 

 

 

 

Table B1a:  Contribution of Changing Moral Attitudes and Negotiating IEAs to Reducing 

Global Emissions 

Table B1b shows the outcomes in terms of welfare. The effects on welfare are smaller than for 

emissions. In the cases where 𝜅 = 𝜅𝜇, for the lowest value 0.1, forming an IEA adds slightly 

less than changing individual moral attitudes; but for the highest value, 0.5, changing individual 

moral attitudes contributes three-quarters of the overall benefit of forming the grand coalition.  

 

 

 

 

 

Table B1b:  Contribution of Changing Moral Attitudes and Negotiating IEAs to Raising 

Global Welfare 

This competes our analysis of the model with a linear damage cost function.   

 

𝜅  Imperfect 

Kantian 

Non-Coop 

Equilibrium 

IEAs- 𝜅𝜇 

0.1 0.3 0.5 

0.1 10.00 20.82 49.00 100.00 

0.3 30.00 38.41 60.33 100.00 

0.5 50.55 56.01 71.67 100.00 

𝜅  Imperfect 

Kantian 

Non-Coop 

Equilibrium 

IEAs- 𝜅𝜇 

0.1 0.3 0.5 

0.1 19.00 35.13 66.15 100.00 

0.3 51.00 60.76 79.53 100.00 

0.5 75.00 79.98 89.55 100.00 



46 
 

Appendix C:  Equilibrium Outputs of Model with Quadratic Benefit Function and 

Linear Damage Cost Function. 

From the definition of B(.) and D(.) it is straightforward to derive the following. 

First-best (Fully Cooperative) and Self-Interested Non-Cooperative Outcomes 

𝑒𝑆𝑂 = 𝑒𝐹𝐶 = 𝛽 − 𝛿𝑛;  𝑊𝑆𝑂 = 𝑊𝐹𝐶 = 0.5(𝑒∗)2;  

𝑒𝑁𝐶 = 𝑒𝑆𝑂 + 𝛿(𝑛 − 1);   𝑊𝑁𝐶 = 𝑊𝑆𝑂 − 0.5[𝛿(𝑛 − 1)]2 

Kantian Non-Cooperative Outcomes 

�̂�(𝜅) = 𝑒𝑆𝑂 + 𝛿(1 − 𝜅)(𝑛 − 1);  �̂�(𝜅) = 𝑊𝑆𝑂 − 0.5[𝛿(1 − 𝜅)(𝑛 − 1)]2 

�̂̂�(𝜅) = 𝜅;  �̂̂�′(. ) > 0;   �̂̂�(𝜅) = 1 − (1 − 𝜅)2;   �̂̂�′(. ) > 0 ;  

�̂̂�(0) = �̂̂�(0) = 0; �̂̂�(1) = �̂̂�(1) = 1 

IEAs with Kantian Behaviour – Stage 2 Equilibrium Emissions, Payoffs and Welfare 

�̃�𝑐(𝑚, 𝜅 ) = 𝑒𝑆𝑂 + 𝛿(1 − 𝜅 )(𝑛 − 𝑚); �̃�𝑓(𝑚, 𝜅 ) = 𝑒𝑆𝑂 + 𝛿(1 − 𝜅 )(𝑛 − 1) 

�̃�𝑎(𝑚, 𝜅) = 𝑒𝑆𝑂 + (
𝛿

𝑛
) [(1 − 𝜅)(𝑛 − 𝑚)(𝑛 + 𝑚 − 1)]; 

Π̃𝑐(𝑚, 𝜅 , 𝜅𝜇) = 𝑊𝑆𝑂 − 0.5𝛿2(1 − 𝜅 )2(1 − 𝜅𝜇)[(𝑛 − 1)2 − (𝑚 − 1)2] 

Π̃𝑓(𝑚, 𝜅 , 𝜅𝜇) = 𝑊𝑆𝑂 − 0.5𝛿2(1 − 𝜅 )2[(𝑛 − 1)2 − 2(1 − 𝜅𝜇)𝑚(𝑚 − 1)] 

�̃�𝑐(𝑚, 𝜅) = 𝑊𝑠𝑜 − 0.5𝛿2(1 − 𝜅)[(1 − 𝜅)(𝑛 − 𝑚)2 + 2(𝑛 − 𝑚)(𝑚 − 1)]; 

�̃�𝑓(𝑚, 𝜅) = 𝑊𝑠𝑜 − 0.5𝛿2(1 − 𝜅)[(1 − 𝜅)(𝑛 − 1)2 − 2𝑚(𝑚 − 1)]; 

�̃�𝑎(𝑚, 𝜅) = 𝑊𝑠𝑜 − 0.5𝛿2(1 − 𝜅)2(𝑛 − 𝑚) [
𝑚(𝑛 − 𝑚) + (𝑛 − 1)2

𝑛
] ; 

IEAs with Kantian Behaviour – Stage 1 

𝜎(𝑚, 𝜅 , 𝜅𝜇) = 0.5𝛿2(1 − 𝜅 )2[𝜅𝜇(𝑛 − 1)2 − (1 − 𝜅𝜇)(𝑚 − 1)(𝑚 − 3)]       

i.e. 𝜎(𝑚, 𝜅 , 𝜅𝜇) = 0.5𝛿2(1 − 𝜅 )2(1 − 𝜅𝜇)[𝜒 − (𝑚 − 1)(𝑚 − 3)],  where 𝜒 =
𝜅𝜇(𝑛−1)2

(1−𝜅𝜇)
.  

Clearly the sign of 𝜎(. ), and hence the size of the stable IEA, does not depend on either δ or 

𝜅 , 0 ≤ 𝜅 < 1.  2 + √1 + 𝜒 is the real value of m for which 𝜎(𝑚, 𝜅 , 𝜅𝜇) = 0. Therefore, the 

size of the stable IEA is �̃�(𝜅𝜇) - the largest integer no greater than min (𝑛, 2 + √1 + 𝜒). It is 

straightforward to see that �̃�(𝜅𝜇) is increasing in 𝜅𝜇 and that �̃�(0.5, 𝑛) = n.  

Equivalently, define 𝜅𝜇(𝑚) as the minimum value of 𝜅𝜇 for which m is a stable IEA, i.e.  

𝜎(𝑚, 𝜅 𝜅𝜇) = 0; so 𝜅𝜇(𝑚) =
(𝑚−1)(𝑚−3)

(𝑛−1)2+(𝑚−1)(𝑚−3)
, 𝜅𝜇(𝑛) =

(𝑛−3)

2(𝑛−2)
< 0.5.  

IEAs with Kantian Behaviour – Overall Equilibrium 
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�̃̃�𝑐(𝜅 , 𝜅𝜇) = 1 −
(1−𝜅 )(𝑛−�̃�(𝜅𝜇))

(𝑛−1)
;    

𝜕�̃̃�𝑐

𝜕𝜅
> 0;     

𝜕�̃̃�𝑐

𝜕𝜅𝜇
> 0 ;   �̃̃�𝑓(𝜅 ) = 𝜅 ;    

𝜕�̃̃�𝑓

𝜕𝜅
> 0 

�̃�𝑐(𝜅 , 𝜅𝜇) = 𝑊∗ − 0.5𝛿2(1 − 𝜅 )(𝑛 − �̃�(𝜅𝜇)[(1 − 𝜅 )(𝑛 − �̃�(𝜅𝜇)) + 2(�̃�(𝜅𝜇) − 1)]        

�̃�𝑓(𝜅 , 𝜅𝜇) = 𝑊∗ − 0.5𝛿2(1 − 𝜅 )[(1 − 𝜅 )(𝑛 − 1)2 − 2�̃�(𝜅𝜇)(�̃�(𝜅𝜇) − 1)] 

 �̃̃�𝑐(𝜅 , 𝜅𝜇) = 1 −
(1−𝜅 )(𝑛−�̃�(𝜅𝜇))[(1−𝜅 )(𝑛−�̃�(𝜅𝜇))+2(�̃�(𝜅𝜇)−1)]       

(𝑛−1)2
 

�̃̃�𝑓(𝜅 , 𝜅𝜇) = 1 −
(1 − 𝜅 )[(1 − 𝜅 )(𝑛 − 1)2 − 2�̃�(𝜅𝜇)(�̃�(𝜅𝜇) − 1)]       

(𝑛 − 1)2
 

 �̃�(𝜅𝜇) = 1 ⟹ �̃̃�𝑓(. ) = 1 − (1 − 𝜅 )2;  �̃�(𝜅𝜇) = 𝑛 ⟹ �̃̃�𝑐(. ) = 1;  

𝜕�̃̃�𝑐

𝜕𝜅
> 0;  

𝜕�̃̃�𝑓

𝜕𝜅
> 0;  

𝜕�̃̃�𝑓

𝜕𝜅𝜇
> 0;  

𝜕�̃̃�𝑐

𝜕𝜅𝜇
=

2(1−𝜅 )(1+𝜅 )�̃�′

(𝑛−1)2 [�̃�(𝜅𝜇) −
1+𝑛𝜅𝜖

1+𝜅
] 


