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control for the bias captured by decision weights in PT and quantify  efficiently with only
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the tool to ambiguity. We find median values of  = 1 at the aggregate level for both sources

of uncertainty. Probability and event weighting are less pronounced but accord with earlier
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which is implication of reference-dependent preferences. Event weighting is also observed at

the individual level. After controlling for these weights, we find very few subjects who are loss
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1 Introduction

Prospect theory (PT) is one of the most popular descriptive models for choice under risk and

ambiguity (Starmer 2000, Wakker 2010, Barberis 2013). The key innovations of PT build on

the intuitive assumption that outcomes of risky prospects are treated as positive and negative

changes from a reference point, i.e., as gains and losses (Markowitz 1952, Kahneman and

Tversky 1979). PT can therefore account for loss aversion, an aspect of risk attitude whereby,

on the utility scale, a loss is more aggravating than a similar size gain is gratifying. We

follow the common practice to measure loss aversion with a single parameter,  (e.g., Tversky

and Kahneman 1992, Shalev 2000, Köbberling and Wakker 2005, Peters 2012) and propose a

revealed preference tool for such measurements. The surprisig finding of our experiment is that

 = 1 at both, the aggregate and individual level

Although some of the early evidence is debated (e.g., Yechiam 2019), loss aversion has been

accepted as empirically robust (for a recent contribution see Bleichrodt et al. 2020) and many

economic applications build on this phenomenon (Camerer 2004, Kőszegi and Rabin 2006, 2007,

Wakker 2010, Barberis 2013). Many empirical estimates, usually based on methods that invoke

binary choices, are centered at the famous value  = 2. By contrast, we measure  under PT

using choice sets that consist of specifically designed lists of prospects. First, we prove how

effectively our method can be used for risk and also for ambiguity. Based on our theoretical

predictions, we develop and experiment to elicit  for these sources of uncertainty that have

received considerable attention in the literature (Chew and Sagi 2008, Ergin and Gul 2009,

Abdellaoui et al. 2011).

Our procedure for the elicitation of  rests on the empirically and theoretically validated

mechanism of a proper scoring rule: the popular quadratic rule (QR). As our tool directly elicits

PT’s decision weights for probabilities or for events and our findings, although less pronounced,

accord with those reported elsewhere in the literature, our intuition for the absence of loss

aversion is that earlier estimates could be procedure-dependent. Our findings question if loss

aversion within PT can simply be captured by a concave kink of a gain-loss utility at the

reference point.

For the theoretical setting we assume PT with linear gain-loss utility (Schmidt and Zank

2009). In this model loss aversion is revealed as a concave kink in the utility function at the

reference point (Köbberling and Wakker 2005). To measure the size of this kink we proceed in
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two steps. First, we measure PT-decision weights in an incentive compatible way using QR-

scores for events that give gains and separately for events that give losses. Here we adopt the

procedure in Offerman et al. (2009). Subsequently, we correct these QR-scores using similarly

elicited QR-scores for mixed prospects (i.e., prospects that feature both gains and losses). This

way, bias from decision weighting can be isolated and separated from the data, such that 

can be estimated. Our theoretical analysis shows that these modifications of the standard QR-

method deliver the index of loss aversion efficiently with just three elicited QR-scores. We also

show that, under a duality condition, which demands that decision weights for gains and losses

agree and which can be verified from our data, only two of the former three scores are required

to obtain .

To place our experimental findings in context, we note that the literature reports some

variation on values for . These differences result from the fact that, in the absence of a

unanimously agreed upon index, various measures for loss aversion have been proposed and,

unsurprisingly, the corresponding -values vary (see, e.g., Table 5 in Abdellaoui et al. 2007).

Yet, many of these estimates are significantly larger than 1. Conceptually, there is a common

agreement in the literature that loss aversion is a behavioral phenomenon attributed entirely

to the treatment of outcomes (Kahneman and Tversky 1979, Rabin 2000, Shalev 2000, Neilson

2002, Köbberling and Wakker 2005, Kőszegi and Rabin 2006, Peters 2012). Accordingly, most

studies take a utility-elicitation approach to determine . Non-parametric techniques keep the

probabilities of events fixed in order to obtain a bias-free elicitation of utility from which, at a

subsequent stage, loss aversion can be derived (see, for instance, Schmidt and Traub (2002) for

risk, and Abdellaoui et al. (2016) for ambiguity). Such methods cleanly factor out bias that

is captured by decision weights using measurement tools that build on binary choice. Binary

choices are also central in studies that adopt parametric specifications for utility and decision

weights under PT (e.g., Booij and van den Kuilen 2009, Gurevich et al. 2009, Krčál et al. 2016,

Chapman et al. 2018).

Instead of using a sequence of binary choices, we adopt a revealed preference approach

where subjects are asked to identify the best alternative from a set that contains more than

just two choice alternatives. In common with all scoring rules, trade-offs are built into our

mechanism. Outcomes of prospects depend explicitly on the subjective beliefs of those events,

such that subjects must consider how each feasible choice jointly affects outcomes and the
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perceived likelihood of the event leading to that outcome. Given that the QR invokes only

binary prospects, this means that subjects are asked to trade off the outcome of an event

against that of its complement, such that the rate of substitution for outcomes equates the

ratio of the corresponding (potentially biased, subjective) probabilities for events. Different

to the traditional revealed preference method using choices from budget sets (e.g., Choi et al.

2007, Andreoni and Sprenger 2012, Ahn et al. 2014, Polisson et al. 2020), the QR dispenses

of the prices that determine the budget line. From an experimental point of view, this aspect

of the QR is appealing as it reduces computations and, hence, it reduces the cognitive effort

required to determine the optimal choice and associated biases. The QR-method still demands

trade-offs between both the probability and the utility scales (but not the otherwise exogenously

fixed prices), which is key in the revealed preference approach. This renders the QR different

to procedures and techniques where the trade-offs involve only the outcome scale.

Although our findings suggest that loss aversion is not the decisive feature for behavior, we

find some evidence supporting probability distortion and ambiguity attitude. PT captures these

biases through corresponding decision weights. Our results accord with Bruhin et al. (2010),

who provide evidence that utility curvature, the classical measure of risk attitude, is not a main

explanation for observed behavior for choices among small scale gain (loss) prospects under

risk. By expanding the domain of prospects, we complement Bruhin et al. with evidence for

mixed prospects (that simultaneously offer risky gains and losses) and we extend the evidence

to include ambiguity. Our findings support the hypothesis that decision weights depend on

whether they are attached to gains or to losses, which is an implication of reference-dependence

in PT.2

One potential weakness of our method is the assumption of a linear utility on each side of

the reference point. Linear utility is an important feature of scoring rules and is crucial for

generating incentives for a truthful report. This aspect is known as the properness property

(Savage 1971, Karni 2009, Kothiyal et al. 2011, Armantier and Treich 2013). Beyond incentive

compatibility, linear utility simplifies the implementation for analysts and the resulting proce-

dures are easy to understand for subjects. All these are desirable properties that explain why

2As shown in Werner and Zank (2019), having a different weighting function for probabilities of gains relative

to probabilities of losses is necessary for the endogenous identification of the reference point in PT under risk.

Our finding of gain—loss-dependent event weighting accords with PT and reference-dependence under ambiguity.
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the QR-method is widely applied in experiments on strategic and individual decision making.3

We maintain these appealing features and exploit them in order to obtain a simple and effective

tool for the measurement of loss aversion.

Specific to our experiment, where we employ small stakes, we think that the assumption

of PT with a linear gain-loss utility cannot explain the absence of loss aversion. Many studies

have found that for small stakes utility is approximately linear for gains and also for losses

(e.g., Fehr-Duda et al. 2006, Booij and van de Kuilen 2009, Bruhin et al. 2010, Vieider et

al. 2013, Abdellaoui et al 2016) and, hence, utility curvature in those separate domains is not

expected to induce much bias for elicited quadratic scores. This observation is reinforced by

Rabin’s (2000) theoretical demonstration that expected utility (EU) cannot offer a plausible

explanation for the frequently observed small scale risk aversion, a critique that extends to

several non-EU models (Neilson 2001, Safra and Segal 2008, 2009).4 By contrast, loss aversion,

would induce a strong bias. Indeed, Novemsky and Kahneman (2005, p.123) observed that

risk aversion in mixed prospects involving small stakes shall be attributed exclusively to loss

aversion.

We remark that, even if utility curvature would result in biased QR-scores, it is well-known

how these deviations can be dealt with. For instance, Winkler and Murphy (1970), Savage

(1971) or Kadane and Winkler (1988) have considered how proper scoring rules can be corrected

for utility curvature. More recent studies on such corrections include Armantier and Treich

(2013) and Harrison, et al. (2017).5 For PT, where in addition to utility curvature the QR-

measurements deviate from subjective beliefs due to distortions of probabilities and attitude

towards ambiguity, Offerman et al. (2009) showed how one can, nevertheless, correct QR-scores

and obtain reliable information. None of these studies assumed reference-dependent preferences,

hence, their techniques cannot be used to explore loss aversion, the remaining bias in QR-scores

3Applications include, Nyarko and Schotter (2002), Armantier and Treich (2013), Bellemare et al. (2008),

Rey-Biel (2009), Offerman et al. (2009), Costa-Gomes et al. (2014), Schotter and Trevino (2014), Trautmann

and van de Kuilen (2015), Schlag et al. (2015), Harrison et al. (2017), Yang (2020).
4The recent experimental study of Bleichrodt et al. (2020) supports the resolution of the Rabin paradox to

EU through reference-dependence and loss aversion.
5As noted by Allen (1987) one can modify the scoring rule to induce linear utility by introducing an additional

randomization stage; such randomization, relies on the reduction of compound lotteries assumption, and is also

invoked in the mechanisms proposed by Karni (2009) and Hossain and Okui (2013). Our QR-scoring mechanism

dispenses of additional randomization stages.
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under PT. We demonstrate how the QR-technique in Offerman et al. can be extended such

that the bias from decision weights can simply be muted when eliciting loss aversion.

In what follows Section 2 provides some preliminaries. Section 3 introduces the traditional

QR and provides extensions of it that account for reference-dependence and rank-dependence

of outcomes as assumed in PT. Further, based on these extended quadratic scoring rules, we

derive theoretical predictions concerning probability distortions, event weighting, duality and

loss aversion. In Section 4 we present details of our experimental design, the results that

test our theoretical predictions, and a brief discussion. Our findings on probability and event

weighting allow for an analysis of ambiguity attitude, which we explore further in Section 5.

Conclusions are provided in Section 6. Appendix A consists of proofs. Appendices B and C

are supplementary. Appendix B offers a brief review on how probability distortions and events

weighting are incorporated in PT and how existing methods to measure loss aversion seek to

avoid those biases when eliciting . While this discussion is not central to our contribution, it

provides some background for the interested reader and clarifies how adopting our QR-method

results in efficiency gains. Appendix C contains additional figures, tables and statistical analyses

and the experiment’s instructions.

2 Notation

Given is a set of states, , with subsets called events. As usual,  endowed with an algebra of

events (it contains , for each event  its complement  relative to  is also an event, and

the union of two events is an event). Events are descriptions of a possible state of affairs, such

as whether the temperature in London on a particular day will exceed 205 degrees centigrade

or, as in our experiment, whether the price of a stock in six months from the decision point is

in a certain range. Such events are sometimes referred to as naturally-occuring (Baillon, et al.

2018). An agent is uncertain if an event occurs or not.

The set of (monetary) outcomes is R. The objects of choice are binary prospects that give

an outcome conditional on an event. By  we denote the prospect that gives outcome  if

event  occurs, otherwise it gives  (that is, when the complement, event  := not- occurs).

If an event has an objective probability of occurrence, we say that the event is risky; in that

case we write  where  :=  () ∈ [0 1] is the probability of event . The example that
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we consider in our experiment is an urn that contains 50 balls numbered consecutively from

1—50 but otherwise equal, where one ball is randomly drawn from the urn. Each ball is equally

likely to be drawn, such that the event  =“the number on the ball is in the range 1—25” has

a 50% chance to occur or that  () = 05. Here,  is a probability measure over events (i.e.,

it gives probability 1 to the universal event  and 0 to the empty event ∅, and is additive:

 ()+ () =  (∪)+ (∩) for all events  and ). We also use  if the probability,
 (), of an event  is subjective.

If probabilities are not available we have ambiguity and say that events are ambiguous. The

distinction of uncertainty into risk or ambiguity was reinforced by Ellsberg (1961), leading

to a growing literature on ambiguity (see Gilboa and Marinacci (2013) for a review), and

has roots dating back to Keynes (1921) and Knight (1921). To capture ambiguity attitude we

follow the approach of Schmeidler (1989) where ambiguity attitude is captured by general event

measures. Formally an event measure, , assigns weight 1 to , 0 to the empty event (∅) and

is monotone in the sense that an event that includes another event has at least as much weight

as the latter, but it is not necessarily a probability measure as it may violate additivity (e.g.,

() + () 6= 1 is permitted).
Following prospect theory (PT; Tversky and Kahneman 1992) we assume that monetary

outcomes are treated as gains and losses relative to a reference point, the latter being set

equal to 0. In general, the preferences of a PT-agent are reference-dependent, meaning that

attitude towards outcomes depends on whether the latter are gains or losses and, further,

attitude towards probabilities of events and towards ambiguity may be affected by whether

events give gains or losses.6 Our focus is on the index loss aversion measured at the reference

point (Köbberling and Wakker 2005) and our method needs to circumvent event weighting in

order to extract loss aversion from observed choices. For the purposes of this study, we formally

introduce these concepts by assuming that the agent evaluates a prospect  by linear prospect

theory (LPT). That is, one of the following three cases apply:

(i) if  ≥  ≥ 0, the agent uses the event measure + to evaluate a prospect by

 () = +()+ [1− +()];

6This effect of reference-dependence on event weighting has also been referred to as sign-dependence (e.g.,

Luce and Fishburn 1991).
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(ii) if   0  , the agent uses, additionally, the event measure − to evaluate a prospect

by

 () = +()+ −()

where   0 is the index of loss aversion;

(iii) if 0 ≥  ≥ , the agent uses only the event measure − to evaluate a prospect by

 () = [1− −()]+ −()

To keep the exposition simple, we always ensure that  ≥ . For general purposes, we

note that a similar evaluation applies for the case that the outcomes in the prospect  are

ranked in the order  ≥ . LPT deviates from a general PT evaluation as it uses a linear utility

function for outcomes that may have a kink at the reference point. The utility in LPT is of the

linear gain-loss utility form

() =

⎧⎨⎩  if  ≥ 0;
 if   0

In LPT (and in general PT) the utility is unique up to a positive scaling parameter. That is, 

can be replaced by , for   0, without affecting the preferences of the agent over prospects.

Further, the event measures under LPT are uniquely determined. The index of loss aversion,

 is uniquely determined and can, for instance, be identified from the ratio  = −(−)()
for some gain . If   1 we have loss aversion and   1 is interpreted as gain seeking. For

details and a formal derivation of LPT from preference conditions over more general prospects

we refer to Schmidt and Zank (2009).

Restricted to binary prospects, LPT includes well-known special cases. For instance, if

duality of the event measures holds (that is, +() + −() = 1 for all events ), then LPT

becomes a special case of the biseparable preference model of Ghirardato and Marinacci (2001)

with a linear gain-loss utility. This means that LPT also includes Yaari’s (1987) dual theory as

special case (for in the latter duality holds). It is well-known that, without restrictions placed

on utility functions, the biseparable preferences model is very general and includes Gul’s (1991)

disappointment aversion theory, Schmeidler’s (1989) Choquet-expected utility for ambiguity,

or the -max-min model of Ghirardato et al. (2004) as special cases. We note that, under the

duality assumption, the uniqueness results for utility are altered to cardinal uniqueness, that

is,  can be replaced by  +  for   0 and  ∈ R. This also holds for the linear gain-loss
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utility in LPT if we, additionally, assume that the event measure is additive and, hence, a

probability measure: this is the special case of subjective expected utility (EU) with linear

gain-loss utility; subjective expected value (SEV) is a further restriction in which  = 1 holds.

These relationships indicate that, except for the commitment to linear gain-loss utility, which

we argue is not very restrictive for our purposes, the class of preferences that (binary) LPT

accommodates is quite rich.

3 Modified Quadratic Scoring Rules

The mechanisms considered in this study extend the quadratic scoring rule (QR; Brier 1950,

de Finetti 1962, Hurwicz 1972, Selten 1998). An individual is asked to rate or score a value

 ∈ [0 1] for an event , such that the prospect

(− [1− ]2)(− 2) (1)

is most attractive. In the original QR there are no further restriction except that   0 and

  ∈ R. In an experiment, these parameters can be fixed by the designer, while the value
 is chosen by the participating subject. To illustrate, set  =  =  = 1. Then, whatever

the choice of  ∈ [0 1] the outcomes in the prospect (1) are nonnegative, and an agent with
SEV-preferences will choose  such as to maximize the expected value of the prospect. That

is, the agent solves the optimization problem

max
∈[01]

 [(1− [1− ]2)(1− 2)] = max
∈[01]

{[1− (1− )2] + (1− )(1− 2)} (2)

where  is the agent’s subjective probability of event . As the objective function in the

maximization problem (2) is concave in , we conclude that the first-order conditions are

necessary and sufficient for determining an interior solution, though the optimal value for 

could be at the boundary of the probability interval (i.e., at 0 or at 1). Hence, after some basic

calculations, we obtain

∗() =  (3)

as the optimal choice for . This conclusion remains valid if the agent views  as impossible

( = 0) or as sure ( = 1). Note that the very same implication results for any fixed values

  0 and   ∈ R. Given the property of truthful revelation of the SEV-agent’s subjective
probability, the QR qualifies as a proper scoring rule. The result was restated as Corollary 1 in
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Offerman et al. (2009, p.1465) crediting Brier (1950) for the “first incentive-compatible result

provided in the literature.”

Assume now the more general LPT preferences for which we modify the QR. Consider first

the case that   0 and   ∈ R are fixed by the designer in a way that ensures the ranking of
outcome as −[1−]2 ≥ −2 ≥ 0 (whence, outcomes are gains) and reconsider the optimal
choice for the score . Similar to the case of SEV-preferences, we obtain

∗+() = +() (4)

as optimal choice for  (which also holds if +() = 0 or +() = 1). The result can also be

obtained from Theorem 1 in Offerman et al. (2009) given our assumption that utility is linear

for gains. The subscript “+” indicates that we have modified the standard QR to account

for the ranking of outcomes (i.e., event  gives the best outcome) and that all outcomes are

gains. As a result, + is proper in the sense that it is a mechanism which truthfully reveals

the LPT-agent’s weight for the event  provided that all events of the prospect in (1) give

gains and  gives the best outcome.

A similar result is obtained for our second case when the designer chooses the parameters

  0 and   ∈ R such that 0 ≥ − [1− ]2 ≥ − 2 whereby outcomes are losses. Now we

find

∗−() = 1− −() (5)

as the score for the losing event  (also valid if −() = 0 or −() = 1). Again the

standard QR is modified to account for the ranking of outcomes which now are losses. As for

+, the properness property for the modified −-mechanism is maintained leading to a

truthful revelation of the weight −() = 1− ∗−().

Combining the information derived from using equation (4) and (5) one can immediately

infer if duality is violated (i.e., if ∗+() 6= ∗−()). The appealing feature of the (modified)

QR is that with only two observations one can, in principle, test for a violation of duality in

an incentive compatible way. We formulate this result as a first proposition.

Proposition 1 Assume that LPT holds. For each event  let ∗+() and ∗−() denote

the quadratic scores for gains and losses, respectively. Duality holds if and only if

∗+() = ∗−() (6)

for all events . ¤

10



In Appendix A we prove Proposition 1 for PT with a general utility. Assuming linear gain-loss

utility then immediately provides the test proposed by Proposition 1. Our test is extremely

efficient compared to earlier non-parametric tests that have used chained methods to first elicit

utility before deriving the event weighting for risk (Abdellaoui 2000, Bleichrodt and Pinto 2000)

and it is simpler relative to methods which have, additionally, employed matching probabilities

for events to derive event weighting functions for ambiguity (e.g., Abdellaoui et al. 2005, where

some empirical support for duality is reported).7

Next we consider the case that   0 and   ∈ R are fixed by the designer such that the
ranking of the outcomes in prospect (1) is − [1− ]2  0  − 2. This results in a further

modified QR mechanism for the case that  is an essential event (i.e., neither  nor  is null

or universal).8 In that case the LPT-agent is maximizing the value of a mixed prospect and

reports a score for the event  according to

∗ () =
+()

+() + −()
 (7)

From this single equation we cannot separate the information about +() from −() and

. However, if in addition to Eq. (7) we invoke Eq. (4) and duality, we can express the loss

aversion parameter  in terms of reported scores for event . We obtain the following result.

Proposition 2 Assume that LPT holds and that duality of the event weighting functions is

satisfied. For each essential event , the loss aversion parameter is given by

 =
∗+()

1− ∗
+

()

1− ∗
 ()

∗
 ()

(8)

¤

The result of Proposition 2 once more demonstrates the efficient way in which the QR can be

used to obtain meaningful data. It is remarkable that, under the plausible assumption of LPT

and duality, only two QR-scores are required to measure loss aversion. Essentially we have

7The scope of those studies included the measurement of utility. To that aim, typically medium sized

outcome stimuli are used in a range where utility functions can be expected to reveal some curvature. Here,

we bypass the measurement of utility as we use small size outcome stimuli where utility can be expected to be

approximately linear, except perhaps at the reference point where loss aversion may lead to a concave kink.
8In the case that  is not essential, the LPT-agent maximizes either the value of a gain prospect or that of

a loss prospect, which is covered by the corresponding + and − mechanisms.
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provided a revealed preference tool to measure loss aversion that is simple to understand for

subjects, incentive compatible, and it is implementable even in the presence of biases caused

by event weighting.

For completeness we also spell out the equation for  when duality is violated. In this

case the experimenter needs to implement three QR-measurements in order to also control for

deviations from duality. Combining Eqs. (4), (5) and (7) we have the following result.

Proposition 3 Assume that LPT holds. For each essential event , the loss aversion para-

meter is given by

 =
∗+()

1− ∗
−()

1− ∗
 ()

∗
 ()

 (9)

¤

The predictions of the preceding propositions provide a basis for testable hypotheses. Hence,

we can empirically demonstrate the advantages of the QR method for testing duality and for

measuring loss aversion under PT by presenting an experimental study.

4 Experimental Tests of Duality and Loss Aversion

In an experiment subjects were asked to report their scores for events of binary prospects. We

implemented both sources of uncertainty (ambiguity and risk) and considered all three domains

of prospects (gains only, mixed, losses only). The design of the prospects was such as to employ

the modified QR-mechanism in order to verify the predictions of the Propositions 1—3 and to

test hypotheses that follow from those results. Although for each single implementation of a

QR-elicitation we follow closely the design of Offerman et al. (2009), a comprehensive overview

of our design is presented in the main text.

4.1 Design, Procedure and Stimuli

The experiment was run on computers in four sessions, each with 20—23 subjects. Ambiguous

events were described as the value of a stock being in a particular range and risky events as

draws of a numbered ball from an urn with the number being in a particular range. Each

subject faced six ambiguous events for each of two stocks and five risky events, and was asked
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to report scores for ∗+  
∗
 and ∗−. This gave 51 questions for each individual, of which

9 questions (the three scores for each a risky and two ambiguous events) were repeated.

The block of scores for ambiguous events preceded the block of scores for risky events.

Within each block, the first scores were for ∗+ followed by scores for 
∗
 and finally ∗−.

Within each source-mechanism-combination the order of the events were randomized. We

identified four stocks from companies listed in the CAC40 of the Paris Stock Exchange and

used preselected pairs of stocks (for subjects labeled as Stock 1 and Stock 2) for each of the four

experimental sessions such that each group faced a different pair of stocks (to avoid information

on events from one session being passed on to subjects participating in subsequent sessions).

For each ambiguous event the scores of the two stocks were elicited in the order Stock 1 then

Stock 2 before proceeding to scores for a new event. Within a session, all subjects faced the

same pair of stocks and the order of the two stocks was fixed in advance according to the seat

taken by the subject, such that any two adjacent subjects had stock specific data presented in

opposite order to their neighbor.

4.2 Participants

Eighty-six subjects participated in the experiment. They were recruited via ORSEE (Greiner

2004, http://www.orsee.org/web/) from the student body of the University of Rennes. Subjects

received an e-mail message advising them to register for a specific experimental session and that

they need to physically be present in the experimental laboratory at the University of Rennes.

Experimental sessions took place on four occasions on September 29 and 30 (two sessions) and

on October 2, 2014.

The proportion of female participants was 35%. The mean age was 1963 years, with a

standard deviation of 2. The experiment started with instructions read aloud in the room (a

translation is provided in Appendix C) and each QR-score was derived through a judgements

task immediately succeded by the corresponding choice task. On average it took subjects 16

minutes to complete all tasks in the experiment (12 minutes to perform the judgement tasks and

4 minutes to perform the choice tasks). The duration of the entire experiment, which included

a short period with some practice questions (4 for ambiguity and 2 for risk), was not recorded.

Reading out instructions and practice questions took about 15 minutes and the payment after

the experiment about 5 minutes.
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4.3 Stimuli

This subsection presents the design of the events, the outcomes and prospects employed in the

three QR-mechanisms, further descriptions of how a QR-scoring task was implemented, and

the payment methods used in the experiment.

4.3.1 Ambiguous Events

The CAC40 includes the 40 largest French companies on the Paris stock exchange. The four

stocks selected for the experiment were coded for data analysis purposes as Stock A (Total),

Stock B (Société Générale), Stock C (LVMH short for Moët Hennessy Louis Vuitton) and Stock

D (Safran SA) in the CAC40 of December 31, 2004. For subjects, the information provided

in a question was a diagram showing the values of a stock price between January 1 and June

30 without mentioning the year and without any units or scaling on the axes. As argued in

Offerman et al’s (2009), this design generates ambiguity as the name of the stock and the year

to which the observations relate were not provided in advance. At the end of the experiment

subjects could verify the information provided by the experimenter as being correct.

During the experiment, a subject would be asked to provide a score for the event that the

stock price on December 31 of that year is in a specified range, which are ambiguous naturally

occuring events (Baillon et al. 2018) constructed as follows: (i) Event 1 is that the stock price

falls below (or is equal to) the median of annual recorded values plus one fourth of the standard

deviation (+ 14). Event 2 was the complement of event 1; (ii) Event 3 is stock

price between (or equal to) the  − 12 and the  + 14. Event 4 was the

complement of 3; and (iii) Event 5 corresponds to the stock price being below (or equal to)

the − 12. Event 6 was the complement of 5.
Subject were not provided with median or standard deviation values. Instead, the events

were displayed as a colored rectangular block on the screen next to the diagram revealing the

stock price development for the preceding six months. Figure C1 in Appendix C presents the

six events used in the experiment visually in a diagram. In the experiment these visualized

blocks were used within the corresponding QR-scoring question.
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4.3.2 Eliciting QR-Ratings for Ambiguity

For each event the three QR-scores (∗+ 
∗
 and ∗−) were elicited using choice sets

generated by the corresponding modified QR-mechanism. To avoid potential biases (such as

subjects always starting at the top of a list), we implemented the two-step elicitation procedure

of Offerman et al. (2009), in which an initially judged probability is adjusted in a subsequent

choice task. Following the inspection of a diagram showing variation in price values of the stock

in the past six months, a subject had to make an initial guess about the probability that the

stock will have a value in event  ( ∈ {1     6}). They would enter their probability guess
in %-points out of 100 into a box on the computer screen. This is the judgement task within a

QR-scoring question.

Based on the probability guess in a judgement task, the second elicitation step in a QR-

score question consists of a choice task. It requires an adjustment of the initial probability

guess by reporting a QR-score. For this purpose, on the computer screen a table appeared

with three columns. The first column contained numbers ranging from 0—100% (in 1% point

units) while the second and third column contained outcomes of a QR-prospect corresponding

to those numbers. The row with the number corresponding to the initially guessed probability

and the corresponding outcomes was highlighted on the screen. Further, on the screen we

provided a smaller window with the stock price development and event used in the corresponding

judgement task. An example of a judgement task followed by the corresponding choice task is

displayed in Figures C2 and C3 of Appendix C.

The outcomes in a QR-prospect (i.e., ( − [1 − ]2)( − 2)) were generated according

to the three modified QR-mechanisms as follows: (i) for ∗+ , outcomes were generated by

choosing the parameters  = 20 000,  = 60 000 and  = 20 000; (ii) For ∗
 we generated

the outcomes using  = 20 000,  = 20 000 and  = −20 000; and (iii) for ∗− the outcomes
were determined using  = 20 000,  = −20 000 and  = −60 000. By varying  from 0 to 1,

these stimuli generated a list of choice alternatives in which the outcomes conditional on event

,  = 1     6 increased with the event weight given to , while the outcomes conditional on

the complement of  decreased with the event weight of . Further, the outcomes conditional

on the rated event were always ranked above the outcomes in the complementary event. In the

instructions, subjects were informed that outcomes were converted into real currency according

to the exchange rate 1 Euro = 5 000 experimental outcome points.
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4.3.3 Events and QR-scores for Risk

To describe the risky events we used a bingo-cage that contained balls numbered consecutively

from 1—50. This device was available for inspection in the room where the experiment took

place. A risky event referred to a single draw of a ball from the cage and the number of the

drawn ball being in a specified range. We used five probabilities framed as the following events:

the displayed range was {1 2 3} for probability  = 006; {1     15} for  = 030; {1     25}
for  = 050; {1     35} for  = 070; and {1     47} for probability  = 094. Except for the
framing of events, the judgement and choice tasks for risk have a similar display as for ambiguity

(see Appendix C, Figures C4 and C5). To compare our results on probability weighting and on

loss aversion to existing results in the literature, the QR-scores for risky events are particularly

useful. If the loss aversion parameter is independent of the source of uncertainty (i.e., or risk

or ambiguity) we should expect to see similar results on loss aversion for risk as for ambiguity.

4.3.4 Payment and Incentives Scheme

Each subject received a show-up fee of 4 Euros. In addition to the show-up fee, subjects received

an initial endowment of 16 Euros, from which they could win or lose some amount depending

on their choices during the experiment and depending on one randomly selected choice task.

This task was placed in a sealed envelope and selected at the beginnig of the experiment, while

at the end of the experiment the content of the envelope was opened such that the choice of

the selected QR-task could be played out for real. This random incentive procedure is known

as the PRINCE-method (Johnson et al. 2021). For choice under ambiguity, Baillon et al.

(2015) provided arguments for implementing the random incentive system in this way. Given

the outcome stimuli used in the QR-scoring questions, a subject could gain or lose up to the

maximum of 16 Euros. The average payment was 1949 Euros, with a standard deviation of

738 (median payment was 2090 Euros; first quartile: 1459; and third quartile: 2384). Further

details on the payments are provided in Appendix B.

4.4 Results

This section first reports findings on choice consistency. As differences between the sources of

uncertainty can be expected, the information on consistency will inform us about the frequency

of potential errors. The findings on duality and loss aversion are presented at the aggregate level
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and, for robustness purposes, also at the individual level. For loss aversion we report findings

by initially assuming the duality assumption and state if the results are robust to dropping this

assumption.

4.4.1 Consistency

Each individual participant has repeated nine QR-questions of which six were for ambiguity

(one for each score and each stock) and three for risk (one for each score). We computed

averages of the difference between the original QR-score and the repeated QR-score across all

repeated questions, and we grouped these according to the source of uncertainty (ambiguity

or risk) and according to the domain of prospects (gain, mixed, and loss). Column 2 of Table

1 reports these averages and it supplements them with percentages of consistent answers to a

scoring task according to three categories: no difference between scores (Column 3), 5%-point

difference (Column 4) and 10%-point difference (Column 5).

Consistency Average difference % no diff. % 5 points diff. % 10 points diff.

Overall -0.53 36.95 52.33 68.48

Ambiguity -1.36 19.38 37.60 58.33

Risk 1.14 72.09 81.78 88.76

∗+ -1.47 34.88 45.35 62.02

∗
 -0.25 37.98 55.43 69.38

∗− 0.14 37.98 56.20 74.03

Table 1: Difference in ratings and percentage consistent answers

The results in Table 1 suggest that consistency of QR-scores was higher for risk than for

ambiguity. Indeed, less than 20% of repeated QR-scores under ambiguity agreed with the

original score, while for risky events more that 70% of scores were in agreement. This large

difference is source-driven and is expected as the QR-questions for risk are simpler to assess and

can easily be computed from the information provided, whereas the QR-questions for ambiguity

were subjective assessments provided on the basis of very little information (as expected for

ambiguity). If we allow for some error between initial and repeated scores, the difference in

consistent scores across sources of uncertainty becomes smaller but does not disappear.

There appears to be higher consistency for QR-scores as we move from the domain of gain
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prospects to mixed and loss prospects. As the QR-scores for ambiguity preceded those for

risk, beyond source-dependence, learning as the experiment progresses could be an alternative

explanation for higher consistency for QR-scores under risk. Also, the QR-scores for gain

prospects were always succeeded by the QR-scores for mixed prospects and, in turn, followed

by scores for loss prospects. The somewhat higher consistency for the latter scores could,

therefore, be a result of this design feature. A statistical analysis (Appendix C) delivered no

significant effect of learning from the order in which the QR-scores were elicited. There was

some effect attributable to the source of uncertainty (significant only at the 10%-level) with

higher consistency of scores for risk than for ambiguity, as expected. Given this finding, we

report subsequent results at the exact tests proposed in Propositions 1—3 and, as a robustness

criterion, also with some tolerance of 5% or 10% to account for the potentially larger errors in

scores under ambiguity.

4.4.2 Aggregate Raw Data on Duality

This subsection presents a summary of the aggregate data on duality. Additional tables for

ambiguous events and individual stocks and for risky events are provided in Appendix C. Table

2 gives a summary of the distributions of QR-score differences for events of gains and losses

across sources of uncertainty. In particular, Table 2 shows that under ambiguity very few

choices satisfy duality exactly and that residual choices are distributed roughly even on either

side of the exact equality test (Appendix C confirms this finding at the level of each stock).

Source/ Ratings ∗+  ∗− ∗+ = ∗− ∗+  ∗−

Overall 34.20 23.12 42.68

Ambiguity 40.50 13.08 46.41

Risk 19.07 47.21 33.72

Table 2: Order of ∗+ and ∗− ratings in %

Under risk, nearly half of the choices satisfy the exact duality test and among the remaining

choices there appears to be a slight skew towards responses where ∗+ dominates 
∗
−.

If we toleratee for up to 5% or 10% deviation from the exact duality condition, we obtain

the distribution in Table 3. It shows that, on a scale ranging from−100% to +100%, the

average difference in the relevant scores is small and, in accordance with Table 2, is smaller for
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ambiguity than for risk due to the fraction of skewed responses for risk where ∗+ dominates

∗− . The skew in the distribution of differences in QR-scores for risk seems to be caused

Source / Ratings Average diff. % no diff. % 5 points diff. % 10 points diff.

Overall 0.74 23.12 42.34 61.90

Ambiguity 0.21 13.08 31.98 54.46

Risk 2.00 47.21 67.21 79.77

Table 3: Distribution of ∗+ and ∗− differences with tolerance

by differences that are small, which we infer from the large fraction of scores under risk that

are accommodated within a difference of up to 5% or 10% points. This can also be seen in

Figure C8 in Appendix C, which provides diagrams for the corresponding distributions of these

differences in scores for ambiguity and for risk.

Overall, 6190% of score differences between ∗+ and 
∗
− are equal or below 10 percentage

points; for ambiguity the corresponding fraction is 5446%, while for risk it is 7977%. It

is worth noting that, for ambiguity, these percentages are just 4—6% points lower than the

corresponding percentages in Table 1 on consistency of repeated scores, which suggests that

much of the observed variation could be caused by errors picked up as inconsistency in scores

under ambiguity rather than genuine violations of duality. By contrast, for risk the percentages

are about 9—23% points lower than those for consistency, suggesting some violation of duality

at the aggregate level.

To complete the aggregate data analysis on duality, Table 4 presents results for multiple

-tests on the hypothesis that duality holds for each stock and for risk at the level of each

event. The results in Table 4 show that for ambiguity there is little statistical support for

a violation of duality, while for risk there is some evidence against the duality hypothesis

(significant at conventional levels for  = 006 and  = 050). A similar conclusion is drawn

from a Wilcoxon test (Appendix C, Table 29). We highlight the exception for risk, where we

cannot reject the duality hypothesis for probability  = 030. The finding is noteworthy as the

experimental literature on probability weighting reports next to no deviation from objective

probabilities in the range (025 035) at the aggregate level (see, e.g., Wakker 2010). It could

well be that differences in ∗+ and 
∗
− scores are small because at  = 030 there is generally

little bias that can be attributed to probability weighting. This finding is useful for measuring
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Stock / Event 1 2 3 4 5 6

Stock A 0.501 0.151 0.790 0.670 0.584 0.809

Stock B 0.384 0.087 0.019 0.309 0.735 0.526

Stock C 0.078 0.621 0.274 0.505 0.176 0.737

Stock D 0.277 0.567 0.256 0.686 0.654 0.283

Source / Probability 0.06 0.30 0.50 0.70 0.94

Risk 0.030 0.204 0.007 0.080 0.069

Table 4: t-tests comparing ∗+ and ∗−

loss aversion. More generally, if one can identify events where bias attributable to probability

distortions is absent, one can employ such events to elicit QR-scores for gains and mixed

prospects because in LPT any difference between these scores are solely attributable to loss

aversion.9 We return to this point following our analysis on loss aversion.

4.4.3 Aggregate Data on Loss Aversion.

This part proceeds by initially assuming duality, whence a comparison of ∗+() and 
∗
 ()

scores for an event  is directly revealing information about loss aversion. For LPT, if  = 1

(i.e., neither loss aversion nor gain seeking), duality implies that ∗+() = ∗
 () (see

Proposition 2). Hence, a statistical analysis would show no significant difference between the

QR-scores in the gain and mixed domains of prospects with a large portion of scores falling in

the class with equality. If gain seeking (  1) or loss aversion (  1) holds this would imply

∗+()  ∗
 () or 

∗
+()  ∗

 (), respectively, and similarly a large proportion of

choices in those classes. Table 5 gives a summary of the distribution of the differences among the

two QR-scores over the three classes: no difference, difference in the direction of loss aversion

or gain seeking.

Table 5 shows that for risk half of the QR-scores are equal. For the remaining scores, there is a

somewhat larger proportion of reported values that accord with loss aversion compared to gain

seeking and this is independent of the source of uncertainty. Similar to Table 4, in Table 6 we

9In Appendix B we discuss the findings of studies that use binary choices among risky prospects with equally

likely gains and losses. Such studies do not control for probability weighting and their reported measures of

loss aversion are sensitive to the probability of events, reiterating the need for circumventing bias attributed to

event weighting.
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Source vs. Difference ∗
  ∗+ ∗

 = ∗+ ∗
  ∗+

Overall 34.75 25.51 39.74

Ambiguity 40.21 15.21 44.57

Risk 21.63 50.23 28.14

Table 5: Distribution of ∗+ and ∗
 differences

report results for multiple -tests on the hypotheses that ∗+ = ∗
 holds for each stock and

for risk at the level of each event (a Wilcoxon test is provided in the Appendix C, Table 30).

Table 6 supports the view that for most ambiguous events there is no statistically significant

Stock/Event 1 2 3 4 5 6

Stock A 0.027 0.169 0.914 0.728 0.500 0.180

Stock B 0.772 0.346 0.200 0.282 0.706 0.407

Stock C 0.253 0.938 0.749 0.182 0.020 0.788

Stock D 0.156 0.713 0.054 0.647 0.474 0.178

Source / Probability 0.06 0.30 0.50 0.70 0.94

Risk 0.173 0.614 0.277 0.086 0.986

Table 6: t-tests comparing ∗+ and ∗


difference between QR-scores in the domain of gain and mixed prospects. This observation

extends to the risky events. The exceptions are for 1 in Stock A and 5 for Stock C (and

maybe for 3 in Stock D). These finding would be seen as natural if differences in the scores

are normally distributed around 0. Figure C9 in Appendix C supports this view.

If we drop the assumption of duality, an analogue of Table 6 can be obtained. The cor-

responding test compares the values ∗
 (1 − ∗−) and ∗+(1 − ∗

 ), and essentially

corresponds to a test of the (null) hypothesis that  = 1. Except for Stock A, such a two-sided

test provides -values around 06, which means that there is insufficient statistical evidence to

reject the null hypothesis at conventional levels.

While we expect a less spread distribution under ambiguity, as suggested by Table 5, the

magnitude of the difference in the scores under ambiguity may be rather small or (in the case of

violations of duality) concentrated at specific events. To account for such variation we proceed

with the derivation of loss aversion parameters based on the relevant scores for each of the
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events.

4.4.4 Loss Aversion Parameters at the Aggregate Level

Here we provide results on the derived loss aversion parameters at the aggregate level. We report

data under the assumption that duality holds and also under the assumption that duality is

not satisfied. Under duality, Proposition 2 shows that the loss aversion index, here denoted 

with the added subscript indicating that duality is assumed, is determined according to Eq.

(8). We recall the equation for an arbitrary event  here:

 =
∗+()[1− ∗

 ()]

[1− ∗
+

()]∗
 ()



From this equation it is clear that, if subjects report one QR-score for an event at the extremes

of the probability scale (i.e., 0 or 100%), we obtain minimal and maximal values for , that

is, 0 or ∞. Further, if both QR-scores for an event are equal and extreme, then  would not,

mathematically, be well-defined. For this reason, 51 loss aversion indices could not be computed

(349% of all potential indices). Table 7 shows that the proportion of choices in agreement with

loss aversion is somewhat higher than the proportion of choices compatible with gain seeking.

The last three columns in Table 7 provide median and interquartile ranges for . These values

Source/  = 0 0    1  = 1 1   ∞  =∞ median Q1 Q3

Overall 4.04 30.71 22.02 39.74 2.05 1.00 0.65 1.63

Ambiguity 4.65 35.56 12.31 44.57 1.74 1.00 0.58 1.89

Risk 2.56 19.07 45.35 28.14 2.79 1.00 1.00 1.26

Table 7: Loss aversion parameters assuming duality, aggregate results. Percentage of choices

for Columns 2—6. Coefficients for the last 3 columns.

suggest that, at the aggregate level, median scores are compatible with the absence of both

loss aversion and gain seeking. This is particularly so for risk. Interquartile values suggest a

slight tendency towards loss aversion. This tendency can also be inferred from a comparison of

entries in Columns 3 and 5 of Table 7. There we observe that, out of all scores, there are 9%

more values in agreement with loss aversion instead of gain seeking (independent of the source

of uncertainty).

Given the assumption of duality, one can alternatively replace ∗+() by ∗−() and,

in combination with ∗
 (), compute the corresponding loss aversion parameter, say 

−
 , for
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each event . This is done in Appendix C (Table 31). The results show a similar distribution to

Table 7. The exception relates to risk, where now interquartile values suggest a slight tendency

towards gain seeking; but, on that note, we recall that duality was not supported for all events

under risk (Table 4).

If we drop the duality assumption and repeat the preceding analysis based on the loss

aversion parameter derived in Proposition 3, we obtain a similar summary.10 Relative to Table

Source/  = 0 0    1  = 1 1   ∞  =∞ median Q1 Q3

Overall 4.24 37.41 13.68 41.38 1.37 1 0.67 1.50

Ambiguity 4.17 41.47 4.26 46.71 1.45 1 0.60 1.71

Risk 4.42 27.67 36.28 28.60 1.16 1 0.87 1.08

Table 8: Loss aversion parameters without duality, aggregate results. Percentage of choices for

columns 2-6. Coefficients for the last 3 columns.

7, after dropping duality, in Table 8 we observe fewer scores with  = 1. Also, for ambiguity,

the proportion of median parameter values in agreement with loss aversion is just marginally

larger to the proportion in agreement with gain seeking. For risk the corresponding proportions

are similar.

Aggregate data does, of course, not account for individual heterogeneity. The next two

subsections give an overview of how the scores of individual subjects are combined in terms of

duality and according to their loss aversion parameters.

4.4.5 Individual Data on Duality

A subject has been classified as satisfying duality if 60% or more of their scores were in ac-

cordance with duality. For ambiguity this means that, out of 12 pairs of scores, 8 or more

have to agree with duality, while for the five risky events this means that 3 or more pairs of

scores have to agree with duality. Table 9 presents the distribution of individuals according to

whether they satisfy this criterion exactly (i.e., ∗+() = ∗−(); left panel) and whether

they satisfy duality up to 10% points difference in QR-scores (i.e., |∗+()−∗−()| ≤ 10%;
right panel), where we distinguish between sources of uncertainty. The results show that nearly

half of the individuals satisfy exact duality under risk and that only one individual satisfies

10As a result of extreme QR-ratings, 48 loss aversion coefficients could not be computed (328% of indices).
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Risk

no difference 10%-difference

Duality Violated Satisfied Total Violated Satisfied Total

Ambiguity

Violated 46 39 85 8 48 56

Satisfied 0 1 1 1 29 30

Total 46 40 86 9 77 86

Table 9: Duality, Individuals; Left: equality of scores; Right: 10%-difference allowed

exact duality under ambiguity. In the right panel of Table 9 we observe that most individuals

pass the more tolerant duality criterion for scores under risk. For ambiguity approximately 23

of the individual do not satisfy the latter duality criterion. This finding is in contrast to the

results based on aggregate data and suggests that, for ambiguity, loss aversion parameters at

the level of individuals assuming duality may differ to those without this assumption, while for

risk the duality assumption can be justified.

4.4.6 Individual Loss Aversion Data under Duality

In this part duality is assumed although, as the analysis in the preceding subsection suggests, for

ambiguity this assumption may not be justified at the level of individuals. While there are some

qualitative differences when the duality assumption is dropped, the findings on loss aversion at

the individual level are in many ways similar (and, hence, postponed to Appendix C). Given

that each individual has rated six ambiguous events for two type of stocks and five risky events,

we can compute 17 individual loss aversion parameters, one for each event. We aggregated these

parameters using two simple, alternative rules. For each subject we determined the median and

the mean loss aversion parameters across events for ambiguity and separately for risky events,

and we supplemented these estimates with statistical analyses.

For ambiguity, the median of subjects’ median -values is equal to 1, with an interquartile

range (IQR) of [0855 1268]. If we exclude values that are extreme (i.e., 0 or ∞), the median
remains unchanged while the IQR is [0885 1306]. The average of the individual medians

(after excluding extreme values) is equal to 1239. Somewhat lower values are found for −

parameters. Table 10 provides details, including Wilcoxon and t-tests for the hypothesis that
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 −

all no extr. all no extr.  = −

Median 1.000 1.000 1.000 1.000

Wilcoxon 0.096 0.013 0.993 0.336 0.251

Wilcoxon, log 0.147 0.029 0.788 0.467

Q1 0.855 0.885 0.778 0.786

Q3 1.268 1.306 1.230 1.258

Mean ∞ 1.239 ∞ 1.091

t-test 0.018 0.081 0.121

t-test, log 0.030 0.473

Table 10: Ambiguity & Duality: Median loss aversion parameters, with/without extreme values

the median and mean parameter values are equal to 1 and that  = − . As the distribution

of parameters is restricted to positive values, we also considered the statistical tests using log-

parameter values. Further analyses at the level of stock and for averages of subjects’ median

loss aversion parameters are provided in Appendix C (Tables 32 and 33).

Next we report findings for risky events. There, the median of subjects’ median -values is

also equal to 1, with an IQR of [1 1142]. If we exclude values that are extreme (i.e., 0 or ∞),
the resulting statistics are virtually identical. After exclusion of extreme values, the average of

the individual medians is equal to 1101. Table 11 supports the hypothesis that  = − which,

in contrast to the aggregate data analysis, suggests that duality is satisfied for risk at the level

of individuals.11 Table 12, based on subjects’ average of median loss aversion parameters, also

suggests that many individuals do not exhibit loss aversion or gain seeking for risk when duality

is assumed. That said, to some degree loss aversion is supported by the IQR’s and the fact that

some individuals are extremely loss averse, thereby pushing the mean of the averages above the

prominent value for loss aversion of 2.

To complete the results for loss aversion parameters under the duality assumption, we first

note that, at conventional levels a paired t-test shows no significant difference between risk and

ambiguity in individual mean parameters (two-sided test: p-value= 0411); this is confirmed

11It can be inferred from the proof of Proposition 1 that  = − indirectly supports the view that utility

curvature has no significant effect on our elicited index of loss aversion. Further arguments supporting the

assumption of linear utility on each side of the reference point are presented in Appendix B.
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 −

all no extr. all no extr.  = −

Median 1.000 1.000 1.000 1.000

Wilcoxon 0.032 0.011 0.195 0.914 0.023

Wilcoxon, log 0.057 0.022 0.943 0.675

Q1 1.000 1.000 1.000 1.000

Q3 1.142 1.141 1.000 1.000

Mean ∞ 1.101 ∞ 1.011

t-test 0.009 0.666 0.013

t-test, log 0.062 0.717

Table 11: Risk & Duality: Median loss aversion parameters, with/without extreme values

 −

all no extr. all no extr.  = −

Median 1.050 1.018 1.000 1.000

Wilcoxon 0.011 0.001 0.944 0.316 0.049

Wilcoxon, log 0.016 0.001 0.707 0.248

Q1 0.915 0.924 0.849 0.919

Q3 1.877 1.492 1.135 1.123

Mean ∞ 2.05 ∞ 5.282

t-test 0.182 0.256 0.280

t-test, log 0.001 0.042

Table 12: Risk & Duality: Mean loss aversion parameters, with/without extreme values

by a Wilcoxon test (two-sided test: p-value= 0893).12 Second, we provide a distribution of

individuals as gain seeking (∗+()  ∗
 ()), loss averse (

∗
+()  ∗

 ()), neutral

(∗+() = ∗
 ()) or else unclassified, according to the criterion by which 60% or more

pairs of relevant QR-scores are in the corresponding class and conditional on the source of

uncertainty. We obtain Table 13, where we observe that under risk the majority of individuals

12There is no theoretical basis for us to assume loss aversion as sole alternative hypothesis, hence we report

two-sided tests. On a different point, we remark that a paired test does not require a logarithmic transformation

of the data, because there is no reason for the sampling distribution of the difference to be asymmetric.
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Risk

Gain Seeking Loss Averse Loss Neutral Unclassified Total

Ambiguity

Gain Seeking 1 2 3 0 6

Loss Averse 3 4 6 1 14

Neutral 0 0 2 0 2

Unclassified 7 15 35 7 64

Total 11 21 46 8 86

Table 13: Loss aversion under duality: individual classifications

exhibit neutral loss attitude and there are nearly twice as many loss averse individuals as there

are gain seeking; very few individuals cannot be classified. By contrast, under ambiguity, most

individuals are unclassified and of the few classified individuals there are more than twice as

many loss averse individuals as there are gain seeking.

If we allow for a 10% point difference between relevant QR-scores for gain and mixed

prospects, we obtain a similar table with most individuals (78 out of 86) regarded as loss

neutral for risk and just 4 as unclassified. For ambiguity the number of loss neutral subjects

increases to 37 and the unclassified to 46. Very few individuals classify as loss averse or gain

seeking at the 10% tolerance level (see Appendix C, Table 34). As reported in Appendix C,

when the duality assumption is dropped, the corresponding results on loss aversion at the

individual level are only marginally affected.

4.5 Discussion

Our approach to measure loss aversion was to elicit decision weights for risky and ambiguous

events over three types of prospects (gain, mixed, and loss), and to combine these weights such

that the bias attributed to decision weighting cancels out and the index of loss aversion can

be identified from the collected data. We have reported that duality is not rejected at the

aggregate level but that for ambiguity it may not hold at the individual level. As a result, we

explore event weighting under ambiguity in more detail in the next section. Here we discuss our

findings on loss aversion. Further aspects of our QR-method and on consistency are provided

in Appendix B.
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Our data shows little support for loss aversion at the aggregate, neither at the individual

level nor across sources of uncertainty. Only if we take averages over each individual’s median

loss aversion parameter, we find values that give some support for loss aversion under ambiguity.

Then  = 1296 (assuming duality,  = 1484 and 
−
 = 1326). For risk there is no support for

loss aversion ( = 1,  = 105, 
−
 = 1). As individuals who are gain seekers have parameters

limited to the (0 1)-interval, such averages are driven mainly by those individuals with a high

loss aversion parameter. Our findings clearly deviate from most existing studies (which we

discuss further in Appendix B), but they agree with those of Chapman et al. (2018), von

Gaudecker et al. (2011) and Gächter et al. (2010), where it is observed that the distribution of

loss aversion parameters include many subjects with   1, and with Brooks et al. (2014), where

a model-free design using binary choices over mixed (mostly non-binary) prospects finds very

few individuals who classify as loss averse. Given that, for ambiguity, the average over individual

median -values are most supportive of the loss aversion hypothesis, but the corresponding -

values are much lower, the accumulated evidence suggests that event weighting under ambiguity

may partly be responsible for this difference.13

A specific comment concerns the practical measurement of loss aversion. In our experiment

we collected many scores for various events and their complements, in order for us to have

sufficient data for robustness checks. If one is only interested in a median value for loss aversion

for an entire population, our data supports a more pragmatic approach. For instance, we can

focus on QR-scores for an event with objective probability  = 03. Then, with only three

QR-scores, one for each domain (gain, loss and mixed) of prospects, we are able to obtain a

pragmatic estimate for loss aversion, say =03, based on Proposition 3. Specifically, we have

=03 =
∗+(03)[1− ∗

 (03)]

[1− ∗
−(03)]

∗
 (03)



Given that for our data we observed the median scores of ∗+(03) = ∗−(03) = 03 = 

we are not surprised to find that this specific loss aversion index under risk gives a median of

=03 = 1 (with interquartile range [1 13] when all answers are included; median =03 = 1 if

extreme answers are excluded).

In Appendix B we discuss features of our method and experimental design further, and we

also list additional findings on loss aversion from the literature. Our method finds that the

13This interpretation is also supported by the analysis carried out in the next section.
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bias attributed to probability weighting under risk is less pronounced (see also the results of

the next section). Further, by controlling for such bias we found little evidence in support of

loss aversion. Given that loss aversion is regarded as one of the most “important concepts of

behavioral economics” (Thaler 2016, p.1578), our finding is a concern for PT because different,

theoretically equivalent, methods should not give estimates for loss aversion that are far apart.

As PT was set out to be, among other features, the descriptive model for loss aversion under risk

and ambiguity we would expect to see stronger support for the phenomenon. Two remarks seem

relevant here: (a) our data does not reject PT, for the violations of duality are a consequence

reference-dependence and they accord with PT; and (b) PT does not deliver a formal axiomatic

foundation for loss aversion, and it may well be that the simple and intuitive interpretation of

loss aversion as a measure for the magnitude of the kink in the utility function at the reference

point has limits. Indeed, our data gives little support for this hypothesis.

5 Probabilistic Sophistication and Additive Beliefs

Probabilistic sophistication (Machina and Schmeidler 1992, Chew and Sagi 2006) holds if in-

dividuals facing choices between prospects under ambiguity assign subjective probabilities to

the corresponding events. For instance, for  ≥ , an ambiguous event  and a probability

measure  , the prospect  is perceived indifferent to the risky prospect  in which  is

obtained with probability  =  () and otherwise . In the evaluation of prospects, indi-

viduals may still distort those probabilities and, hence, deviate from subjective EU. For LPT,

probabilistic sophistication over gain prospects means that the weight of an event is equal that

event’s distorted probability. To distinguish between the holistic weighting of an event and

the weighting functions for probabilities, in this section we use + for the former. We write

+() = +( ()). Abdellaoui et al. (2011) call + a source function as it distorts subjec-

tive probabilities of ambiguous events and the deviations from subjective probabilities may, in

general, depend on the source of uncertainty that generates the ambiguity.

Here, in addition to risky events, we have ambiguity resulting from just one further source

of uncertainty (i.e., the price of stock on a set date being within a specific range). If we assume

that objective probabilities are distorted in a similar way as subjective ones are distorted, our

QR-scores for risk allow for an estimation of the weighting functions for probabilities and, when
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combined with the QR-scores for ambiguous events, one can identify the subjective probability

of the latter (see also Offerman et al. 2009 and Kothiyal et al. 2011). Thus, our elicited

QR-scores for gain prospects allow for a test of probabilistic sophistication as the following

equivalences illustrate.

 ∼  ⇔ +() = +( ())

⇔ +() = +( ())

Assuming that the estimated probability function for gains has an inverse function, (+)−1,

from the latter equation we obtain

 () = (+)−1[+()]

Similarly, for prospects involving only losses, we obtain

 () = (−)−1[1− −()]

As a result of these derivations, we can test for probabilistic sophistication by looking at the

“distance from probabilistic sophistication” for the events used in our experiment, i.e., by

employing the measure () := 1−  ()−  (), which we call index of (deviation from)

probabilistic sophistication. We obtain the following straightforward result.

Proposition 4 Assume that LPT holds. Then probabilistic sophistication holds if () = 0

for all events , or equivalently, if

(+)−1[+()] + (
+)−1[+(

)] = 1 (10)

for all events  attached to gains, and

(−)−1[1− −()] + (
−)−1[1− −(

)] = 1 (11)

for all events  attached to losses. ¤

Given the preceding result, we can test for probabilistic sophistication if the probability

weighting function is estimated. To illustrate, we assume the one-parameter weighting function

proposed by Tversky and Kahneman (1992). It takes the form

() =


[( + (1− )]1

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with  positive. We measure the index  by combining our QR-scores for gains and for losses

with the results from Proposition 4.

Based on each subject’s QR-scores for five risky events for both gains and losses, the indi-

vidual parameter estimate for the weighting function of gain probabilities has a median + = 1

(IQR= [0813 1]) and a mean of + = 0934 ( = 0278). For probabilities of losses we have a

median − = 0972 (IQR= [0820 0972]) and a mean of − = 0929 ( = 0199). While there

is some deviation from a linear weighting function in the direction that supports an inverse-S

shape, the departure from linearity appears to be small.14

Table 14 summarizes the parameter-based findings on the index  for all ambiguous events

that give gains and at the level of the individual stocks. Based on parametric estimates for the

mean t-test median Wilcoxon test Anova

Overall 0.007 0.642 0.000 0.479 0.771

Stock A -0.016 0.605 0.000 0.890 0.693

Stock B 0.055 0.073 0.012 0.041 0.171

Stock C -0.017 0.548 -0.020 0.308 0.622

Stock D 0.009 0.766 0.000 0.537 0.803

Table 14: Tests of probabilistic sophistication, gains, parameter based  index

weighting function, there does not seem to be a reason to reject the assumption of probabilistic

sophistication for events that give gains (the exception maybe being Stock B). For events that

give losses, Table 15 indicates that the data reject the hypothesis of probabilistic sophistication

at the conventional 5%-level. The consequence of this finding supports the view that event

weighting is sign-dependent.

For the estimation of a one-parameter weighting function, deviations from linearity at indi-

vidual QR-scores are smoothened out over all observations and some statistical error related to

the parameter could propagate through to any statistical analysis of the index of probabilistic

14At this point a separate discussion of these findings for risk seems in order: That these estimates are larger

than others found in the literature (e.g., Abdellaoui 2000) may be a consequence of asking subjects to judge

objective probabilities before reporting a choice for a QR-score. If bias from utility curvature or loss aversion is

small, the judgement of objective probabilities cannot be far off the actual value. As a result small deviations

from objective probabilities are expected. We think it is a positive feature of this procedure to ask for an initial

judgement for an event’s likelihood such that it reduces biases when making a subsequent choice.
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mean t-test median Wilcoxon test Anova

Overall -0.113 0.000 -0.066 0.000 0.000

Stock A -0.161 0.000 -0.077 0.000 0.000

Stock B -0.113 0.000 -0.087 0.000 0.003

Stock C -0.079 0.002 -0.052 0.002 0.026

Stock D -0.095 0.001 -0.021 0.000 0.011

Table 15: Tests of probabilistic sophistication, losses, parameter based  index

sophistication . For this reason it seems warranted to develop robustness tests with non-

parametric estimates for the probability weighting functions or, ideally, a test that directly uses

the elicited QR-scores for risky events as the basis for the deviation from linearity in probabil-

ities. The latter route is possible here as we can connect the relevant QR-scores to obtain a

linearly interpolated probability weighting function. Based on the latter, we obtain a similar

conclusion as for the parameter based -indexes (Appendix C; Tables 40 and 41).

As median data of parametric estimates suggested, probability weighting at the level of

subjects did not seem very pronounced. One could, therefore, use a less complex measure to

test for probabilistic sophistication in an holistic way, that is, without correcting subjective

beliefs for probability weighting. In Appendix B we explores this approach and find, similar to

the results in this section, support for sign-dependent event weighting.

6 Conclusion

Designing simple and efficient mechanisms to reliably measure subjective beliefs has been a

central issue in many areas of economic activity (Manski 2004). Proper scoring rules are such

mechanisms. One popular version, the quadratic scoring rule (QR) measures distorted beliefs

under risk and ambiguity. By taking a version of prospect theory (PT) with linear gain-

loss utility, we have shown how the QR can be extended to efficiently measure such beliefs

when preferences display reference-dependence, and how to combine those measurements for

the elicitation of the loss aversion parameter, , of PT. The additional benefits of the new

tool are inherited from characteristic properties of scoring rules: they are relatively simple to

implement, easy to understand by subjects, incentive compatible, and they dispense of chained

measurements. We have demonstrated these benefits in an experiment.
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While it is reassuring that our estimates for loss aversion deliver similar measures for risk as

they do for ambiguity, it is surprising that the median loss aversion parameter value is  = 1 for

both sources of uncertainty. We find that preferences are reference-dependent, as assumed in

PT, but that this aspect of behavior is mainly revealed through sign-dependent event weighting

and to some degree also through probability weighting. For risk, the deviation from objective

probabilities is less pronounced, and for ambiguity, probabilistic sophistication is violated only

for losses.

PT accommodates several descriptive challenges to traditional models of uncertainty well.

The model has been influential for many exciting developments of the last decades. These

advances are responsible for new and more sophisticated measurement tools, yet their arrival

seems to pose new challenges for PT itself. While PT delivers a framework in which reference-

dependence and loss aversion can be accounted for, our data indicate that in choice situations

where joint trade-offs between utility and subjective beliefs for events are explicitly invoked, loss

aversion is of less relevance for revealed behavior. This finding is not necessarily a falsification

of PT, but it indicates that a simple account for loss aversion as a local feature of utility (i.e.,

a concave kink at the reference point), while intuitive and convenient, this may not be the best

way to capture the loss aversion phenomenon.

Appendix

The appendix consists of a three parts: Part A provides proofs. Parts B and C are supplemen-

tary. Part B reviews prospect theory and studies that use alternative methods to measure loss

aversion, and it provides further discussion on our QR-method. Part C consists of additional

material and data analyses related to our experiment.

Appendix A: Proofs

Proof of Proposition 1: For the proof we assume that PT of Tversky and Kahneman

(1992) holds, with a general utility  : R→ R (0) = 0 strictly increasing and continuous. We

further assume that utility is differentiable, except at 0 where continuity ensures the existence

of left and right derivatives. Duality is defined as +() = 1− −() for all events .

For the case that  = ∅ (or  is a null event that is immaterial for preferences), we have
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∗+() = 0 = ∗−() and duality is verified. Similarly, for the case that  =  (or  is a

universal event, i.e., its complement is null), we have ∗+() = 1 = ∗−() and duality is

verified. Next we restrict attention to events that are essential, i.e., they are neither null nor

universal.

Let +() and −() denote the ratios of marginal utility at an optimal score for an

event . That is,

+() :=
0[1− (1− ∗+())

2]

0[1− ∗
+

()2]
 −() :=

0[1− (1− ∗−())
2]

0[1− ∗
−()

2]


Following Corollary 7 in Kothiyal et al. (2011), we have

+() =
∗+()

∗
+

() + (1− ∗
+

())+()

and, similarly, one can derive

1− −() =
∗−()

∗
−() + (1− ∗

−())
−()



Duality says that, wherever well-defined, the ratio between the latter two equations is equal to

1. Therefore, we obtain

∗+() + (1− ∗+())
+()

∗
+

()
=

∗−() + (1− ∗−())
−()

∗
−()



which, after some manipulation, gives

+()

−()
=
[1− ∗−()]

∗
+()

∗
−()[1− ∗

+
()]



for all essential events .

Assuming LPT, means that +() = −() = 1, hence we obtain

1− ∗+()

∗
+

()
=
1− ∗−()

∗
−()

or, equivalently, ∗+() = ∗−() for all essential events . The converse, that 
∗
+() =

∗−() implies duality, follows immediate from the arguments in main text. This completes

the proof of Proposition 1. ¤

Proof of Proposition 2: The proof follows from Proposition 1 when combined with

Equation (7). ¤

Proof of Proposition 3: The proof follows from combining and simplifying the Equa-

tions (4), (5), and (7). ¤

The proof of Proposition 4 follows from the derivations in the main text of Section 5.
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Gächter, Simon, Eric J. Johnson, and Andreas Herrmann (2010) “Individual-Level Loss Aver-

sion in Riskless and Risky Choices” CeDEx Discussion Paper Series, No. 2010-20.

Ghirardato, Paolo, Fabio Maccheroni, & Massimo Marinacci (2004) “Differentiating Ambigu-

ity and Ambiguity Attitude,” Journal of Economic Theory 118, 133—173.

Ghirardato, Paolo & Massimo Marinacci (2001) “Risk, Ambiguity, and the Separation of

Utility and Beliefs,” Mathematics of Operations Research 26, 864—890.

Gilboa, Itzhak, & Massimo Marinacci (2013) “Ambiguity and the Bayesian paradigm.” D.

Acemoglu, M. Arellano, and E. Dekel edition: in Advances in Economics and Econo-

metrics, Tenth World Congress of the Econometric Society, Volume I, Economic Theory.

Cambridge University Press.

37



Greiner, Ben (2004) “The Online Recruitment System ORSEE 2.0 - A Guide for the Organi-

zation of Experiments in Economics.” Working Paper, University of Cologne.

Gul, Faruk (1991) “A Theory of Disappointment Aversion,” Econometrica 59, 667—686.

Gurevich, Gregory, Doron Kliger & Ori Levy (2009) “Decision-making under Uncertainty —

A Field Study of Cumulative Prospect Theory,” Journal of Banking and Finance 33,

1221—1229.

Harrison, Glenn W., Jimmy Mart́ınez-Correa, J. Todd Swarthout, & Eric R. Ulm (2017)

“Scoring Rules for Subjective Probability Distributions,” Journal of Economic Behavior

and Organization 134, 430—448.

Hossain, Tanjim, & Ryo Okui (2013) “The Binarized Scoring Rule,” Review of Economic

Studies 80, 984—1001.

Hurwicz, Leonid (1972) “On Informationally Decentralized Systems.” In Charles Bartlett

McGuire & Roy Radner (eds.) Decision and Organization, 297—336, North-Holland, Am-

sterdam.
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