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EVOLUTIONARY BEHAVIOURAL FINANCE: A
MODEL WITH ENDOGENOUS ASSET PAYOFFS

I.V. Evstigneev1 and M.J. Vanaei2

Abstract. The paper explores financial market dynamics from
evolutionary and behavioural perspectives. Most of the studies on
this topic deal with models in which asset payoffs are exogenous
and depend only on the underlying stochastic process of states
of the world. The present work proposes a model in which the
payoffs of assets are endogenous: they depend on the share of
total market wealth invested in the asset.

1 Introduction

Evolutionary Behavioural Finance (EBF) is a novel research area at the in-
terface of Mathematical Economics and Mathematical Finance combining
behavioural and evolutionary approaches to the modelling of financial mar-
kets. The classical theory (Radner [13, 14]) relies upon the hypothesis of full
rationality of market players, who are assumed to maximize their utilities
subject to budget constraints, i.e. solve well-defined and precisely stated
constrained optimization problems. EBF models abandon this hypothesis
and permit market players to have a whole variety of patterns of behav-
iour determined by their individual psychology, not necessarily describable
in terms of utility maximization. Strategies may involve, for example, mim-
icking, satisficing, rules of thumb based on experience, etc. Objectives might
be of an evolutionary nature: survival (especially in crisis environments),
domination in a market segment, fastest capital growth, etc. They might be
relative– taking into account the performance of the others.

1Economics Department, University of Manchester, igor.evstigneev@manchester.ac.uk.
(Corresponding Author.)

2Economics Department, University of Manchester, mohammadjavad.vanaei@postgrad.
manchester.ac.uk.
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EBF deals with stochastic dynamic models of financial markets in which
asset prices are determined endogenously by short-run equilibrium of sup-
ply and demand. Equilibrium is formed consecutively in each time period
in the course of interaction of investment strategies of competing market
participants. It is defined directly via the set of strategies of the market
players specifying the patterns of their investment behaviour (behavioural
equilibrium). An important feature of EBF models is that they employ only
objectively observable market data and do not use unobservable individual
agents’characteristics, such as their utilities and beliefs. Thereby they sug-
gest a path towards creating an operational alternative to the traditional
Dynamic Stochastic General Equilibrium analysis for financial markets.
The main focus of studies in the field is on questions of survival and

extinction of investment strategies in the market selection process. A central
goal is to identify those strategies that allow an investor to survive, i.e. to
keep with probability one a strictly positive, bounded away from zero share
of market wealth over an infinite time horizon, irrespective of the strategies
used by the other players. Typical results show that under very general
assumptions, survival strategies exist and are easily computable.
First models integrating evolutionary and behavioural approaches were

proposed in Amir et al. [3, 4]. A survey describing the state of the art
in EBF by 2016 and outlining a program for further research was given in
Evstigneev et al. [8]. An elementary textbook treatment of the subject can
be found in Evstigneev et al. [7], Ch. 20. For a most recent review of
the development of studies related to this area see Holtfort [10]. General
perspectives of a synthesis of behavioural and mainstream economics based
on the evolutionary approach are discussed in a recent paper by Aumann [5].
The basic sources for EBF are behavioural economics and finance (Tver-

sky and Kahneman [18], Shiller [16], Bachmann et al. [6]), evolutionary game
theory (Weibull [19], Samuelson [15], Gintis [9], Kojima [11]) and games of
survival (Milnor and Shapley [12], Shubik and Thompson [17])3.
Most of the studies on EBF consider assets with exogenous asset payoffs

or dividends. To the best of our knowledge the only exception is paper by
Amir et al. [2] that introduced an EBF model with long-lived dividend-
paying assets in which the dividends depend on the fraction of total market
wealth invested in the asset. The present paper suggests an analogous model

3For a comprehensive discussion of game-theoretic aspects of EBF in a different but
closely related model see Amir et al. [4], Sections 1 and 6.
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with short-lived (one-period) assets.

2 The model

Asset structure. Trading on the asset market is possible at any of the
moments of time (dates) t = 0, 1, 2,... Random factors influencing the market
are described in terms of a discrete-time stochastic process of states of the
world s1, s2, ...with values in a measurable space S. The probability measure
P on the space of paths ω = (s1, s2, ...) of this process is given exogenously.
We denote by st the history of states of the world up to time t ≥ 1:

st = (s1, ..., st).

All functions we consider in this paper, in particular, functions of st (t ≥ 1)
are supposed to be jointly measurable with respect to all its arguments.
There areK ≥ 2 ”short-lived”assets k = 1, 2, ..., K. They live one period

but are identically reborn every next period. For each asset k and time t ≥ 0
we are given a function Vt,k(st) > 0 describing exogenous asset supply– the
total volume of ”physical units”of asset k available in the market at time t.
For t = 0 the supply V0,k of asset k is constant.
One unit of asset k issued at time t ≥ 0 yields the payoff

Dt+1,k(s
t+1,Wt,k ) ≥ 0

at time t+ 1, where st+1 is the history of states of the world up to time t+ 1
and Wt,k is the share of total wealth invested by all the market participants
in asset k at time t (the precise definition of Wt,k is provided below, see
(4)). The given function Dt+1,k(s

t+1,Wt,k) of the history st and the number
Wt,k ≥ 0 is nonnegative and strictly positive if Wt,k > 0.
Investors and their portfolios. There are N investors (traders) i =

1, ..., N . Every investor i at each time t = 0, 1, 2, ... selects a portfolio

xit = (xit,1, ..., x
i
t,K),

where xit,k is the number of units of asset k in the portfolio x
i
t. The procedure

of portfolio selection based on investment proportions will be described later.
The portfolio xit = xit(s

t) for t ≥ 1 depends, generally, on the history st of
states of the world up to time t. To alleviate notation, we will often omit st,
writing e.g. xit in place of x

i
t(s

t).
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Equilibrium. In the model at hand, for each moment of time t ≥ 1 and
each random situation st, the market for every asset k is in equilibrium:

N∑
i=1

xit,k(s
t) = Vt,k(s

t). (1)

This equality means that the total market demand of asset k is equal to the
total supply of asset k, i.e., each asset is in the portfolio of some investor.
Wealth of an investor. The wealth wit of investor i at time t ≥ 1 can

be computed as follows:

wit =
K∑
k=1

Dt,kx
i
t−1,k, (2)

where
Dt,k = Dt,k(s

t,W k
t−1).

The sum in (2) represents the total payoff obtained at date t by trader i
from her yesterday’s portfolio xit−1 = (xit−1,1, ..., x

i
t−1,K). For t = 0, the initial

wealth wi0 > 0 of each investor i is a constant given in the model. Both the
left-hand side and the right-hand side of (2) are functions of the history st

(which is skipped for shortness).
Total market wealth. Total market wealth Wt at time t ≥ 1 is com-

puted as follows:

Wt =
N∑
i=1

wit =
N∑
i=1

K∑
k=1

Dt,kx
i
t−1,k =

K∑
k=1

Dt,k

N∑
i=1

xit−1,k =
K∑
k=1

Dt,kVt−1,k. (3)

The last inequality holds by virtue of the equilibrium condition (1). For
t = 0, we have

W0 =

N∑
i=1

wi0 ,

where wi0 is the given initial wealth of investor i.
Investment strategies (portfolio rules). Investment strategies will be

characterized in terms of vectors λit = (λit,1, ..., λ
i
t,K) of investment proportions

λit,k ≥ 0,

K∑
k=1

λit,k = 1,
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according to which traders i = 1, ..., N allocate wealth across assets. In
game-theoretic terms, λit may be regarded as an action that is undertaken
by player i at time t in the asset market game at hand. An investment
strategy (portfolio rule) Λi of player i is described in terms of a vector function
Λit(s

t, Ht−1) specifying what vector of investment proportions

λit = Λit(s
t, Ht−1)

to select at each time t ≥ 1 depending on the history st = (s1, ..., st) of states
of the world and the history of play

Ht−1 = {λis : 0 ≤ s ≤ t− 1, i = 1, ..., N}.

The latter contains information about the actions λis of all traders i = 1, ..., N
at all moments of time s = 0, 1, ..., t − 1. Additionally, the strategy Λi

indicates the vector λi0 of investment proportions to be chosen at time 0.
Among all strategies Λit(s

t, Ht−1) we will distinguish those ones for which
Λit depends only on s

t and not on Ht−1. Such strategies are called basic. A
basic portfolio rule Λi of investor i is specified by a sequence of vectors of
investment proportions

Λi = (λi0, λ
i
1(s

1), λi2(s
2), ...)

describing the investment behaviour of player i at each time t and in every
random situation st.
Wealth wit,k of investor i invested in asset k. If λ

i
t = (λit,1, ..., λ

i
t,K)

is the vector of investment proportions selected by investor i at time t, then
her wealth wit,k invested into asset k at this time is

wit,k = λit,kw
i
t,

where wit is the investor i’s wealth (budget) at time t.
The share Wt,k of the total market wealth invested in asset k.

The total wealth invested in asset k can be expressed as

N∑
i=1

wit,k =
N∑
i=1

λit,kw
i
t .

The share Wt,k of the total market wealth Wt (see (3)) invested in asset k is
equal to

Wt,k =

∑N
i=1w

i
t,k

Wt

=

∑N
i=1 λ

i
t,kw

i
t

Wt

. (4)
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Equilibrium asset prices. Given the vectors of investment proportions

λit = (λit,1, ..., λ
i
t,K), i = 1, ..., N,

of investors i = 1, ..., N at time t the equation

pt,kVt,k =

N∑
j=1

λjt,kw
j
t (5)

determines for each k and st the equilibrium (market clearing) price

pt,k = pt,k(s
t)

of asset k. Equation (5) is the equilibrium condition expressed in financial
terms. The product pt,kVt,k on the left-hand side is the value of the total
mass of asset k available in the market. The sum on the right-hand side,∑N

j=1 λ
j
t,kw

j
t , expresses the total amount invested in asset k by all the market

players. From equation (5) we obtain the following formula for the equilib-
rium price of asset k at time t:

pt,k =
1

Vt,k

N∑
j=1

λjt,kw
j
t . (6)

Investors’portfolios expressed via strategies. If investor i’s wealth
is wit, the proportion of wealth invested in asset k is λ

i
t,k, and the price of

asset k is pt,k, then the number xit,k of units of asset k in the portfolio of
investor i at time t is equal to

xit,k =
λit,kw

i
t

pt,k
. (7)

In view of (6) this yields

xit,k = Vt,k
λit,kw

i
t∑N

j=1 λ
j
t,kw

j
t

. (8)

By summing up these equations for i = 1, ..., N , we get (1), as it should be
according to the equilibrium hypothesis.
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Dynamics of wealth of the investors. If investor i’s portfolio at time
t ≥ 0 is xit = (xit,1, ..., x

i
t,K), then her wealth at time t+ 1 is

wit+1 =
K∑
k=1

Dt+1,k(s
t+1,Wt,k )xit,k,

where Wt,k , we recall, is the share of the total market wealth invested in
asset k at time t. By using (8), we get

wit+1 =

K∑
k=1

Dt+1,k(s
t+1,Wt,k )Vt,k

λit,kw
i
t∑N

j=1 λ
j
t,kw

j
t

. (9)

Admissible strategy profiles. Note that formula (7) makes sense only
if pt,k > 0. In this connection we introduce the following definition. A
strategy profile (Λ1, ...,ΛN) of all the investors i = 1, ..., N is called admissible
if the vectors of investment proportions λit = (λit,1, ..., λ

i
t,K), i = 1, ..., N ,

generated by this strategy profile satisfy (for all k, t and st) the following
condition:

N∑
i=1

λit,k > 0, (10)

which means that for each asset k there is at least one investor allocating
a strictly positive share of her wealth in it. Clearly this condition holds
if at least one investor i uses a fully diversified strategy guaranteeing that
all the investment proportions λit,k are strictly positive. In what follows we
will assume that all strategy profiles under consideration are admissible. The
assumption of admissibility implies that wit > 0 and pt,k > 0 for each t, i
and k. This is proved by induction (step by step, passing from t to t+ 1) by
using (9), (6) and the assumption that if W > 0 then Dt,k(s

t,W ) > 0.

3 A central result

Market dynamics: An evolutionary perspective. The main focus of
our analysis will be on the dynamics of the market shares of the investors

rit =
wit
Wt

(i = 1, ..., N),
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where wit is the investor i’s wealth and Wt =
∑N

i=1w
i
t is the total market

wealth at time t. We will use in this analysis equations (9) that describe
the dynamics of the wealth wit of investors i = 1, 2, ..., N whose investment
strategies Λ1, ...,ΛN generate the vectors of investment proportions λit =
(λit,1, ..., λ

i
t,K).

Suppose that the market players i = 1, 2, ..., N use strategies Λ1, ...,ΛN ,
respectively. Investor i, or her portfolio rule Λi, is said to survive in the mar-
ket selection process (within the strategy profile (Λ1, ...,ΛN)) if the market
share rit is strictly positive and bounded away from zero almost surely:

inf
t≥0

rit > 0 (a.s.).

Here, "almost surely" is understood with respect to the given probability P
on the space of paths ω = (s1, s2, ...) of the process of states of the world.
A portfolio rule is termed a survival strategy if it guarantees unconditional

survival for the investor using it irrespective of what strategies are used by
the other market participants.
In order to survive you have to win! One might think that the focus

on survival substantially restricts the scope of the analysis, since "one should
care about survival only if things go wrong". It turns out, however, that the
class of survival strategies in most of the EBF models coincides with the
class of unbeatable strategies performing in the long run not worse in terms
of wealth accumulation than any other strategies competing in the market.
To demonstrate this let us reformulate the notion of a survival strategy in
terms of the wealth processes (wit)

∞
t=0 of the market players i = 1, 2, ..., N .

Survival of a portfolio rule Λ1 used by player 1 means that w1t ≥ c
∑N

i=1w
i
t,

where c is a strictly positive random variable. The last inequality holds if
and only if

wit ≤ Cw1t , i = 1, ..., N, (11)

where C is some random variable. Property (11) expresses the fact that
the wealth of any player i using any strategy Λi cannot grow asymptotically
faster than the wealth of player 1 who uses the strategy Λ1. If this is the
case, the portfolio rule Λ1 is called unbeatable. Thus survival strategies are
those and only those that are unbeatable, and so "in order to survive, you
have to win!"
Key assumption. A central result of this note is a construction of a

survival strategy in the model at hand. To this end we will need the following
assumption:
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(D) For each k, t and st, the payoff function Dt+1,k(s
t+1,Wt,k) of asset k

is linear and strictly increasing in Wt,k:

Dt+1,k(s
t+1,Wt,k) = Dt+1,k(s

t+1)Wt,k, where Dt+1,k(s
t+1) > 0.

The Kelly portfolio rule. Denote by ∆K the unit simplex consisting
of all non-negative vectors λ = (λ1, ..., λK) such that

∑K
k=1 λk = 1. Define

the relative payoffs of assets k = 1, 2, ..., K by

Rt+1,k(s
t+1) =

Dt+1,k(s
t+1)Vt,k(s

t)∑K
m=1Dt+1,m(st+1)Vt,m(st)

(12)

and put
Rt+1(s

t+1) = (Rt+1,1(s
t+1), ..., Rt+1,K(st+1)). (13)

Clearly the vector Rt+1(st+1) belongs to ∆K for each st+1. It will be conve-
nient to use the following scalar product notation:

〈Rt+1(st+1), λ〉 =
K∑
k=1

Rt+1,k(s
t+1)λk (14)

where λ = (λ1, ..., λK) ∈ ∆K .
The basic investment strategy

Λ∗ = (λ∗0, λ
∗
1(s

1), λ∗2(s
2), ...)

is called the Kelly (log-optimal) portfolio rule if for each t ≥ 0 and any
function λ(st) with values in ∆K we have

E ln〈Rt+1(st+1), λ∗t (st)〉 ≥ E ln〈Rt+1(st+1), λ(st)〉.

Here E stands for the expectation with respect to the probability measure
P on the space of paths ω = (s1, s2, ...) of the process of states of the world
exogenously given in the model. It is known (see Algoet and Cover 1988,
p. 877) that the Kelly investment strategy always exists and under some
assumptions of non-degeneracy of the structure of relative payoffs is unique
up to a.s. equivalence.
Theorem 1. The Kelly portfolio rule Λ is a survival strategy.
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Proof of Theorem 1. Under assumption (D), the dynamics of wealth
of investor i = 1, ..., N employing investment proportions λit = (λit,1, ..., λ

i
t,K)

is governed by the equations

wit+1 =
K∑
k=1

Dt+1,kWt,kVt,k
λit,kw

i
t∑N

n=1 λ
n
t,kw

n
t

following from (9). Consequently, for any two investors i and j, we have

wit+1

wjt+1
=

∑K
k=1Dt+1,kWt,kVt,k

λit,kw
i
t∑N

n=1 λ
n
t,kw

n
t /Wt∑K

k=1Dt+1,kWt,kVt,k
λjt,kw

j
t∑N

n=1 λ
n
t,kw

n
t /Wt

=
wit
wjt

∑K
k=1Dt+1,kVt,kλ

i
t,k∑K

k=1Dt+1,kVt,kλ
j
t,k

(15)

(see (4)). By using the notation (12) —(14), we get from (15)

wit+1

wjt+1
=
wit
wjt

∑K
k=1Dt+1,kVt,kλ

i
t,k/

∑K
m=1Dt+1,mVt,m∑K

k=1Dt+1,kVt,kλ
j
t,k/

∑K
m=1Dt+1,mVt,m

=
wit
wjt

∑K
k=1Rt+1,kλ

i
t,k∑K

k=1Rt+1,kλ
j
t,k

=
wit
wjt

〈Rt+1, λit〉
〈Rt+1, λjt〉

. (16)

Suppose that investor j uses the Kelly strategy Λ∗ and investor i employs
any strategy Λi so that the strategy profile at hand leads to the sequence of
vectors λit of i’s investment proportions. Then formula (16) yields

wit+1
w∗t+1

=
Πt+1

Π∗t+1
,

where (w∗t )t≥0 is the wealth process of the Kelly investor and

Πt+1 = wi0〈R1, λi0〉...〈Rt+1, λit〉, Π∗t+1 = w∗0〈R1, λ∗0〉...〈Rt+1, λ∗t 〉.
By virtue of the Algoet-Cover (1988, p. 877) theorem, the random sequence
Πt+1/Π

∗
t+1 is a non-negative supermartingale. Therefore it converges a.s. to

a finite limit, which implies that the random sequence wit+1/w
∗
t+1 is bounded

above by some random variable Ci > 0. Consequently, wit+1 ≤ Ciw
∗
t+1 for all

i and t (a.s.), and hence the strategy Λ∗ is unbeatable. As has been noted
above, this is so if and only if Λ∗ is a survival strategy.
The proof is complete.
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