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Abstract

Can prices convey information about the fundamental value of an asset? This pa-
per considers this problem in relation to the dynamic properties of the fundamental
(whether it is constant or time-varying) and the structure of information available to
agents. Risk averse traders receive two potential signals each period: one exogenous
and private and the other, prices, endogenous and public. Prices aggregate private
information, but include aggregate noise. Information can accumulate over time both
through endogenous and exogenous signals. With a constant fundamental, the preci-
sion of both private and public cumulative information increases over time but agents
put progressively more weight on the endogenous signals, asymptotically disregarding
private ones. If the fundamental is time-varying, the use of past private signals com-
plicates the role of prices as a sources of information, since it introduces endogenous
serial correlation in the price signal and cross correlation between it and innovations in
the fundamental. A modified version of the Kalman filter can still be used to extract
information from prices and results show that the precision of the endogenous signals
converges to a constant, with both private and public information used at all times.
Key words: uncertainty, information, Bayesian learning, asset prices.
JEL classification: D83, D84, G12, G14.
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1 Introduction

The aim of this paper is to analyse the ability of prices to convey information about the

fundamental value of an asset, in particular in relation to the nature of the fundamental,

whether it is constant or time-varying. To this end, I consider a multi-period model with

diffuse information, where agents receive sequential signals and use them optimally (in a

Bayesian sense) to estimate the fundamental value of an asset. The nature of the funda-

mental and the structure of information available, which is endogenous in the case of prices,

determine the optimal weights on private and public signals. The evolution of such weights

over time is the central element of investigation of this paper.

To explore these issues, I employ a model where risk averse agents invest in a risky

one-period asset: this means that all they need to know to make their investment decision

is the current price and the liquidation value next period, equal to its fundamental value,

while there is no need to forecast future prices. To allow for the accumulation of information

over time, I adopt the modelling strategy proposed in Vives (1995b) and assume that in

each period agents submit their market orders but trade takes place with some probability:

if it does, the asset is liquidated at the end of the period and the market ends; if not, the

following period the same process repeats, and agents can observe the equilibrium prices from

previous periods. The purpose of this assumption is to isolate the analysis from issues related

to expectations about future prices and higher order beliefs: in this setting, the only possible

informational role of prices is to provide information about other agents’beliefs about the

fundamental value. The liquidation value, which represents the fundamental value of the

asset, is unknown to agents and only indirectly inferable through signals. Specifically, each

period a trader receives a noisy exogenous private signal about the fundamental value, which

remains available at successive times if trade is not realized. Besides this exogenous signal,

agents can also use prices in their inference, as prices summarize the view of other market

participants and thus can in principle convey important information about the fundamental

value. Bayesian theory provides the optimal weights on the available signals.

There are two main contributions in this work. The first is to show that, with a constant

fundamental, even when information can accumulate through both exogenous private and

endogenous public signals, asymptotically agents use only prices as a source of information.

1
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This result is not obvious, and it relies on the precision of the cumulative signal from prices

to increase at a faster rate than that from exogenous information. It extends results from

Vives (1995b), where it is shown that prices become asymptotically fully revealing when

information can accumulate through prices only.

The second contribution of this paper is to show how agents can use prices as a source of

information when the fundamental is time-varying. Endogenous correlation structures must

be accounted for, through a modified Kalman filter. Results show that asymptotically agents

use both signals, as the precision of both private and public information remains finite and

converges to a constant. To the best of my knowledge, this is the firs time the informational

role of prices is considered in a framework with a time-varying fundamental.

The dynamic properties of the fundamental have a deep impact on the informational

content of prices. If the fundamental is constant over time, it is optimal for agents to

put increasing weight on the price signal as information accumulates, and in the limit the

private exogenous signal is completely ignored: prices become fully revealing, even in the

presence of aggregate noise. A version of the Grossman-Stiglitz paradox thus reappears

when agents have the possibility to observe sequential signals on the constant fundamental

value. The paradox, though, does not bite here, as prices converge to the fundamental

value as agents progressively switch from private to public information. This result has been

noted before, notably in Vives (1995b), and it relies on the precision of public information to

increase without bounds: here though, contrary to Vives (1995b), also the precision of private

information increases without limit, so it is not obvious that such result would persist. The

reason why it does is that, because of risk averse agents, the precision of public information

grows at a faster rate than that of private information, thus leading to an increasing Bayesian

weight on price signals.

The precision of agents’estimates grows without limit because they receive sequential

signals on a constant fundamental: as the number of conditionally independent observations

grows large, the law of large numbers implies that the variance of the estimates decreases

to zero. The same cannot happen when the fundamental is changing over time, and issues

arise on the ability of prices to aggregate private signals and convey information about the

changing fundamental. To investigate if prices can still reveal information in this case, I

assume the fundamental follows a random walk process. As prices aggregate current and

past information used in the estimation of the fundamental, prices now include the whole

history of innovations in the random walk, and thus show both serial correlation and cross

correlation with the fundamental. The use of prices as signals becomes thus problematic as
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the endogenous and time-varying correlation structures need to be accounted for. I show

how this can be done in the context of a Kalman filter, and what the implications are for

the informativeness of prices. The endogenous correlations depend on the sequence of past

Kalman gains, and in turn determine the current gain: this recursion leads to gains (and

thus weights on the two signals) that converge to a constant. Moreover, while the length

of the serial and cross correlations in the price signals increases with time, their conditional

variance converges to a constant. In equilibrium thus agents receive two signals on the

current value of the fundamental, one exogenous and one endogenous, both with constant

and finite precision, which lead to a constant variance in the Kalman estimates.

1.1 Related literature

The problems of information aggregation through prices and of the informational effi ciency

of markets in the presence of heterogeneous information has been widely considered in the

literature. In seminal works, Grossman (1976) and Grossman (1978) show how prices can

aggregate information perfectly and substitute for private information in markets. This

result raises the possibility of an interesting paradox, as pointed out famously by Grossman

and Stiglitz (1980): if prices aggregate private information perfectly, no trader would have

any incentive to acquire such information, as they could simply look at prices, but then

there would be no information for prices to aggregate. A common approach to get past

this paradox is to include aggregate noise in prices, as in, for example, Hellwig (1980) and

Diamond and Verrecchia (1981). The inclusion of aggregate noise solves the paradox, as

prices are only partially revealing in equilibrium and thus agents have an incentive to acquire

private information.

Another way to resolve the paradox is to consider markets with a finite number of traders

who have market power, as for example in Kyle (1989) and Jackson (1991): market power

ensures that prices only partially reveal private information, thus maintaining an incentive

for agents to acquire such information. A further way out of the paradox, recently pro-

posed by Vives (2014), is to distinguish between common and private value components

in the valuations of traders, with signals only providing bundled information about these

components.

All these works consider static settings, where information is only received once. Noisy

rational expectations equilibria, though, have also been analyzed in dynamic settings. Vives

(1993) studies the rate at which dispersed information is incorporated into prices with risk

neutral firms. Convergence is slow with finite precision of private information but a positive
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mass of perfectly informed agents speeds up convergence. Vives (1995b) studies the rate

at which dispersed private information about the value of a risky asset is incorporated into

prices with risk averse agents: the speed of information revelation is found to depend crucially

on the presence of a competitive risk neutral market making sector. Vives (1995a) considers

instead the effect of investors’horizons on the informational content of prices in a finite-

horizon model with risk averse agents. The effect depends on the temporal pattern of private

information arrival: long horizons reduce the final price informativeness when the arrival of

information is diffuse (as in the present paper); nevertheless, as the number of trading periods

increases without bound, prices converge to the fundamental value. Kyle (1985) analyses how

quickly new private information about the underlying value of a speculative commodity gets

incorporated into market prices and how it affects the liquidity of the market. The model has

three kinds of traders: a single risk neutral insider, random noise traders, and competitive

risk neutral market makers. The insider makes positive profits by exploiting his monopoly

power, with noise trading concealing his trading from market makers. In the limit, as the

time interval between auctions goes to zero, all private information is incorporated into prices

through trading. Amador andWeill (2012) consider a dynamic framework where agents learn

from the actions of others through two channels: a public channel, such as equilibriummarket

prices, and a private channel, such as local interactions: when agents learn only from the

public channel, an initial release of public information increases knowledge and welfare, while

if a private learning channel is also present, the result is reversed and an increase in initial

public information reduces agents’ asymptotic knowledge. Importantly, while the initial

signals realizations are centered around the true state of the world, subsequent realizations

are centered around the endogenous actions of agents: that is, after the first period, all new

information about the state of the world comes from others and there is no additional arrival

of new exogenous information. This possibility is instead crucial for results I will present in

this paper.

Differently from all these works, I do not focus on the speed of information revelation,

the structure of the market, the informational type of traders or their investment horizon.

The focus of the paper is instead on the relation between the dynamic properties of the

fundamental, the structure of the endogenous signal and the informational content of prices.

An important issue that is not addressed in this paper is the role of higher order beliefs

on prices under heterogeneous information and how they interact with sequential signals.

To avoid dealing with the interaction between higher order beliefs and the accumulation of

information on fundamentals, I limit the setting to a one-period asset, so that agents do
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not need to forecast future prices and only use prices as a signal for other agents’beliefs

about the fundamental. Seminal papers on the problem of higher order beliefs are Townsend

(1983) and Sargent (1991), and more recent treatments are proposed in Allen, Morris and

Shin (2006), Kasa et al. (2014) and Nimark (2017).

2 The model

I assume there is a risky one-period asset available for trade on the market. Traders submit

their demand schedules based on the information they have and an auctioneer aggregates

all orders and determines the equilibrium price. Trade then takes place with some given

probability: if it does, then the asset is liquidated at the end of the period at the value θt
and the market ends; if not, the following period the same process repeats. The liquidation

value θt thus represents the fundamental value of the asset for traders.

The market is populated by a continuum of agents of unit mass, indexed by i ∈ [0, 1],

homogeneous in all aspects except for the private information they receive, which will be

specified below. In deciding their demand of shares, agents are mean variance maximizers, so

they maximize the expected return of their investment subject to a penalty for the variance.1

The problem for a trader i at time t is thus to choose the number of shares (sit) such that

max
sit

Ei
tR

i
t −

γ

2
V arit

(
Ri
t

)
(1)

where γ is the coeffi cient of risk aversion and the return on the portfolio of agent i at time t,

Ri
t, is defined as the difference between its liquidation value and what one has to pay for it

2

Ri
t = sit (θt − pt) .

The expectational operator Ei
t represents the conditional expectations of agent i at time t

given their information set I it : Ei
tX = E [X | I it ].

1Basak and Chabakauri (2010) show that dynamic mean-variance portfolio choices are not dynamically
consistent. While this is an important issue, mean-variance behavior is still commonly assumed as it leads
to analytically tractable demand functions. In the present setting, as agents effectively solve a series of
one-period problems, this issue does not arise.

2One could equivalently assume risk averse agents with CARA utility

U
(
Rit
)

= − exp
(
−γRit

)
.

Maximizing the expected value of U(Rit) is equivalent to maximizing (1), the certainty equivalent, assuming
a CARA utility function and normal random returns.
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It follows that the optimal demand for trader i is

sit =
Ei
tθt − pt
γσ2

θ̂t

, (2)

where σ2
θ̂t
is the conditional variance of the prediction error associated to Ei

tθt.
3

In order to close the model with an equilibrium condition, I assume that the supply of

shares εt is an i.i.d. random variable following a Normal distribution with zero mean and

variance σ2ε. An exogenous and stochastic supply is often interpreted in the literature as com-

ing from noise traders. Other interpretations of this aggregate noise term refer to variations

in the availability of publicly tradable shares (asset float), as in Branch and Evans (2011),

or to some unspecified random supply, as in Mele and Sangiorgi (2015). Independently of

its interpretation, this aggregate noise term can prevent prices from being fully revealing, a

common result in the literature on noisy rational expectations equilibria. Indeed, adopting

the same assumption, Allen, Morris and Shin (2006), after providing an interpretation for

such modelling choice, write: "Clearly, the interpretation given above is somewhat contrived,

but we advance it merely as a modeling device that serves the purpose of preventing prices

being fully revealing, and preserving the independence of the supply shocks over time, so as

to aid tractability of the analysis." The same motivation for such modelling choice applies

here.

Traders thus submit their individual demands and an auctioneer clears the market given

the exogenous supply. Market equilibrium thus requires∫
sitdi = εt

which implies and equilibrium price

pt =

∫
Ei
tθtdi− γσ2θ̂tεt. (3)

With no uncertainty, Ei
tθt = θt ∀i, and σ2θ̂t = 0 and thus prices would be constant at the

fundamental value, i.e., pt = θt.

I now define the exogenous process for the fundamental and the source of uncertainty for

agents. At the beginning of time t = 1, Nature draws the unobservable fundamental from an

3Such conditional variance is common across agents, given the informational assumptions made. In par-
ticular, while agents receive heterogeneous private information, the precision of such information is common
across agents.
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improper uniform distribution over R.4 Before receiving any information, thus, agents have
a flat uninformative prior on θ1. From time t = 2 onwards the fundamental then follows a

random walk process

θt = θt−1 + zt−1 (4)

with zt an i.i.d. random variable following a Normal distribution with zero mean and constant

variance σ2z.

At each time t ≥ 1, each agent observes a private signal on θt, xit, given by

xit = θt + vit, (5)

with vit an i.i.d. random variable, following a Normal distribution with zero mean and

variance σ2v. Importantly, zt and v
i
t are uncorrelated with each other: that is, the change in

the fundamental and the noise in the observations are independent. Agents can also observe

past prices (but not current ones), and inherit their own information from time t − 1. The

assumption that agents cannot condition their beliefs on current equilibrium prices has been

used before in the literature with dynamic settings, see for example Vives (1995b). Such

an assumption might seem odd here, as agents condition their demand schedules on prices

but not their beliefs, but it simplifies greatly the derivation of the equilibrium, as it avoids

having to compute per-period fixed points between correlation structures and gains in the

recursive Kalman filter used later on.

Denoting I it the information set for agent i at time t, for t > 1 one can define recursively

I it = I it−1 +
{
xit, pt−1

}
,

with I i1 = {xi1}, and pt−1 = (p1, ..., pt−1), xi,t = (xi1, ..., x
i
t). The assumption about the

availability of past private signals differentiates the information structure assumed here from

the one in Vives (1995b), where each period agents can only observe the current exogenous

signal, forgetting all the previous ones.

3 Constant fundamental

I first consider the special case of a constant fundamental over time, obtained by setting

σ2z = 0. Nature thus draws the fundamental θ at the beginning of time t = 1, from an

4Note that the fundamental can be negative, and so do prices. Such feature can be justified by assuming
that there is no free disposal of the risky asset. This simplifies the set up, as it avoids having a truncation
in the support of agents’beliefs.
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improper uniform distribution over the real line R, and the fundamental remains the same
until the time that trade takes place and the market ends.

At every period t ≥ 1, the exogenous private signals that agents receive is thus given by

xit = θ + vit. (6)

Agents behave as Bayesian learners and use all available information in an optimal way.

First, looking at private information only, mean and precision of the posterior of θ at each

time t, conditional on the history of xit, can be written, respectively, as

x̄it =
βt−1
βt

x̄it−1 +
σ−2v
βt

xit =
1

t

t∑
n=1

xin (7)

βt = βt−1 + σ−2v =
t∑

n=1

σ−2v =
t

σ2v
, (8)

with β0 = 0 and x̄i0 = 0 (that is, x̄i1 = xi1, β1 = σ−2v , given that agents can rely only on the

exogenous signal in the first period). Note that (7) is simply the sample mean, and (8) the

inverse of the sample variance. In fact, (7) in its recursive form can be rewritten more easily

as

x̄it =
t− 1

t
x̄it−1 +

1

t
xit,

a weighted average of the prior and new information received at time t. The posterior x̄it, or

sample mean, can be regarded as a cumulative signal from exogenous private information,

as it is a suffi cient statistics for the whole history {xin}
t
n=1.

In terms of the public endogenous signal represented by prices, its informational content

depends on how agents form their beliefs. If, for example, agents where to use only x̄it to

form their expectations, then prices would take the form

pt = θ − β−1t γεt (9)

and agents would want to use past prices as signals to improve on the precision of their beliefs.

Such practice though would introduce serial correlation in prices (through the exogenous

aggregate noise) rendering the very same practice invalid.

In order to find the equilibrium in the use of information, one thus has to construct a signal

based on prices that, when used by agents, validates such practice. To such end, I define a

signal p̃t (with conditional variance σ2p̃t ), based on prices, which represents an unbiased signal
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for θ, with serially uncorrelated noise εt: that is, p̃t has the same informational structure

as xit. The existence of such signal will be verified below. The mean and precision of the

posterior of θ at time t, conditional on the history of p̃t, are then given, respectively, by

p̄t =
ωt−1
ωt

p̄t−1 +
σ−2p̃t
ωt

p̃t =

∑t
n=1 σ

−2
p̃n
p̃z∑t

n=1 σ
−2
p̃n

(10)

ωt = ωt−1 + σ−2p̃t =

t∑
n=1

σ−2p̃n , (11)

with ω0 = 0 and p̄0 = 0 (that is, p̄1 = p1). The posterior p̄t represents the optimal estimate

for θ based on the history of prices, with each signal weighted by its relative precision. It

can thus be regarded as a cumulative signal from endogenous public information, as it is a

suffi cient statistics for the whole history {pn}tn=1.
The optimal estimate based on all information available at time t, that is E [θ | xi,t, pt−1] ,

can then be written as the combination of the two cumulative signals available, weighted by

their relative precision.5 Denoting such estimate θ̂
i

t:

θ̂
i

t = E
[
θ | xi,t, pt−1

]
= αtx̄

i
t + (1− αt) p̄t−1, (12)

with αt determined by the relative precision of the two posteriors, and given by

αt =
βt

βt + ωt−1
. (13)

Using the demand equation

sit =
θ̂
i

t − pt
γσ2

θ̂t

(14)

with

σ2
θ̂t

= α2tβ
−1
t + (1− αt)2 ω−1t−1 =

1

βt + ωt−1
, (15)

aggregating and imposing demand equal supply, leads to

pt = (αtθ + (1− αt) p̄t−1)− γσ2θ̂tεt. (16)

5This will not be true for the case with a time-varying fundamental, where individual signals need to be
merged together through a Kalman filter procedure.
The formulation used here, with separate cumulative signals, has the advantage of allowing one to see the

evolution of the precision of public and private information separately, and how this affects relative weights.
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Solving for pt, using (10), (11) and (13), gives the price equation

pt =
βt

βt + ωt−1
θ +

ωt−1
βt + ωt−1

p̄t−1 −
γεt

βt + ωt−1
. (17)

Prices thus contain current and past aggregate noise, through p̄t−1, and do not represent

conditionally independent signals for the fundamental.

One can then define

p̃t ≡
pt − (1− αt) p̄t−1

αt
= θ − γα−1t σ2

θ̂t
εt (18)

=

(
pt −

ωt−1
βt + ωt−1

p̄t−1

)(
βt + ωt−1

βt

)
= θ − β−1t γεt,

with conditional variance

σ2p̃t = β−2t γ2σ2ε. (19)

This validates the assumption on p̃t made above: an unbiased signal for the fundamental

based on prices, with independent (but not identically distributed) noise over time.

The question now is what happens over time to the weights on exogenous and endogenous

information. Do agents keep using both sources of information over time, or do they discard

one in favour of the other?

Looking at the asymptotic dynamics of the system, it can be shown that the relative

weight put on private information decreases towards zero and asymptotically agents rely

only on prices in their signal extraction problem. I state this result formally in the following

Proposition, whose proof can be found in Appendix (6.1).

Proposition 1 In the setting presented in Section (3), where the optimal Bayesian weight
on private information is given by (13) and prices evolve according to (16), in the limit, αt
converges to 0: asymptotically, agents put zero weight on private information. Moreover, pt
converges in probability to the fundamental value θ.

To understand these results it must be noted that while both βt and ωt tend to ∞ as

t→∞, βt grows linearly in t while ωt grows at a faster rate (of the order of t3): both private
and public information become infinitely precise in the limit, but the precision of the public

cumulative signal improves faster and agents end up relying only on price signals to infer

fundamental values.

The reason why the precision of endogenous information grows at a faster rate than that

of the exogenous one is that agents are risk averse and therefore their demand schedules,
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and thus prices, depend on the precision of their estimate for the fundamental. The higher

is the precision, the more prices respond to information and thus incorporate information

themselves. As prices depend linearly on the variance of agents’estimates, their variance

depends on it quadratically: this will be shown precisely in the next Section in the context of

a static setting. With information accumulation, then, an extra dimension is added, and this

explains why, while the precision of private information increases linearly in t, the precision

of public information grows proportional to t3.

Over time, the variance of agents’beliefs goes to zero: accumulated information reduces

uncertainty. In the limit, prices converge in probability to the fundamental value, a result

consistent with Vives (1993) and Vives (1995a). At the same time, prices become the only

source of information for agents.

In a sense, the famous Grossman and Stiglitz paradox is reproposed: prices become fully

revealing, so agents don’t have any incentive to acquire the private information that should be

aggregated into prices. Here, though, this is a limiting result: prices become fully revealing

once all information has been factored into them and they have converged to the fundamental

value, at which point there is no need to acquire additional exogenous information. This

result, thus, shows a way in which prices can be fully revealing and incorporating private

information.

The fact that prices can become fully revealing when information accumulates was shown

in Vives (1995b). In that work, though, it was assumed that information was accumulating

only through the public signal, as agents could only observe the current value of the exogenous

private signal. It was thus not surprising that agents would put progressively more weight on

prices, as the public signal was becoming more and more precise. Here instead information

accumulates both through public and private signals, so the result is less obvious. The

difference in the rate at which information accumulates through public and private signals

determines the asymptotic use of information.

3.1 The role of risk aversion: a static setting

In light of the above results, it is instructive to look at the simplified framework represented

by a static setting. While results presented here are not new, they help understand the

relationship between risk aversion and the relative precision of endogenous versus exogenous

information that plays out in the multi-period setting.

In a static setting, past prices do not exist. In order for prices to have an informational

role, I thus assume that agents condition their beliefs on the equilibrium price that results



Learning from prices:
information aggregation and accumulation in an asset price model

from the auctioneer clearing process. The use of contemporaneous equilibrium prices as

a source of information is common in the literature when analysing static noisy rational

expectations equilibria (see, e.g., Hellwig (1980)).

For simplicity, I drop the subscript t from all variables in this Section. Before the market

opens, Nature draws the fundamental value θ from an improper uniform distribution over

the real line R. Agents are aware of this, and thus have a flat uninformative prior for the
fundamental before receiving any information. Such feature simplifies the Bayesian updating

and it is shown in Appendix (6.2) to be innocuous for the results in the paper.

Traders then receive an exogenous and private signal

xi = θ + vi,

with vi Normally distributed and i.i.d. across agents, with zero mean and variance σ2v, which

they combine with prices in order to decide their demand schedule. Such demands are then

aggregated by the market and the actual price revealed.

With normally distributed and conditionally independent signals, and restricting atten-

tion to linear equilibria, Bayesian updating gives a posterior θ̂
i ≡ E [θ | xi, p] that is linear

in the two signals and equal to

θ̂
i

= αxi + (1− α) p, (20)

where the optimal value for α is given by the relative precision of the two signals (see

Appendix (6.3) for details) and thus

α =
σ2p

σ2p + σ2v
, (21)

with σ2p denoting the conditional variance of prices. For σ
2
p, σ

2
v > 0, α ∈ (0, 1) and it is thus

optimal for agents to put some weight on prices, together with the exogenous signal, when

forming beliefs about fundamental values.

Individual demand is then given by

si =
α (xi − p)

γσ2
θ̂

, (22)

where σ2
θ̂
, the variance of agents’beliefs conditional on xi and p, is common for all agents

and given by

σ2
θ̂

= α2σ2v + (1− α)2 σ2p. (23)
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Aggregate demand is then given by

S ≡
∫
α (xi − p)

γσ2
θ̂

di =
α (θ − p)
γσ2

θ̂

and prices are equal to

p = θ −
γσ2

θ̂

α
ε, (24)

which implies

σ2p =

(
γσ2

θ̂

α

)2
σ2ε. (25)

Using (21) together with (23) and (24) I then derive the equilibrium price equation (see

Appendix (6.4) for details)6

p = θ − γσ2vε, (26)

which then determines the variance of prices as function only of the exogenous parameters

σ2p = γ2
(
σ2v
)2
σ2ε. (27)

Equilibrium prices are thus normally distributed and conditionally independent from the

private signals, as assumed before. It can also be seen from (27) that the precision of public

information increases with the precision of private information.

An important element in the determination of the equilibrium value of α is the aggregation

of the noise in the private signal. If the exogenous signal was instead common to all agents,

say x, x = θ + v, v ∼ N (0, σ2v), (21) would become

α =
Ep2 − Epx

Ep2 + Ex2 − 2Epx
=

σ2p − σ2v
σ2p + σ2v − 2σ2v

= 1. (28)

Because the noise in the exogenous public signal would be transferred into prices, prices

would be completely useless as a signal for the fundamental value, as they would encompass

both the noise from the exogenous signal and the noise from supply: the optimal value for

6Note that using (17), with ω0 = 0 and p̄0 = 0, at time t = 1, p1 reduces to (26). While the price is the
same, here the precision of agents’beliefs is higher than in that case at t = 1, when it was β21 = σ−2v , since
they can here use current equilibrium prices in their inference. It is in fact straightforward to show that now

σ2
θ̂

= σ2v
γ2σ2vσ

2
ε

1 + γ2σ2vσ
2
ε

< σ2v.
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α would thus be equal to one. In other words, in order for prices to have any informational

content above and beyond what is provided by the idiosyncratic signal, it must be that the

aggregation process that generates prices averages out some noise.

With private and idiosyncratic signals, instead, the optimal weight on private information

in terms of the parameters of the model is

α =
σ2p

σ2p + σ2v
=

γ2 (σ2v)
2
σ2ε

σ2v + γ2 (σ2v)
2 σ2ε

=
γ2σ2vσ

2
ε

1 + γ2σ2vσ
2
ε

, (29)

which shows that the optimal weight on private information depends positively on the coef-

ficient of risk aversion, the variance of the noise in the private information and the variance

of the supply.

It is instructive to compute now some limiting cases:

lim
σ2ε→0

α = 0; lim
σ2ε→∞

α = 1

lim
σ2v→0

α = 0; lim
σ2v→∞

α = 1.

If the variance of the aggregate noise goes to zero, then prices become fully revealing

and in equilibrium only prices are used to infer the fundamental value. This result is a

version of the Grossman-Stiglitz paradox. If instead the variance of the aggregate noise goes

to infinity, then only the exogenous signal is used as prices lose all informational content

regarding fundamental values.

Furthermore, if the variance of the idiosyncratic noise in the exogenous signal goes to

zero, α goes to zero, as can be easily seen from (29): in equilibrium, no weight is put on

the private signal and only prices are used. This might seem at first counter-intuitive, and

looking at (21) one might actually mistakenly think that α→ 1 as σ2v → 0. The reason why

this does not happen is that as σ2v → 0, the variance of prices goes to zero faster than that

of the private signal.7 This is due to the fact that the volatility of prices originates from the

volatility of supply and from the volatility of demand (multiplicatively): the latter arises,

because of risk averse agents, from uncertainty about the fundamental and in particular is

quadratic in the variance of the private signal.

The same mechanism is at play in the multi-period setting, except that information

accumulates over time, so the precision of the cumulative endogenous signal increases both

through the increased precision of the cumulative private signal and through accumulation

7The variance of prices is in fact quadratic in σ2v: see (27).
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in itself. The precision of public information would increase even with constant precision of

the private signal (as in Vives (1995b)) and in that case it would increase linearly in t. Here

instead it increases thorough both channels (as it can be seen clearly through (62)) and thus

at the faster rate of t3.

It is also interesting to consider the condition under which agents put more weight on

their private information than on prices, i.e., α > 1− α, which requires γ2σ2vσ2ε > 1. When

σ2vσ
2
ε is small, thus, agents pay little attention to their private signal: this happens when

either the variance of the supply is low (and thus aggregate noise is low and prices are more

informative), or when private information is very precise (because, as explained above, this

enhances the informativeness of prices). An important feature of the Bayesian equilibrium

is that α is not a free parameter but depends instead on the deep structure of the model, as

shown by (29).

The limiting results on the optimal use of information just discussed have implications

also for traders’demand. In fact, rewriting (22) as

si = a
(
xi − p

)
,

with a = α
γσ2

θ̂

= (γσ2v)
−1, it can be seen that σ2v → 0 implies si →∞: as private information

becomes infinitely precise, the demand’s response to deviations of prices from the (increas-

ingly precise) signal grows without bounds. In the limit, the only equilibrium possible is one

where prices are equal to the fundamental value.

Note instead that as σ2ε → 0, prices become infinitely precise through the aggregation

of private information but individual demands do not depend on the volatility of supply:

agents demand the same quantity, irrespective of σ2ε. As the volatility of supply decreases

towards zero, in fact, α→ 0, which makes agents respond less and less to deviations of their

private signal from prices; at the same time, though, the conditional variance of the return

on the asset also decreases, which increases the demand of risk averse agents, with the result

that the amount demanded is constant with respect to σ2ε.

4 Time-varying fundamental

Results derived in the multi-period setting with σ2z = 0 follow from the accumulation of

information, as conditionally independent signals on a constant fundamental are received

sequentially over time. A crucial element for this result is the fact that the fundamental is

constant over time. If the fundamental was instead time-varying, agents would need discount
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past information more heavily, which would affect the precision of their estimates over time

and the informational content of prices. To investigate these issues I now consider the general

case with σ2z > 0, so the fundamental changes over time, following a random walk process.

The ensuing system gives rise to a state-space model where (4) represents the state

equation and (5) an observation equation. Given such state-space system, the optimal way

to track the evolution of θt for agents, if there was no other information available, would be

through the use of a Kalman filter on the series {xij}tj=1, which is known to minimize the
mean square error of the estimated unknown state when all noise is Gaussian and the model

is linear as in this case. In terms of notation, x̄it represents the estimate of the fundamental at

time t based on the Kalman filter on exogenous information only; β−1t is the variance of the

error of such estimate; and kxt is the Kalman gain, which governs the way new information

is factored into the estimates of the fundamental over time.

The Kalman filter (see, e.g., Elliott, Aggoun and Moore (1995)) recursions to compute

posterior mean and variance of the fundamental based on exogenous information only are

given by

x̄it = x̄it−1 + kxt
(
xit − x̄it−1

)
(30)

β−1t = (1− kxt )
(
β−1t−1 + σ2z

)
=
σ2v
(
β−1t−1 + σ2z

)
β−1t−1 + σ2z + σ2v

(31)

kxt =
β−1t−1 + σ2z

β−1t−1 + σ2z + σ2v
, (32)

with x̄i0 = 0 and β0 = 0 (that is, x̄i1 = xi1, because of a flat prior). It is straightforward to

show that (30)-(31) reduce to (7)-(8), with kxt = t−1, if σ2z = 0.8

The Kalman filter estimate can also be rewritten in a non-recursive way, which highlights

the relationship between gains and weights, as

x̄it =
t∑

j=1

htjx
i
j

8With σ2z = 0, the fundamental is constant, so there is no need to track changes and thus kt = t−1;
with σ2v = 0, instead, the fundamental is perfectly observable and there is no need to filter out the noise, so
kt = 1.
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with

htt = kxt (33)

htj = kxj

t∏
n=j+1

(1− kxn) , for 1 ≤ j < t, (34)

where kxj is the Kalman gain given by (32). It can be shown that
∑t

j=1 h
t
j = 1.9

If one assumes that agents use only exogenous private information, then

θ̂
i

t ≡ E
[
θt | xt,i

]
= x̄it. (35)

Substituting into the price equation, with σ2
θ̂t

= β−1t , one obtains

pt =

∫
θ̂
i

tdi− γσ2θ̂tεt, (36)

with conditional variance

σ2p,t = γ2
(
σ2
θ̂t

)2
σ2ε.

In order to understand the informational content of the Kalman estimate, θ̂
i

t, and thus

of prices, one can solve recursively from (30):

θ̂
i

t = ktθt +
t−1∑
n=1

[
t−1∏
j=n

(1− kj+1)
]
knθn + ktv

i
t + ... (37)

...+
t−1∑
n=1

[
t−1∏
j=n

(1− kj+1)
]
knv

i
n. (38)

Integrating then over agents and using equation (36) for prices

pt = ktθt +
t−1∑
n=1

[
t−1∏
j=n

(1− kj+1)
]
knθn − γσ2θ̂tεt (39)

= θt −
t−1∑
j=1

zj

(
j∑

n=1

htn

)
− γσ2

θ̂t
εt. (40)

This equation shows how the noise in prices displays both serial correlation and cross cor-

9The estimate x̄it can equivalently be obtained by using generalized least squares on the data
{
xij
}t
j=1
,

with each xij representing a signal for θt.
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relation with the process noise. Still, this does not preclude to use prices as an additional

source of information. Their very use, though, alters the prediction for the fundamental,

and thus prices themselves. In particular, current prices would also include past aggregate

supply shocks, another source of serial correlation. As before, en equilibrium in the use of

information must be found.

To see this point, assume in equilibrium a signal p̃t from prices can be derived, in the

form

p̃t = θt +

t−1∑
j=1

λtjzj +
t∑

j=1

τ tjεj. (41)

Writing yit = [xit p̃t−1]
′, with

p̃t−1 = θt − zt−1 +
t−2∑
j=1

λt−1j zj +
t−1∑
j=1

τ t−1j εj,

the Kalman filter estimate for the fundamental could then be represented as

θ̂
i

t =
t∑

j=1

qtjy
i
j.

Here qtj is a 1x2 vector, to be determined, which gives the relative weight on the two signals,

exogenous and endogenous, and depends on current and past Kalman gains. Then prices

would be given by

pt =

∫
i

θ̂
i

tdi− γσ2θ̂tεt

=

∫
i

t∑
j=1

qtjy
i
jdi− γσ2θ̂tεt

=
t∑

j=1

qtj,1θj +
t−1∑
j=1

qtj,2p̃j − γσ2θ̂tεt

=
t∑

j=1

qtj,1θt −
t−1∑
j=1

zj

j∑
n=1

qtn,1 +
t−1∑
j=1

qtj,2p̃j − γσ2θ̂tεt.

Prices would thus include the hole history of fundamental innovations zj,10 and of exogenous

supply shocks εj (through p̃j). One, though, can remove the seral correlations due to past

10These would enter both through the exogenous signals xij and the endogenous ones p
i
j .
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price signals by defining p̃t as follows

p̃t ≡
pt −

∑t−1
j=1 q

t
j,2p̃j∑t

j=1 q
t
j,1

= θt −
∑t−1

j=1 ψ
t
jzj∑t

j=1 q
t
j,1

−
γσ2

θ̂t
εt∑t

j=1 q
t
j,1

(42)

with

ψtj =

j∑
n=1

qtn,1.

The signal p̃t has thus the form (41), but with all the τ tj = 0 except for τ tt. In order to

find the explicit representation of all coeffi cients in p̃t, one needs to write the Kalman filter

parameters qtj in terms of variances and covariances of state and signals.

As agents cannot observe contemporaneous prices when forming beliefs about the funda-

mental, their endogenous time−t signal for θt is represented by p̃t−1, which can be rewritten
as

p̃t−1 = θt−1 −
∑t−2

j=1 ψ
t−1
j zj∑t−1

j=1 q
t−1
j,1

−
γσ2

θ̂t−1
εt∑t−1

j=1 q
t−1
j,1

= θt − zt−1 −
∑t−2

j=1 ψ
t−1
j zj∑t−1

j=1 q
t−1
j,1

−
γσ2

θ̂t−1
εt−1∑t−1

j=1 q
t−1
j,1

= θt −
∑t−1

j=1 ψ
t−1
j zj∑t−1

j=1 q
t−1
j,1

−
γσ2

θ̂t−1
εt−1∑t−1

j=1 q
t−1
j,1

, (43)

with ψt−1t−1 =
∑t−1

j=1 q
t−1
j,1 , which implies that the coeffi cient in p̃t−1 on zt−1 is −1.

What (42) shows is that it is possible for agents, using only known quantities (past price

signals and Kalman gains), to remove the serial correlation in prices that comes from using

endogenous signals in the Kalman filter recursion. It is not possible instead to remove the

serial correlation and the cross correlation with the state noise that comes from innovations

in the fundamental, as these are unobservable to agents.

The remaining noise in the price signal p̃t displays both t-step serial correlation and t-step

cross correlation with the process noise, with correlation structures changing over time and

increasing in length. Li et al. (2000) shows how to deal with arbitrary correlation structures

inside a Kalman filter setting, and I follow their approach in my analysis, adapting it to the

present setting. The appropriate Kalman filter recursions are shown in Appendix (6.5). In

Appendix (6.6) I then show that this procedure reduces to the one presented in Section (3)

for σ2z = 0.

Because of the endogenous correlation structures, the long-run behavior of this modified

Kalman filter cannot be analysed analytically. I therefore use numerical simulations to

investigate it, and in particular to understand long run weights on public versus private
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information.

First, note that, from (43), the conditional variance of p̃t−1 can be written as

σ2p̃t−1 = σ2z

∑t−1
j=1

(
ψt−1j

)2(∑t−1
j=1 q

t−1
j,1

)2 + σ2ε

(
γσ2

θ̂t−1

)2
(∑t−1

j=1 q
t−1
j,1

)2 . (44)

The question then is whether this conditional variance: i) converges to a positive constant, so

that agents keep using both endogenous and exogenous information; ii) converges to zero, so

that agents asymptotically use only information from prices; or iii) diverges, so that agents

asymptotically use only private signals. This depends on the sum of the squares coeffi cients

on the fundamental innovations zi in p̃t.

I thus implement numerically the algorithm presented in Appendix (6.5), for a wide range

of parameterizations for the deep parameters γ, σ2z, σ
2
ε, σ

2
v. Numerical simulations show that

in all cases:

1. The sum of coeffi cients on the fundamental innovations in the price signal,
∑t−1
j=1 ψ

t
j∑t

j=1 q
t
j,1

,

converges over time to a constant. The number of terms increases with t, but their sum

remains always finite and converges to a constant.

2. The Kalman gainKt converges over time to a constant vector: this means that weights

on public and private signals converge to positive constants.

3. The posterior variance of the Kalman filter estimate, σ2
θ̂t
, converges also to a constant.

3. Whether the equilibrium weight on the endogenous signal is larger or smaller than that

on the exogenous one depends on the relative values of the structural parameters γ, σ2z, σ
2
ε, σ

2
v.

In particular, larger γ, σ2ε and σ
2
z increase the conditional variance of the price signal, as it

can be seen by (44), and thus reduce the Kalman gain on p̃t−1 relative to the one on xit; σ
2
v

has instead the opposite effect, as it affects negatively the precision of the exogenous signal.

In equilibrium agents thus use both private exogenous and public endogenous information

with fixed weights, as the precision of both signals converges over time to a constant.

Proposition 2 In the setting presented in Section (4), if the information set used by agents
is given by I it = {pt−1, xi,t} and agents use their information effi ciently through a Kalman
filter, the precision of agents’beliefs about the fundamental converges over time to a positive
constant.

These results show how it is possible for agents to use prices as endogenous signals in

case of a time-varying fundamental, and demonstrate that both endogenous and exogenous
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information are used in equilibrium by agents. The Grossman-Stiglitz paradox thus does not

emerge, even asymptotically, when the fundamental changes over time.

4.1 Alternative information sets

It is instructive to compare the above results with the outcome under alternative information

sets available to agents. In particular, two information sets seem particularly relevant: the

first is when agents can only observe exogenous signals (because, for example, equilibrium

prices for past periods when trade did not take place were not announced), that is

I it =
{
xi,t
}

;

and the second is when agents can observe the whole history of prices but only the current

exogenous signal (because, for example, individual agents can take part in only one round,

but past equilibrium prices are announced), that is

I it =
{
pt−1, xit

}
.

In both cases, the asymptotic behavior of the system can be analysed analytically, as there

are no endogenous correlation structures to be accounted for in the signal extraction problem,

and so it is possible to gain further insights into results from the previous Section.

In the first case, with I it = {xi,t}, posterior mean and variances are given by (30)-(32),
with θ̂

i

t = x̄it and σ
2
θ̂t

= β−1t . Prices would then be given by (39):

pt = θt −
t−1∑
j=1

zj

(
j∑

n=1

htn

)
− γσ2

θ̂t
εt.

In terms of the asymptotic variance of the estimation error, this can be found by the

limit behavior of the non-linear difference equation (31), given by its fixed point, that is11

lim
t→∞

β−1t ≡ β−1 =
−σ2z +

√
(σ2z)

2 + 4σ2vσ
2
z

2
. (45)

The gain coeffi cient in the Kalman filter, determining the weighting structure on past signals,

11Only the positive root is meaningful for a variance.
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would also converge to a constant, with

lim
t→∞

kxt =
β−1 + σ2z

β−1 + σ2z + σ2v
.

It can thus be seen that the precision of agents’ estimates about the fundamental would

converge to a constant, as the precision of their cumulative signal remains finite over time.

This is a well known property of the Kalman filter with a time-invariant state-space and

exogenous information.

Remark 1 In the setting presented in Section (4), if the information set used by agents is
given by I it = {xt,i} and agents use their information effi ciently through a Kalman filter, the
precision of agents’beliefs about the fundamental converges over time to a positive constant.

In the second case, with I it = {pt−1, xit}, agents would use past prices and current ex-
ogenous information. Assuming that p̃j, j = 1, ..., t − 1 is an unbiased signal for θj (to be

verified), agents at any time t > 1 could use past price signals to construct an estimate for

θt−1, denoted θ̂
p

t−1 (common for all agents because based only on public information), which

in non-recursive form is given by

θ̂
p

t−1 =
t−1∑
j=1

ltj p̃j, (46)

with weights ltj depending on the Kalman gains.

Agents can then take θ̂
p

t−1 as their prior and use the current observation x
i
t to update

their beliefs for θt. The ensuing new posterior mean for each agent i, θ̂
i

t, would be

θ̂
i

t = θ̂
p

t−1 + k̃t

(
xit − θ̂

p

t−1

)
,

with k̃t, the Kalman gain at time t, given by

k̃t =
σ2
θ̂
p
t−1

+ σ2z

σ2
θ̂
p
t−1

+ σ2z + σ2v
, (47)

and posterior variance

σ2
θ̂t

=
(

1− k̃t
)(

σ2
θ̂
p
t−1

+ σ2z

)
=
σ2v

(
σ2
θ̂
p
t−1

+ σ2z

)
σ2
θ̂
p
t−1

+ σ2z + σ2v
, (48)
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with σ2
θ̂
p
t−1
given recursively by

σ2
θ̂
p
t−1

=
σ2p̃t−1

(
σ2
θ̂
p
t−2

+ σ2z

)
σ2
θ̂
p
t−2

+ σ2z + σ2p̃t−1
(49)

and representing the variance of the estimate error from θ̂
p

t−1.

Prices would then be equal to

pt =

∫
θ̂
i

tdi− γσ2θ̂tεt

= k̃tθt +
(

1− k̃t
)
θ̂
p

t−1 − γσ2θ̂tεt. (50)

As the estimate θ̂
p

t−1, given by (46), is common across agents, each agent can construct the

endogenous signal

p̃t ≡
pt −

(
1− k̃t

)
θ̂
p

t−1

k̃t
= θt − γk̃−1t σ2

θ̂t
εt, (51)

with conditional variance

σ2p̃t =
(
γk̃−1t σ2

θ̂t

)2
σ2ε. (52)

The price signal p̃t is thus conditionally independent, which confirms the assumption made

before and validates the filtering procedure.12 Note that here, contrary to the case where

past exogenous information is available, the price signal does not include any serial or cross

correlation with the process noise, as all correlations induced by the filtering procedure can

be removed, since they derive from public and common information. It is the use of past

private information that creates additional correlation structures in the public signal, which

cannot be removed by agents and need to be accounted for through a modified Kalman filter.

To understand the asymptotic weights on public and private signals, the conditional

variance of p̃t must be computed. Using (47) and (48) to compute k̃−1t σ2
θ̂t
in (51) gives

k̃−1t σ2
θ̂t

= σ2v (53)

which leads to σ2p̃t = γ2 (σ2v)
2
σ2ε ≡ σ2p̃, constant.

The variance of the Kalman filter estimate from prices only, σ2
θ̂
p
t−1

depends only on its

12If one assumes that agents take part in only one round, at each time t agents would need to reconstruct
the whole history of {p̃j}t−1j=1. This can easily be done by computing recursively all past k̃j and θ̂

p

j−1, j > 1,
using (46) and (47).
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past value, on σ2z and on σ
2
p̃, as shown in (49), and converges over time to a constant.

In terms of the variance of the posterior estimate θ̂
i

t after the exogenous signal is observed,

its limit behavior is given, using (53), by

lim
t→∞

σ2
θ̂t

= σ2v lim
t→∞

k̃t (54)

where, by (47),

lim
t→∞

k̃t =
limt→∞ σ

2
θ̂
p
t−1

+ σ2z

limt→∞ σ2θ̂pt−1
+ σ2z + σ2v

. (55)

To compute limt→∞ σ
2
θ̂
p
t−1

one needs to find the limit behavior of the non-linear difference

equation (49), with σ2p̃ = γ2 (σ2v)
2
σ2ε constant as shown in (52), given by

lim
t→∞

σ2
θ̂
p
t−1

=
−σ2z +

√
(σ2z)

2 + 4σ2p̃σ
2
z

2
. (56)

Putting together (54), (55) and (56) leads to a constant asymptotic variance of the Kalman

estimation error

lim
t→∞

σ2
θ̂t

=

σ2v

(
−σ2z +

√
(σ2z)

2 + 4γ2 (σ2v)
2 σ2εσ

2
z

)
2σ2v + σ2z +

√
(σ2z)

2 + 4γ2 (σ2v)
2 σ2εσ

2
z

.

The asymptotic variance of the estimation error, σ2
θ̂t
, thus converges also in this case to a

constant, and so does the Kalman gain k̃t. As the precision of the posterior remains finite,

the conditional variance of prices remains strictly positive and the price signal p̃t from (51)

never becomes fully revealing. Agents continue to use both public endogenous and private

exogenous information to infer the fundamental value over time, with weights converging to

a constant. Again, the precision of their information remains finite over time.

Proposition 3 In the setting presented in Section (4), if the information set used by agents
is given by I it = {pt−1, xit} and agents use their information effi ciently through a Kalman
filter, the precision of agents’beliefs about the fundamental converges over time to a positive
constant.

Note finally that in the case of a constant fundamental (i.e., σ2z = 0), with any of the three

information sets considered prices would become asymptotically fully revealing (though at

different rates). It was shown in Section (3) for I it = {pt−1, xi,t} and it is trivial to prove the
result if I it = {xi,t}, using (9). If instead I it = {pt−1, xit}, this result can be proved using (62),
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with βt = σ−2v (since only the current exogenous signal is now available): limt→∞ ωt = ∞,
which also implies that limt→∞ αt = 0.

5 Conclusions

This paper has investigated the ability of prices to convey information about the fundamental

value of an asset in a setting with sequential signals and Bayesian learners.

It has been noted before (see Vives, 1995b) that information accumulation can lead to

a dynamic version of the Grossman-Stiglitz paradox, as asymptotically price signals become

fully revealing and traders stop using private signals. We have seen here that such result

extends to a setting where information accumulates also through private signals, as long as

the fundamental value is constant over time. With a constant fundamental, in fact, as time

goes on and more signals are received, the precision of both private and public cumulative

signals increases without bounds, though at different rates: the precision of public signals

grows at a faster rate, so agents over time rely more and more on the endogenous rather than

the exogenous information and asymptotically disregard private information altogether.

The fact that asymptotically price signals become fully revealing and traders stop us-

ing private ones does not repropose the problem exposed in the famous Grossman-Stiglitz

paradox because it is an asymptotic outcome with information accumulation: as agents pro-

gressively switch from private to public information, the precision of price signals increases

and they reveal more of the fundamental. In the limit, there is no longer any need to acquire

further information on the constant fundamental through exogenous signals.

With a time-varying fundamental, instead, the role of prices as a source of information

is complicated by the endogenous and time-varying serial and cross correlation structures

that emerge. Nevertheless, I have shown how agents can still use prices as a source of

information, through a modified Kalman filter with arbitrary correlations. As the precision

of the endogenous signal in this case remains finite and converges to a constant, agents

keep using both exogenous and endogenous information over time, with relative weights

converging to a constant.

The central theme of this paper is the relationship between the informational content of

prices and the nature of the underlying fundamental. Only if the fundamental is constant,

Bayesian learning implies an increasing precision of agents’beliefs and asymptotically fully

revealing prices. With a changing fundamental, instead, the use of prices as endogenous

signals is complicated by the use of past exogenous information. Correlation structures
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induced by the innovations in the fundamental need to be taken into account in order to

extract information from prices: we have seen how this can be done and shown that prices,

while still being informative, never become fully revealing.

6 Appendix

6.1 Proof of Proposition 1

Proof. The proof consists in deriving the limiting outcomes of the system as t→∞. Using
(7), by the law of large numbers

plim
t→∞

x̄it = θ (57)

and from (8)

lim
t→∞

βt =
t

σ2v
=∞. (58)

That is, by the law of large numbers, the sample mean converges in probability to the mean

of the distribution and its variance goes to zero.

Consider then σ2
θ̂t

= 1
βt+ωt−1

. Since limt→∞ βt = ∞, and by definition ωt ≥ 0, ∀t, it
follows from (15) that

lim
t→∞

σ2
θ̂t

= 0 (59)

and from (19)

lim
t→∞

σ2p̃t = 0. (60)

This last result also implies, from (11), that

lim
t→∞

ωt =∞. (61)

Finally, since

ωt = ωt−1 + σ−2p̃t = ωt−1 + β2t
(
γ2σ2ε

)−1
=
(
γ2σ2ε

)−1 t∑
j=1

β2j (62)

=
(
γ2σ2ε

)−1 t∑
j=1

(
j

σ2v

)2
=
(
σ2v
)−2 (

γ2σ2ε
)−1

t (t+ 1) (2t+ 1) /6,
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it follows that

αt =
βt

βt + ωt−1
=

1

1 + (σ2v)
−2(γ2σ2ε)

−1(t−1)t(2t−1)/6
t/σ2v

=
1

1 + (σ2vγ
2σ2ε)

−1(t−1)(2t−1)
6

.

Then clearly,

lim
t→∞

αt = 0. (63)

Looking then at prices, starting from (16) and noting results (59) and (63)

plim
t→∞

pt = plim
t→∞

[
αtθ + (1− αt) p̄t−1 − γσ2θ̂tεt

]
= plim

t→∞
p̄t. (64)

In order to compute plimt→∞ p̄t, one can make use of a version of the weak law of large

numbers for independent but not identically distributed random variables, which states that

given {Xj} a sequence of independent but not identically distributed random variables, if

limt→∞
1
t2
V ar[

∑t
j=1Xj] = 0, then, for any ε > 0,

lim
t→∞

P

(∣∣∣∣∣t−1
t∑

j=1

Xj − t−1
t∑

j=1

EXj

∣∣∣∣∣ < ε

)
= 1.

First, I define X t
j = t

σ−2p̃j
p̃j∑t

n=1 σ
−2
p̃n

. Then p̄t = 1
t

∑t
j=1X

t
j . Note that Ep̄t = t−1

∑t
j=1EX

t
j =

t
t

∑t
j=1

Eσ−2p̃j
p̃j∑t

n=1 σ
−2
p̃n

=
∑t

j=1

σ−2p̃j∑t
n=1 σ

−2
p̃n

θ = θ. Thus, in order to prove that p̄t converges in probabil-

ity to θ, it needs to be shown that t−2V ar[
∑t

j=1X
t
j ]→ 0. Note that, sinceX t

j are independent

over j,

V ar

(
t∑

j=1

X t
j

)
=

t∑
j=1

V ar
[
X t
j

]
=

t∑
j=1

t2σ−2p̃j(∑t
n=1 σ

−2
p̃n

)2
and thus

t−2
t∑

j=1

V ar[X t
j ] = t−2

t∑
j=1

t2σ−2p̃i(∑t
n=1 σ

−2
p̃n

)2 =

∑t
j=1 σ

−2
p̃j(∑t

n=1 σ
−2
p̃n

)2 =
1∑t

n=1 σ
−2
p̃n

.

Note finally that the denominator in the last expression,
∑t

n=1 σ
−2
p̃n
, is equal to ωt, which, as

already established, converges to ∞ as t→∞. This concludes the proof that

plim
t→∞

p̄t = θ.
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6.2 Normal priors

An assumption used throughout this paper is that of an uninformative prior for agents at

time 1, before observing any inforation, which simplifies some of the analysis and derivation

of key equations. I show here that this assumption is in fact innocuous for results in this

paper.

Using the static setting of Section 3.1, if one assumes that Nature draws from a Normal

distribution with some constant mean θ̄ and standard deviation σθ, then agents have an

informative prior to use in their inference. In this case, then

E
[
θ | θ̄, xi, p

]
= µθ̄ + αxi + (1− α− µ) p,

with

µ =
σ2vσ

2
p

σ2vσ
2
p + σ2θσ

2
v + σ2θσ

2
p

α =
σ2θσ

2
p

σ2vσ
2
p + σ2θσ

2
v + σ2θσ

2
p

.

The new price equation would be

pt =
µ

α + µ
θ̄ +

α

α + µ
θ −

γσ2
θ̂

α + µ
εt,

with

σ2
θ̂

= µ2σ2θ + α2σ2x + (1− α− µ)2σ2p =
σ2θσ

2
vσ

2
p

σ2vσ
2
p + σ2θσ

2
v + σ2θσ

2
p

.

The conditional variance of prices would thus be given by

σ2p =
(γσ2w)

2

(α + µ)2
σ2ε

= γ2σ2ε

(
σ2θσ

2
v

σ2θ + σ2v

)2
.
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Substituting into the previous equation for µ,

µ =
σ2vσ

2
p

σ2vσ
2
p + σ2θσ

2
v + σ2θσ

2
p

=
γ2σ2εσ

2
θ (σ2v)

2

(σ2θ + σ2v) (σ2θ + σ2v + γ2σ2εσ
2
θσ
2
v)

and for α,

α =
σ2θσ

2
p

σ2vσ
2
p + σ2θσ

2
v + σ2θσ

2
p

=
γ2σ2ε (σ2θ)

2
σ2v

(σ2θ + σ2v) (σ2θ + σ2v + γ2σ2εσ
2
θσ
2
v)
.

One can see that as σ2θ →∞, µ→ 0 and α→ γ2σ2vσ
2
ε

1+γ2σ2vσ
2
ε
, thus giving back the framework with

uninformative prior.

The important result here is that, as it was the case with an uninformative prior, as

σ2v → 0, α (and now also µ) → 0, so agents rely only on prices in forming beliefs about

the fundamental. As results with sequential signals and information accumulation build on

this feature of the model, by which the precision of public information improves more than

proportionally with the precision of the exogenous one, this shows that such results would

carry out also in the case of an informative prior. The assumption of an uninformative prior

is thus inconsequential for the analysis in this paper.

6.3 Derivation of optimal α with private and public signals

The optimal linear weight on the two signals, α, can be obtained by solving the problem

α = arg min
α
E
(
θ − E

[
θ | xi, p

])2
(65)

with

E
[
θ | xi, p

]
= αxit + (1− α) pt. (66)

Minimizing (65) subject to (66) leads to the first order condition

E
(
θ − (αxit + (1− α) pt)

) (
pt − xit

)
= 0,
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whose solution implies

α =
Ep2 − Epxi

Ep2 + E (xi)2 − 2Epxi
. (67)

Given that prices and exogenous signals do not covariate (since the noise in the exogenous

signal is averaged out by aggregation), this reduces to

α =
σ2p

σ2p + σ2v
. (68)

6.4 Derivation of the equilibrium price

Combining (21) and (23) gives

σ2
θ̂

=

(
σ2p

σ2p + σ2v

)2
σ2v +

(
σ2v

σ2p + σ2v

)2
σ2p (69)

=

(
σ2p
)2
σ2v + σ2p (σ2v)

2(
σ2v + σ2p

)2 =

(
σ2v + σ2p

)
σ2pσ

2
v(

σ2v + σ2p
)2 =

σ2pσ
2
v

σ2v + σ2p
= ασ2v. (70)

Substituting (70) into (24) leads to

p = θ − γσ2vε

and therefore

σ2p = γ2
(
σ2v
)2
σ2ε.

6.5 Recursive filtering with arbitrary noise

This exposition is taken and adapted from Li et al. (2000). Consider the general system

analysed in Section (4), represented by

θt+1 = θt + zt

yit = Hθt + wit

with H = [1 1]′, yit = [xit p̃t−1]
′ and wit = [vit w̃t], where w̃t ≡ p̃t−1 − θt. Process and

measurement noise are zero mean but colored, with arbitrary covariance matrices

cov(zn, zj) = Qnj, Qn = Qnn, n, j = 1, 2, ...

cov(wn, wj) = Rnj, Rn = Rnn, n, j = 1, 2, ...
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Moreover, {z} and {w} are arbitrarily correlated with each other, with cross-covariances

cov(zj, wn) = Cj,n, n, j = 1, 2, ...

The initial state is here uncorrelated with state and measurement noise at any time. Follow-

ing Theorem 3 in Li et al. (2000), it is possible to write the recursive filter for this system

as follows:13

1. Initialization: θ̂
i

1p1 = xi1;σ
2
θ̂1|1

= σ2v.

For t > 1:

2. Prediction:

θ̂
i

tpt−1 = θ̂
i

t−1pt−1 (71)

σ2
θ̂t|t−1

= σ2
θ̂t−1|t−1

+Qt−1 + 2Ψt−1 (72)

with

Ψt−1 = Ψt−1
t−1|t−1

and ψt−1n|j given by the Kalman filter, for n = 2, ..., t− 1

Ψt−1
n|n−1 = Ψt−1

n−1|n−1 +Qn−1,t−1 (73)

Ψt−1
n|n = Ψt−1

n|n−1 +Kn

(
−C ′t−1,n −HΨt−1

n|n−1

)
(74)

with initial value ψt−11|1 = 0.

3. Update:

θ̂
i

tpt = θ̂
i

tpt−1 +Kt

[
yit −Hθ̂

i

tpt−1

]
(75)

σ2
θ̂t|t

= σ2
θ̂t|t−1

−KtStK
′
t (76)

13Following usual conventions in the Kalman filter literature, θ̂
i

tpt−1 represents the prediction based on

information up to time t − 1, and θ̂
i

tpt is the posterior mean after time t information has been included.

Similarly, σ2
θ̂t|t−1

is the error variance associated to θ̂
i

tpt−1 and σ
2
θ̂t|t

the error variance associated with θ̂
i

tpt.

In terms of the notation in the main text, θ̂
i

t = θ̂
i

tpt and σ
2
θ̂t

= σ2
θ̂t|t
.
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with Kt and St given respectively by

Kt =
(
σ2
θ̂t|t−1

H ′t + Ωt

)
S−1t (77)

St = Hσ2
θ̂t|t−1

H ′ +HtΩt + (HΩt)
′ +Rt (78)

with

Ωt = Ωt
t|t−1

and Ωt
n|j given recursively by the Kalman filter, for n = 2, ..., t (but the update for Ωt

n|n

is needed and carried out only up to n = t− 1)

Ωt
n|n−1 = Ωt

n−1|n−1 + Cn−1,t (79)

Ωt
n|n = Ωt

n|n−1 +Kn

(
−Rnt −HΩt

n|n−1
)

(80)

with initial value Ωt
1|1 = 0.

The differences with the standard Kalman filter are given by the terms Ψt−1 and Ωt, due

to time and cross correlation of state and measurement noises.14 The computation of these

terms requires two nested filters within the main recursion. First, note that Qnj = σ2z for

n = j and 0 otherwise.

In the context of the present model, the variance covariance matrices required to compute

Ψt−1 and Ωt can be derived as follows. Rewriting (43) as

p̃t−1 = θt +
t−1∑
j=1

φt−1j zj + ηt−1εt (81)

with

φt−1j = −
ψt−1j∑t−1
j=1 q

t−1
j,1

(82)

ηt−1 = −
γσ2

θ̂t−1∑t−1
j=1 q

t−1
j,1

, (83)

14With Ψt−1 = 0 and Ωt = 0,∀t, this recursion reduces to the standard Kalman filter.
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one can define all the endogenous serial and cross correlations needed for the recursion. In

particular

Rj,t =

[
δjtσ

2
v 0

0 R(2, 2)jt

]
, j = 2, ..., t

Ct−1,j = cov(zt−1, y
i
j) = [0 0]′, j = 2, ..., t− 1

Cj,t = cov(zj, y
i
t) = [0 φt−1,j σ2z]

′, j = 1, ..., t− 1,

with

R(2, 2)jt = cov(p̃j−1, p̃t−1)

= σ2z

j−1∑
n=1

φj−1n φt−1n + δjt
(
ηt−1

)2
σ2ε,

and δjt denoting the Kronecker delta.

Given that Qn<j,j = 0 and Ct−1,j = [0 0]′,∀j, the first nested Kalman filter recursion
(73)-(74) reduces to

Ψt−1
n|n = (1−KnH) Ψt−1

n−1|n−1

and given that ψt−11|1 = 0, this implies that Ψt−1
t−1|t−1 = 0,∀t > 1. This simplification is due

to the fact that in this system there is no serial correlation in the state noise, and no cross

correlation between the current innovation in the state (zt−1) and past measurements up to

yit−1. The key term introduced by the endogeneity of prices and due to the serial correlation

in the noise in p̃t and the cross correlation of such noise with the noise in the state, is thus

Ωt, the computation of which requires the computation of the φ
t−1
j and ηt−1 coeffi cients in

(81), for t > 1.15 Deriving the equivalence between weights and gains in the Kalman filter

15At time t = 1,
p1 = p̃1 = θ1 − γσ2vε1 = θ2 − z1 − γσ2vε1

so φ11 = −1 and η1 = −γσ2v.
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gives

ψt1 =

t∏
n=2

(1−KnH) ,

ψt1<j<t = ψtj−1 +
t∏

n=j+1

(1−KnH)Kj(1, 1)

ψtt = ψtt−1 +Kt(1, 1),
t∑

j=1

qtj,1 = −ψtt−1 +Kt (1, 1) .

Using then (82) and (83), one can derive the required covariance matrices Rj,t and Cj,t.

6.6 Kalman filter updating equivalence

I show here that, for σ2z = 0, the weight put on new information under the Kalman filter

recursion is the same as the one in the learning algorithm proposed in Section (3).

With σ2z = 0, the modified Kalman filter algorithm presented in Appendix (6.5) reduces

to a standard Kalman filter algorithm, as there is no longer any serial correlation in p̃t, nor

any cross correlation between p̃t and the (constant) fundamental. The relevant equations

are thus simplified to

θ̂
i

tpt = θ̂
i

t−1pt−1 +Kt

[
yit −Hθ̂

i

tpt−1

]
σ2
θ̂t|t

= σ2
θ̂t−1|t−1

− σ2
θ̂t|t−1

H ′t

(
Hσ2

θ̂t|t−1
H ′ +Rt

)−1
σ2
θ̂t|t−1

Ht

with

Kt = σ2
θ̂t−1|t−1

H ′t

(
Hσ2

θ̂t|t−1
H ′ +Rt

)−1
.

Using the fact that

Rt =

[
σ2v 0

0 σ2p̃t−1

]
,

it is straightforward to compute the weight put at time t on the new signals xit and p̃t−1,

given by the Kalman gain

Kt =

 σ2p̃t−1

σ2v + σ2p̃t−1 +
σ2vσ

2
p̃t−1

σ2
θ̂t−1|t−1

σ2v

σ2v + σ2p̃t−1 +
σ2vσ

2
p̃t−1

σ2
θ̂t−1|t−1

 .
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These are the same weights put on new information under the algorithm proposed in Section

(3). In fact, using (13), (15) and (7)

αtx̄
i
t = βtσ

2
θ̂t
x̄it = βtσ

2
θ̂t

(
βt−1
βt

x̄it−1 +
σ−2v
βt

xit

)
so the weight on new private information xit is given by σ

2
θ̂t
σ−2v . Using the fact that

σ−2
θ̂t

= βt + ωt−1 = βt−1 + σ−2v + ωt−1 + σ−2p̃t−1 = σ−2
θ̂t−1

+ σ−2v + σ−2p̃t−1

this implies

σ2
θ̂t
σ−2v =

σ−2v
σ−2
θ̂t−1

+ σ−2v + σ−2p̃t−1
=

σ2p̃t−1
σ2vσ

2
p̃t−1

σ2
θ̂t−1

+ σ2p̃t−1 + σ2v

,

which is the same weight on private information implied by the Kalman filter. Using the

same steps, it is straightforward to prove the equivalence for the weight put on the price

signal.
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