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1 Introduction

Cross-country evidence reveals substantial heterogeneity across countries with respect to bank

risk-taking attitudes. Developed countries tend to have large financial intermediation sectors

which can be unstable, depending on a number of factors including the nature and extent of

regulation (Bezemer et al., 2020; Calomiris and Haber, 2015; Dávila and Goldstein, 2021; De Roux

and Limodio, 2023; Choudhary and Limodio, 2022). In this paper, we consider a quantitative

equilibrium model with banks benefiting from limited liability which allows us to investigate

how exogenous changes in risk affect credit provision by banks, and by implication long run

macroeconomic outcomes.1 By risk we mean the volatility or standard deviation of idiosyncratic

shocks to the return on banks’ assets (Christiano et al., 2014).2 Therefore, our paper contrasts

with the baseline Real Business Cycle or New Keynesian models where risk does not affect the

steady state or balanced growth path.

Specifically, we develop a Dynamic Stochastic General Equilibrium (DSGE) model with fi-

nancial intermediaries in which each generation of bankers operates for two periods, as in Clerc

et al. (2015).3 In our model, intermediate goods producers issue corporate securities that are

purchased by banks.4 Banks finance these securities through net worth and deposits.5 Banks

have limited liability and freely choose the degree of leverage in the first period by paying out

part of their net worth in the form of dividends, subject to dividend adjustment costs (Jermann

and Quadrini, 2012). However, the size of their balance sheet is limited by a minimum equity-

deposits requirement, where equity is the amount of net worth after dividend payments.6 Banks

face the above-mentioned risk shocks which affect the performance of their securities portfo-

lios in the second period of their existence, and therefore the profits they pay to their owners.

Because bankers operate under limited liability, they only care about the distribution of their

idiosyncratic shocks conditional on survival when making their balance sheet decisions in the

first period (Diamond and Rajan, 2011). Therefore, changes in the distribution of the shock af-

fect credit provision, investment and output. This contrasts with a standard DSGE model with

unlimited liability, in which the distribution of idiosyncratic shocks faced by bankers does not

1Ranciere et al. (2008) find a link between higher risk in the financial sector and higher long run output in
the form of a robust negative link between the skewness of credit growth and GDP growth in a large sample of
countries. This is true irrespective of the fact that excessive credit growth can lead to financial crises (Schularick
and Taylor, 2012; Reinhart and Rogoff, 2009).

2These idiosyncratic shocks can result from limits to diversification of bank assets (for example: re-
gional/sectoral specialization) or unmodeled disturbances to banking costs and revenues Mendicino et al. (2018).

3See Bernanke et al. (1999); Gertler and Karadi (2011) for contributions on models with financial frictions.
4We refer to corporate securities rather than bank loans to emphasize their state-dependent nature following

Gertler and Kiyotaki (2010); Gertler and Karadi (2011). Bank loans are typically not state-dependent since they
have a fixed nominal principal (with exceptions for some indexed ones and in the case of default).

5Deposits within our model should be interpreted as any type of debt funding that banks might issue in reality,
including bank bonds, wholesale funding, and so on. Therefore, we use the terms “deposits” and “bank debt”
interchangeably.

6We introduce this minimum equity-deposit requirement in order to prevent a corner solution where banks
attract deposits, and pay all funds as dividends to their owners without acquiring corporate securities. This
minimum equity-deposit requirement can be mapped into a capital requirement that prescribes a minimum amount
of equity as a fraction of assets. However, the minimum equity-deposits requirement prevents banks from paying
all funds as dividends to its owners, something that is not ruled out by a capital requirement.
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affect equilibrium investment or output, as long as the mean of the distribution is unchanged.

In our model, the government is responsible for the degree of deposit insurance, which amounts

to the fraction of deposits that are reimbursed in case of bank default (Clerc et al., 2015). For

simplicity, we do not explicitly model other government regulations that the banks have to

abide by (except for the minimum equity-deposits requirement). However, we assume that the

standard deviation of the idiosyncratic volatility shock can be indirectly influenced by government

regulation, but we take the extent of regulation itself and its political origins and motivations

as exogenous. In other words, we do not assume that the regulator has perfect control over

the value of the standard deviation, but instead that it has the power to influence the standard

deviation indirectly via regulation.7 We interpret the standard deviation of shocks to bankers’

idiosyncratic risk as an outcome of the degree to which banks are regulated, with a large standard

deviation representing a regime with little regulation, as the financial sector will be able to invest

in riskier projects that have both a higher payoff in the good state of the world, and a much

lower payoff in the bad state.

Our analysis focuses on long-run outcomes, which we capture by studying the non-stochastic

steady state of the model.8 The combination of limited liability and (partial) deposit insur-

ance introduces moral hazard into our model (Kareken and Wallace, 1978): the fact that banks’

probability of default is not fully incorporated in the rate at which banks attract funding from

depositors induces banks to increase leverage with respect to the case of no deposit insurance,

everything else equal. As a result, an increase in the shock’s standard deviation (which increases

the probability of default) decreases the marginal cost of attracting an additional unit of de-

posits, thereby leading banks to hold more corporate securities (Diamond and Rajan, 2011).

We analytically show this for the full deposit insurance case. Banks expanding credit in this

way leads to an increase of steady state investment and output with respect to unlimited liabil-

ity. Simultaneously, a higher standard deviation increases the probability of bank default (and

therefore the fraction of banks that default ex post).9 Finally, we show analytically that credit

provision under full deposit insurance is always larger or equal to that under unlimited liability.

Moral hazard can be reduced by lowering the fraction of deposits that are reimbursed in case

of bank default: the smaller the fraction the more the probability of default is priced in by banks’

7For example, in the 1970s, many states in the US still had usury laws in place. The interest rate ceiling on
loans imposed by these laws became an important constraint with the environment of high inflation in the 1970s
and limited growth in the use of credit cards (a risky type of debt). In 1978 the Marquette vs. First of Omaha
ruling by the Supreme Court allowed banks to export the usury laws of their home state nationwide which set off
a competitive wave of deregulation, resulting in the effective elimination of usury rate ceilings (Sherman, 2009).
These interest rate ceilings on loans were constraining the distribution of overall risk of bank portfolios, because
banks cannot be properly compensated (since they needed to charge higher interest rates to riskier borrowers, i.e.
a risk premium). This meant that they would not lend to riskier borrowers.

8As we focus on the impact of risk, captured by the distribution of idiosyncratic shocks to the return on
banks’ assets, it suffices to use the non-stochastic steady state as a proxy for long-run macroeconomic outcomes:
idiosyncratic shocks still arrive in the non-stochastic steady state for all bankers that are in the second period
of their existence. Therefore, the distribution of these shocks affects the equilibrium even in the non-stochastic
steady state.

9The ex ante probability of bank default and the fraction of banks that default ex post are equal in the
non-stochastic steady state.
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creditors.10 However, we find that decreasing moral hazard in this way actually increases the

probability of bank default in equilibrium because of a nonlinear feedback loop between banks’

funding costs and the probability of default: the larger the fraction of deposits that are not

reimbursed, the more creditors increase interest rates to price in the probability of bank default.

This increase in funding costs, however, decreases banks’ (expected) profitability, which then

increases the probability of bank default.11 This, in turn, further increases banks’ funding costs,

which has amplification effects. In equilibrium, the long-run probability of bank default under a

regime with no deposit insurance is more than 50% higher than the case of full deposit insurance

for high levels of risk. In addition, we prove analytically that the level of credit provision to the

real economy under no insurance is always smaller or equal to the level of credit provision under

unlimited liability, as well as that it is always decreasing in risk.

The impact on the real economy from a complete absence of deposit insurance is large: as

a result of higher funding costs, credit provision can drop by approximately 90% for very large

values of risk (with respect to the case of unlimited liability), causing long-run output and

consumption to drop by more than 50%. This sharply contrasts with the case of full deposit

insurance, where credit provision and output increase relative to unlimited liability. The negative

impact on the macroeconomy from a complete absence of deposit insurance is mitigated when

50% of deposits are reimbursed, although credit provision, investment, and output still decrease

substantially with respect to the unlimited liability case. Higher deadweight costs from default

negatively affect welfare which always decreases with risk, except when there is full deposit insur-

ance. In that case, consumption increases with risk, which positively affects welfare, everything

else equal. However, the negative effects from deadweight costs trump the positive effects from

higher consumption, except when the fraction of assets that cannot be recouped is small.

Therefore, our results provide an additional argument in favor of deposit insurance, in addition

to the well-known Diamond and Dybvig (1983) argument about preventing bank runs (which are

absent in our model): deposit insurance eliminates the above-mentioned feedback loop that would

otherwise cause banks’ funding costs to increase to such an extent that the probability of bank

default increases far above that of the case of full deposit insurance. As such, financial instability

(as defined by the fraction of banks that default) decreases with more deposit insurance, despite

introducing moral hazard along the way.12

Our approach is related to that of Aghion et al. (2005), and Aghion et al. (2010), who focus

on credit constraints being able to cause a shift towards long-term investment. These authors

focus on how the tightness of credit constraints affects the composition of investment, whereas

we focus on how the distribution of idiosyncratic risk shocks affects the level of investment. Our

10We follow Clerc et al. (2015) by assuming that bank creditors diversify their funds across banks in the economy,
such that all banks borrow at the same interest rate.

11There is a counterpart in the sovereign default literature; for a review of this literature on debt-spirals see
Obstfeld and Rogoff (1996).

12Bank runs are absent from our model. Our feedback loop is generated by the interaction between funding
costs and the probability of default meaning that when funding costs get high, banks reduce lending, without any
strategic considerations.
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work is also related to other papers which study the effects of risk in the financial sector in DSGE

models. Christiano et al. (2014) shows that fluctuations in risk are a key driver of business cycle

volatility. Mendicino et al. (2018), Afanasyeva and Guntner (2020), and Elenev et al. (2021),

among others, study the emergence of risk shifting in financial intermediaries, as we do; but these

papers focus on the short run equilibrium. Bloom (2014) in turn, also focuses on the economic

effects of uncertainty for short and medium-run horizons. Gertler et al. (2012) and de Groot

(2014) investigate moral hazard and risk-taking within DSGE models but in their models banks

are not subject to limited liability as in our model.

2 Model

We consider a closed economy which contains households, bankers, intermediate, retail and final

goods producers, capital goods producers, and a government. Households provide labor services

to intermediate goods producers, and save through deposits in banks. They are the ultimate

owners of banks, producers, and capital goods producers. Profits and dividends of these firms

and banks therefore accrue to households.

Intermediate goods producers issue corporate securities to finance capital purchases from

capital goods producers. They use capital together with labor supplied by households to produce

an intermediate good. Intermediate goods producers sell to retail goods producers who operate

in an environment of monopolistic competition. Retail goods producers use their price-setting

power to charge a markup over the marginal cost of production to perfectly competitive final good

producers. However, they face quadratic adjustment costs when changing prices (Rotemberg,

1982).

Bankers live for two periods (Clerc et al., 2015), and receive a starting net worth from the

previous generation of bankers. Then they decide how much net worth they pay out to households

as dividends. We introduce this possibility for banks to choose the risk with which they operate.

They face quadratic costs in the deviation of dividends from some target level of dividends.

After paying dividends, they attract deposits, which they use to purchase securities issued by

intermediate goods producers, who need these funds to purchase physical capital for production.

Banks, however, are subject to a minimum equity-deposits ratio, where equity is defined as the

amount of banks’ net worth after dividend payments and adjustment costs. We model market

power for banks in the market for deposits assuming a Dixit–Stiglitz framework, similar to Gerali

et al. (2010), Güntner (2011), and Damjanovic et al. (2020). Bankers are profit maximizers and

face limited liability. Depositors are (partially) protected by deposit insurance, and therefore do

not fully price in the probability of bank default. As a result, bankers prefer deposit financing

(Kareken and Wallace, 1978). When next period’s revenues (which depend on an idiosyncratic

shock to the return on assets) are not enough to cover repayment of deposits, the banker’s assets

are taken over by a government-owned deposit insurance company that partially reimburses

depositors. However, as in Bernanke et al. (1999), this company faces costly state verification
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costs, as a result of which a fraction of revenues from the banker’s assets cannot be recouped.

We deviate from Bernanke et al. (1999) by having banks’ creditors making an active savings

decision. So in the optimization problem, bankers do not take a participation constraint into

account, but incorporate in their decision the effect of their leverage choice on the probability

of default. This in turn affects the interest rate at which they can borrow from depositors when

there is no full deposit insurance.

Note that in our model, depositors do not have perfect foresight about outcomes in individual

banks, therefore they cannot observe individual outcomes (defaults must be verified). However,

they know the distribution of idiosyncratic shocks (which is the same for all banks), implying in

equilibrium that every bank sets the same nominal interest rate and receives the same amount

of deposits (there is monopolistic competition in the market for deposits). This means that

households can correctly calculate expected returns.

2.1 Households

The economy is populated by a continuum of measure one of ex ante identical households.

Households are risk averse and maximize expected utility given by:

max
{ct+s,ht+s,at+s,dt+s}∞s=0

Et

{ ∞∑
s=0

βs

[
(ct+s − υct−1+s)

1−σc − 1

1− σc
− χ

1 + ϕ
(ht+s)

1+ϕ

]}
(1)

where ct denotes consumption and ht households’ labor supply. Households receive income from

labor, remunerated at wage rate wt, repayment (including interest) of previous period deposits

dt−1 and profits Πf
t from the firms and banks they own. Banks promise households in period t−1

a nominal interest rate Rn,dt−1 in period t. Households cannot discriminate between banks because

we will see in Section 2.3 that all banks make the same choices in equilibrium, and will therefore

offer the same nominal interest Rn,dt−1 in equilibrium. Therefore, households have their deposits

perfectly diversified across banks. Arriving in period t, all banks will receive an idiosyncratic

shock which is drawn from the same distribution for all banks. As a result of this shock, some

banks will default and not be able to repay their depositors in full. A deposit insurance agency,

however, reimburses a fraction of the deposits from those banks. If a substantial fraction of debt

financing does not fall under deposit insurance scheme, investors in these types of debt will take

losses. We capture this by assuming that a fraction γ of defaulting deposits is not reimbursed by

the deposit insurance agency in our model. As household deposits are perfectly diversified across

all banks, all households will receive the same effective rate of return R̃Dt =
(
1− γ∆b

t

) Rn,dt−1

πt
on

their deposits in period t, where ∆b
t denotes the fraction of defaulting banks, and πt ≡ Pt/Pt−1

the gross inflation rate of the final goods. Observe that even though households are not capable

of monitoring the behavior of individual banks, they are aware of the distribution from which the

idiosyncratic shocks are drawn, and will therefore be able to correctly calculate the (expected)

fraction of banks that will default.
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Household income is used for consumption, new deposits, and lump sum taxes τt. Finally, we

introduce a (nominally) risk-free asset at that is in zero net supply, on which the central bank

sets the nominal interest rate Rnt . Hence households face the following budget constraint:

ct + at + dt + τt = wtht +

(
Rnt−1

πt

)
at−1 + R̃Dt dt−1 + Πf

t , (2)

This results in the following first order conditions for savings through the risk-free asset and

bank deposits:

at : Et

[
βΛt,t+1

Rnt
πt+1

]
= 1, (3)

dt : Et

[
βΛt,t+1

(
1− γ∆b

t+1

) Rn,dt
πt+1

]
= 1, (4)

where βsΛt,t+s = βsλt+s/λt denotes households’ stochastic discount factor to discount cash flows

from period t + s into utility of period t, while λt+s denotes households’ marginal utility from

consumption in period t+ s.

2.2 Producers

2.2.1 Final goods producers

Final goods producers operate in a perfectly competitive market. They purchase yj,t units of

goods from retail firm j ∈ [0, 1] for a price Pj,t and sell the final good yt at price Pt. Final goods

producers employ the following technology to produce final goods from intermediate goods:

yt =

(∫ 1

0

(yj,t)
ε−1
ε dj

) ε
ε−1

, (5)

where ε denotes the elasticity of substitution between two different intermediate goods. They

aim at maximizing period-by-period profits. Hence their optimization problem is static, and

given by:

max
{yj,t}

(
Ptyt −

∫ 1

0

Pj,tyj,tdj

)
, (6)

subject to (5). This leads to the following first order condition, which describes the demand

function for intermediate good j produced by intermediate firm j ∈ [0, 1]:

yj,t =

(
Pj,t
Pt

)−ε
yt. (7)
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Substitution of this first order condition into the production technology of final goods producers

leads to the following aggregate price level:

Pt =

[∫ 1

0

(Pj,t)
1−ε

dj

]1/(1−ε)

. (8)

2.2.2 Intermediate goods producers

Intermediate goods producers employ a constant returns to scale technology using capital kj,t−1

and labor hj,t as inputs to produce yj,t:

yj,t = ztk
α
j,t−1h

1−α
j,t , (9)

where zt denotes aggregate productivity, which is given by a log AR(1) process:

log (zt) = ρz log (zt−1) + εz,t, (10)

where ρz ∈ [0, 1) and εz,t ∼ N
(
0, σ2

)
. At the end of period t− 1, intermediate goods producer j

issues securities skj,t−1 at a price qkt−1 to bankers in exchange for pledging next period’s after-wage

profits to bankers. We assume there are no financial frictions between bankers and intermediate

goods producers, and also no monitoring costs. Therefore intermediate goods producers are ca-

pable of credibly pledging next period’s profits (Gertler and Kiyotaki, 2010). They use the funds

to buy physical capital kj,t−1. Hence in equilibrium we will have that skj,t−1 = kj,t−1. Exoge-

nous shocks arrive at the beginning of period t, after which production takes place. Afterwards,

intermediate goods producers pay wages to their workers, and sell the depreciated capital stock

(1− δ) k,t−1 to capital goods producers at a price qkt . Finally, they pay a gross real return Rkt

to the owners of the corporate securities. Therefore, profits Πi
j,t of intermediate goods producer

j are given by:

Πi
j,t = mctyj,t + qkt (1− δ) k,t−1 −Rkt qkt−1kj,t−1 − wthj,t, (11)

subject to equation (9), and with mct the price at which intermediate goods are sold to retail

goods producers, and with wt denoting the real wage rate. Intermediate goods producers operate

in a perfectly competitive market, and aim to maximize after-wage profits. Labor is hired in a

perfectly competitive labor market. Therefore, the optimal labor demand condition is given by:

wt = (1− α)mctztk
α
j,t−1h

−α
j,t . (12)

We substitute this condition into the expression for profits (11), after which we set profits to

zero since all after-wage revenues are paid to the owners of corporate securities. Doing so allows

us to solve for the ex post return Rkt on corporate securities:

Rkt =
rkt + qkt (1− δ)

qkt−1

, (13)
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where rkt is given by:

rkt = αmctztk
α−1
j,t−1h

1−α
j,t . (14)

Expression (13) is the same as in Gertler and Kiyotaki (2010); Gertler and Karadi (2011, 2013).

They explain that these securities are state-contingent (on the realization of the exogenous

shocks) and therefore more equity-like. Therefore, we refer to these assets as corporate secu-

rities rather than bank loans.

2.2.3 Retail goods producers

Retail goods producers buy from intermediate goods producers, and convert this one-for-one into

a unique retail good. Since final goods producers buy from all retail goods producers using a

CES production technology (5), retail good producers face monopolistic competition. Therefore,

they take into account the demand function (7) when setting the price Pj,t of retail good j. We

follow Rotemberg (1982) by assuming that retail firms face quadratic adjustment costs when

changing prices. Hence their optimization problem is given by:

max
Pj,t

Et

{ ∞∑
s=0

βsΛt,t+s

[(
Pj,t+s
Pt+s

)
yj,t+s −mct+syj,t+s −

κP
2

(
Pj,t+s
Pj,t−1+s

− πγPt−1+sπ̄
1−γP

)2

yt+s

]}
,

(15)

subject to (7), where Λt,t+s = λt+s/λt is the ratio of future to present marginal utility of

consumption, and πt = Pt/Pt−1 is the inflation rate of the price level of the final good. Taking

the first order condition, and imposing a symmetric equilibrium, we find:

κp
(
πt − πγPt−1π̄

1−γP
)
πtyt = (1− ε) yt + εmctyt + Et

[
βΛt,t+1κp

(
πt+1 − πγPt π̄1−γP

)
πt+1yt+1

]
.

(16)

2.2.4 Capital producers

After intermediate goods producers have employed the capital stock kt−1 for production in

period t, they sell the depreciated capital stock (1− δ) kt−1 to capital goods producers at a price

qkt . Capital goods producers transform the old (depreciated) capital stock one-for-one into new

capital. They also purchase final goods it for conversion into new capital. However, converting

it final goods into new capital is subject to adjustment costs, which are quadratic in the change

in investment it/it−1 with respect to the previous period. The new capital stock at the end of

period t is then given by:

kt = (1− δ) kt−1 +

[
1− κk

2

(
it
it−1

− 1

)2
]
it, (17)

Capital goods producers’ profits in period t are the difference between the revenue from

selling the newly produced capital kt at a price qkt and the costs from purchasing the old capital

9



stock qkt (1− δ) kt−1 and the final goods for investment it. Capital goods producers maximize

the expected sum of discounted future profits. They are owned by households, and therefore

discount future profits with the households’ stochastic discount factor. Hence their optimization

problem is the following:

max
{it+s}∞s=0

Et

{ ∞∑
s=0

βsΛt,t+s
[
qkt+skt+s − qkt+s (1− δ) kt−1+s − it+s

]}
. (18)

After substituting equation (17), we differentiate with respect to it to get the following first order

condition:

1

qkt
= 1− κk

2

(
it
it−1

− 1

)2

− κk
it
it−1

(
it
it−1

− 1

)
+ Et

[
β
λt+1

λt

qkt+1

qkt

(
it+1

it

)2

κk

(
it+1

it
− 1

)]
(19)

2.3 Bankers

We assume an overlapping generations structure for the banking sector, whereby each generation

of banks operates for two periods, similar to Clerc et al. (2015). Banks that start operating in

period t receive a starting net worth from the household which owns the bank, and pay dividends,

attract deposits, and purchase corporate securities. Next period, at the beginning of period t+1,

returns are realized, the resulting bank net worth is paid out to the household to which the bank

belongs, and the bank stops operating.13

Specifically, bank j ∈ [0, 1] enters period t with net worth nbj,t, which is provided by the

owners of bank j (households), and is the same for all banks. In order to allow bank j to choose

the degree of risk it takes with its balance sheet, bank j pays dividends ηj,t to its shareholders in

the first period of its existence.14 These dividend payments, however, are subject to quadratic

adjustment costs as in Jermann and Quadrini (2012).15

f (ηj,t) =
1

2
κη (ηj,t − η̂)

2
, (20)

where η̂ is a target level for dividends, as quadratic adjustment costs are zero in that case. Hence,

13The ex-post real returns on deposits are realized following productivity shocks. The return on corporate
securities is subject to the same shocks but additionally a multiplicative idiosyncratic risk shock. Note that
by idiosyncratic risk shocks we mean bank-specific shocks to their return on the corporate securities, but the
realization of the shock that each bank gets is drawn from the same distribution (Bernanke et al., 1999; Clerc
et al., 2015). We interpret these shocks as reduced form for heterogeneity in banks’ lending portfolio. Depending
on the realization of the idiosyncratic shock, it is possible that a bank-specific share of the aggregate gross return
on corporate securities is lost, as in Clerc et al. (2015). These authors refer to this shock as a portfolio returns
shock.

14Banks choose how to fund a given amount of corporate securities through debt and equity but in our model
there is no risk-taking choice on the asset side since there is only one type of asset, as we will see below.

15Dividend adjustment costs capture preferences for dividend smoothing (Lintner, 1956). We explain the
implications of adopting dividend adjustment costs for the probability of bank default in the steady state at the
end of this subsection.
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after paying dividends, equity ej,t is given by:

ej,t = nbj,t − ηj,t − f (ηj,t) , (21)

The bank is subject to the following minimum equity-deposit ratio, which implies that the amount

of deposits dj,t that can be raised by bank j is limited by the amount of equity ej,t:
16

ej,t ≥ κtdj,t, (22)

We model market power for banks in the market for deposits assuming a Dixit–Stiglitz frame-

work, similar to Güntner (2011), Gerali et al. (2010) and Damjanovic et al. (2020).17 In this

framework, each bank j is the unique provider of deposits of type j, which implies that bank j

has the market power to set the nominal interest rate Rn,dj,t on deposits of type j, and provides

any amount of deposits demanded at that interest rate. Therefore, the aggregate household’s

demand for deposits at bank j is given by:

dj,t =

(
Rn,dj,t

Rn,dt

)−εd
dt, (23)

where dt are the aggregate deposits in the economy and εd < −1 (Gerali et al., 2010; Damjanovic

et al., 2020). Rn,dt is given by:

Rn,dt =

[∫ 1

0

(
Rn,dj,t

)1−εd

dj

]1/(1−εd)

. (24)

After setting the nominal interest rate Rn,dj,t , bank j obtains an amount of deposits dj,t. Deposits

dj,t and equity ej,t are then used to finance the acquisition of corporate securities skj,t at price

qkt . Therefore, bank j’s period t balance sheet constraint is given by:

qkt s
k
j,t + ηj,t + f (ηj,t) = nbj,t + dj,t = nbj,t +

(
Rn,dj,t

Rn,dt

)−εd
dt, (25)

where we substituted equation (21) for ej,t and equation (23) for dj,t. Similarly, we can write

the equity-deposit constraint (22) as:

nbj,t − ηj,t − f (ηj,t) ≥ κt

(
Rn,dj,t

Rn,dt

)−εd
dt. (26)

16In the absence of this constraint, the bank could raise deposits, and pay out all funds as dividends without
investing any funds in corporate securities.

17In a previous version of our paper we had a perfectly competitive market for deposits, and found that the
steady state spread between the return on corporate securities and the interest rate on deposits is always negative.
As this is not in line with the data, we introduce market power for banks in the market for deposits to obtain a
positive steady state credit spread.
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Net worth nbj,t+1 of bank j ∈ [0, 1] in period t + 1 equals the difference between the gross

return Rkt+1 on corporate securities qkt s
k
j,t and the gross return Rn,dj,t /πt+1 on deposits dj,t. Bank

j, however, receives a multiplicative idiosyncratic shock ωbj,t+1 at the beginning of period t + 1

on the aggregate return Rkt+1 on its corporate securities. Each bank’s shock is drawn from the

same log-normal distribution with cumulative density function F b
(
ωbj,t+1

)
with mean µbt+1 and

standard deviation σbt+1. Hence bank j’s gross return on corporate securities is ωbj,t+1R
k
t+1q

k
t s
k
j,t,

as in Bernanke et al. (1999). Therefore, bank j’s net worth in period t+ 1 is given by:

nbj,t+1 = ωbj,t+1R
k
t+1q

k
t s
k
j,t −

Rn,dj,t
πt+1

dj,t = ωbj,t+1R
k
t+1q

k
t s
k
j,t −

1

πt+1
(Rn,dt )ε

d

(Rn,dj,t )1−εddt, (27)

where we substituted equation (23). Bank j defaults if the idiosyncratic shock ωbj,t+1 is such that

bank j’s return on assets is below the return on deposits. Hence we can define a cutoff value

ω̄bj,t+1 below which bank j defaults:

ω̄bj,t+1R
k
t+1q

k
t s
k
j,t =

1

πt+1
(Rn,dt )ε

d

(Rn,dj,t )1−εddt =⇒ ω̄bj,t+1 =

1
πt+1

(Rn,dt )ε
d

(Rn,dj,t )1−εddt

Rkt+1q
k
t s
k
j,t

. (28)

We can now distinguish two cases: ωbj,t ≥ ω̄bj,t, in which case the bank pays out the remaining

funds to its shareholders, and ωbj,t < ω̄bj,t, in which case bank j defaults and does not pay out

dividends in period t+ 1. In that case, the bank is taken over by the deposit insurance agency,

which tries to recoup the bank’s assets, but faces verification costs to be described below.

Bank profits Πb
j,t+1

(
ωbj,t+1

)
in period t+ 1 for a given value of the idiosyncratic shock ωbj,t+1

can be written as:

Πb
j,t+1

(
ωbj,t+1

)
= max

[
ωbj,t+1R

k
t+1q

k
t s
k
j,t −

Rnj,t
πt+1

dj,t, 0

]
= max

[
ωbj,t+1 − ω̄bj,t+1, 0

]
Rkt+1q

k
t s
k
j,t,

where we substituted equation (28). Because we know the distribution F b
(
ωbj,t+1

)
, we can

calculate the expected profit conditional on the realization of the aggregate return on securities

Rkt+1 and inflation πt+1, see Appendix A2.1:

Πb
j,t+1 =

∫ ∞
ω̄bj,t+1

(
ωbj,t+1 − ω̄bj,t+1

)
f b
(
ωbj,t+1

)
dωbj,t+1R

k
t+1q

k
t s
k
j,t =

[
Ωbt+1 − Γb

(
ω̄bj,t+1

)]
Rkt+1q

k
t s
k
j,t, (29)

where Γb
(
ω̄bj,t+1

)
is defined as in Bernanke et al. (1999):

Γb
(
ω̄bj,t+1

)
= Gb

(
ω̄bj,t+1

)
+ ω̄bj,t+1

[
1− F b

(
ω̄bj,t+1

)]
, (30)

whereGb
(
ω̄bj,t+1

)
≡
∫ ω̄bj,t+1

0
ωbj,t+1f

b
(
ωbj,t+1

)
dωbj,t+1 and

∫∞
ω̄bj,t+1

f b
(
ωbj,t+1

)
dωbj,t+1 = 1−F b

(
ω̄bj,t+1

)
.

Finally, Et+1

(
ωbj,t+1

)
=
∫∞

0
ωbj,t+1f

b
(
ωbj,t+1

)
dωbj,t+1 = Ωbt+1 denotes the unconditional expecta-

tion of ωbj,t+1, which is the same for all banks. We will assume that µb = − (1/2)
(
σb
)2

, which
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ensures that the unconditional expected value of ωbj,t+1, Ω̄b is equal to one in the steady state

(Bernanke et al., 1999).

The banks’ objective function is given by the sum of today’s dividends ηj,t and expected

(discounted) profits (29):

ηj,t + Et

βΛt,t+1

Ωbt+1 − Γb

 1
πt+1

(Rn,dt )ε
d

(Rn,dj,t )1−εddt

Rkt+1q
k
t s
k
j,t

Rkt+1q
k
t s
k
j,t

 . (31)

where we used equation (28) to substitute out ω̄bj,t+1. The banks’ optimization problem is now

given by the maximization of (31), subject to the balance sheet constraint (25) and the equity-

deposit constraint (26). To find bank j’s optimal choices, we set up the Lagrangian:

L = ηj,t + Et

βΛt,t+1

Ωbt+1 − Γb

 1
πt+1

(Rn,dt )ε
d

(Rn,dj,t )1−εddt

Rkt+1q
k
t s
k
j,t

Rkt+1q
k
t s
k
j,t


+ψbt

nbj,t − ηj,t − f (ηj,t) +

(
Rn,dj,t

Rn,dt

)−εd
dt − qkt skj,t


+ψdt

nbj,t − ηj,t − f (ηj,t)− κt

(
Rn,dj,t

Rn,dt

)−εd
dt

 ,

where ψbt is the Lagrangian multiplier on bank j’s balance sheet constraint (25), and ψdt the

Lagrangian multiplier on bank j’s equity-deposit constraint (26). This generates the following

first order conditions:

skj,t : ψbt = Et
{
βΛt,t+1

[
Ωbt+1 − Γb

(
ω̄bj,t+1

)]
Rkt+1

}
+ Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)]
ω̄bj,t+1R

k
t+1

}
,

(32)

ηj,t : 1 =
(
ψbt + ψdt

)
[1 + f ′ (ηj,t)] , (33)

Rn,dj,t : −εd
(
ψbt − κtψdt

)
=
(
1− εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] Rn,dj,t
πt+1

}
(34)

where we used dΓb(ω)
dω = 1 − F b (ω); see Appendix A2.2. In addition, observe that the balance

sheet constraint (25) is always binding, as the right hand side of equation (32) is always larger

than zero. Meanwhile, the equity-deposit constraint is occasionally binding, which is captured

by the following equation:

ψdt

nbj,t − ηj,t − f (ηj,t)− κt

(
Rn,dj,t

Rn,dt

)−εd
dt

 = 0. (35)

To understand the intuition behind the first order condition for corporate securities (32), we

13



substitute equation (30) to obtain:

ψbt = Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
, (36)

The left hand side of equation (36) represents the marginal cost from attracting an additional

unit of corporate securities, as doing so tightens intermediaries’ balance sheet constraint which

is captured by its shadow value ψbt . The marginal benefit from an additional unit of corporate

securities is the expected value of the idiosyncratic shock conditional on survival, which is equal

to Ωbt+1 − Gb
(
ω̄bj,t+1

)
, multiplied by the aggregate return on corporate securities Rkt+1.18 To

convert in terms of today’s utility, we multiply by households’ stochastic discount factor βΛt,t+1

and take the expected value.

The intuition behind the first order condition for dividends (33) is straightforward. The left

hand side represents the marginal benefit from an additional unit of dividends that is paid out

to households. The marginal cost is on the right hand side, and comes from the fact that an

additional unit of dividends tightens banks’ balance sheet constraint, the shadow value of which

is ψbt , as well as the equity-deposit constraint, the shadow value of which is ψdt . The amount by

which it is tightened, however, is not ψbt + ψdt , but
(
ψbt + ψdt

)
[1 + f ′ (ηj,t)] since paying out an

additional unit in dividends also decreases banks’ net worth as a result of dividend adjustment

costs by an amount f ′ (ηj,t).

The intuition behind the first order condition for the nominal interest rate on deposits (34)

can be explained in the following way. The left hand side represents the net marginal benefit from

an increase in the nominal interest rate, which consists of two components. First, an increase

in the nominal interest rate increases the volume of deposits, which relaxes the banks’ balance

sheet constraint (25), everything else equal. The amount by which the constraint is relaxed is

equal to the shadow value ψbt from an additional unit of deposits multiplied by the amount by

which deposits increase (as a result of an increase in the interest rate), which is the elasticity of

substitution −εd > 0. However, attracting additional deposits also implies a tightening of the

equity-deposit constraint (26). The amount by which the constraint is tightened is equal to the

additional equity that is required, which is a fraction κt of the additional deposits −εd, and is

multiplied by the shadow value ψdt of an additional unit of equity. Therefore, the net marginal

benefit from an increase in the nominal interest rate is −εd
(
ψbt − κtψdt

)
.

The marginal cost from an increase in the nominal interest rate on deposits can be found on

the right hand side of equation (34), and comes from the fact that an increase in the deposit

interest rate not only increases interest payments directly, but also indirectly through an increase

in the volume of deposits, see equation (23). The total effect on interest payments is given by

the term 1− εd multiplied by the current (expected) real interest rate
Rn,dj,t
πt+1

and corrected for the

probability 1− F b
(
ω̄bj,t+1

)
that bank j survives the idiosyncratic shock.

18Remember that G
(
ω̄bt
)
≡
∫ ω̄bt
0 ωbtf

b
(
ωbt
)
dωbt denotes the expected value of the idiosyncratic shock conditional

on the bank not surviving, in which case bank j’s assets are seized by the deposit insurance agency of the
government and no longer accrue to banks’ owners.
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We prove in Appendix A2.3 that all banks choose the same quantities and interest rate in

equilibrium, i.e. skj,t = skt , ηj,t = ηt, and Rn,dj,t = Rn,dt . Therefore, we drop the j subscript going

forward. We then calculate the default rate, the fraction of banks that default, which occurs

if ωbt < ω̄bt . We denote this rate by ∆b
t =

∫ ω̄bt
0

f b
(
ωbt
)
dωbt = F b

(
ω̄bt
)
. Since households own a

diversified portfolio of banks, every household receives the same level of profits from the banks

that survive the idiosyncratic shock. After receiving these payouts, households provide the new

generation of bankers an amount that is equal to a fraction θb of the profits of the banks that

survived the idiosyncratic shock (Gertler and Karadi, 2011). In addition, they provide a fraction

χb of previous period aggregate net worth to the new generation of bankers. Therefore, the net

worth for a bank from the new generation (as well as aggregate net worth for the new generation

of bankers) is given by:

nbt = θb
[
Ωbt − Γb

(
ω̄bt
)]
Rkt q

k
t−1s

k
t−1 + χbnbt−1, (37)

More detailed mathematical derivations are provided in Appendix A2.4.

Finally, we show that in the absence of dividend adjustment costs there is no effect from

changes in the standard deviation of banks’ idiosyncratic shocks on the steady state probability

of bank default when the equity-deposit constraint (26) is not binding. To see this, first observe

from equation (33) that ψbt = 1 when the equity-deposit constraint (26) is not binding, i.e.

ψdt = 0, and when dividend-adjustment costs are zero, i.e. κη = 0. Solving for the nominal

interest rate on deposits from households’ first order condition for deposits (4) and substituting

the resulting expression in banks’ first order condition for the nominal interest rate on deposits

gives the following expression:

1 =

(
εd − 1

εd

) Et

{
β

Λt,t+1

πt+1

[
1− F b

(
ω̄bt+1

)]}
Et

{
β

Λt,t+1

πt+1

[
1− γF b

(
ω̄bt+1

)]} .
This expression boils down to the following expression in the non-stochastic steady state:

1 =

(
εd − 1

εd

)[
1− F b

(
ω̄b
)

1− γF b (ω̄b)

]
,

from which we immediately see that F b
(
ω̄b
)

will not change with the standard deviation of

banks’ idiosyncratic shocks σb for γ < 1, a feature which we think is unrealistic.

2.4 Government

2.4.1 Fiscal authority

The government purchases a constant fraction of output: gt = (ḡ/ȳ) yt, where ḡ and ȳ denote

steady state government spending and output, respectively. The government is engaged in (par-
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tial) deposit insurance. When a bank defaults, the deposit insurance agency closes the bank

down and takes over its assets. This agency incurs costs T diat , both from (partially) reimbursing

depositors as well as from the fact that a fraction µdia of recouped assets of bank j are lost

(because of costs that arise upon recouping and selling assets of the banks that have defaulted,

see Bernanke et al. (1999); Clerc et al. (2015)):

T diat = (1− γ)

∫ 1

0

∫ ω̄bt

0

Rdt dj,t−1f
b
(
ωbt
)
dωbtdj −

∫ 1

0

∫ ω̄bt

0

ωbtR
k
t q
k
t−1s

k
j,t−1f

b
(
ωbt
)
dωbtdj

+ µdia
∫ 1

0

∫ ω̄bt

0

ωbtR
k
t q
k
t−1s

k
j,t−1f

b
(
ωbt
)
dωbtdj

= (1− γ)F b
(
ω̄bt
)
Rdt dt−1 −

(
1− µdia

)
Gb
(
ω̄bt
)
Rkt q

k
t−1s

k
t−1, (38)

where Rdt ≡
Rn,dt−1

πt
denotes the real return on deposits in case of no default, and where G

(
ω̄bt
)

=∫ ω̄bt
0

ωbtf
b
(
ωbt
)
dωbt . Intermediate steps in this calculation can be found in the Appendix.

Total government expenditures in period t are equal to gt + T diat . These expenditures are

paid by raising lump sum taxes Tt from households.19 Hence the government budget constraint

is given by:

Tt = gt + T diat . (39)

2.4.2 Monetary authority

The monetary authority is in charge of setting the nominal interest rate Rnt on the risk-free asset

at that is in zero net supply. It does so by employing a standard Taylor rule with interest rate

smoothing parameter ρr:

Rnt = (1− ρr)
[
R̄n + κπ (πt − π̄) + κy log (yt/yt−1)

]
+ ρrR

n
t−1 + εr,t, (40)

where εr,t ∼ N(0, σ2
r) and κπ and κy are the weights given to inflation deviations and the growth

rate of output.

2.5 Market clearing

Market clearing in the capital market occurs when total securities (skt ≡
∫ 1

0
skj,tdj) equal the

aggregate capital stock kt:

skt = kt. (41)

In equilibrium, output is used for consumption by households, investment by capital produc-

ers, government spending, price-adjustment costs, and deadweight costs from the verification of

19Observe that households therefore do not internalize the fact that they have to pay for their own (partial)
deposit insurance.
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bankers µdiaGb
(
ω̄bt
)
Rkt q

k
t−1s

k
t−1 that report that they cannot repay their loans:

yt = ct + it + gt +
κp
2

(
πt − πγPt−1π̄

1−γP
)2
yt + µdiaGb

(
ω̄bt
)
Rkt q

k
t−1s

k
t−1. (42)

2.6 The role of limited liability in banks’ lending decisions

To further highlight the role that limited liability plays in our model, we will now compare the

first order conditions from Section 2.3 with those obtained from a model where banks are not

subject to limited liability, a case we will refer to as “unlimited liability”. In this model, banks

have to repay their creditors even in case the return on their assets is not sufficient. In this last

case, the owners of the bank (households) can be forced to reimburse the creditors.20,21 We show

the results for the case where the equity-deposit constraint (26) is binding, i.e. ψdt > 0, as this

will turn out to be the case in (most of) the simulations in Section 4. We show in Appendix

A6 that the results carry over in case the constraint is not binding, i.e. ψdt = 0. For analytical

convenience, we assume in the current and next section that dividend adjustment costs are zero,

i.e. f (ηj,t) = 0. We will lift this restriction when we discuss the numerical results in Section

4. Finally, we will employ the superscripts ULL and LL, respectively, to indicate the case of

unlimited liability and the case of limited liability, respectively.

First, we show in Appendix A5 that the first order condition for dividends under unlimited

liability is the same as the first order condition under limited liability, equation (33).22 Next,

we compare the first order condition for the nominal interest rate on deposits under unlimited

liability and limited liability, respectively:

ψb,ULLt =
κt

1 + κt
+

1

1 + κt

(
εd − 1

εd

)
, (43)

ψb,LLt =
κt

1 + κt
+

1

1 + κt

(
εd − 1

εd

) Et

{
β

Λt,t+1

πt+1

[
1− F b

(
ω̄bt+1

)]}
Et

{
β

Λt,t+1

πt+1

[
1− γF b

(
ω̄bt+1

)]} , (44)

where the derivation of equation (43) can be found in Appendix A5. The first order condition

(44) is obtained from the first order condition for the nominal interest rate on deposits under

limited liability (34) in the following way. First, we substitute ∆b
t = F b

(
ω̄bt
)

into households’ first

order condition for deposits (4), after which we solve for the nominal interest rate on deposits

Rn,dt and substitute the resulting expression into equation (34). Then, we solve for ψdt from the

first order condition for dividends (33) and substitute to obtain first order condition (44).

20The equivalent maximization objective of (31) under unlimited liability is ηj,t +

Et
[
βΛt,t+1

(
Ωbt+1R

k
t+1q

k
t s
k
j,t −R

n,d
j,t dj,t/πt+1

)]
, as we now integrate the idiosyncratic shock ωbj,t+1 from

0 to ∞, rather than from ω̄bj,t+1 to ∞.
21However, observe that under limited liability, households also effectively reimburse creditors in the presence

of deposit insurance, as payments from the deposit insurance agency to creditors are financed by levying lump
sum taxes on households.

22For comparability, we assume that the equity-deposit constraint is also binding in the unlimited liability case.
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Before we compare equations (43) and (44), let us first discuss the economic intuition behind

first order condition (44). The left hand side of equation (44) denotes the marginal benefit from

a relaxation of the balance sheet constraint (25) by an additional unit of deposits – through

an increase in the nominal interest rate on deposits, see equation (23) – as an additional unit

of deposits allows the bank to expand corporate securities by an amount 1 + κt.
23 The right

hand side denotes the marginal cost from an additional unit of deposits, which is a weighted

average of the need to retain an additional amount of equity κt (normalized by 1 + κt), and

the need to pay additional interest, which is equal to the real interest rate multiplied by the

probability 1 − F b
(
ω̄bt+1

)
that the bank survives the idiosyncratic shock (and discounted using

the households’ stochastic discount factor βΛt,t+1), which is normalized by 1 + κt, the amount

by which corporate securities expand as a result of an additional unit of deposits.

When γ = 1, households fully price in the probability of default. In that case, the first order

condition under limited liability (44) exactly coincides with that under unlimited liability (43).

However, when 0 ≤ γ < 1, we see that ψb,LLt < ψb,ULLt since Et

{
β

Λt,t+1

πt+1

[
1− γF b

(
ω̄bt+1

)]}
>

Et

{
β

Λt,t+1

πt+1

[
1− F b

(
ω̄bt+1

)]}
. The reason is that limited liability generates moral hazard under

(partial) deposit insurance (Kareken and Wallace, 1978): since households are (partially) reim-

bursed in case of default, the probability of bank default is not fully incorporated in the interest

rate at which creditors are willing to lend to the bank. As a result, the cost from acquiring

an additional unit of deposits decreases relative to unlimited liability, which induces banks to

acquire more deposits (through raising the interest rate), which increases the cut-off value ω̄bt+1

in equation (28), everything else equal, and therefore the probability of default F b
(
ω̄bt+1

)
.

However, despite the cost of an additional unit of deposits being lower under limited liability,

there is a second effect from limited liability that induces banks to reduce credit provision to the

real economy, everything else equal. To explain this, let us start by writing down the first order

condition for corporate securities under unlimited and limited liability, respectively:

ψb,ULLt = Et
[
βΛt,t+1Ωbt+1R

k
t+1

]
, (45)

ψb,LLt = Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
, (46)

The intuition behind equation (45) is that the marginal cost ψULLt from a tightening of bank

j’s balance sheet constraint (25) must be equal in equilibrium to the marginal benefit from

an additional unit of corporate securities, which is equal to the unconditional expected value

Ωbt+1 =
∫∞

0
ωbt+1f

b
(
ωbt+1

)
dωbt+1 of the idiosyncratic shock ωbt+1 multiplied by the aggregate

return on capital Rkt+1 (and discounted using the households’ stochastic discount factor βΛt,t+1).

The marginal benefit is different under limited liability, see equation (46). In contrast with the

unlimited liability case, we see that the returns from an additional unit of corporate securities

do not always accrue to bank j under limited liability, as they accrue to the government’s

23Substitution of banks’ binding equity-deposit constraint (22) into the banks’ balance sheet constraint qkt s
k
j,t =

ej,t + dj,t immediately allows us to write qkt s
k
j,t = (1 + κt) dj,t.
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deposit insurance agency in case of a default by bank j. This is captured by the fact that we

subtract Gb
(
ω̄bt+1

)
from Ωbt+1 in equation (46), where G

(
ω̄bj,t
)

=
∫ ω̄bj,t

0
ωbj,tf

b
(
ωbj,t
)
dωbj,t denotes

the expected value of the idiosyncratic shock conditional on default by bank j, which represents

the states of the world in which bank j’s assets are seized by the deposit insurance agency of the

government.

Therefore, we can immediately see that the case of γ = 1 represents the worst case from

the perspective of bank j, everything else equal (relative to the case 0 ≤ γ < 1 and unlimited

liability). The marginal cost of an additional unit of deposits is the same as under unlimited

liability, but the benefits from an additional unit of corporate securities do not always accrue

to bank j (unlike the case of unlimited liability). Since the marginal benefit from an additional

unit of corporate securities is smaller than under unlimited liability, bank j will acquire fewer

corporate securities, everything else equal. Since all banks choose an identical allocation in

equilibrium, less credit provision will lead to a lower capital stock.

For 0 ≤ γ < 1, it remains the case that the marginal benefit from an additional unit of

corporate securities under limited liability will always be smaller than that under unlimited

liability, everything else equal. However, in this case the effect on credit provision to the real

economy is ambiguous because of moral hazard, which arises because the marginal cost from an

additional unit of deposits (to finance an additional unit of corporate securities) is lower than

under unlimited liability.

3 Analytical results

In this section we derive analytical results for the non-stochastic steady state of the model.

The non-stochastic steady state suffices to properly capture the role that idiosyncratic shocks

have on long-run outcomes. In contrast to aggregate shocks, which are absent in the non-

stochastic steady state, idiosyncratic shocks still arrive for all bankers that are in the second

period of their existence. In addition, the idiosyncratic realizations of these shocks differ between

different bankers. In particular, every period bankers that receive an idiosyncratic shock ωb < ω̄b

will default, despite the economy being in the non-stochastic steady state. However, as the

idiosyncratic shocks have a stationary distribution, aggregate variables remain at their steady

state values. We will derive the analytical results for the case where the equity-deposit constraint

(26) is binding, which will turn out to be the case in (most of) our numerical simulations in

Section 4. We show in Appendix A9 the analytical results for the case where the equity-deposit

constraint (26) is not binding.

First, we show that the absolute level of credit provision can be ranked for the case of full

deposit insurance, unlimited liability, and no deposit insurance. Then, we develop comparative

dynamics for the parameters that reflect the extent of bank regulation: the volatility of the

idiosyncratic shocks to the return on bankers’ assets (σb) and the extent to which deposits are

insured (γ).
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σb represents a measure of the asset risk that banks are allowed to incur by regulation. For

example, interest rate ceilings in the US were effectively preventing banks from lending to riskier

borrowers (since they would not be properly compensated) before the 1978 the Marquette vs.

First of Omaha ruling which effectively set off a competitive wave of deregulation (Sherman,

2009). Therefore, we interpret σb as a measure of the degree to which banks are regulated,

with a low standard deviation representing a regime with heavy regulation, and a large standard

deviation representing a regime with light regulation.24

γ represents the fraction of deposits that are not covered by the government’s insurance

system (modern banks have forms of debt not covered by deposit insurance: such as interbank

loans, bank bonds and shadow banking).

We start by writing down the non-stochastic steady state equations of the banks’ first order

condition for corporate securities (36), for dividends (33), the nominal interest rate on deposits

(34), the households’ first order condition for saving through deposits (4), and the return on

corporate securities (13):

β
[
1−Gb

(
ω̄b
)]
R̄k =

(
κ̄

1 + κ̄

)
1

1 + κη (η̄ − η̂)
+

1

1 + κ̄

(
εd − 1

εd

)
1− F b

(
ω̄b
)

1− γF b (ω̄b)
, (47)

ψ̄b + ψ̄d =
1

1 + κη (η̄ − η̂)
, (48)

ψ̄b =

(
κ̄

1 + κ̄

)
1

1 + κη (η̄ − η̂)
+

1

1 + κ̄

(
εd − 1

εd

)
1− F b

(
ω̄b
)

1− γF b (ω̄b)
, (49)

1 = β
[
1− γF b

(
ω̄b
)]
R̄d, (50)

R̄k = αm̄cz̄k̄α−1h̄1−α + 1− δ, (51)

where we define the real interest rate on deposits as R̄d ≡ R̄n,d

π̄ . Note that the ex-ante and ex-post

interest rates coincide in a non-stochastic steady state. The right hand side of equations (47) and

(49) are obtained in the following way: first, we solve for ψ̄d from the first order condition for

dividends (33), and substitute the resulting expression into the first order condition for banks’

nominal interest rate on deposits (34). This allows us to obtain an expression for ψ̄b, after which

we substitute the expression that we obtain for R̄n,d

π̄ from the households’ first order condition

for saving through deposits (4). This results in equation (49), which we subsequently substitute

into the first order condition for corporate securities to obtain equation (47). Also observe that

we have substituted the marginal product of capital (14) into the expression for the ex post

return on corporate securities to obtain equation (51).

We will make two simplifying assumptions in this section to facilitate analytical tractability,

but which do not affect our results qualitatively. First, we temporarily assume that dividend

adjustment costs are zero by setting κη = 0. Second, we temporarily assume that households’

labor supply is fixed at h̄ = 1, and that the wage rate adjusts such that intermediate goods

24Note that it may not be always the case that more stringent regulation reduces risk, see for example Laeven
and Levine (2009), who explain that higher capital requirements might induce banks to lend to riskier borrowers.
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producers hire all labor in equilibrium. Doing so allows us to immediately infer from equation

(51) that the return on corporate securities and the stock of physical capital are inversely related

under changes in either σb or γ. Also observe that the change in capital leads to a change in

investment and output of the same sign, since ī = δk̄ and ȳ = z̄k̄α.

In addition, we assume that the unconditional credit spread R̄k − R̄d is always positive, and

check that R̄k − R̄d > 0 always holds in the numerical simulations in Section 4. In that case, we

can immediately infer that the steady state cut-off value ω̄b = R̄dd̄
R̄kk̄

< 1.

Finally, we combine the first order conditions for the nominal interest rate on deposits (43)

and corporate securities (45) under unlimited liability, and find that the steady state return on

corporate securities under unlimited liability (when dividend adjustment costs are zero) is given

by:

R̄k
∣∣ULL =

1

β

[
κ̄

1 + κ̄
+

1

1 + κ̄

(
εd − 1

εd

)]
> 1. (52)

The fact that R̄k > 1 can be observed from remembering that εd < −1. Therefore,
(
εd − 1

)
/εd >

1, which in turn ensures that the term inside the square brackets is larger than one. Observing

that households’ subjective discount factor β < 1 then ensures that R̄k > 1.

3.1 The level of credit provision to the real economy

We start this section by looking at the level of credit provision to the real economy under the

case where there is unlimited liability, the case of limited liability with full deposit insurance

(γ = 0), and the case of limited liability without deposit insurance (γ = 1). Specifically, we will

prove that credit provision under limited liability and full deposit insurance is always larger than

or equal to credit provision under unlimited liability, which in turn is always larger than or equal

to credit provision under limited liability and no deposit insurance:

Proposition 1. Credit provision under limited liability and full deposit insurance is always larger

than or equal to credit provision under unlimited liability, which in turn is always larger than or

equal to credit provision under limited liability and no deposit insurance:

k̄
∣∣∣LL
γ=0
≥ k̄

∣∣∣ULL ≥ k̄∣∣∣LL
γ=1

,

where we recall from the market clearing condition for corporate securities (41) that credit pro-

vision to the real economy s̄k is in equilibrium equal to the stock of physical capital k̄.

Proof. We start by rewriting the first order condition for corporate securities (47) under limited

liability (denoted by superscript LL) and with dividend adjustment cost κη = 0 in the following

way:

R̄k
∣∣∣LL =

1

1−Gb (ω̄b)

{
1− F b

(
ω̄b
)

1− γF b (ω̄b)
· R̄k

∣∣∣ULL +
1

β

(
κ̄

1 + κ̄

)
(1− γ)F b

(
ω̄b
)

1− γF b (ω̄b)

}
, (53)
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where we employed equation (52).

We now compare the return on corporate securities under unlimited liability with the return

on corporate securities under limited liability in the absence of deposit insurance (γ = 1).

Lemma 1. In the absence of deposit insurance (γ = 1), the return on capital under limited

liability R̄k
∣∣∣LL
γ=1

is always larger than or equal to the return on capital under unlimited liability

R̄k
∣∣∣ULL:

R̄k
∣∣∣LL
γ=1
≥ R̄k

∣∣∣ULL.
Proof. We start by substituting γ = 1 into equation (53) to write the return on capital under

limited liability and no deposit insurance R̄k
∣∣∣LL
γ=1

as:

R̄k
∣∣∣LL
γ=1

=
1

1−Gb (ω̄b)
· R̄k

∣∣∣ULL ≥ R̄k∣∣∣ULL,
since Gb

(
ω̄b
)
≡
∫ ω̄b

0
ωf (ω) dω ≤

∫∞
0
ωf (ω) dω = 1.

The intuition behind this result is the following. In the absence of deposit insurance, depos-

itors price in the probability of default. Therefore, the marginal cost from an additional unit of

deposits is the same as under unlimited liability. However, unlike the case with unlimited liabil-

ity, there are states of the world where the return on corporate securities is equal to zero, namely

when the bank cannot meet its liabilities and defaults. The existence of these states reduces

the marginal benefit from an additional unit of corporate securities by a factor 1−Gb
(
ω̄b
)

with

respect to unlimited liability. As a result, banks decrease the size of their balance sheets, which

raises the return on corporate securities R̄k.

Next, we prove that the return on capital under limited liability and full deposit insurance is

always less than or equal to the return on capital under unlimited liability.

Lemma 2. Under full deposit insurance (γ = 0), the return on capital under limited liability

R̄k
∣∣∣LL
γ=0

is always less than or equal to the return on capital under unlimited liability R̄k
∣∣∣ULL:

R̄k
∣∣∣LL
γ=0
≤ R̄k

∣∣∣ULL.
Proof. Substitution of γ = 0 into equation (53) does not lead to a straightforward expression

from which we can immediately infer Lemma 2. Therefore, we follow an alternative strategy

to prove Lemma 2. To do so, let us first observe that when σb ↓ 0, the probability of default

F b
(
ω̄b
)
↓ 0 and the expected value of the idiosyncratic shock conditional on default Gb

(
ω̄b
)
↓ 0.

As a result, we see that:

lim
σb↓0

R̄k
∣∣∣LL
γ=0

= R̄k
∣∣∣ULL.
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Next, we prove below in Proposition 2 that dR̄k

dσb
< 0 by using the expression for the return

on corporate securities under limited liability (47). In addition, observe that expression (47)

is continuous in σb for σb > 0 and observe from equation (52) that the return on corporate

securities under unlimited liability is constant.25 Therefore, we can conclude that since the

return on corporate securities under limited liability is equal to the return on corporate securities

under unlimited liability when the probability of default is zero, and since the return on corporate

securities under limited liability is decreasing with σb while it is constant under unlimited liability,

it must be the case that R̄k
∣∣∣LL
γ=0

< R̄k
∣∣∣ULL for values of σb > 0. Therefore, we conclude that

R̄k
∣∣∣LL
γ=0
≤ R̄k

∣∣∣ULL for σb ≥ 0. This proves the proposition.

The intuition behind this result is the following. The introduction of limited liability and

full deposit insurance introduces moral hazard (Kareken and Wallace, 1978). As a result, the

marginal cost from raising an additional unit of deposits decreases by a factor 1−F b
(
ω̄b
)

(relative

to unlimited liability), since depositors do not price in the probability of default. This can be

seen from the first term on the right hand side of equation (53). Simultaneously, the introduction

of limited liability generates states of the world in which the cash flows from corporate securities

do not accrue to the bank. This reduction in the marginal benefit of an additional unit of

corporate securities is equal to the expected value of the idiosyncratic shock conditional on

default Gb
(
ω̄b
)
, and shows up in the denominator of equation (53). It turns out that the

expected value Gb
(
ω̄b
)

is always smaller than or equal to the probability of default F b
(
ω̄b
)

since

Gb
(
ω̄b
)
≡
∫ ω̄b

0
ωbf b

(
ωb
)
dωb ≤ ω̄b

∫ ω̄b
0

f b
(
ωb
)
dωb = ω̄bF b

(
ω̄b
)
≤ F b

(
ω̄b
)
, since ω̄b ≤ 1. In

other words, the marginal benefit from an additional unit of corporate securities decreases by

less than the marginal cost from an additional unit of deposits, as the second term on the right

hand side of equation (53) will turn out to be close to zero.26 As a result of the fact that banks’

marginal costs of deposit funding decreases by more than the rate at which banks’ expected

return on corporate securities decreases, banks expand the balance sheet, which in turn drives

down the return on corporate securities R̄k.27

Now, we are ready to prove Proposition 1 with the help of Lemmas 1 and 2. To do so, we

observe from equation (51) that the return on corporate securities and the stock of physical

capital are inversely related. Therefore, we infer from Lemma 1 that k̄
∣∣∣ULL ≥ k̄

∣∣∣LL
γ=1

. Similarly,

we infer from Lemma 2 that k̄
∣∣∣LL
γ=0
≥ k̄

∣∣∣ULL. This concludes the proof.

25Remember that F b
(
ω̄b
)
≡
∫ ω̄b
0 f (ω) dω and Gb

(
ω̄b
)
≡
∫ ω̄b
0 ωf (ω) dω with f (ω) the lognormal probability

density function, which is continuous in σb for σb > 0.
26We will see in Section 4.2 that κ̄ is a number close to zero.
27In related work by Afanasyeva and Guntner (2020), banks can price in an extension of the balance sheet due

to credit market power. This incentivizes them to raise their borrowers and thus their own leverage, for example
in response to a monetary expansion, even without limited liability.
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3.2 Impact of risk on the steady state

In the previous section, we proved that credit provision under limited liability and full deposit

insurance is always larger than or equal to credit provision under unlimited liability, which in turn

is always larger than credit provision under limited liability in the absence of deposit insurance.

We now focus on how credit provision, the return of corporate securities and welfare change with

the standard deviation σb of the idiosyncratic bankers’ shock.

In doing so, we will assume that the change in the probability of default F b
(
ω̄b
)

and the

expected value of the idiosyncratic shock conditional on default Gb
(
ω̄b
)

increase with σb, despite

the fact that dω̄b

dσb
can be negative:

dF b
(
ω̄b
)

dσb
= Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)
·
σb

ω̄b
· dω̄

b

dσb
+ 1

2

(
σb
)2 − log

(
ω̄b
)

(σb)
2 > 0, (54)

dGb
(
ω̄b
)

dσb
= Φ′

(
log
(
ω̄b
)
− 1

2

(
σb
)2

σb

)
·
σb

ω̄b
· dω̄

b

dσb
− 1

2

(
σb
)2 − log

(
ω̄b
)

(σb)
2 > 0, (55)

In other words, we assume that the direct effect from an increase in σb will trump the indirect

effect that might arise through dω̄b

dσb
. We show in the main text and Appendix A1 that these

assumptions always hold in our numerical simulations.

We start by looking at how credit provision to the real economy changes with risk (σb).

Before we do so, observe from the first order condition for corporate securities under unlimited

liability (52) that dR̄k

dσb

∣∣∣ULL = 0. Therefore, we know that credit provision to the real economy

is constant under unlimited liability: dk̄
dσb

∣∣∣ULL = 0. Proposition 2, however, shows that credit

provision to the real economy increases under full deposit insurance and limited liability:

Proposition 2. Under full deposit insurance (γ = 0), the stock of physical k̄ increases under

limited liability when volatility σb increases:

dk̄

dσb
> 0.

Proof. We show in Appendix A7 that implicit differentiation of equation (47) with respect to σb

gives the following expression for dR̄k

dσb
when γ = 0 and κη = 0:

1

R̄k
· dR̄

k

dσb
=

ω̄b

1−Gb (ω̄b)

[
1

εd
·
dF b

(
ω̄b
)

dσb
− Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)]
< 0,

where Φ (...) denotes the cumulative density function of the standard normal distribution. There-

fore, Φ′ (...) > 0. In addition, we know that
dF b(ω̄b)
dσb

> 0 by assumption (54) and that εd < −1.

Therefore, we immediately see that dR̄k

dσb
< 0. Since the return on corporate securities and the

stock of physical capital are inversely related, we conclude that dk̄
dσb

> 0.
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To better understand the intuition behind this result, we implicitly differentiate equation (47)

with respect to σb, and set γ = 0 and κη = 0. The resulting expression is given by:

1

R̄k
· dR̄

k

dσb
=

1

β [1−Gb (ω̄b)] R̄k

[
βR̄k ·

dGb
(
ω̄b
)

dσb
− 1

1 + κ̄

(
εd − 1

εd

)
βR̄d ·

dF b
(
ω̄b
)

dσb

]
,

where we remember that under full deposit insurance βR̄d = 1. The intuition behind the above

expression is as follows. The first term on the right hand side captures the fact that an increase

in risk increases the states of the world in which the return on corporate securities is zero,

since
dGb(ω̄b)
dσb

> 0 by assumption (55). This causes banks to reduce credit provision, everything

else equal, which increases the return on corporate securities. The second term on the right

hand side captures the fact that an increase in risk decreases banks’ marginal cost from an

additional unit of deposits, as there are more states of the world in which they will default,

i.e.
dF b(ω̄b)
dσb

> 0. Lower marginal funding costs causes banks to increase credit provision,

everything else equal, which decreases the return on corporate securities. Since we show in

Appendix A7, that
dGb(ω̄b)
dσb

= ω̄b
[
dF b(ω̄b)
dσb

− Φ′
(

log (ω̄b)+ 1
2 (σb)

2

σb

)]
, and prove in Appendix A7

that R̄d

1+κ̄ = R̄kω̄b, we can see that the effect from more states in which the return on corporate

securities will be zero is dominated by the decrease in banks’ marginal expected funding costs. In

other words: an increase in risk decreases the marginal cost from an additional unit of deposits

by more than the decrease in the marginal benefit from an additional unit of corporate securities.

As a result, banks further expand the balance sheet, which drives down the aggregate return on

corporate securities.

Next, we look at Proposition 3, which allows us to prove that credit provision to the real

economy under limited liability always decreases with σb in the absence of deposit insurance

(γ = 1):

Proposition 3. Under limited liability, in the absence of deposit insurance (γ = 1), the stock of

physical k̄ decreases when volatility σb increases:

dk̄

dσb
< 0.

Proof. We show in Appendix A7 that implicit differentiation of equation (47) with respect to σb

gives the following expression for dR̄k

dσb
when γ = 1:

1

R̄k
· dR̄

k

dσb
=

1

1−Gb (ω̄b)
·
dGb

(
ω̄b
)

dσb
> 0,

since
dGb(ω̄b)
dσb

> 0 by assumption (55). Therefore, we see that dR̄k

dσb
> 0, which implies that

dk̄
dσb

< 0.

Since the probability of default is priced in by depositors, an increase in risk does not change
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the marginal cost from an additional unit of deposits. However, the marginal benefit from

an additional unit of corporate securities decreases, as the expected value of the idiosyncratic

shock conditional on default Gb
(
ω̄b
)

increases, which decreases the expected return on corporate

securities
[
1−Gb

(
ω̄b
)]
R̄k, everything else equal. In response, banks decrease credit provision

to the real economy, which raises the aggregate return on corporate securities R̄k in equilibrium.

Therefore, higher idiosyncratic risk decreases credit provision to the real economy in the absence

of deposit insurance, and through that channel investment and output. This sharply contrasts

with the case of full deposit insurance (γ = 0), where credit provision to the real economy, and

investment, increase.

Therefore, we do not only see that credit provision under limited liability and full deposit

insurance is always larger or equal to credit provision under limited liability and no deposit

insurance, we also see that the difference between the two increases with risk: credit provision

under full insurance increases with risk, whereas it decreases in the absence of deposit insurance.

Unsurprisingly, we find in Appendix A8 that the sign of the change in credit provision to the

real economy is ambiguous for intermediate values of 0 < γ < 1.

Finally, we look at the welfare implications of an increase in the volatility of σb. To do so,

we first remember that welfare is only increasing in consumption, as we temporarily assume in

this section that labor is supplied inelastically by households. Therefore, to study how welfare

changes as a result of an increase in σb, it suffices to study how consumption changes. Before

we do so, let us first remember that changes in investment and output have the same sign as

the change in the capital stock, since ī = δk̄ and ȳ = z̄k̄α. We are now ready to show how

consumption and welfare change as a result of an increase in σb.

Corollary 1. The change in consumption and welfare as a result of an increase in σb is am-

biguous, and given by:
dc̄

dσb
= C · 1

k̄
· dk̄
dσb
− µdiaR̄kk̄ ·

dGb
(
ω̄b
)

dσb
.

with C given by:

C = αc̄− (1− α) ī− (1− α)µdiaGb
(
ω̄b
)

(1− δ) k̄ ≶ 0. (56)

Proof. See Appendix A7.

The intuition behind the expression in Corollary 1 can be explained in the following way.

First, observe that the direct effect from an increase in risk on welfare is negative, as higher risk

increases the fraction of banks that default ex post, which increases the expected value of the

idiosyncratic shock conditional on default,
dGb(ω̄b)
dσb

> 0. As a result, deadweight costs increase,

which implies that fewer final goods are available for consumption, see the aggregate resource

constraint (42). Therefore, consumption decreases, which negatively affects welfare. This effect

is captured by the second term in Corollary 1.

Second, we observe that changes in the capital stock affect welfare, which is captured by the
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first term in Corollary 1. However, the sign of the direct effect from a change in the capital stock

is ambiguous since the sign of C is ambiguous. This ambiguity is better understood by rewriting

the steady state aggregate resource constraint (42) in the following way:

c̄ =

[
1−

(
ḡ

ȳ

)]
z̄k̄α − δk̄ − µdiaGb

(
ω̄b
)
R̄kk̄. (57)

From this expression, we see that an increase in capital k̄ has two opposite direct effects on con-

sumption. First, more capital directly increases output, and therefore consumption, everything

else equal, which is captured by the first term in expressions (56) and (57). Second, an increase

in capital increases steady state investment and the deadweight costs from from default, which

everything else equal leaves fewer final goods available for consumption. This is captured by the

second and third term in expressions (56) and (57). Therefore, the total effect from an increase

in capital on consumption depends on whether the positive effect from higher output dominates

the negative effect from higher investment and deadweight costs.

3.3 Impact of deposit insurance on the steady state

In this section we will perform a similar analysis as in the previous section, but we now investigate

the general equilibrium effects of a change in the fraction of deposits not reimbursed by the deposit

insurance agency (γ).

Proposition 4. The direct effect of an increase in γ is to increase the steady state return on

deposits R̄d. Furthermore, R̄d is increasing in the probability of default:

Proof. Implicit differentiation of equation (50) with respect to γ shows that the change in the

real interest rate on deposits is given by:

1

R̄d
· dR̄

d

dγ
=

F b
(
ω̄b
)

1− γF b (ω̄b)︸ ︷︷ ︸
direct effect

+
γ

1− γF b (ω̄b)
·
dF b

(
ω̄b
)

dγ
. (58)

We can see that the first term is larger than zero, which concludes the first part of the proof. In

addition, since γ
1−γF b(ω̄b) > 0, we see that R̄d increases when

dF b(ω̄b)
dγ > 0 and decreases when

dF b(ω̄b)
dγ < 0. Therefore, the steady state return on deposits is increasing in the probability of

default, which concludes the second part of the proof.

We also see from expression (58) that the overall (i.e. direct plus indirect) change in the

return on deposits is increasing in γ for a given change in the probability of default
dF b(ω̄b)

dγ .

In what follows, we will assume that the direct effect from an increase in γ – the first term in

expression (58) – ensures that the total effect from an increase in γ is an increase in the steady
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state return on deposits R̄d, which is also confirmed in the section with the numerical results:

dR̄d

dγ
> 0. (59)

However, not only does the change in the return on deposits dR̄d

dγ depends on the change in

the probability of default
dF b(ω̄b)

dγ , it turns out that the change in the probability of default also

depends on the change in the return on deposits. This leads to the emergence of a negative

feedback loop, in which a higher interest rate on deposits increases the probability of default,

which in turn increases interest rates even further:

Corollary 2. There exists a feedback loop between the real interest rate on deposits R̄d and the

probability of default F b
(
ω̄b
)
.

Proof. We already saw in Proposition 4 how the return on deposits is affected by a change in

the probability of default. Remember, however, that the probability of default F b
(
ω̄b
)

depends

on the cut-off value ω̄b ≡ R̄d

R̄k
· x̄b where x̄b ≡ d̄/k̄ is the deposits-assets ratio. Therefore, we can

write the change in the probability of default as:

dF b
(
ω̄b
)

dγ
=

1

σb
Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)[
1

R̄d
· dR̄

d

dγ
− 1

R̄k
· dR̄

k

dγ

]
,

where we observe that dx̄b

dγ = 0, since x̄b = 1/ (1 + κ̄) when the equity-deposit constraint (26) is

binding. We show in Appendix A7 that we can rewrite this equation in the following way:[
1 +

1

σbεd
· ω̄b

1−Gb (ω̄b)
Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)]
·
dF b

(
ω̄b
)

dγ
=

1

σb
Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)
B· 1

R̄d
·dR̄

d

dγ
> 0,

(60)

where B > 0 and where we check in Appendix A1 that the coefficient in front of
dF b(ω̄b)

dγ is

always larger than zero in our numerical simulations.

Therefore, we see that an increase in the interest rate on deposits increases the probability

of default, everything else equal. The increase in the probability of default then increases the

interest rate on deposits via expression (58), which in turn leads to a second round increase in

the probability of default. This proves the existence of a feedback loop between the interest rate

on deposits and the probability of default.

Corollary 3. When the probability of default is increasing in γ, the amplification cycle increases

the return on corporate securities nonlinearly in γ.

Proof. We show in Appendix A7 that the return on corporate securities is given by:

1

R̄k
· dR̄

k

dγ
=

ω̄b

1−Gb (ω̄b)

{
1

εd
·
dF b

(
ω̄b
)

dγ
+

(
εd − 1

εd

)[
1− F b

(
ω̄b
)]
· 1

R̄d
· dR̄

d

dγ

}
. (61)
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Before we discuss the nonlinearity, we first make an observation about the return on corporate

securities. We see that the change in the return on corporate securities can be decomposed

into two effects. First, a higher probability of default decreases banks’ expected funding costs,

everything else equal, as a result of which the return on corporate securities decreases This is

captured by the first term, where we remember that εd < −1. However, an increase in the

interest rate on deposits increases banks’ expected funding costs, everything else equal, as a

result of which the return on corporate securities increases. This effect is captured by the second

term on the right hand side of expression (61).

Now, substitution of the expression for the change in the return on deposits (58) into expres-

sion (61) provides us with the following expression:

1

R̄k
·dR̄

k

dγ
=

(
εd − 1

εd

)
ω̄b

1−Gb (ω̄b)
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(
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1− γF b (ω̄b)

)
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(
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+

[
γ

(
1− F b

(
ω̄b
)

1− γF b (ω̄b)

)
− 1

1− εd

]
·
dF b

(
ω̄b
)

dγ


.

(62)

From this expression, we clearly see that both the term related to the direct effect from an increase

in γ on the deposit rate (first term), as well as the coefficient that is in front of the change in

the probability of default (second term) are increasing in γ everything else equal. Therefore, the

return on corporate securities will increase in γ for a given change in the probability of default
dF b(ω̄b)

dγ .

The intuition of the previous results can be explained in the following way. We see from

Proposition 4 that the direct effect from an increase in γ is that the interest rate on deposits

increases, as a smaller fraction of deposits is now insured against default. We then see from

expression (60) that higher funding costs increase the probability of default, everything else

equal. We then see from expression (58) that an increase in the probability of default further

increases the return on deposits, which in turn leads to an even higher probability of default

(60). As a result, a feedback loop between the probability of default and the (expected) return

on deposits emerges. Therefore, we see that increasing γ might be counterproductive in reducing

the probability of default (and the fraction of banks that default ex post, which are the same

in the non-stochastic steady state), despite reducing moral hazard by raising banks’ marginal

cost from an additional euro of deposits, and lead to an increase in the probability of default in

equilibrium.

Observe, however, that in the presence of dividend adjustment costs (κη > 0), there is

a counter-effect to the feedback loop, as a higher marginal cost from an additional unit of

deposits (ψbt ) induces banks to reduce dividend payments everything else equal, see equation

(49). Therefore, the probability of default decreases, everything else equal. We show in the next
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section that the negative feedback amplification cycle between deposit rates and the probability

of default is numerically relevant. Hence, our results provide a new argument in favor of deposit

insurance, namely the elimination of the feedback loop between banks’ funding costs and the

probability of default that causes credit provision, investment and output to decrease. This

argument is different from the well-known Diamond and Dybvig (1983) argument that deposit

insurance eliminates bank runs (which are absent in our model). Note that our mechanism does

not rely on a strategic decision by depositors concerning the ability to withdraw. In the Diamond-

Dybvig model, deposit insurance prevents bank runs in equilibrium. As mentioned, bank runs

are absent from our model. Nonetheless, our feedback loop generated by the interaction between

funding costs and the probability of default means that when funding costs get high, banks

reduce lending - and this leads to a similar outcome as quantitative rationing. However, in our

case the feedback loop is generated by the interaction between funding costs and the probability

of default, without any strategic considerations.

4 Quantitative results and discussion

In this section, we perform numerical simulations (with positive dividend adjustment costs and

endogenous labor supply, in contrast to Section 3), and discuss our results in detail, including

comparative statics on the degree of deposit insurance and deadweight costs, as well as their

welfare and policy implications.

As a baseline, we consider the case of unlimited liability, whereby bank owners entirely

reimburse depositors in case of bank default. We compare this to the full deposit insurance

case (γ = 0), which corresponds to the situation of advanced economies between the 1930s and

1970s. During this time, deposit insurance had already been implemented, and banks were

still mainly relying on deposits to finance themselves. We also consider the case of no deposit

insurance (γ = 1) which corresponds to most historical economies prior to the 1930s, plus many

non-Western economies until later. Finally, we consider an intermediate case, which applies to

advanced economies today, in which financial institutions (both banks and the shadow banking

system) only partially rely on deposit-insured liabilities for funding (γ = 0.5). Figure 1 illustrates

the four cases that we consider.

4.1 Solution procedure

Our solution procedure is complicated by the fact that we have an occasionally binding inequality

constraint, namely the equity-deposit constraint (22). In the simulations below, we will solve the

model as a function of σb, the standard deviation of the idiosyncratic shock to banks. For some

values of σb the equity-deposit constraint (22) will be binding, while it will not for other values

of σb. To properly take this inequality constraint into account, we adopt the following solution

procedure.
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Figure 1: The four cases considered

First, for each value of σb we solve for the steady state without imposing the constraint (22).

This gives us the solution for (among others) aggregate corporate securities, deposits, dividends,

and equity. Second, we construct for each value of σb a two-dimensional grid with dividends η̄j of

bank j on one axis, and corporate securities s̄kj of bank j on the other.28 Next, we calculate bank

j’s objective function (31) at each grid point
(
η̄j , s̄

k
j

)
, which produces a surfplot (see Appendix

A4 for an example).29 While the surfplot features an interior solution for the unconstrained

equilibrium, it might be the case that the global maximum of bank j’s objective function is

at the boundary where the equity-deposit constraint (22) is binding. To check this, we also

calculate bank j’s objective function at this boundary and determine the maximum value along

this boundary. Afterwards, we compare this maximum value with the value of bank j’s objective

function at the interior solution. If the global maximum is at the interior solution, we check

that the second order conditions are satisfied, as well as that the resulting equity-deposit ratio

satisfies the inequality constraint (22).30

However, if the maximum value of the bank’s objective function is at the boundary where

28We can use banks’ balance sheet constraint (25) to solve for Rn,dj,t , after which bank j effectively has two

decision variables left, namely dividends ηj,t and corporate securities skj,t. Therefore, it suffices to create a

two-dimensional grid with dividends η̄j and corporate securities s̄kj .
29Observe that bank j’s objective function (31) features both aggregate variables as well as bank j variables.
30The second order conditions of the model can be found in Appendix A3.
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the equity-deposit constraint (22) is binding, or if the equity-deposit constraint is violated at the

interior solution, we solve the model with a binding equity-deposit constraint (22), a solution

that we refer to as the constrained equilibrium. Afterwards, we check the second order conditions

to ensure we have found a maximum.

We will see below that the equity-deposit constraint (22) will be binding for most values of

σb. More details can be found in Appendix A4.

4.2 Calibration

A list of parameter values can be found in Table 1. Many are taken from Gertler and Karadi

(2011); these include the household subjective discount factor β, the constant relative risk aver-

sion (CRRA) coefficient σc, the inverse Frisch elasticity ϕ, the capital share of production α, the

depreciation rate δ, the Taylor-rule coefficients κπ and κy, the interest rate smoothing parameter

ρr, the investment adjustment costs parameter κk, and the steady state proportion of government

spending over output ḡ/ȳ. For the elasticity of substitution among intermediate goods producers

ε, we take a value of 4. The habit formation parameter is equal to 0.8. We set the Rotemberg

adjustment costs parameter κp equal to 34.952, which corresponds to a Calvo-probability of not

being able to change prices of ψp = 0.75.31

Other parameters are obtained by targeting first order moments in the model version where

the equity-deposit constraint (22) is not binding. We adjust the coefficient χ in front of the

disutility from labor to set steady state labor supply equal to 1/3 and obtain a value of 3.0797.

The financial sector parameters are calibrated in the following way. We numerically solve for

the standard deviation of bankers’ idiosyncratic shocks σb and the elasticity of substitution of

deposits εd from equation (47), while matching the following three targets. First, we set an

annual steady state default rate ∆̄b = F b
(
ω̄b
)

of 2.5% (Boissay et al., 2016). Second, we set the

deposit-assets ratio x̄b equal to 0.9, which implies a steady state ratio of equity over total assets

ē/q̄ks̄k equal to 0.1. To arrive at this number, we use the most recent leverage ratio data of the

OECD (OECD, 2022). The OECD reports that the average deposit-assets ratio was 0.87 in the

US in 2015, while the average value for all 35 OECD countries was 0.94. Therefore, we choose

the mid-value of these two numbers. Third,we set the steady state credit spread E
[
R̄k − R̄D

]
equal to 1.6%, which amounts to an annual credit spread of 6.4%. This is higher than the interest

rate margin for US commercial banks of 4.6% (Corbae and D’Erasmo, 2021). However, we set

the credit spread higher because the corporate securities in our model are more equity-like, since

their cash flow consists of the after-wage profits of intermediate goods producers which directly

change with productivity shocks and the price of capital, see also Gertler and Kiyotaki (2010)

for this point. Fourth, we set the steady state equity-deposits κ̄ = 0.087, which implies that

the minimum ratio of steady state equity over assets is 0.08, which is in line with Basel III

31See Ascari and Rossi (2012) who show that when gross steady state inflation π̄ is equal to 1 (as we have), the
linearized Phillips-curve from Calvo-pricing can be mapped to the Phillips-curve from Rotemberg pricing, and they
provide an expression for how to obtain the Rotemberg adjustment costs parameter κp given the Calvo-parameter
ψp and the elasticity of substitution ε.
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requirements.32 After matching these targets, we obtain ω̄b = 0.8861, and σb = 0.0480. The

last number is higher than in Mendicino et al. (2018), who find a standard deviation of 0.012

for mortgage banks and 0.027 for banks that lend to entrepreneurs. As our loans are more

equity-like, we think a higher standard deviation σb is more appropriate. We set the mean µbt

of the log-normal distribution for the bankers’ idiosyncratic shocks equal to − (1/2)σbt , so that

the unconditional expected value of ωbt is equal to 1 (Ωbt = 1 in our notation, see Bernanke et al.

(1999)). Finally, we set the deadweight costs from default µdia equal to 0.12, following Bernanke

et al. (1999). This is also very close to the 0.125 that is employed by Damjanovic et al. (2020).

Casey and Dickens (2000) look at dividend payout ratios of banks in the US and find average

values between 35% to 42% depending on the period (they look at several periods between

1982 and 1996). Abreu and Gulamhussen (2013) find a value of 35% before the financial crisis

and 30% after the financial crisis. Therefore, we set steady state dividends equal to 35% of

aggregate profits of surviving bankers Πb ≡
[
Ω̄b − Γb

(
ω̄b
)]
R̄kq̄ks̄k. We employ bank-specific

dividend adjustment costs (20), and set κη = 0.1, which is close to the value used by Jermann

and Quadrini (2012). Afterwards, we adjust η̂ to match our calibration targets. We check in

Section 4.5 that our results are not driven by this particular choice. We also set γ = 1 during the

calibration of the model. Once we have determined all deep parameters in the calibration, we

will vary γ in our numerical simulations in Section 4.3 and subsequent sections. The fraction χb

of previous period aggregate net worth that goes to banks that start operating is equal to 0.40,

after which we adjust the fraction θb of current profits that goes to starting banks so that the

remaining steady state targets can be met. It turns out that θb = 0.7219, which could suggest

that banks are loss-making all the time. Observe, however, that financial intermediaries start

their life by paying out dividends before they attract deposits and acquire corporate securities.

So the net worth that remains in the bank is not equal to n̄b but ē, and it turns out that the

aggregate profits of the banking sector are larger than the initial amount of equity ē with which

they start operating.

4.3 Numerical solutions

We start by reporting numerical solutions for the non-stochastic steady state, which can be found

in Figure 2, where we display the standard deviation σb of the bankers’ idiosyncratic shock on the

horizontal axis. The case with unlimited liability is represented by the black horizontal dotted

line. There is no effect of risk on any variable for unlimited liability because banks must consider

the entire distribution of idiosyncratic shocks. Note that the unlimited liability case differs from

the limited liability case, because the owners of the banks (households) reimburse all depositors

in case of shortfalls, while depositors either incur losses or are repaid by the government under

32Substitution of the equity-deposit constraint d̄ = ē/κ̄, equation (22), into banks’ balance sheet constraint

q̄k s̄k = ē+ d̄, equation (25), shows that we can write ē =
(

κ̄
1+κ̄

)
q̄k s̄k. Setting κ̄

1+κ̄
= 0.08 allows us to solve for

κ̄.
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Parameter Definition Value
Households (HH)
β Subj. discount factor 0.99
σc CRRA coefficient 1
υ Habit formation 0.8
ϕ Inverse Frisch elasticity 0.276
χ Disutility of labor 3.0797
γ Frac. of default costs for HH 1
Production Sector
α Capital income share 0.33
δ Depreciation rate 0.025
ε Elasticity of substitution between goods 4
κp Price adj. costs 34.9515
κk Investment adj. costs 1.728
Financial Intermediaries
κ̄ Minimum equity-deposit ratio 0.0870
σb St. Dev. of banker shock 0.0480
Ω̄b Exp. value of banker shock 1
θb Fraction of profits for new banks 0.7219
χb Frac. of old net worth for new banker 0.40
µdia Default verification costs 0.12
κη Dividend adj. costs 0.1
η̂ Dividend growth rate 0.2843
εd Elasticity of substitution between deposits -60.4033
Policy parameters
ρr Interest rate smoothing 0.8
κπ Interest rate rule weight on inflation 1.5
κy Interest rate rule weight on output 0.125
π̄ St. st. inflation 1
ḡ/ȳ St. st. share of government spending 0.2

Table 1: List of calibrated parameters
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limited liability. Figure 2 also shows the results for the several limited liability cases which we

consider: full deposit insurance (grey solid line), partial insurance (black dashed line) and no

insurance (black solid line).33 The results are in line with those from the analytical section

regarding the role of idiosyncratic risk. We observe that the default probability (as well as

the fraction of banks that default ex post) always increases with the standard deviation of the

bankers’ idiosyncratic shock.34 In addition, we see that the steady state probability of bank

default under limited liability converges to the equilibrium allocation under unlimited liability

when σb converges to zero.

In line with Section 3, it turns out that the equity-deposit constraint (22) is always binding,

as we see that leverage is constant. Also in line with Section 3, it turns out that the return

on corporate securities decreases under full deposit insurance (although this is not very visible

in Figure 2 because of the large increase in the return on corporate securities for partial and

no insurance). The decrease in the return on corporate securities under full deposit insurance

occurs because credit expands under full insurance leading to higher investment (also output and

consumption) which reduces the return on capital. The return on corporate securities increases

under partial and no insurance, as credit contracts and investment falls with higher levels of risk.

Dividends increase with full deposit insurance when σb increases, but decrease under partial and

no deposit insurance. The return on deposits increases with σb under partial and no insurance

because depositors demand compensation for the larger probability of default.

We also see from Figure 2 that when σb increases bank securities increase under full insurance,

while falling under both partial and no insurance, all of which is in line with Propositions 2 and 3.

The reason for the large difference between the full insurance case and the other two cases is the

negative feedback loop between the interest rate on deposits and the probability of default, see

Corollary 2, which causes the return on deposits and corporate securities under partial deposit

insurance to increase by more than 1,000 basis points with respect to the case of full deposit

insurance for σb = 0.1. In addition, observe that the reaction of output, consumption, investment

and labor supply follow the same pattern as bank securities, for both partial and no insurance.

Lending to the real economy is reduced, which results in lower investment and output. As a result,

there are fewer goods for consumption, which is further crowded out by higher verification costs

that result from a larger fraction of banks defaulting relative to γ = 0. Lower investment also

leads to a lower capital stock, which results in lower wages. In response, households reduce labor

supply.

Also observe that the quantitative difference between partial and no insurance for real econ-

omy variables such as bank securities, investment, output, and consumption is relatively small

compared with the difference between these two cases on the one hand and the case of full de-

posit insurance on the other. The reason for the relatively small difference between partial and

33Therefore, the comparative statics results in Figure 2 correspond to a mapping of the analytical results of
Section 3.

34In the non-stochastic steady state, the probability of default ex ante is equal to the fraction of banks that
default ex post the realization of the idiosyncratic shock.
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Figure 2: Steady state results for the model version with limited liability and γ = 0 (grey, solid),
limited liability and γ = 0.5 (black, dashed), limited liability and γ = 1 (black, solid line) and
the model version with unlimited liability (black, dotted). On the horizontal axis the standard
deviation of the idiosyncratic bankers’ shock (σb) is displayed. The leverage ratio refers to the

deposits-assets ratio x̄b ≡ d̄
q̄k s̄k

, the return on deposits refers to R̄d = R̄n,d

π̄ , and bank securities

refers to the volume of corporate securities s̄k held by the banking system.
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no insurance is that the return on corporate securities and the stock of capital are nonlinearly

related, see equation (51). Therefore, the large increase in the return on corporate securities

when moving from full deposit insurance to partial deposit insurance has a much larger effect

on credit provision to the real economy than the effect on credit provision from moving from

partial deposit insurance to no deposit insurance, despite the fact that the increase in the return

on corporate securities is much larger when shifting from partial to no deposit insurance.

Finally, observe that the impact when moving from full deposit insurance to partial or no

insurance has a large impact on macroeconomic variables: credit provision and investment fall

by more than 90% with respect to unlimited liability for large values of σb, while consumption

and output fall by approximately 50% with respect to unlimited liability for large values of σb.

As explained above, this large decrease is ultimately the result of the feedback loop between the

interest rate on deposits and the probability of default.

4.4 Welfare and policy implications

In this section we look at the consequences of an increase in the standard deviation of the

idiosyncratic shock on welfare, which is defined as the sum of expected discounted utility as

defined in expression (1).35 The results can be found in Figure 3, where welfare is expressed

relative to the unlimited liability case on the vertical axis (expressed in terms of the consumption

equivalent ν, which we express in percentage points).36 The figure displays the limited liability

model version with full insurance γ = 0 (grey, solid line), partial insurance (γ = 0.5) (black,

dashed line), and no insurance (γ = 1) (black, solid line). We do not display the case of

unlimited liability, which would correspond to a horizontal line at zero. Observe that compared

with Section 3, we now also have endogenous labor supply which directly affects households’

welfare, see expression 1.

The results show that welfare always decreases with higher risk. However, the decrease

in welfare is relatively limited for the case of full deposit insurance, whereas the decrease is

substantially larger for partial and no deposit insurance. Although welfare always decreases

with risk, as mentioned, the mechanisms are quite different between the full deposit insurance

case on the one hand, and the partial and no deposit insurance case on the other. We start

by focusing on the case γ = 0 in Figure 3. We see from Figure 2 that consumption increases

with respect to consumption under unlimited liability, which everything else equal has a positive

effect on welfare. However, the increase in consumption is relatively small, and is more than

offset by a substantial increase in labor supply. A third factor that negatively affects welfare

is the presence of deadweight costs from default, which increase with risk, and leave fewer final

35Steady state welfare is given by W ≡ U(c̄)−V (h̄)
1−β , where U (c) =

(
(1− υ) c̄1−σc − 1

)
/ (1− σc) and V (h) =

χh̄1+ϕ/ (1 + ϕ).
36We follow Bianchi (2016) and define the consumption equivalent ν implicitly from the formula WLL ≡

U(c̄LL)−V (h̄LL)
1−β =

U(c̄ULL+ν)−V (h̄ULL)
1−β , where WLL is welfare under limited liability. LL refers to limited

liability, and ULL refers to the unlimited liability case.
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Figure 3: Steady state results for the model version with limited liability and full insurance
(γ = 0) (grey, solid), limited liability and partial insurance (γ = 0.5) (black, dashed), and
limited liability with no insurance (γ = 1) (black, solid). On the horizontal axis the standard
deviation of the idiosyncratic bankers’ shock (σb) is displayed. The vertical axis features welfare
in terms of consumption equivalents ν, which is expressed in percentage points.
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goods for consumption, everything else equal, see the aggregate resource constraint (42) and

Corollary 1.

For γ = 0.5 and γ = 1, welfare decreases much more with risk, and the more so for γ = 1.

The mechanism behind this decrease, however, is different than under full deposit insurance:

unlike the full deposit insurance case, we see from Figure 2 that consumption now decreases

with σb, by approximately 50% for large values of σb, and is always below consumption under

unlimited liability. This negative effect is mitigated by the fact that labor supply decreases with

σb, and is below that under unlimited liability. However, the total effect on welfare is a decrease

by approximately 40 and 60 percent consumption equivalents for large values of the standard

deviation for partial and no deposit insurance, respectively. Such a drop is much larger than the

typical change in welfare under short-run welfare analysis.37 This is caused by the feedback loop

between the probability of bank default and the interest rate on deposits, see Section 3.3, which

ultimately causes the change in consumption between the full deposit insurance case on the one

hand, and the partial and no deposit insurance case on the other to be large.

Next, we investigate in Figure 4 the role of deadweight costs (by varying µdia). As a reminder,

µdia corresponds to the fraction of assets that cannot be recouped in the case of bank default (see

section 2.4.1). In Figure 4, we display the welfare loss relative to the unlimited liability case on

the vertical axis (expressed in terms of the consumption equivalent ν), with the deadweight costs

parameter µdia and the standard deviation σb on the two horizontal axes. This 3D figure gives

a mixed picture of the influence that risk and deadweight costs have on welfare. First, for small

values of risk, the probability of default is approximately zero, and welfare is approximately the

same as in the absence of limited liability. For small values of µdia, the deadweight costs from

bank default are small, and welfare increases with risk to 10 percent consumption equivalents

for µdia = 0 and σb = 0.1. When µdia increases, deadweight costs increase, especially for larger

values of risk. In that case, the negative impact of higher deadweight costs more than offsets

the positive effects on consumption from higher risk, and welfare decreases. In case of large

values of risk and high deadweight costs, we see that welfare sharply decreases with respect to

unlimited liability, even hitting a drop in welfare of almost 80 percent consumption equivalents

for µdia = 0.3 and σb = 0.1. The reason why welfare losses become so large is the fact that

deadweight costs not only increase with µdia, but also with credit provision to the real economy.

And we already see in Figure 2 that credit provision increases nonlinearly for large values of risk

under full insurance, thereby further increasing deadweight costs on top of the increase in µdia.

This explains the sharp decrease in welfare in the full deposit insurance case when both µdia and

risk are high.

Next, we look at 3D figures for γ = 0.5 (Figure 5) and γ = 1 (Figure 6). Just as in Figure 4, we

still find that welfare is approximately equal to welfare under unlimited liability for small values

37Our welfare results refer to permanent consumption equivalents in the absence of limited liability. These
results are quantitatively large but refer to the long run, so they are expected to be larger than short-run effects,
which are typically less than one percent consumption equivalent, e.g. Bianchi (2016). Note that the large
decrease in welfare is driven by a permanent increase in risk (the standard deviation is two times that under our
baseline calibration).
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Figure 4: Steady state results for the model version with limited liability and full insurance γ = 0.
One horizontal axis displays deadweight costs µdia, while the other horizontal axis features the
standard deviation of the idiosyncratic bankers’ shock, σb. The vertical axis features welfare in
terms of consumption equivalents ν, which is expressed in percentage points.
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of risk. Once we abolish the full deposit insurance scheme, and (partially) place default losses on

depositors, welfare decreases for any value of µdia. Compared with Figure 4, the positive effect

on the capital stock (for small values of µdia), and therefore on output, from higher idiosyncratic

risk is eliminated, as deposit funding costs now increase and induce banks to reduce the size of

their balance sheets. In the absence of a positive effect of idiosyncratic risk on output, only the

negative effect on consumption that results from higher deadweight costs remains. Therefore,

welfare will always decrease with higher idiosyncratic risk. Welfare also decreases with µdia,

although the decrease along the µdia axis is substantially smaller than the decrease along the σb

axis. Also observe that the cases with γ = 0.5 and γ = 1 differ quantitatively: welfare losses

stay below 50 percent consumption equivalents for γ = 0.5, whereas they drop below 60 percent

consumption equivalents for γ = 1.

Figure 5: Steady state results for the model version with limited liability and partial deposit in-
surance (γ = 0.5). One horizontal axis displays deadweight costs µdia, while the other horizontal
axis features the standard deviation of the idiosyncratic bankers’ shock, σb. The vertical axis
features welfare in terms of consumption equivalents ν, which is expressed in percentage points.

In conclusion, the influence of risk on welfare foremost depends on the degree to which banks

are financed through liabilities covered by deposit insurance. Specifically, we find that an increase
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in γ sharply decreases credit provision, investment and output. Therefore, in economies for which

banks also rely on other forms of debt funding such as wholesale and long-term debt, such as

advanced economies after the 1980s, regulators should try to minimize risk as much as possible, as

welfare decreases with the standard deviation. This conclusion does not depend on the presence

of deadweight costs from default, as a higher standard deviation not only amplifies the negative

effects on consumption through higher deadweight costs, but also eliminates the positive effect

on consumption from higher output. Only in an economy where full deposit insurance is applied

to the liabilities of financial intermediaries that lend to non-financial corporations is it possible

for an increase in risk to have a positive effect on the economy and welfare. However, this is only

the case when deadweight costs are small.

Figure 6: Steady state results for the model version with limited liability and partial deposit
insurance (γ = 1). One horizontal axis displays deadweight costs µdia, while the other horizontal
axis features the standard deviation of the idiosyncratic bankers’ shock, σb. The vertical axis
features welfare in terms of consumption equivalents ν, which is expressed in percentage points.
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4.5 Robustness checks

We have performed robustness checks to confirm the numerical relevance of the negative feedback

loop between deposit rates and probability of bank default. We do so in Appendix A1 by

reproducing Figures 2 and 3 for different values of deadweight costs µdia, and for different target

values for steady state dividends over aggregate bank profits in the calibration of our model. We

continue to find that the negative feedback loop between banks’ funding costs and the probability

of bank default, which results from reducing moral hazard, remains present for these alternative

calibrations.

Finally, remember from Section 3 that there is a counter-effect that diminishes the strength of

the feedback loop, everything else equal: increasing γ raises the marginal cost ψ̄b from attracting

an additional unit of deposits, which tightens the banks’ balance sheet constraints (25) and

thereby raises the marginal cost from paying an additional unit of dividends. This suggests that

the parameter that affects the marginal cost from changing dividends, κη, might have a first

order effect on the strength of the feedback loop between deposit rates and the probability of

default. To check the role that this parameter plays, we redo our simulations from Section 4.3 in

Appendix A1 for κη = 0.05 and κη = 0.15. We find from these robustness checks that our results

regarding the feedback loop continue to hold, i.e. the feedback loop between deposit rates and

the probability of default continue to dominate the effects from lower dividend payments.

5 Conclusion

In this paper we have employed a DSGE model with banks benefiting from limited liability

to investigate how risk, captured by the standard deviation of idiosyncratic shocks to banks’

return on assets, affects long-run macroeconomic outcomes. The combination of limited liability

and full deposit insurance gives rise to moral hazard, since higher risk allows banks to increase

profits when good outcomes happen, while deposit insurance allows banks to continue to finance

their balance sheets at the risk-free interest rate (despite a higher probability of bank default)

(Kareken and Wallace, 1978). As a result, banks’ expected profitability conditional on surviving

the idiosyncratic shock increases, everything else equal, which leads to an expansion of credit

provision, investment and output. We show not just quantitatively but also analytically that

credit provision is always higher under full deposit insurance (relative to unlimited liability) and

is unequivocally increasing in risk. Similarly, we show that credit provision is always lower in

the absence of deposit insurance (relative to unlimited liability) and is unequivocally decreasing

in risk.

Moral hazard can be reduced by increasing the fraction of deposits that are not reimbursed

in case of bank default. As a result, creditors internalize the probability of bank default, which

forces banks to reduce dividends. Everything else equal, this should reduce the probability of

bank default. However, we find that the default probability actually increases in equilibrium,

because of a feedback loop between banks’ funding costs and the probability of default. Creditors
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pricing in the probability of default raises banks’ funding costs. As a result, banks’ (expected)

profitability decreases, which in turn increases the probability of default with respect to the full

deposit insurance case. Therefore, creditors further increase interest rates, which further raises

the probability of default and then have amplification effects. As a result, credit provision to the

real economy and investment decrease by approximately 90% (with respect to unlimited liability)

for large values of idiosyncratic risk, as a result of which consumption and output decrease by

approximately 50%.

The traditional argument for deposit insurance is to prevent bank runs (Diamond and Dybvig,

1983). Our results provide an additional reason: deposit insurance eliminates the feedback loop

between banks’ funding costs and bank default probability. Therefore, financial instability (as

defined by the fraction of defaulting banks) decreases, despite leading to higher moral hazard.

Finally, we investigate welfare for different combinations of risk, deposit insurance, and dead-

weight costs from default, and find that welfare always decreases with risk, except under full

deposit insurance when deadweight costs are small. In that case, output expands sufficiently to

allow consumption to increase, despite a larger fraction of output being absorbed by deadweight

costs.
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Figure A1: Steady state results for Gb
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)

belonging to the simulations in Figure 2. On the
horizontal axis the standard deviation of the idiosyncratic bankers’ shock (σb) is displayed. The
figure clearly shows that Gb
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is always increasing in σb (horizontal axis).
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in front

of the change in the probability of default
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dγ in equation (60) of Corollary 2 for γ = 0 (gray,

solid line), γ = 0.5 (black, dashed line), and γ = 1 (black, solid line). On the horizontal axis
the standard deviation of the idiosyncratic bankers’ shock (σb) is displayed. The figure clearly
shows that the coefficient is always larger than zero, as assumed in Corollary 2.
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Robustness check: µdia = 0.06
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(grey, solid), limited liability and γ = 0.5 (black, dashed), limited liability and γ = 1 (black,
solid line), and the model version with unlimited liability (black, dotted). On the horizontal axis
the standard deviation of the idiosyncratic bankers’ shock (σb) is displayed. The leverage ratio

refers to the deposits-assets ratio x̄b ≡ d̄
q̄k s̄k

, the return on deposits refers to R̄d = R̄n,d

π̄ , and

bank securities refer to the volume of corporate securities s̄k held by the banking system.
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Robustness check: µdia = 0.06
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Figure A4: Steady state results for the model version with µdia = 0.06, limited liability and
γ = 0 (grey, solid), limited liability and γ = 0.5 (black, dashed), and limited liability and γ = 1
(black, solid). On the horizontal axis the standard deviation of the idiosyncratic bankers’ shock
(σb) is displayed. The vertical axis features welfare in terms of consumption equivalents ν, which
is expressed in percentage points.
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Robustness check: µdia = 0.18
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Figure A5: Steady state results for the model version with µdia = 0.18, limited liability and γ = 0
(grey, solid), limited liability and γ = 0.5 (black, dashed), limited liability and γ = 1 (black,
solid line), and the model version with unlimited liability (black, dotted). On the horizontal axis
the standard deviation of the idiosyncratic bankers’ shock (σb) is displayed. The leverage ratio

refers to the deposits-assets ratio x̄b ≡ d̄
q̄k s̄k

, the return on deposits refers to R̄d = R̄n,d

π̄ , and

bank securities refer to the volume of corporate securities s̄k held by the banking system.
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Robustness check: µdia = 0.18
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Figure A6: Steady state results for the model version with µdia = 0.18, limited liability and
γ = 0 (grey, solid), limited liability and γ = 0.5 (black, dashed), and limited liability and γ = 1
(black, solid). On the horizontal axis the standard deviation of the idiosyncratic bankers’ shock
(σb) is displayed. The vertical axis features welfare in terms of consumption equivalents ν, which
is expressed in percentage points.

5



Robustness check: baseline calibration η̄ = 0.25 · Π̄b
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Figure A7: Steady state results for the model version with η̄ = 0.25·Π̄b in the baseline calibration,
limited liability and γ = 0 (grey, solid), limited liability and γ = 0.5 (black, dashed), limited
liability and γ = 1 (black, solid line), and the model version with unlimited liability (black,
dotted). On the horizontal axis the standard deviation of the idiosyncratic bankers’ shock (σb) is

displayed. The leverage ratio refers to the deposits-assets ratio x̄b ≡ d̄
q̄k s̄k

, the return on deposits

to R̄d = R̄n,d

π̄ , and bank securities refer to the corporate securities s̄k held by the banking system.
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Robustness check: baseline calibration η̄ = 0.25 · Π̄b
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Figure A8: Steady state results for the model version with η̄ = 0.25·Π̄b in the baseline calibration,
limited liability and γ = 0 (grey, solid), limited liability and γ = 0.5 (black, dashed), and
limited liability and γ = 1 (black, solid). On the horizontal axis the standard deviation of the
idiosyncratic bankers’ shock (σb) is displayed. The vertical axis features welfare in terms of
consumption equivalents ν, which is expressed in percentage points.
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Robustness check: baseline calibration η̄ = 0.45 · Π̄b
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Figure A9: Steady state results for the model version with η̄ = 0.45·Π̄b in the baseline calibration,
limited liability and γ = 0 (grey, solid), limited liability and γ = 0.5 (black, dashed), limited
liability and γ = 1 (black, solid line), and the model version with unlimited liability (black,
dotted). On the horizontal axis the standard deviation of the idiosyncratic bankers’ shock (σb) is

displayed. The leverage ratio refers to the deposits-assets ratio x̄b ≡ d̄
q̄k s̄k

, the return on deposits

to R̄d = R̄n,d

π̄ , and bank securities refer to the corporate securities s̄k held by the banking system.
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Robustness check: baseline calibration η̄ = 0.45 · Π̄b
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Figure A10: Steady state results for the model version with η̄ = 0.45 · Π̄b in the baseline cali-
bration, limited liability and γ = 0 (grey, solid), limited liability and γ = 0.5 (black, dashed),
and limited liability and γ = 1 (black, solid). On the horizontal axis the standard deviation of
the idiosyncratic bankers’ shock (σb) is displayed. The vertical axis features welfare in terms of
consumption equivalents ν, which is expressed in percentage points.
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Robustness check: κη = 0.05
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Figure A11: Steady state results for the model version with limited liability, κη = 0.05, and γ = 0
(grey, solid), limited liability and γ = 0.5 (black, dashed), limited liability and γ = 1 (black,
solid line), and the model version with unlimited liability (black, dotted). On the horizontal axis
the standard deviation of the idiosyncratic bankers’ shock (σb) is displayed. The leverage ratio

refers to the deposits-assets ratio x̄b ≡ d̄
q̄k s̄k

, the return on deposits refers to R̄d = R̄n,d

π̄ , and

bank securities refer to the volume of corporate securities s̄k held by the banking system.
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Robustness check: κη = 0.05
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Figure A12: Steady state results for the model version with limited liability, κη = 0.05, and
γ = 0 (grey, solid), limited liability and γ = 0.5 (black, dashed), and limited liability and γ = 1
(black, solid). On the horizontal axis the standard deviation of the idiosyncratic bankers’ shock
(σb) is displayed. The vertical axis features welfare in terms of consumption equivalents ν, which
is expressed in percentage points.
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Robustness check: κη = 0.15
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Figure A13: Steady state results for the model version with limited liability, κη = 0.15, and γ = 0
(grey, solid), limited liability and γ = 0.5 (black, dashed), limited liability and γ = 1 (black,
solid line), and the model version with unlimited liability (black, dotted). On the horizontal axis
the standard deviation of the idiosyncratic bankers’ shock (σb) is displayed. The leverage ratio

refers to the deposits-assets ratio x̄b ≡ d̄
q̄k s̄k

, the return on deposits refers to R̄d = R̄n,d

π̄ , and

bank securities refer to the volume of corporate securities s̄k held by the banking system.
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Robustness check: κη = 0.15
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Figure A14: Steady state results for the model version with limited liability, κη = 0.15, and
γ = 0 (grey, solid), limited liability and γ = 0.5 (black, dashed), and limited liability and γ = 1
(black, solid). On the horizontal axis the standard deviation of the idiosyncratic bankers’ shock
(σb) is displayed. The vertical axis features welfare in terms of consumption equivalents ν, which
is expressed in percentage points.
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A2 Mathematical derivations

A2.1 Expression for banks’ profits

We remember from Section 2.3 that expected profits in period t+ 1 are given by:

Πb
j,t+1 =

∫ ∞
ω̄bj,t+1

(
ωbj,t+1 − ω̄bj,t+1

)
f b
(
ωbj,t+1

)
dωbj,t+1R

k
t+1q

k
t s
k
j,t,

We can write this expression as:

Πb
j,t+1 =

∫ ∞
ω̄bj,t+1

(
ωbj,t+1 − ω̄bj,t+1

)
f b
(
ωbj,t+1

)
dωbj,t+1R

k
t+1q

k
t s
k
j,t

=

[∫ ∞
ω̄bj,t+1

ωbj,t+1f
b
(
ωbj,t+1

)
dωbj,t+1 − ω̄bj,t+1

∫ ∞
ω̄bj,t+1

f b
(
ωbj,t+1

)
dωbj,t+1

]
Rkt+1q

k
t s
k
j,t

=

[∫ ∞
0

ωbj,t+1f
b
(
ωbj,t+1

)
dωbj,t+1 −

∫ ω̄bj,t+1

0

ωbj,t+1f
b
(
ωbj,t+1

)
dωbj,t+1

− ω̄bj,t+1

∫ ∞
ω̄bj,t+1

f b
(
ωbj,t+1

)
dωbj,t+1

]
Rkt+1q

k
t s
k
j,t

=

[
Et+1

(
ωbj,t+1

)
−
∫ ω̄bj,t+1

0

ωbj,t+1f
b
(
ωbj,t+1

)
dωbj,t+1 − ω̄bj,t+1

∫ ∞
ω̄bj,t+1

f b
(
ωbj,t+1

)
dωbj,t+1

]
Rkt+1q

k
t s
k
j,t

=
[
Ωbt+1 − Γb

(
ω̄bj,t+1

)]
Rkt+1q

k
t s
k
j,t,

where the last line coincides with the final expression in equation (29).

A2.2 Proof that dΓb(ω)
dω = 1− F b (ω)

We start by proving that dΓb(ω)
dω = 1 − F b (ω). First, remember from the definition of Γb (ω) in

expression (30) that its expression features Gb (ω) and F b (ω), which are given by:

Gb (ω) = Φ

(
log (ω)− 1

2σ
2

σ

)
,

F b (ω) = Φ

(
log (ω) + 1

2σ
2

σ

)
,

where Φ (·) denotes the standard normal cumulative density function. Therefore, we immediately

see that Gb (ω) ≤ F b (ω).
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Next, we take the derivatives with respect to ω:

dGb (ω)

dω
= Φ′

(
log (ω)− 1

2σ
2

σ

)
· 1

σω
=

1√
2π

exp

[
−1

2

(
log (ω)− 1

2σ
2

σ

)2
]
· 1

σω
,

dF b (ω)

dω
= Φ′

(
log (ω) + 1

2σ
2

σ

)
· 1

σω
=

1√
2π

exp

[
−1

2

(
log (ω) + 1

2σ
2

σ

)2
]
· 1

σω
,

Now we write out the expression for dGb(ω)
dω :

dGb (ω)

dω
=

1√
2π

exp

[
− 1

2σ2

(
log2 (ω) +

1

4
σ4 − σ2 log (ω)

)]
· 1

σω

=
1√
2π

exp

[
− 1

2σ2

(
log2 (ω) +

1

4
σ4 + σ2 log (ω)− 2σ2 log (ω)

)]
· 1

σω

=
1√
2π

exp

[
− 1

2σ2

(
log (ω) +

1

2
σ2

)2

+ log (ω)

]
· 1

σω

=
1√
2π

exp

[
−1

2

(
log (ω) + 1

2σ
2

σ

)2
]

exp [log (ω)] · 1

σω

= ω · dF
b (ω)

dω
. (A1)

Now we are ready to prove that dΓb(ω)
dω = 1 − F b (ω) by differentiating expression (30) with

respect to ω:

dΓb (ω)

dω
=

dGb (ω)

dω
+ 1− F b (ω)− ω · dF

b (ω)

dω
= 1− F b (ω) ,

since dGb(ω)
dω = ω · dF

b(ω)
dω .

A2.3 Proof that all banks choose the same allocation and interest rate

We know from Gertler and Kiyotaki (2010); Gertler and Karadi (2011) and Damjanovic et al.

(2020) that the shadow value of additional constraints that banks face are not bank-specific,

which is why ψbt and ψdt are the same for all banks. Therefore, we can immediately see from the

first order condition for dividends (33) that all banks will choose the same level of dividends in

equilibrium, i.e. ηj,t = ηt. Next, we see from the first order condition for corporate securities

(36) that all banks will choose the same ratio
(Rn,dj,t )

1−εd

skj,t
in equilibrium, which is the part of

ω̄bj,t+1 that banks can choose in period t, see equation (28). Therefore, the (expected) value of

ω̄bj,t+1 is the same across banks, and we can drop the subscript j.

Next, we see from the first order condition for the nominal interest rate on deposits (34) that

all banks will choose the same nominal interest rate on deposits given that they choose the same

(expected) value of ω̄bj,t+1, i.e. Rn,dj,t = Rn,dt . In that case, we can see from the equation that
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describes the demand for deposits of bank j, equation (23), that all banks will have the same

level of deposits in equilibrium, i.e. dj,t = dt.

Finally, since all banks start with the same net worth nbj,t = nbt , pay the same dividends, and

attract the same amount of deposits, we deduce from the balance sheet constraint (25) that all

banks choose the same amount of corporate securities, skj,t = skt . Therefore, we can aggregate

over all these variables and write down the banking sector first order conditions using aggregate

corporate securities, dividends, and the nominal interest rate on deposits.

A2.4 Aggregation

Since we know from Appendix A2.3 that all banks receive the same amount of net worth, choose

the same allocation for corporate securities, dividends in equilibirum, and attract the same

ampount of deposits (because they set the same nominal interest rate on deposits), we can

aggregate over all these variables and write down the aggregate profits of the banking sector Πb
t :

Πb
t =

∫ 1

0

∫ ∞
ω̄bt

(
ωbt − ω̄bt

)
Rkt q

k
t−1s

k
j,t−1f

b
(
ωbt
)
dωbtdj

=

∫ 1

0

∫ ∞
ω̄bt

(
ωbt − ω̄bt

)
f b
(
ωbt
)
dωbtR

k
t q
k
t−1s

k
j,t−1dj

=

∫ 1

0

[
Ωbt − Γb

(
ω̄bt
)]
Rkt q

k
t−1s

k
j,t−1dj

=
[
Ωbt − Γb

(
ω̄bt
)]
Rkt q

k
t−1

∫ 1

0

skj,t−1dj

=
[
Ωbt − Γb

(
ω̄bt
)]
Rkt q

k
t−1s

k
t−1. (A2)

We will assume that households whose bank did not default provide a fraction θb of the profits

from the old bank as starting net worth to the new bank.

Households owning a bank that defaulted in period t, which amounts to a mass F b
(
ω̄bt
)
,

provide a fraction χb/F b
(
ω̄bt
)

of previous period aggregate net worth nbt−1 to the new bank.

Therefore aggregate net worth nb,nt of starting bankers is equal to:

nb,nt = χbnbt−1. (A3)

So finally we can write down aggregate net worth nbt , which consists of a fraction θb of aggregate

profits Πb
t of non-defaulting banks (A2) and aggregate net worth nb,nt of newly starting banks

(A3):

nbt = θbΠb
t + nb,nt = θb

[
Ωbt − Γb

(
ω̄bt
)]
Rkt q

k
t−1s

k
t−1 + χbnbt−1. (A4)

The period t costs for the deposit insurance agency are given by:
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T diat = (1− γ)

∫ 1

0

∫ ω̄bt

0

RDt dj,t−1f
b
(
ωbt
)
dωbtdj −

∫ 1

0

∫ ω̄bt

0

ωbtR
k
t q
k
t−1s

k
j,t−1f

b
(
ωbt
)
dωbtdj

+ µdia
∫ 1

0

∫ ω̄bt

0

ωbtR
k
t q
k
t−1s

k
j,t−1f

b
(
ωbt
)
dωbtdj

= (1− γ)

∫ 1

0

∫ ω̄bt

0

f b
(
ωbt
)
dωbtR

D
t dj,t−1dj −

(
1− µdia

) ∫ 1

0

∫ ω̄bt

0

ωbtf
b
(
ωbt
)
dωbtR

k
t q
k
t−1s

k
j,t−1dj

= (1− γ)

∫ 1

0

[
1− F b

(
ω̄bt
)]
RDt dj,t−1dj −

(
1− µdia

) ∫ 1

0

Gb
(
ω̄bt
)
Rkt q

k
t−1s

k
j,t−1dj

= (1− γ)
[
1− F b

(
ω̄bt
)]
RDt dt−1 −

(
1− µdia

)
Gb
(
ω̄bt
)
Rkt q

k
t−1s

k
t−1. (A5)

A3 Second order conditions

In this section, we derive the second order conditions of the optimization problem of bank j.

We will do so by separately considering the second order conditions for the case where the

equity-deposit constraint (26) is binding and the case where it is not binding. Let me start by

considering the case where the constraint is binding.

A3.1 The case ψdt > 0

Before we derive the second order conditions for this case, it is useful to use the balance sheet

constraint (25) and the equity-deposit constraint (26) to substitute away bank j’s holdings of

corporate securities skj,t and the nominal interest rate on deposits Rn,dj,t . We start by using

the binding equity-deposit constraint (26) to express the nominal interest rate on deposits as a

function of dividends ηj,t:

Rn,dj,t =

nbj,t − ηj,t − f (ηj,t)

κt

(
Rn,dt

)εd
dt


− 1

εd

. (A6)

From the above expression we clearly see that the nominal interest rate on deposits only depends

on the volume of dividends ηj,t. Now that we have expressed the nominal interest rate on deposits

in terms of dividends ηj,t, we can show that the number of corporate securities also only depends

on the volume of dividends. To see, we rewrite the balance sheet constraint (25) in the following

way:

qkt s
k
j,t = nbj,t − ηj,t − f (ηj,t) +

(
Rn,dj,t

Rn,dt

)−εd
dt. (A7)

We see that the only bank-specific variables on the right hand side of the above expression are

dividends ηj,t and the nominal interest rate on bank deposits Rn,dj,t . But since the nominal interest

rate on bank deposits can be expressed in terms of dividends when the equity-deposit constraint

(26) is binding, we conclude that the number of corporate securities can also be expressed solely
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in terms of dividends ηj,t.

Therefore, we can entirely express bank j’s maximization objective in terms of dividends

ηj,t, because we have employed the two constraints to which the bank is subject to eliminate the

other two bank-specific variables, namely the number of corporate securities skj,t and the nominal

interest rate on deposits Rn,dj,t . Therefore, we can write bank j’s maximization objective H (ηj,t)

in the following way:

H (ηj,t) ≡ ηj,t + Et
{
βΛt,t+1

[
Ωbt+1 − Γb

(
ω̄bj,t+1

)]
Rkt+1q

k
t s
k
j,t

}
, (A8)

where Rn,dj,t and skj,t are given by equations (A6) and (A7), respectively, and ω̄bj,t+1 by equation

(28).

Having eliminated Rn,dj,t and skj,t as independent variables from the maximization objective, we

can simply find the first and second order conditions by differentiating with respect to dividends

ηj,t. Before we do so, however, we calculate the derivative of Rn,dj,t , skj,t, and ω̄bj,t+1 with respect

to ηj,t:

dRn,dj,t
dηj,t

=
1

εd

 1 + f ′ (ηj,t)

κt

(
Rn,dt

)εd
dt

(Rn,dj,t )1+εd

. (A9)

Next, we differentiate qkt s
k
j,t with respect to ηj,t using bank j’s balance sheet constraint (A7):

d
(
qkt s

k
j,t

)
dηj,t

= − [1 + f ′ (ηj,t)] +
(
−εd

) (
Rn,dt

)εd (
Rn,dj,t

)−εd−1

dt ·
dRn,dj,t
dηj,t

= − [1 + f ′ (ηj,t)]−
1 + f ′ (ηj,t)

κt

= −
(

1 + κt
κt

)
[1 + f ′ (ηj,t)] . (A10)

Finally, we calculate the derivative of ω̄bj,t+1 with respect to dividends ηj,t:

dω̄bj,t+1

dηj,t
=

(
1− εd

) ω̄bj,t+1

Rn,dj,t
·
dRn,dj,t
dηj,t

−
ω̄bj,t+1

qkt s
k
j,t

·
d
(
qkt s

k
j,t

)
dηj,t

=

(
1− εd

εd

)
ω̄bj,t+1

 1 + f ′ (ηj,t)

κt

(
Rn,dt

)εd (
Rn,dj,t

)−εd
dt

+
ω̄bj,t+1

qkt s
k
j,t

(
1 + κt
κt

)
[1 + f ′ (ηj,t)]

= ω̄bj,t+1

(
1 + f ′ (ηj,t)

κt

)(1− εd

εd

)
1(

Rn,dt

)εd (
Rn,dj,t

)−εd
dt

+
1 + κt
qkt s

k
j,t

 . (A11)

Now we can take the first order condition of bank j’s maximization objective (A13) with respect
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to ηj,t:

Hηj,t ≡
dH (ηj,t)

dηj,t
= 1 + Et

{
βΛt,t+1

[
Ωbt+1 − Γb

(
ω̄bj,t+1

)]
Rkt+1 ·

d
(
qkt s

k
j,t

)
dηj,t

}

− Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)]
·
dω̄bj,t+1

dηj,t
·Rkt+1q

k
t s
k
j,t

}

= 1 + Et

{
βΛt,t+1

[
Ωbt+1 − Γb

(
ω̄bj,t+1

)]
Rkt+1 ·

d
(
qkt s

k
j,t

)
dηj,t

}

+ Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)]
ω̄bj,t+1R

k
t+1 ·

d
(
qkt s

k
j,t

)
dηj,t

}

−
(
1− εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] ω̄bj,t+1

Rn,dj,t
·
dRn,dj,t
dηj,t

·Rkt+1q
k
t s
k
j,t

}

= 1 + Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
·
d
(
qkt s

k
j,t

)
dηj,t

−
(
1− εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] 1

πt+1
(Rn,dt )ε

d

(Rn,dj,t )−ε
d

dt

}
·
dRn,dj,t
dηj,t

Substitution of the expressions (A9) and (A10) gives the following expression for the derivative

of H (ηj,t):

Hηj,t = 1−
(

1 + κt
κt

)
[1 + f ′ (ηj,t)]Et

{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
+

1

κt
[1 + f ′ (ηj,t)]

(
εd − 1

εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] Rn,dj,t
πt+1

}
. (A12)

We can see that the accompanying first order condition, i.e. Hηj,t = 0, coincides with the first

order conditions in the main text when the equity-deposit constraint (26) is binding. To see this,

we first solve for ψdt from the first order condition for dividends (33). Next, we substitute this

expression into the first order condition for the nominal interest rate on deposits (34), which

gives the following expression:

(1 + κt)ψ
b
t =

κt
1 + f ′ (ηj,t)

+

(
εd − 1

εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] Rn,dj,t
πt+1

}
.

Finally, we observe that we can write the first order condition for corporate securities (32) as:

ψbt = Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
,

since 1− Γb
(
ω̄bj,t+1

)
= Gb

(
ω̄bj,t+1

)
+ ω̄bj,t+1

[
1− F b

(
ω̄bj,t+1

)]
. Substitution of this expression for

ψbt then gives the same first order condition as when Hηj,t = 0 in expression (A12).
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Now that we have found an expression for Hηj,t , we can find the second order derivative

Hηj,tηj,t by differentiating (A12) with respect to ηj,t:

Hηj,tηj,t = −
(

1 + κt
κt

)
Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
f ′′ (ηj,t)

+

(
1 + κt
κt

)
[1 + f ′ (ηj,t)]Et

{
βΛt,t+1

dGb
(
ω̄bj,t+1

)
dω̄bj,t+1

·
dω̄bj,t+1

dηj,t
·Rkt+1

}

+
1

κt

(
εd − 1

εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] Rn,dj,t
πt+1

}
f ′′ (ηj,t)

− 1

κt
[1 + f ′ (ηj,t)]

(
εd − 1

εd

)
Et

{
βΛt,t+1

dF b
(
ω̄bj,t+1

)
dω̄bj,t+1

·
dω̄bj,t+1

dηj,t
·
Rn,dj,t
πt+1

}

+
1

κt
[1 + f ′ (ηj,t)]

(
εd − 1

εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] 1

πt+1
·
dRn,dj,t
dηj,t

}
.

Substitution of expression (A1) allows us to write this as:

Hηj,tηj,t = −
(

1 + κt
κt

)
Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
f ′′ (ηj,t)

+

(
1 + κt
κt

)
[1 + f ′ (ηj,t)]Et

{
βΛt,t+1ω̄

b
j,t+1 · f b

(
ω̄bj,t+1

)
·
dω̄bj,t+1

dηj,t
·Rkt+1

}

+
1

κt

(
εd − 1

εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] Rn,dj,t
πt+1

}
f ′′ (ηj,t)

− 1

κt
[1 + f ′ (ηj,t)]

(
εd − 1

εd

)
Et

{
βΛt,t+1 · f b

(
ω̄bj,t+1

)
·
dω̄bj,t+1

dηj,t
·
Rn,dj,t
πt+1

}

+
1

κt
[1 + f ′ (ηj,t)]

(
εd − 1

εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] 1

πt+1
·
dRn,dj,t
dηj,t

}
,

where f b
(
ω̄bj,t+1

)
≡ dF b(ω̄bj,t+1)

dω̄bj,t+1

, and where
dRn,dj,t
dηj,t

and
dω̄bj,t+1

dηj,t
are respectively given by expressions

(A9) and (A11), respectively.

A3.2 The case ψdt = 0

Again, we start from the maximization objective (A13):

H (ηj,t) ≡ ηj,t + Et
{
βΛt,t+1

[
Ωbt+1 − Γb

(
ω̄bj,t+1

)]
Rkt+1q

k
t s
k
j,t

}
, (A13)

However, now that the equity-deposit constraint (26) is not binding, we can no longer employ

expression (A6) for the nominal interest rate on deposits, and can only employ the bank’s balance

sheet constraint (A7) to eliminate qkt s
k
j,t. We still replace ω̄bj,t+1 by equation (28). As a result,
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we have two independent variables, namely Rn,dj,t and ηj,t, which contrasts with the case where

the equity-deposit constraint (26) is binding, in which case only ηj,t is an independent variable.

We start by taking the first order conditions with respect to ηj,t and Rn,dj,t . To do so, we first

calculate the partial derivative of the bank’s balance sheet constraint (A7) with respect to ηj,t

and Rn,dj,t :

∂
(
qkt s

k
j,t

)
∂ηj,t

= − [1 + f ′ (ηj,t)] , (A14)

∂
(
qkt s

k
j,t

)
∂Rn,dj,t

= −εd
(
Rn,dt

)εd (
Rn,dj,t

)−εd−1

dt, (A15)

Now we take the first order conditions with respect to dividends and the nominal deposit rate

in the objective (A13) to obtain:

Hηj,t = 1− Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
[1 + f ′ (ηj,t)] , (A16)

HRn,dj,t
= −εdEt

{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}(
Rn,dt

)εd (
Rn,dj,t

)−εd−1

dt

−
(
1− εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] 1

πt+1

}(
Rn,dt

)εd (
Rn,dj,t

)−εd
dt, (A17)

Setting the above two derivatives equal to zero results in the following first order conditions:

ηj,t : Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
=

1

1 + f ′ (ηj,t)
, (A18)

Rn,dj,t : Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
=

(
εd − 1

εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] Rn,dj,t
πt+1

}
.

(A19)

We can retrieve the above conditions from the first order conditions (33) - (34) and (36). To do

so, first observe that a non-binding equity-deposit constraint (26) implies that ψdt = 0. Then,

from the first order condition for dividends (33), we immediately find:

ψbt =
1

1 + f ′ (ηj,t)
.

Substitution of this expression into the first order condition for corporate securities (36) immedi-

ately gives equation (A18). Equation (A19) is retrieved by substituting equation (36) and ψdt = 0

into the first order condition for the nominal interest rate on deposits (34).
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The second derivatives are given by:

Hηj,tηj,t = Et

[
βΛt,t+1

(
ω̄bj,t+1

)2 · f b (ω̄bj,t+1

)
Rkt+1

]
· [1 + f ′ (ηj,t)]

2

qkt s
k
j,t

− Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
f ′′ (ηj,t) , (A20)

Hηj,tR
n,d
j,t

= Et

[
βΛt,t+1ω̄

b
j,t+1 · f b

(
ω̄bj,t+1

)
·
∂ω̄bj,t+1

∂Rn,dj,t
·Rkt+1

]
· [1 + f ′ (ηj,t)] , (A21)

HRn,dj,t R
n,d
j,t

= εdEt

[
βΛt,t+1ω̄

b
j,t+1 · f b

(
ω̄bj,t+1

)
·
∂ω̄bj,t+1

∂Rn,dj,t
·Rkt+1

](
Rn,dt

)εd (
Rn,dj,t

)−εd−1

dt

+ εd
(
εd + 1

)
Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}(
Rn,dt

)εd (
Rn,dj,t

)−εd−2

dt

+
(
1− εd

)
Et

[
βΛt,t+1 · f b

(
ω̄bj,t+1

)
·
∂ω̄bj,t+1

∂Rn,dj,t
· 1

πt+1

](
Rn,dt

)εd (
Rn,dj,t

)−εd
dt

+ εd
(
1− εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] 1

πt+1

}(
Rn,dt

)εd (
Rn,dj,t

)−εd−1

dt,

(A22)

where
∂ω̄bj,t

∂Rn,dj,t
is given by:

∂ω̄bj,t

∂Rn,dj,t
=
ω̄bj,t+1

Rn,dj,t

1− εd + εd

(
Rn,dt

)εd (
Rn,dj,t

)−εd
dt

qkt s
k
j,t

 .
A4 Details of the solution procedure

To construct the grid for the evaluation of bank j’s objective function (29), we first observe from

the equity-deposit constraint (22) that bank j’s equity cannot be negative, i.e. ēj ≥ 0. Therefore,

we can find the maximum dividends η̄maxj for bank j on our grid by setting ēj = 0 in equation

(21), after which we solve for η̄maxj . Note that when constructing the grid, we assume that net

worth n̄b is equal to aggregate net worth under the interior solution for which the equity-deposit

constraint (22) is not binding. Afterwards, we find the maximum number of deposits possible

on the grid through the equity-deposit constraint (22): d̄maxj = ēmaxj /κ̄. Next, we calculate the

maximum number of corporate securities by calculating s̄k,maxj = ēmaxj + d̄maxj . Afterwards, we

construct a two-dimensional grid with dividends η̄j of bank j on one axis, and corporate securities

s̄kj of bank j on the other, with the aggregate banking variables at the interior solution.4 The

resulting surfplot of an individual bank’s objective function (31) can be found in Figure A15.

4Observe that we can use banks’ balance sheet constraint (25) to solve for Rn,dj,t , after which bank j effectively

has two decision variables left, namely dividends ηj,t and corporate securities skj,t. Therefore, it suffices to create

a two-dimensional grid with dividends η̄j and corporate securities s̄kj .

22



Surfplot of bank j’s objective function

Figure A15: Surfplot of an individual bank’s objective function (31) with bank j’s dividends η̄j
and corporate securities s̄kj on the horizontal axes, and the objective function on the vertical axis

(31) for σb = 0.0480, the standard deviation of the idiosyncratic shock in the baseline calibration.
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A5 Unlimited liability

When there is unlimited liability, bankers will have to repay depositors from their own pockets in

case the bank suffers losses. Hence bankers’ profits in period t+ 1, conditional on the realization

of ωbj,t+1, are given by the same expression (A23) as under limited liability:

Πb
t+1

(
ωbj,t+1

)
= ωbj,t+1R

k
t+1q

k
t s
k
j,t −

1

πt+1
(Rn,dt )ε

d

(Rn,dj,t )1−εddt. (A23)

Because we know the distribution F b
(
ωbj,t+1

)
, we can calculate the expected aggregate profit

Πb,ULL
j,t+1 of bank j ∈ [0, 1] conditional on the realization of the aggregate return on securities Rkt+1

and the inflation rate πt+1:

Πb,ULL
j,t+1 =

∫ ∞
0

[
ωbj,t+1R

k
t+1q

k
t s
k
j,t −

1

πt+1
(Rn,dt )ε

d

(Rn,dj,t )1−εddt

]
f b
(
ωbj,t+1

)
dωbj,t+1

=

∫ ∞
0

ωbj,t+1f
b
(
ωbj,t+1

)
dωbj,t+1R

k
t+1q

k
t s
k
j,t −

∫ ∞
0

f b
(
ωbj,t+1

)
dωbj,t+1

1

πt+1
(Rn,dt )ε

d

(Rn,dj,t )1−εddt

= Ωbt+1R
k
t+1q

k
t s
k
j,t −

1

πt+1
(Rn,dt )ε

d

(Rn,dj,t )1−εddt, (A24)

Just as in the main text, bank j’s optimization problem is given by the maximization of the

sum of today’s dividends and expected (discounted) profits (A24), subject to the balance sheet

constraint (25), and the equity-deposit constraint (26). To find bank j’s optimal choices, we set

up the Lagrangian:

L = ηj,t + Et

{
βΛt,t+1

[
Ωbt+1R

k
t+1q

k
t s
k
j,t −

1

πt+1
(Rn,dt )ε

d

(Rn,dj,t )1−εddt

]}

+ψbt

nbj,t +

(
Rn,dj,t

Rn,dt

)−εd
dt − qkt skj,t − ηj,t − f (ηj,t)


+ψdt

nbj,t − ηj,t − f (ηj,t)− κt

(
Rn,dj,t

Rn,dt

)−εd
dt

 ,

where ψbt is the Lagrangian multiplier on bank j’s balance sheet constraint (25), and ψdt the

Lagrangian multiplier on bank j’s equity-deposit constraint (26). This generates the following

first order conditions:

skj,t : ψbt = Et
[
βΛt,t+1Ωbt+1R

k
t+1

]
, (A25)

ηj,t : 1 =
(
ψbt + ψdt

)
[1 + κη (ηj,t − η̂)] , (A26)

Rn,dj,t : ψbt − κtψdt =

(
εd − 1

εd

)
Et

[
βΛt,t+1

Rn,dj,t
πt+1

]
, (A27)
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together with the first order condition for the occasionally binding equity-deposit constraint:

ψdt

nbj,t − ηj,t − f (ηj,t)− κt

(
Rn,dj,t

Rn,dt

)−εd
dt

 = 0. (A28)

First, observe that the first order condition for dividends (A26) is the same as for the model with

limited liability (33).

Second, since ψbt and ψdt are the same for all banks, we see from the first order condition

for the nominal interest rate on deposits (A27) that all banks will choose the same nominal

interest rate on deposits Rn,dj,t in equilibrium. In addition, we know that there is zero default

risk for households in case of unlimited liability, as a result of which the nominal interest rate on

deposits will be equal to the nominal interest rate on the risk-free asset, see equations (3) and

(4). Therefore, we know that Et

[
βΛt,t+1

Rn,dj,t
πt+1

]
= 1, as a result of which the first order condition

for the nominal interest rate on deposits (A27) collapses to:

ψbt − κtψdt =
εd − 1

εd
. (A29)

Next, we distinguish two cases. The first is one in which the equity-deposit constraint (26) does

not bind, i.e. ψdt = 0, and the second is the case where it binds, i.e. ψdt > 0. Let us first consider

the case where constraint (26) does not bind. In that case, we can write the first order condition

for deposits (A29) in the following way by substituting ψdt = 0:

ψbt =
εd − 1

εd
. (A30)

When the equity-deposit constraint (26) is binding, we solve for ψdt from the first order condition

for dividends (A26) to find:

ψdt =
1

1 + κη (ηj,t − η̂)
− ψbt . (A31)

Substitution of this expression for ψdt into the first order condition for the nominal interest rate

on deposits (A29) gives the following expression for the shadow value of intermediaries’ balance

sheet constraint (25):

ψbt =

(
κt

1 + κt

)
1

1 + κη (ηj,t − η̂)
+

1

1 + κt

(
εd − 1

εd

)
. (A32)

A6 The role of limited liability in banks’ lending decisions when ψdt = 0

In this subsection, we show that the results from Section 2.6 regarding the role of limited liability

carry over to the case where the equity-deposit constraint (26) is not binding, i.e. ψdt = 0. In

contrast to Section 2.6, we do not need to assume that dividend adjustment costs are zero to
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obtain analytical results.

Before we do so, let us first observe that the first order conditions for corporate securities

under limited liability (32) and unlimited liability (A25) do not depend on ψdt , and are therefore

the same irrespective of whether the equity-deposit constraint (26) is binding or not. Therefore,

the expressions (45) and (36) in Section 2.6 are the same when ψdt = 0.

Therefore, we only need to derive the equivalent expressions for expressions (44) and (43).

Let us first derive the equivalent expression for the first order condition for the nominal interest

rate on deposits under limited liability, expression (44). To do so, we set ψdt = 0 in equation

(34), and solve for the shadow value of intermediaries’ balance sheet constraint under limited

liability ψb,LLt to get:

ψb,LLt =

(
εd − 1

εd

) Et

{
β

Λt,t+1

πt+1

[
1− F b

(
ω̄bt+1

)]}
Et

{
β

Λt,t+1

πt+1

[
1− γF b

(
ω̄bt+1

)]} , (A33)

where we substituted households’ first order condition for deposits (4). We already derived the

equivalent first order condition for the nominal interest rate on deposits under unlimited liability,

see equation (A30).

Just as in the main text, we see that ψb,LLt < ψb,ULLt when 0 ≤ γ < 1, since Et

{
β

Λt,t+1

πt+1

[
1− γF b

(
ω̄bt+1

)]}
>

Et

{
β

Λt,t+1

πt+1

[
1− F b

(
ω̄bt+1

)]}
. Therefore, the intuition of the main text carries over to the case

where the equity-deposit constraint (26) is not binding.

A7 Proofs of the Propositions in the main text

Proof of Proposition 2

Proof. We start by employing households’ first order condition for deposits (50) to write equation

(47) (with κη = 0), in the following way:

β
[
1−Gb

(
ω̄b
)]
R̄k =

κ̄

1 + κ̄
+

1

1 + κ̄

(
εd − 1

εd

)
β
[
1− F b

(
ω̄b
)]
R̄d, (A34)

Implicit differentiation with respect to σb gives the following expression:

−βR̄k ·
dGb

(
ω̄b
)

dσb
+ β

[
1−Gb

(
ω̄b
)]
· dR̄

k

dσb
= − 1

1 + κ̄

(
εd − 1

εd

)
βR̄d ·

dF b
(
ω̄b
)

dσb

+
1

1 + κ̄

(
εd − 1

εd

)
β
[
1− F b

(
ω̄b
)]
· dR̄

d

dσb
,

Division of the left and right hand side by β
[
1−Gb

(
ω̄b
)]
R̄k allows us to write this equation in
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the following way:

1

R̄k
· dR̄

k

dσb
=

1

β [1−Gb (ω̄b)] R̄k

[
βR̄k ·

dGb
(
ω̄b
)

dσb
− 1

1 + κ̄

(
εd − 1

εd

)
βR̄d ·

dF b
(
ω̄b
)

dσb

+
1

1 + κ̄

(
εd − 1

εd

)
β
[
1− F b

(
ω̄b
)]
· dR̄

d

dσb

]
. (A35)

Next, we use Lemma 3, which provides a relation between
dF b(ω̄b)
dσb

and
dGb(ω̄b)
dσb

.

Lemma 3. The following relation exists between
dF b(ω̄b)
dσb

and
dGb(ω̄b)
dσb

:

dGb
(
ω̄b
)

dσb
= ω̄b

[
dF b

(
ω̄b
)

dσb
− Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)]
.

Proof. Let us start from expression (55):

dGb
(
ω̄b
)

dσb
= Φ′

(
log
(
ω̄b
)
− 1

2

(
σb
)2

σb

)
·
σb

ω̄b
· dω̄

b

dσb
− 1

2

(
σb
)2 − log

(
ω̄b
)

(σb)
2

= ω̄bΦ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)
·
σb

ω̄b
· dω̄

b

dσb
+ 1

2

(
σb
)2 − log

(
ω̄b
)
−
(
σb
)2

(σb)
2

= ω̄b

[
dF b

(
ω̄b
)

dσb
− Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)]
, (A36)

where we used expression (54) in going from the second to the third line.

Substitution of Lemma 3 into expression (A35) allows us to write:

1

R̄k
· dR̄

k

dσb
=

1

β [1−Gb (ω̄b)] R̄k

{
β

[
R̄kω̄b − R̄d

1 + κ̄

(
εd − 1

εd

)]
·
dF b

(
ω̄b
)

dσb

− βR̄kω̄bΦ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)

+
βR̄d

1 + κ̄

(
εd − 1

εd

)[
1− F b

(
ω̄b
)]
· 1

R̄d
· dR̄

d

dσb

}
. (A37)

Now we use Lemma 4 to rewrite R̄d

1+κ̄ :

Lemma 4. We can write R̄d

1+κ̄ in the following way:

R̄d

1 + κ̄
= R̄kω̄b.
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Proof. We can infer from equation (28) that R̄kω̄b = R̄dd̄
q̄k s̄k

. Next, we substitute equation (22) into

banks’ balance sheet constraint (25) to write d̄
q̄k s̄k

= 1
1+κ̄ . Substitution of the second expression

into the first concludes the proof.

Substitution of the expression for R̄d

1+κ̄ from Lemma 4 allows us to rewrite equation (A37) in

the following way:

1

R̄k
· dR̄

k

dσb
=

1

β [1−Gb (ω̄b)] R̄k

{
βR̄kω̄b

1

εd
·
dF b

(
ω̄b
)

dσb
− βR̄kω̄bΦ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)

+ βR̄kω̄b
(
εd − 1

εd

)[
1− F b

(
ω̄b
)]
· 1

R̄d
· dR̄

d

dσb

}
.

Taking βR̄kω̄b outside the brackets, we can write the above expression as:

1

R̄k
· dR̄

k

dσb
=

ω̄b

1−Gb (ω̄b)

{
1

εd
·
dF b

(
ω̄b
)

dσb
− Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)

+

(
εd − 1

εd

)[
1− F b

(
ω̄b
)]
· 1

R̄d
· dR̄

d

dσb

}
. (A38)

Now, when there is full deposit insurance, we know that γ = 0, after which we can infer from

households’ first order condition (50) that R̄d = 1/β. Therefore, under full deposit insurance

we have that dR̄d

dσb
= 0. Substitution of dR̄d

dσb
= 0 gives the expression in the proof of Proposition

2.

Now that we have derived the expression from Proposition 2, we are ready to prove Proposi-

tion 3.

Proof of Proposition 3

Proof. First substitute γ = 1 into equation (47), after which we implicitly differentiate with

respect to σb:

−βR̄k ·
dGb

(
ω̄b
)

dσb
+ β

[
1−Gb

(
ω̄b
)]
· dR̄

k

dσb
= 0.

Division by β
[
1−Gb

(
ω̄b
)]
R̄k immediately leads to the desired expression.

Proof of Corollary 1

Proof. We can write the steady state version of the aggregate resource constraint (42) in the

following way:

c̄ = ȳ − ī−
(
ḡ

ȳ

)
ȳ − µdiaGb

(
ω̄b
)
R̄kk̄, (A39)
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where we used the fact that q̄k = 1 and s̄k = k̄. Next, we implicitly differentiate the above

expression with respect to σb. Before doing so, however, remember that ȳ = z̄k̄αh̄1−α and

ī = δk̄. Remembering that z̄ = 1 and that labor h̄ is inelastically supplied by households, we

can immediately write that dȳ
dσb

= αȳ · 1
k̄
· dk̄
dσb

and dī
dσb

= δk̄ · 1
k̄
· dk̄
dσb

.

Finally, using equation (51), we can immediately write that dR̄k

dσb
= (α− 1)αm̄cz̄k̄α−1h̄1−α ·

1
k̄
· dk̄
dσb

= (α− 1)
[
R̄k − (1− δ)

]
· 1
k̄
· dk̄
dσb

. Therefore, we can write that

d
(
R̄kk̄

)
dσb

= k̄ (α− 1)
[
R̄k − (1− δ)

]
· 1

k̄
· dk̄
dσb

+ R̄kk̄ · 1

k̄
· dk̄
dσb

=
[
αR̄kk̄ + (1− α) (1− δ) k̄

]
· 1

k̄
· dk̄
dσb

.

Now we are ready to differentiate equation (A39) and substitute the above expressions for dȳ
dσb

,

dī
dσb

, and
d(R̄kk̄)
dσb

to get:

dc̄

dσb
=

(
1− ḡ

ȳ

)
αȳ · 1

k̄
· dk̄
dσb
− δk̄ · 1

k̄
· dk̄
dσb
− µdiaGb

(
ω̄b
) [
αR̄kk̄ + (1− α) (1− δ) k̄

]
· 1

k̄
· dk̄
dσb

− µdiaR̄kk̄ ·
dGb

(
ω̄b
)

dσb

=

(
1− ḡ

ȳ

)
αȳ · 1

k̄
· dk̄
dσb
− αδk̄ · 1

k̄
· dk̄
dσb
− (1− α) δk̄ · 1

k̄
· dk̄
dσb

− αµdiaGb
(
ω̄b
)
R̄kk̄ · 1

k̄
· dk̄
dσb
− (1− α)µdiaGb

(
ω̄b
)

(1− δ) k̄ · 1

k̄
· dk̄
dσb
− µdiaR̄kk̄ ·

dGb
(
ω̄b
)

dσb

= α

[(
1− ḡ

ȳ

)
ȳ − δk̄ − µdiaGb

(
ω̄b
)
R̄kk̄

]
· 1

k̄
· dk̄
dσb

−
[
(1− α) δk̄ + (1− α)µdiaGb

(
ω̄b
)

(1− δ) k̄
]
· 1

k̄
· dk̄
dσb
− µdiaR̄kk̄ ·

dGb
(
ω̄b
)

dσb

=
[
αc̄− (1− α) ī− (1− α)µdiaGb

(
ω̄b
)

(1− δ) k̄
]
· 1

k̄
· dk̄
dσb
− µdiaR̄kk̄ ·

dGb
(
ω̄b
)

dσb
,

where we used that ī = δk̄, and see that the above expression coincides with that in Proposition

1.

Proof of Proposition 4

Proof. We start by rewriting equation (50) in the following way:

R̄d =
1

β [1− γF b (ω̄b)]
.
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Implicit differentiation with respect to γ gives the following expression:

dR̄d

dγ
=

−1

β [1− γF b (ω̄b)]
2

[
−F b

(
ω̄b
)
− γ ·

dF b
(
ω̄b
)

dσb

]

=
R̄d

1− γF b (ω̄b)

[
F b
(
ω̄b
)

+ γ ·
dF b

(
ω̄b
)

dσb

]
.

Division on the left and right hand side by R̄d gives the expression of Proposition 4.

Proof of Corollary 2

Proof. Let us start by reminding ourselves that the probability of default is given by the following

expression:

F b
(
ω̄b
)

= Φ

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)
,

where Φ (...) denotes the cumulative density function of the standard normal distribution. There-

fore, we can write the change in the probability of default in the following way:

dF b
(
ω̄b
)

dγ
= Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)
· 1

σbω̄b
· dω̄

b

dγ
.

Now we remember that ω̄b ≡ R̄d

R̄k
x̄b. Implicit differentiation with respect to γ gives:

dω̄b

dγ
=

1

R̄k
x̄b · dR̄

d

dγ
+
R̄d

R̄k
· dx̄

b

dγ
− R̄d

R̄k
x̄b · 1

R̄k
· dR̄

k

dγ

= ω̄b
[

1

R̄d
· dR̄

d

dγ
− 1

R̄k
· dR̄

k

dγ

]
,

where we remember that dx̄b

dγ = 0 when moving from the first to the second line, since x̄b =

1/ (1 + κ̄) when the equity-deposit constraint (26) is binding. Substitution of this expression in

the expression for
dF b(ω̄b)

dγ gives the following expression:

dF b
(
ω̄b
)

dγ
=

1

σb
Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)[
1

R̄d
· dR̄

d

dγ
− 1

R̄k
· dR̄

k

dγ

]
. (A40)

Next, we substitute expression (61) to calculate 1
R̄d
· dR̄

d

dγ −
1
R̄k
· dR̄

k

dγ , and obtain the following

equation:

1

R̄d
· dR̄

d

dγ
− 1

R̄k
· dR̄

k

dγ
= B · 1

R̄d
· dR̄

d

dγ
− ω̄b

1−Gb (ω̄b)
· 1

εd
·
dF b

(
ω̄b
)

dγ
, (A41)
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where B is given by:

B = 1− ω̄b

1−Gb (ω̄b)

(
εd − 1

εd

)[
1− F b

(
ω̄b
)]
, (A42)

Substitution of equation (A41) into expression (A40), and rearranging immediately gives the

expression of Corollary 2:[
1 +

1

σbεd
· ω̄b

1−Gb (ω̄b)
Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)]
·
dF b

(
ω̄b
)

dγ
=

1

σb
Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)
B· 1

R̄d
·dR̄

d

dγ
.

Finally, we need to prove that B > 0. To do so, we employ banks’ first order condition for

corporate securities (47) with κη = 0, which we can rewrite with the help of households’ first

order condition for deposits (50) into the following form:

β
[
1−Gb

(
ω̄b
)]
R̄k =

κ̄

1 + κ̄
+

1

1 + κ̄

(
εd − 1

εd

)
β
[
1− F b

(
ω̄b
)]
R̄d. (A43)

Division of left and right hand side by β
[
1−Gb

(
ω̄b
)]

gives the following expression:

R̄k =
1

β [1−Gb (ω̄b)]
· κ̄

1 + κ̄
+

1

1−Gb (ω̄b)
· 1

1 + κ̄

(
εd − 1

εd

)[
1− F b

(
ω̄b
)]
R̄d.

Next, we employ Lemma 4 to substitute R̄d

1+κ̄ = R̄kω̄b in the second term on the right hand side,

after which we shift this term to the left hand side to get:{
1− ω̄b

1−Gb (ω̄b)

(
εd − 1

εd

)[
1− F b

(
ω̄b
)]}

︸ ︷︷ ︸
=B

R̄k =
1

β [1−Gb (ω̄b)]
· κ̄

1 + κ̄
> 0.

Since the right hand side is larger than zero, we immediately conclude that the term between

square brackets, which is equal to B, must be larger than zero.

Proof of Corollary 3

Proof. Implicit differentiation of banks’ first order condition for corporate securities (A43) with

respect to γ gives the following expression:

1

R̄k
· dR̄

k

dγ
=

1

β [1−Gb (ω̄b)] R̄k

{
βR̄k ·

dGb
(
ω̄b
)

dγ
− 1

1 + κ̄

(
εd − 1

εd

)
βR̄d ·

dF b
(
ω̄b
)

dγ

+
1

1 + κ̄

(
εd − 1

εd

)
β
[
1− F b

(
ω̄b
)]
· dR̄

d

dγ

}
.

Next, we use equation (A1) to write
dGb(ω̄b)

dγ = ω̄b · dF
b(ω̄b)
dγ , and subsitute this expression to
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obtain:

1

R̄k
· dR̄

k

dγ
=

1

β [1−Gb (ω̄b)] R̄k

{
β

[
R̄kω̄b − 1

1 + κ̄

(
εd − 1

εd

)
R̄d
]
·
dF b

(
ω̄b
)

dγ

+
1

1 + κ̄

(
εd − 1

εd

)
β
[
1− F b

(
ω̄b
)]
· dR̄

d

dγ

}
. (A44)

Now we use Lemma 4 to rewrite the expression between square brackets:

R̄kω̄b − 1

1 + κ̄

(
εd − 1

εd

)
R̄d =

R̄d

1 + κ̄
− 1

1 + κ̄

(
εd − 1

εd

)
R̄d =

1

εd
· R̄d

1 + κ̄
< 0,

since εd < −1. Substitution of this expression gives the following expression for the change in

the return on corporate securities as a result of a change in the degree of deposit insurance γ:

1

R̄k
· dR̄

k

dγ
=

1

β [1−Gb (ω̄b)] R̄k

{
1

εd
· βR̄

d

1 + κ̄
·
dF b

(
ω̄b
)

dγ
+

1

1 + κ̄

(
εd − 1

εd

)
β
[
1− F b

(
ω̄b
)]
R̄d · 1

R̄d
· dR̄

d

dγ

}
.

=

(
R̄d

R̄k (1 + κ̄)

)
1

1−Gb (ω̄b)

{
1

εd
·
dF b

(
ω̄b
)

dγ
+

(
εd − 1

εd

)[
1− F b

(
ω̄b
)]
· 1

R̄d
· dR̄

d

dγ

}
.

(A45)

Finally, we employ Lemma 4 to replace R̄d

R̄k
· 1

1+κ̄ in equation (A45) by ω̄b to obtain:

1

R̄k
· dR̄

k

dγ
=

ω̄b

1−Gb (ω̄b)

{
1

εd
·
dF b

(
ω̄b
)

dγ
+

(
εd − 1

εd

)[
1− F b

(
ω̄b
)]
· 1

R̄d
· dR̄

d

dγ

}
,

which coincides with expression (61) in Corollary 3.

A8 Additional propositions

We start by proving that the interest rate on deposits increases with the probability of default

when γ > 0:

Proposition 5. For γ > 0, the interest rate on deposits R̄d increases as a result of an increase

the probability of default:

1

R̄d
· dR̄

d

dσb
=

γ

1− γF b (ω̄b)
·
dF b

(
ω̄b
)

dσb
. (A46)

Proof. Implicit differentiation of equation (50) immediately results in the above expression.

Proposition 6. For γ > 0, it is unclear whether the level of credit provision under limited
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liability is larger or smaller than credit provision under unlimited liability:

dk̄

dσb
≶ 0.

Proof. Looking at equation (A38), we see that the first two terms coincide with the expression

for 1
R̄k
· dR̄

k

dσb
from the proof of Proposition 2, and are therefore negative. However, we now have

a third term, namely the change in the return on deposits, which will be increasing in σb as a

result of a higher probability of default, see Proposition 5. Therefore, the sign of 1
R̄k
· dR̄

k

dσb
is

ambiguous, as a result of which the sign of dk̄
dσb

will also be ambiguous.

A9 Propositions and proofs for the case ψdt = 0

In the main text, we discussed propositions for which we assumed the equity-deposit constraint

(26) to be binding, i.e. ψdt > 0. It turns out, however, that most propositions continue to hold

for the case where the equity-deposit constraint is nog binding, i.e ψdt = 0. In this section, we

will provide the proofs of these propositions for the case where the equity-deposit constraint is

not binding. We start by writing the counterparts to equations (47) - (49) for the case where

the equity-deposit constraint is not binding.

β
[
1−Gb

(
ω̄b
)]
R̄k =

(
εd − 1

εd

)
1− F b

(
ω̄b
)

1− γF b (ω̄b)
, (A47)

ψ̄ =
1

1 + κη (η̄ − η̂)
, (A48)

ψ̄ =

(
εd − 1

εd

)
1− F b

(
ω̄b
)

1− γF b (ω̄b)
, (A49)

(A50)

Proof of Proposition 1 for ψdt = 0

Proof. We start by writing the expression for the return on corporate securities under unlimited

liability with a equity-deposit constraint that is not binding, i.e. ψdt = 0. To do so, we combine

equations (A25) and (A30) to find that the steady state return on corporate securities under

unlimited liability is given by:

R̄k
∣∣ULL =

1

β

(
εd − 1

εd

)
> 1, (A51)

since εd < −1.

Next, we set ψdt = 0 in the first order condition for the nominal interest rate on deposits (34),

solve for ψbt , and substitute the resulting expression into the first order condition for corporate
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securities (36) to obtain:

Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
=

(
εd − 1

εd

)
Et

{
βΛt,t+1

[
1− F b

(
ω̄bj,t+1

)] Rn,dj,t
πt+1

}
.(A52)

Next, we substitute ∆b
t = F b

(
ω̄bt
)

into households’ first order condition for deposits (4), solve

for the nominal interest rate on deposits, and substitute the resulting expression into equation

(A52) to get the following expression:

Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bj,t+1

)]
Rkt+1

}
=

(
εd − 1

εd

) Et

{
βΛt,t+1

πt+1

[
1− F b

(
ω̄bj,t+1

)]}
Et

{
βΛt,t+1

πt+1

[
1− γF b

(
ω̄bj,t+1

)]} , (A53)

which is in steady state given by:

β
[
1−Gb

(
ω̄b
)]
R̄k =

(
εd − 1

εd

)
1− F b

(
ω̄b
)

1− γF b (ω̄b)
, (A54)

Now we are in the position to write down the steady state return on corporate securities under

limited liability:

R̄k
∣∣∣LL =

1− F b
(
ω̄b
)

1− γF b (ω̄b)
· 1

1−Gb (ω̄b)
· R̄k

∣∣∣ULL, (A55)

where we employed equation (A51).

Now we are ready to prove Lemma 1, which states that in the absence of deposit insurance

(γ = 1), the return on capital under limited liability R̄k
∣∣∣LL
γ=1

is always larger than or equal to the

return on capital under unlimited liability R̄k
∣∣∣ULL:

R̄k
∣∣∣LL
γ=1
≥ R̄k

∣∣∣ULL.
Proof. Substitution of γ = 1 into equation (A55) allows us to write the return on capital under

limited liability and full deposit insurance R̄k
∣∣∣LL
γ=1

as:

R̄k
∣∣∣LL
γ=0

=
1

1−Gb (ω̄b)
· R̄k

∣∣∣ULL ≥ R̄k∣∣∣ULL,
since Gb

(
ω̄b
)
≡
∫ ω̄b

0
ωf (ω) dω ≤

∫∞
0
ωf (ω) dω = 1.

Next, we prove Lemma 2, which says that the return on capital under limited liability and full

deposit insurance is always less than or equal to the return on capital under unlimited liability:

R̄k
∣∣∣LL
γ=0
≤ R̄k

∣∣∣ULL.
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Proof. Substitution of γ = 0 into equation (A55) allows us to write the return on capital under

limited liability and full deposit insurance R̄k
∣∣∣LL
γ=0

as:

R̄k
∣∣∣LL
γ=0

=
1− F b

(
ω̄b
)

1−Gb (ω̄b)
· R̄k

∣∣∣ULL ≤ R̄k∣∣∣ULL,
since Gb

(
ω̄b
)
≡
∫ ω̄b

0
ωf (ω) dω ≤

∫ ω̄b
0

ω̄bf (ω) dω ≡ ω̄bF b
(
ω̄b
)
≤ F b

(
ω̄b
)

since ω̄b < 1.

Now, we can infer from Lemma 1 that k̄
∣∣∣ULL ≥ k̄∣∣∣LL

γ=1
, and from Lemma 2 that k̄

∣∣∣LL
γ=0
≥ k̄

∣∣∣ULL,

since we know from equation (51) that the return on corporate securities and the stock of physical

capital are inversely related. Together, these two (in)equalities prove Proposition 1.

Proof of Proposition 2 for ψdt = 0

Proof. First substitute γ = 0 into equation (A54), after which we implicitly differentiate with

respect to σb:

−βR̄k ·
dGb

(
ω̄b
)

dσb
+ β

[
1−Gb

(
ω̄b
)]
· dR̄

k

dσb
= −

(
εd − 1

εd

)
·
dF b

(
ω̄b
)

dσb
,

Division of the left and right hand side by β
[
1−Gb

(
ω̄b
)]
R̄k, and then employing equation

(A54) on the right hand side allows us to write this equation in the following way:

1

R̄k
· dR̄

k

dσb
=

1

1−Gb (ω̄b)
·
dGb

(
ω̄b
)

dσb
− 1

1− F b (ω̄b)
·
dF b

(
ω̄b
)

dσb
,

Substitution of equation (A36) gives the following expression:

1

R̄k
· dR̄

k

dσb
=

[
ω̄b

1−Gb (ω̄b)
− 1

1− F b (ω̄b)

]
︸ ︷︷ ︸

<0

·
dF b

(
ω̄b
)

dσb
− ω̄b

1−Gb (ω̄b)
Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)
< 0,

where we remember that Φ (...) > 0 denotes the cumulative density function of the standard

normal distribution, and where the term inside the squared brackets is smaller than zero. The

reason that the term inside the squared brackets is negative is the following. First, observe that

Gb
(
ω̄b
)
≡
∫ ω̄b

0
ωbf b

(
ωb
)
dωb ≤ ω̄b

∫ ω̄b
0

f b
(
ωb
)
dωb = ω̄bF b

(
ω̄b
)
≤ F b

(
ω̄b
)
, where the last step

follows from the fact ω̄b ≤ 1. Therefore, we have that 1
1−Gb(ω̄b) ≤

1
1−F b(ω̄b) . Next, since ω̄b ≤ 1,

it immediately follows that the term inside the squared brackets is negative, and we can conclude

that Proposition 2 also holds when ψdt = 0.

Proof of Proposition 3 for ψdt = 0
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Proof. First substitute γ = 1 into equation (A54), after which we implicitly differentiate with

respect to σb:

−βR̄k ·
dGb

(
ω̄b
)

dσb
+ β

[
1−Gb

(
ω̄b
)]
· dR̄

k

dσb
= 0.

Division by β
[
1−Gb

(
ω̄b
)]
R̄k immediately leads to the desired expression in Proposition 3.

Proof of Corollary 1 for ψdt = 0

The proof for the expression in Corollary 1 does not depend on banks’ first order conditions.

Therefore, the proof for the case ψdt = 0 is the same as for the case ψdt > 0, and can be found in

Appendix A7.

Proof of Proposition 4 for ψdt = 0

The proof of Proposition 4 relies on households’ first order condition for deposits (50), and

does not depend on whether or not the equity-deposit constraint (26) is binding or not. There-

fore, the proof in the main text carries over to the case with ψdt = 0.

Proof of Corollary 2

Unlike the case where the equity-deposit constraint (26) is binding, we cannot prove the

extistence of the feedback loop between the real interest rate on deposits and the probability of

default. However, we can still prove the possibility of such a feedback loop to emerge, which we

do in Corollary 4:

Corollary 4. There exists the possibility of a feedback loop between the real interest rate on

deposits R̄d and the probability of default F b
(
ω̄b
)
.

Proof. We already saw in Proposition 4 how the return on deposits is affected by a change in

the probability of default. However, remember that the probability of default depends on the

cut-off value ω̄b ≡ R̄d

R̄k
· x̄b where x̄b ≡ d̄/k̄ is the deposits-assets ratio. Therefore, we can write

the change in the probability of default as:

dF b
(
ω̄b
)

dγ
=

1

σb
Φ′

(
log
(
ω̄b
)

+ 1
2

(
σb
)2

σb

)[
1

R̄d
· dR̄

d

dγ
+

1

x̄b
· dx̄

b

dγ
− 1

R̄k
· dR̄

k

dγ

]
. (A56)

Therefore, we see that an increase in the interest rate on deposits increases the probability of

default, everything else equal. The resulting increase in the probability of default then increases

the interest rate on deposits via expression (58), which in turn leads to a second round increase

in the probability of default. This proves the possibility of a feedback loop between the interest

rate on deposits and the probability of default.

Proof of Corollary 3 for ψdt = 0
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Proof. Substitution of households’ first order condition for deposits (50) into equation (A54)

gives the following equation:

β
[
1−Gb

(
ω̄b
)]
R̄k =

(
εd − 1

εd

)
β
[
1− F b

(
ω̄b
)]
R̄d, (A57)

Implicit differentiation with respect to γ gives the following expression:

−βR̄k·
dGb

(
ω̄b
)

dγ
+β
[
1−Gb

(
ω̄b
)]
·dR̄

k

dγ
= −

(
εd − 1

εd

)
βR̄d·

dF b
(
ω̄b
)

dγ
+

(
εd − 1

εd

)
β
[
1− F b

(
ω̄b
)]
·dR̄

d

dγ
.

We divide by β
[
1−Gb

(
ω̄b
)]
R̄k, and employ equation (A57) to rewrite the above expression as:

1

R̄k
· dR̄

k

dγ
=

1

1−Gb (ω̄b)
·
dGb

(
ω̄b
)

dγ
− 1

1− F b (ω̄b)
·
dF b

(
ω̄b
)

dγ
+

1

R̄d
· dR̄

d

dγ
.

Using equation (A1), We know that
dGb(ω̄b)

dγ = ω̄b · dF
b(ω̄b)
dγ , after which we obtain:

1

R̄k
· dR̄

k

dγ
=

[
ω̄b

1−Gb (ω̄b)
− 1

1− F b (ω̄b)

]
︸ ︷︷ ︸

<0

·
dF b

(
ω̄b
)

dγ
+

1

R̄d
· dR̄

d

dγ
, (A58)

where we know that the expression between the squared brackets is negative because of the

following. First, observe that Gb
(
ω̄b
)
≡
∫ ω̄b

0
ωbf b

(
ωb
)
dωb ≤ ω̄b

∫ ω̄b
0

f b
(
ωb
)
dωb = ω̄bF b

(
ω̄b
)
≤

F b
(
ω̄b
)
, where the last step follows from the fact ω̄b ≤ 1. Therefore, we have that 1

1−Gb(ω̄b) ≤
1

1−F b(ω̄b) . Next, since ω̄b ≤ 1, it immediately follows that the term inside the squared brackets

is negative.

Finally, we substitute the expression for the change in the return on deposits (58), which

provides us with the following expression:

1

R̄k
· dR̄

k

dγ
=

F b
(
ω̄b
)

1− γF b (ω̄b)︸ ︷︷ ︸
direct effect

from increase inR̄d

+

[
ω̄b

1−Gb (ω̄b)
− 1

1− F b (ω̄b)
+

γ

1− γF b (ω̄b)

]
·
dF b

(
ω̄b
)

dγ
. (A59)

We see that the term inside the squared brackets is negative for γ = 0, while it is positive for

γ = 1. Therefore, it is likely that this term will switch from being negative to positive when

γ increases. Therefore, for
dF b(ω̄b)

dγ > 0, larger values of γ will lead to a larger increase in the

return on corporate securities, everything else equal.

A10 Equilibrium & overview of first order conditions

Households’ choice variables {ct, ht, dt}, producers’ choice variables {it, yt, kt}, bankers’ choice

variables
{
skt , n

b
t , ω̄

b
t , x

b
t , φt, ηt, et

}
, government’s choice variables

{
Tt, T

dia
t

}
, prices
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{
qkt , r

k
t , R

k
t , wt, R

D
t ,mct, πt, R

n
t , R

n,d
t

}
, shadow prices

{
λt, ψ

b
t , ψ

d
t

}
exogenous processes {zt, gt, κt}.

A10.1 Households

λt = u′ (ct) = (ct − υct−1)
−σc − βυEt

[
(ct+1 − υct)−σc

]
, (A60)

χhϕt = λtwt, (A61)

1 = Et

[
βΛt,t+1

Rnt
πt+1

]
, (A62)

1 = Et

[
βΛt,t+1

[
1− γF b

(
ω̄bt
)] Rn,dt
πt+1

]
, (A63)

where βΛt,t+s = βλt+s/λt is the households’ stochastic discount factor to discount cash flows

from period t+ s to period t.

A10.2 Producers

yt = ztk
α
t−1h

1−α
t , (A64)

rkt = αmctyt/kt−1, (A65)

wt = (1− α)mctyt/ht. (A66)

Rkt =
rkt + (1− δ) qkt

qkt−1

, (A67)

κp
(
πt − πγPt−1π̄

1−γP
)
πtyt = (1− ε) yt + εmctyt + Et

[
β
λt+1

λt
κp
(
πt+1 − πγPt π̄1−γP

)
πt+1yt+1

]
.

(A68)

kt = (1− δ) kt−1 +

[
1− κk

2

(
it
it−1

− 1

)2
]
it, (A69)

1

qkt
= 1− κk

2

(
it
it−1

− 1

)2

− κk
it
it−1

(
it
it−1

− 1

)
+ Et

[
β
λt+1

λt

qkt+1

qkt

(
it+1

it

)2

κk

(
it+1

it
− 1

)]
(A70)
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A10.3 Bankers

qkt s
k
t + ηt +

1

2
κη (ηt − η̂)

2
= nbt + dt, (A71)

ψbt = Et
{
βΛt,t+1

[
Ωbt+1 −Gb

(
ω̄bt+1

)]
Rkt+1

}
, (A72)

ψbt + ψdt =
1

1 + κη (ηt − η̂)
, (A73)

ψbt − κtψdt = Et

{
βΛt,t+1

[
1− F b

(
ω̄bt+1

)] Rn,dt
πt+1

}
, (A74)

nbt = θb
[
Ωbt − Γb

(
ω̄bt
)]
Rkt q

k
t−1s

k
t−1 + χbnbt−1, (A75)

ω̄bt =
1
πt
Rn,dt−1x

b
t−1

Rkt
, (A76)

xbt =
dt
qkt s

k
t

, (A77)

φt = qkt s
k
t /et, (A78)

et = nbt − ηt −
1

2
κη (η − η̂)

2
. (A79)

0 = ψdt
(
nbt − ηt − f (ηt)− κtdt

)
. (A80)

A10.4 Government

Tt = T diat + gt, (A81)

T diat = (1− γ)F b
(
ω̄bt
)
RDt dt−1 −

(
1− µdia

)
Gb
(
ω̄bt
)
Rkt q

k
t−1s

k
t−1, (A82)

RDt =
Rn,dt−1

πt
. (A83)

Rnt = (1− ρr)
[
R̄n + κπ (πt − π̄) + κy log (yt/yt−1)

]
+ ρrR

n
t−1 + εr,t, (A84)

A10.5 Exogenous processes

log (zt) = ρz log (zt−1) + εz,t, (A85)

gt =

(
ḡ

ȳ

)
yt, (A86)

κt = κ̄. (A87)

A10.6 Market clearing

skt = kt, (A88)

yt = ct + it + gt +
κp
2

(
πt − πγPt−1π̄

1−γP
)2
yt + µdiaGb

(
ω̄bt
)
Rkt q

k
t−1s

k
t−1. (A89)
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A11 Leibniz rule

Leibniz rule is given by:

d

dx

(∫ b(x)

a(x)

f (x, t) dt

)
= f (x, b(x)) · d

dx
b(x)− f (x, a(x)) · d

dx
a(x) +

∫ b(x)

a(x)

∂f (x, t)

∂x
dt

Now we are going to calculate Γj
(
ω̄jt+1

)
with j ∈ (e, b), which is given by:

Γj
(
ω̄jt+1

)
=

∫ ω̄jt+1

0

ωjt+1f
j
(
ωjt+1

)
dωjt+1 + ω̄jt+1

∫ ∞
ω̄jt+1

f j
(
ωjt+1

)
dωjt+1. (A90)

We replace ωjt+1 by x and ω̄jt+1 by x̄ to obtain the following equation:

Γj (x̄) =

∫ x̄

0

xf j (x) dx+ x̄

∫ ∞
x̄

f j (x) dx.

We assume that F j (x) is log-normal distributed with mean µ and variance σ2. In that case we

have that:

f j (x) =
1

xσ
√

2π
exp

(
− (log x− µ)

2

2σ2

)
.

Now we calculate the integrals:

∫ x̄

0

xf j (x) dx =

∫ x̄

0

1

σ
√

2π
exp

(
− (log x− µ)

2

2σ2

)
dx

Now we perform a transform of variables by introducing y = log x ⇒ x = exp (y). This results

in the following differential: dy = 1
xdx ⇒ dx = xdy = exp (y)dy. We then also have to change

the boundaries: x = 0 ⇒ y = −∞ and x = x̄ ⇒ y = log x̄. Now we continue to calculate the
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integral:

∫ x̄

0

xf j (x) dx =

∫ x̄

0

1

σ
√

2π
exp

(
− (log x− µ)

2

2σ2

)
dx =

∫ log x̄

−∞

1

σ
√

2π
exp

(
− (y − µ)

2

2σ2

)
exp (y)dy

=

∫ log x̄

−∞

1

σ
√

2π
exp

(
− (y − µ)

2

2σ2
+

2σ2y

2σ2

)
dy

=

∫ log x̄

−∞

1

σ
√

2π
exp

(
−
y2 − 2

(
µ+ σ2

)
y + µ2

2σ2

)
dy

=

∫ log x̄

−∞

1

σ
√

2π
exp

(
−
[
y −

(
µ+ σ2

)]2 − (µ+ σ2
)2

+ µ2

2σ2

)
dy

=

∫ log x̄

−∞

1

σ
√

2π
exp

(
−
[
y −

(
µ+ σ2

)]2
2σ2

)
exp

((
µ+ σ2

)2 − µ2

2σ2

)
dy

= exp

(
2µσ2 + σ4

2σ2

)∫ log x̄

−∞

1

σ
√

2π
exp

(
−
[
y −

(
µ+ σ2

)]2
2σ2

)
dy

Now define a new variable z =
[
y −

(
µ+ σ2

)]
/σ ⇒ dz = dy/σ. The boundaries then become

y = −∞⇒ z = −∞ and y = log x̄⇒ z̄ =
[
log x̄−

(
µ+ σ2

)]
/σ

∫ x̄

0

xf j (x) dx = exp

(
2µσ2 + σ4

2σ2

)∫ log x̄

−∞

1

σ
√

2π
exp

(
−
[
y −

(
µ+ σ2

)]2
2σ2

)
dy

= exp

(
µ+

σ2

2

)∫ z̄

−∞

1√
2π

exp

(
−z

2

2

)
dz

= exp

(
µ+

σ2

2

)
Φ

[
log x̄−

(
µ+ σ2

)
σ

]

Now we calculate the second integral in equation (A90):

∫ ∞
x̄

f j (x) dx =

∫ ∞
x̄

1

xσ
√

2π
exp

(
− (log x− µ)

2

2σ2

)
dx

=

∫ ∞
0

1

xσ
√

2π
exp

(
− (log x− µ)

2

2σ2

)
dx−

∫ x̄

0

1

xσ
√

2π
exp

(
− (log x− µ)

2

2σ2

)
dx

= 1−
∫ x̄

0

1

xσ
√

2π
exp

(
− (log x− µ)

2

2σ2

)
dx (A91)

Similarly to before, we perform a change in variables by defining z = (log x− µ) /σ ⇒ dz = 1
σxdx,

while the boundaries change from x = 0 ⇒ z = −∞ and x = x̄ ⇒ z = (log x̄− µ) /σ. We then

41



get the following integral:

∫ ∞
x̄

f j (x) dx = 1−
∫ x̄

0

1

xσ
√

2π
exp

(
− (log x− µ)

2

2σ2

)
dx

= 1−
∫ (log x̄−µ)/σ

0

1√
2π

exp

(
−z

2

2

)
dz = 1− Φ

(
log x̄− µ

σ

)
Hence we can calculate Γj (x̄), which is given by:

Γj (x̄) = exp

(
µ+

σ2

2

)
Φ

[
log x̄−

(
µ+ σ2

)
σ

]
+ x̄

[
1− Φ

(
log x̄− µ

σ

)]
.

We now calculate Gj
(
ω̄jt

)
, where we replace ω̄jt by x̄:

Gj (x̄) =

∫ x̄

0

xf j (x) dx = exp

(
µ+

σ2

2

)
Φ

[
log x̄−

(
µ+ σ2

)
σ

]
.

We now calculate F j
(
ω̄jt

)
, where we replace ω̄jt by x̄:

F j (x̄) =

∫ x̄

0

f j (x) dx = Φ

(
log x̄− µ

σ

)
.

Finally, we calculate the first derivative of Γj (x) by applying the Leibniz rule:

d

dx̄
Γj (x̄) =

d

dx̄

[∫ x̄

0

xf j (x) dx+ x̄

∫ ∞
x̄

f j (x) dx

]
= x̄f j (x̄) +

∫ ∞
x̄

f j (x) dx− x̄f j (x̄)

=

∫ ∞
x̄

f j (x) dx = 1− F j (x̄) . (A92)

Finally we calculate the integral:

∫ ∞
x̄

xf j (x) dx =

∫ ∞
x̄

1

σ
√

2π
exp

(
− (log x− µ)

2

2σ2

)
dx

Again we perform a transform of variables by introducing y = log x⇒ x = exp (y). This results

in the following differential: dy = 1
xdx ⇒ dx = xdy = exp (y)dy. We then also have to change

the boundaries: x = x̄ ⇒ y = log x̄ and x = ∞ ⇒ y = ∞. Now we continue to calculate the

42



integral:

∫ ∞
x̄

xf j (x) dx =

∫ ∞
x̄

1

σ
√

2π
exp

(
− (log x− µ)

2

2σ2

)
dx =

∫ ∞
log x̄

1

σ
√

2π
exp

(
− (y − µ)

2

2σ2

)
exp (y)dy

=

∫ ∞
log x̄

1

σ
√

2π
exp

(
−
[
y −

(
µ+ σ2

)]2
2σ2

)
exp

((
µ+ σ2

)2 − µ2

2σ2

)
dy

= exp

(
µ+

σ2

2

)∫ ∞
log x̄

1

σ
√

2π
exp

(
−
[
y −

(
µ+ σ2

)]2
2σ2

)
dy

Again we define a new variable z =
[
y −

(
µ+ σ2

)]
/σ ⇒ dz = dy/σ. The boundaries then

become y = log x̄⇒ z̄ =
[
log x̄−

(
µ+ σ2

)]
/σ and y =∞⇒ z =∞∫ ∞

x̄

xf j (x) dx = exp

(
µ+

σ2

2

)∫ ∞
z̄

1√
2π

exp

(
−z

2

2

)
dz

= exp

(
µ+

σ2

2

)[∫ ∞
−∞

1√
2π

exp

(
−z

2

2

)
dz −

∫ z̄

−∞

1√
2π

exp

(
−z

2

2

)
dz

]
= exp

(
µ+

σ2

2

){
1− Φ

[
log x̄−

(
µ+ σ2

)
σ

]}
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