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Abstract

Long-run risk models, a cornerstone in the macro-finance literature for their ability to

capture key asset price phenomena, are known to entail implausibly high levels of timing

and risk premia. Our paper resolves this puzzle by considering consumption of durable

goods in addition to that of non-durable goods. In our estimated model, the timing

premium is 11 percent and the risk premium is 16 percent of lifetime consumption. These

values are about a third of the previously implied premia and are more consistent with

empirical and experimental evidence.
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*We thank James Banks, Thorsten Hens, Felix Kübler, Patrick Macnamara, Cahal Moran, Karl Schmedders,
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1 Introduction

The Long-Run Risk Model (LRRM), introduced by Bansal and Yaron (2004), is one of the

main theoretical pillars in financial macroeconomics. In its original version, the LRRM rec-

onciles several key asset pricing phenomena in a unified framework by combining recursive

preferences à la Epstein and Zin (1989) with a model of aggregate consumption growth that

exhibits predictable low-frequency movements and time-varying volatility. Despite its suc-

cess, the LRRM suffers from a quantitative drawback similar to Mehra and Prescott (1985)’s

equity premium puzzle.

When calibrated to financial and macroeconomic data, the LRRM implies unrealistically

high levels of timing and risk premia, see Epstein, Farhi and Strzalecki (2014). A represen-

tative household with recursive preferences, a relative risk aversion of 7.5, and an elasticity

of intertemporal substitution of 1.5 would give up around one quarter of lifetime consump-

tion to resolve uncertainty one month earlier, and around half of lifetime consumption to

live in a world without consumption risk. Both of these amounts are difficult to reconcile

with microeconomic evidence or introspection.

This paper introduces in the standard LRRM consumption of durable goods alongside

the consumption of non-durable goods. The main message of our study is that this simple

modification can reduce by about two-thirds the timing and risk premia, without compro-

mising (and actually improving) the model’s ability to match standard macroeconomic and

financial moments. In our benchmark estimation exercise, the extended LRRM can ratio-

nalise key asset pricing facts, and deliver a timing premium of 11 percent and a cost of

eliminating all consumption uncertainty of 16 percent of lifetime consumption.

Regarding the cost of eliminating total consumption risk, our results are consistent with

the empirical evidence provided by Alvarez and Jermann (2004), who put the cost of elim-

inating consumption risk at around 16 percent of lifetime consumption. In connection to

the timing premium, the empirical evidence presented in Schlag, Thimme and Weber (2017)

imply a value of 7 percent, while the experimental study of Meissner and Pfeiffer (2018)

finds an average timing premium of around 5 percent of lifetime consumption. The timing

premium implied by our model is larger, but much closer to the empirical and experimental

findings than the original LRRM with only non-durable consumption.
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The main driver behind our results is that durable goods yield utility over several peri-

ods as their service flow spans over a relatively long time horizon, see for instance Browning

and Crossley (2009). In bad times households can cut their expenditure on durable goods,

while benefiting from the service flow that their stock of owned durables provides. There-

fore, durable consumption supplies partial insurance against future uncertainty, potentially

mitigating the timing and risk premia.

Durable consumption is also known to improve substantially the quantitative perfor-

mance of consumption-based asset pricing models. Yogo (2006) finds that including durable

consumption in the standard CCAPM can explain the cross-sectional variation in expected

stock returns as well as the time variation in the equity premium. Gomes, Kogan and Yogo

(2009) show that durability of output is reflected in stock prices and accounts for differences

in risk premia between durable goods producers and service providers. Yang (2011) empha-

sises the importance of long-run risk in durable consumption risk in understanding asset

price phenomena such as pro-cyclical dividend yields, counter-cyclical equity premia and

stock return predictability. Eraker, Shaliastovich and Wang (2015) find that the LRRM with

durable goods and inflation risk can explain the correlation between expected inflation and

future real growth.

Durable consumption makes up a substantial part of household expenditure. According

to personal consumption data from the US National Income and Product Accounts, in the

past three decades households spent three dollars on durable consumption for each dollar

spent on non-durable consumption. Over the last 70 years, on average twice as much was

spent on durable than on non-durable consumption.

Conducting the quantitative analysis of our model poses several challenges. First, rather

than calibrating the endowment processes for consumption and asset prices, we use a data-

driven approach that estimates these processes in a non-linear fashion with a sequential

Monte Carlo particle filter as in Schorfheide, Song and Yaron (2018). This approach consid-

erably complicates the evaluation of the likelihood function as well as the implementation of

Bayesian inference. However it allows to be less restrictive about the role of the time-varying

volatilities in the endowment processes as well as in the long-run components.

Second, we solve and estimate the full non-linear LRRM in the spirit of Chen, Favilukis

and Ludvigson (2013). This is particularly challenging from a numerical point of view, due
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to the presence of durable consumption acting as an extra endogenous state variable. How-

ever this technique permits to recover important non-linearities of the LRRM. This is crucial

as using Campbell/Schiller linearisation methods can lead to wrong model predictions, see

Pohl, Schmedders and Wilms (2018). To the best of our knowledge, our quantitative analy-

sis is the first one where non-linear solution and estimation techniques are applied jointly to

the endowment processes and to the LRRM.

The estimated model provides a good fit of the data. The representative household has

a risk aversion of 1.86 and its elasticity of intertemporal substitution is 1.18. Crucially, and

in line with the existent evidence, e.g. Yogo (2006), we find that durable and non-durable

consumption goods are gross complements. We also find that the predictable component

of durable consumption growth is more persistent than the predictable component of non-

durable consumption growth, as in Yang (2011) and Eraker, Shaliastovich and Wang (2015).

Finally, we show that the volatilities of both durable and non-durable long-run components

are time-varying and have a strong impact on dividend growth. These results are interesting

on their own as they provide further empirical evidence that durable and non-durable con-

sumption do not follow random walk processes. Simulation of the model reveals a mean

equity premium of 5.78 percent and an average return volatility of 17 percent. The mean

risk-free rate is 1.01 percent. The main achievement of the model however is that these

values are obtained with a timing premium of 11 percent and a risk premium of 16 percent.

Related to this paper, Andries, Eisenbach and Schmalz (2018) address the same short-

coming of LRRM studied here. They show that an economy where households have horizon-

dependent risk aversion can mitigate (or even reverse) the implied preference for early res-

olution of uncertainty, thus reducing the term and risk premia of LRRM. This alternative

explanation can be seen as complementary to ours based instead on durable consumption.

It would be interesting to combine these two approaches in a unified framework but we

leave this to future research.

The remainder of the paper is organised as follows. Section 2 presents a LRRM with

durable and non-durable consumption. Section 3 presents the estimation of the endowment

processes and the LRRM as well as the results. Section 4 concludes.
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2 The Model

We consider an infinite-horizon, discrete-time endowment economy à la Lucas (1978) in

which in every period t a representative household has rational expectations and derives

utility from a bundle of non-durable and durable consumption represented by a Constant

Elasticity of Substitution (CES) function

u(Ct, Dt) =

(
(1− α)C

ρ−1
ρ

t + αD
ρ−1

ρ

t

) ρ
ρ−1

. (1)

Ct is the non-durable consumption good that is non-storable and is entirely consumed in

period t, Dt is the service flow from durable consumption goods, α ∈ [0, 1] is the relative im-

portance of durable consumption, and ρ is the elasticity of substitution between non-durable

and durable consumption. When ρ = 1, equation (1) collapses to the familiar Cobb-Douglas

case, while for ρ < 1 (ρ > 1) durable and non-durable consumption goods are gross com-

plements (substitutes). As in Yogo (2006), Lustig and Verdelhan (2007) and subsequent con-

tributions, we assume that the service flow from durable consumption good is proportional

to the stock of durable goods which evolves according to the law of motion

Dt = (1− δ)Dt−1 + Et

where δ ∈ (0, 1) is the depreciation rate and Et is the expenditure on durable consumption.

The utility function of the household is recursive as in Epstein and Zin (1989, 1991) (see

also Kreps and Porteus, 1978 and Weil, 1989), i.e.

Ut =
{
(1− β)u(Ct, Dt)

1−γ
θ + β

(
Et[U 1−γ

t+1 ]
1
θ

)} θ
1−γ

. (2)

The parameters of the household’s utility function are the subjective discount factor β ∈
(0, 1), the relative risk aversion coefficient γ > 0, and the elasticity of intertemporal substi-

tution ψ ≥ 0 with θ ≡ (1− γ)/(1− 1
ψ ). Recall that the household with utility function in (2)

is averse to volatility in future utility, i.e. prefers early resolution of risk, if γ > ψ, whereas

the household loves volatility in future utility, i.e. prefers late resolution of risk, in the oppo-

site case where γ < ψ. Thus, when γ > ψ, recursive utility implies a curvature with respect

to future risks, a feature that is essential for matching asset-pricing facts.1

1Note that when θ = 1, i.e. when γ = 1/ψ, the recursive preferences collapse to a standard Constant
Relative Risk Aversion (CRRA) expected utility.
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In our endowment economy there are four assets: a non-durable consumption good, a

durable consumption good, a stock (in positive net supply), and a risk-free discount bond

(in zero net supply). In each period t, the household chooses the level of consumption (both

non-durable and durable) and asset holdings to maximize (2) subject to its budget constraint

Ct + PtEt + Bb,t + Bs,t = Bb,t−1Rb,t + Bs,t−1Rs,t (3)

where Pt is the relative price of durable goods in terms of non-durable goods, Bb,t is the

t-period risk-free bond holdings, Bs,t is the t-period stock holdings, Rb,t is the return on

risk-free bond, and Rs,t is the return on stock.

In each period t, a non-durable good Ct, a durable good Dt, and a dividend from stock St

arrive. As originally introduced by Bansal and Yaron (2004), the growth rate of non-durable

consumption, ∆Ct+1 = log(Ct+1/Ct), contains a small persistent predictable component xt,

∆Ct+1 = µc + xt + σtε
c
t+1

(4)
xt+1 = ρxxt + ψxσtε

x
t+1

where µc is the unconditional mean of non-durable consumption growth, ρx is the persis-

tence of the predictable component and ψx is the loading on the (time-varying) volatility of

xt. As in Eraker, Shaliastovich and Wang (2015), the growth rate of durable consumption,

∆Dt+1 = log(Dt+1/Dt), also contains a small persistent predictable component yt (poten-

tially different from xt),

∆Dt+1 = µd + yt + ψdσtε
d
t+1

(5)
yt+1 = ρyyt + ψyσtε

y
t+1

where µd, ρy and ψy are defined analogously to (4) but for durable consumption growth.

Dividend growth, ∆St+1 = log(St+1/St), is exposed to low frequency risks in the aggregate

economy, xt and yt, and to high frequency shocks from ∆Ct+1 and ∆Dt+1,

∆St+1 = µs + φxxt + φyyt + πcσtε
c
t+1 + πdσtε

d
t+1 + ψsσtε

s
t+1 (6)

where φx and φy allow controlling for the correlation of stocks with both non-durable and

durable consumption growth. All shock components have a time-varying term, σt, whose
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conditional volatility evolves according to

σt = σ̄ exp(ht)
(7)

ht+1 = ρhht + σh

√
1− ρ2

hεh
t+1

with σ̄ the unconditional mean of the standard deviation σt, ρh the persistence parameter of

the residual component ht, and σh the (constant) standard deviation of the shock to σt. Fi-

nally, shocks εc
t+1, εd

t+1, εx
t+1, ε

y
t+1, εs

t+1 and εh
t+1 are i.i.d.,N (0, 1) and mutually independent.

The solution of the model is characterized by first-order conditions that will be used in

the empirical analysis. Let Wt denote the period-t wealth of the household given by

Wt = Ct + PtEt + Bb,t + Bs,t

while Wt+1 is given by

Wt+1 = Bb,tRb,t+1 + Bs,tRs,t+1.

Total wealth of the household W̃t is defined as the sum of his current wealth and the value

of the stock of durable goods

W̃t = Wt + (1− δ)PtDt−1.

Treating the durable consumption good as an asset, the holdings and the return on the

durable consumption good are defined as

Bd,t = PtDt, Rd,t+1 = (1− δ)Pt+1/Pt.

Denoting the share of wealth net of non-durable consumption invested in asset i by

ωi,t = Bi,t/(W̃t − Ct)

the household’s budget constraint can be written in recursive form:

W̃t+1 = (W̃t − Ct) (ωb,tRb,t+1 + ωs,tRs,t+1 + ωd,tRd,t+1)
(8)

ωb,t + ωs,t + ωd,t = 1.

The consumption-portfolio choice problem of the household can be expressed as follows.

Given current total wealth W̃t, it chooses consumption Ct and investment shares ωb,t, ωs,t
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and ωd,t to maximize utility (2) subject to the budget constraint (8). The Bellman equation

for the period-t value function of this optimization problem can be written as

Jt(W̃t) = max
{Ct,ωb,t,ωs,t,ωd,t}

{
(1− β)u(Ct, Dt)

1−γ
θ + β

[
Et

(
Jt+1(W̃t+1)

)1−γ
] 1

θ

} θ
1−γ

. (9)

The solution to this maximization problem yields to two optimality conditions. First,

in any given period, the marginal rate of substitution between durable and non-durable

consumption good equals their relative prices, i.e.

uD,t

uC,t
= Pt − (1− δ)Et [Mt+1Pt+1] = Qt (10)

where Mt+1 is the stochastic discount factor between period t and t + 1, and Qt is the user

cost of the service flow for the durable good. Second, the intertemporal marginal rate of

substitution (IMRS) between any two adjacent periods has to satisfy

Mt+1 = βθ

(
Ct+1

Ct

)−θ/ψ (v(Dt+1/Ct+1)

v(Dt/Ct)

)θ(1/ρ−1/ψ)

Rθ−1
W,t+1 (11)

where the function v(Dt/Ct) is defined as

v (Dt/Ct) =
[
1− α + α (Dt/Ct)

1−1/ρ
]1/(1−1/ρ)

(12)

and RW,t+1 = W̃t+1/(W̃t − Ct − QtDt) is the return on total consumption, which captures

the return on the portfolio. Recall that in the one-good economy (α = 0) of Bansal and Yaron

(2004), equation (11) reduces to

Mnon-durable
t+1 = βθ

(
Ct+1

Ct

)−θ/ψ

Rθ−1
W,t+1. (13)

In contrast to the non-durable consumption case, our model incorporates movements in the

relative share of durable and non-durable goods (11) and adds the durable consumption

good to the household’s portfolio (9). As we will show in detail later, these two ingredients

are crucial for the performance of our model.

First-order conditions on non-durable consumption and portfolio choice imply (analo-

gously to the derivation in Epstein and Zin (1989, 1991)) that the return on any tradable

asset (risk-free bond b and stock s) in the economy satisfies the Euler equation, i.e.

Et [Mt+1Ri,t+1] = 1, i ∈ {b, s}. (14)
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Similarly, first-order conditions on optimal durable consumption choice imply

Et [Mt+1(Rb,t+1 − Rd,t+1)] =
uD,t

Pt uC,t
. (15)

As the Euler equation does not admit an analytical solution, we rely on numerical meth-

ods to solve for the asset prices, see Appendix A.2 for a detailed description of our solution

algorithm for both the linear and the non-linear case.

2.1 Timing and Risk Premia

Before starting the quantitative assessment of the model, it is useful to define the timing and

risk premia, see also Epstein, Farhi and Strzalecki (2014).

Definition of timing and risk premia. Suppose a consumer facing the endowment pro-

cess described in Section 2, with t = 0, 1, 2, . . ., where consumption and dividend risk is

resolved gradually over time (Ct, Dt, St, xt and yt are realized at time t only). Consider an

alternative process in which all the risk is resolved in period 1. The consumer is allowed

to chose the alternative endowment process over the original one at the cost of giving up a

fraction π of consumption today and in all subsequent periods. The maximum value π∗ for

which the consumer is willing to accept this offer is defined as the timing premium. Formally,

let U0 be the utility with the original endowment process and U ∗0 the utility of the alternative

endowment process in which all risk is resolved at time 1. Then, π∗ can be written as

π∗ = 1− U0

U ∗0
.

Now, consider another alternative endowment process, in which risk is resolved entirely,

and the consumption and dividend processes are deterministic. The maximum fraction of

current and future consumption π̄ which a consumer is willing to give up in favour of this

deterministic process is the risk premium and is formally defined as

π̄ = 1− U0

Ū0

where Ū0 is the utility associated with the deterministic endowment process.

Calculating timing and risk premia. We rely on numerical methods to calculate the

value of U0. The value function U0(C, D, x, y, σ2) is the solution for the recursive functional

equation

Ut =
{
(1− β)u(Ct, Dt)

1−γ
θ + β

(
Et[U 1−γ

t+1 ]
1
θ

)} θ
1−γ

.
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Noting that value function U can be rewritten as U (C, D, x, y, σ2) = CH(z, x, y, σ2), where

z = D/C, the functional equation above is

Ht(zt, xt, yt, σ2
t ) ={

(1− β)ũ(zt)
1−γ

θ + βe
(

1− 1
ψ

)
(µc+xt+

θ
2 σ2

t )
(

Et[H1−γ
t+1 (zt+1, xt+1, yt+1, σ2

t+1)]
1
θ

)} θ
1−γ

where ũ(zt) = ũ(Dt/Ct) = u(Ct, Dt)/Ct. We approximate H by Chebyshev polynomials

and solve the functional equation using orthogonal collocation method, see Pohl, Schmed-

ders and Wilms (2018) and references therein. The expectation is approximated by Gauss-

Hermite quadrature. We then run Monte-Carlo simulations with a fixed time horizon T and

pass U0 as the continuation value at time T. This numerical procedure allows to calculate

accurately both U ∗0 and Ū0.

3 Empirical Analysis

Data. The sample period of our data is 1952:Q1–2014:Q4. Personal consumption data is

from the US National Income and Product Accounts Bureau of Economic Analysis (BEA).

We measure non-durable consumption as the sum of personal consumption expenditures

on non-durable goods and services. This measure includes for instance food, clothing items,

housing and utilities, health care services, transportation.

Durable consumption includes for instance motor vehicles and parts, furnishings and

durable household equipment, recreational goods and services, jewellery and watches. Since

the BEA reports only annual series for consumers stock of durable goods, we interpolate the

quarterly series by assuming that the depreciation rate is constant within year, such that the

implied value of the depreciation rate is consistent with annual stocks of durable goods both

at the beginning and at the end of the year, and with quarterly series of personal consump-

tion expenditure (PCE) on durable goods. This is standard procedure, e.g. Yogo (2006).

Figure 1 plots the durable consumption as a ratio of non-durable consumption (black

solid line) from 1952:Q1 to 2014:Q4. The time series exhibits an upward trend during the

sample period, with the value of durable consumption relative to non-durable consumption

in 2014:Q4 being about 3.5 larger than corresponding value in 1952:Q1. The upward trend
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in the series is also consistent with the downward trend in price of durable goods relative to

non-durable goods (red dashed line in Figure 1).
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Figure 1: Relative Consumption and Price. Time series plot of durable consumption
as a ratio of non-durable consumption (black solid line), and relative price of durable to
non-durable consumption (red dashed line). The sample period from 1952:Q1 to 2014:Q4,
1952:Q1 values are normalized to 1. The shaded areas indicate NBER recessions.

US Population data are retrieved from the Federal Reserve Bank of St. Louis to obtain the

per-capita quantities. The returns on the stock market and the short-term interest rate are

from the Center for Research in Security Prices (CRSP). All asset returns are deflated with

the PCE price index for non-durable consumption. The real dividend series are from Robert

Shiller’s website. We construct the ex-ante real risk-free as a fitted value from a projection of

ex post real rate on the current nominal yield and inflation over the previous year (nominal

yield is the Fama Risk Free Rate and inflation is the CPI rate, both available from CRSP).

3.1 Quantitative Assessment

State-Space Representation and Bayesian Inference. The non-linear state-space system

consists of a measurement and a transition equation, determined by (4)–(7). The measure-
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ment equation can be written as

yt+1 = M + Zst+1 (16)

with

yt+1 =

∆Ct+1
∆Dt+1
∆St+1

 , st+1 =


xt
yt

σtε
c
t+1

σtε
d
t+1

σtε
s
t+1

 , M =

µc
µd
µs

 , Z =

 1 0 1 0 0
0 1 0 ψd 0

φx φy πc πd ψs



while the transition equation can be written as

st+1 = Φst + vt+1(ht)
(17)

ht+1 = Ψht + Σhεh
t+1

where

vt+1(ht) =


ψxσtε

x
t+1

ψyσtε
y
t+1

σtε
c
t+1

σtε
d
t+1

σtε
s
t+1

 , Φ =


ρx 0 0 0 0
0 ρy 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , Ψ = ρh, Σh = σh

√
1− ρ2

h.

In order to estimate the parameter vector Θ, with

Θ =
(
ρx, ψx, ψd, ρy, ψy, φy, πc, πd, ψs, ρh, σh

)
,

we extend the Bayesian, non-linear approach of Schorfheide, Song and Yaron (2018).

This method is conducted as follows. In order to generate draws from the posterior

distribution of Θ, P (Θ|Y), we specify the prior distribution P (Θ) and evaluate numerically

the likelihood function P (Y|Θ). As the volatility processes affect the conditional mean and

the volatility of asset prices, we have to carry out a non-linear estimation of the state space

model. Fortunately, one can avoid applying a fully non-linear filter as, conditional on the

volatility state ht, the state-space model can be recast in linear form and as such is Gaussian.

This approximation can be implemented by using a computationally efficient particle

filter, where the particle values of the volatilities st are replaced by the mean and covari-

ance matrix of the conditional distribution (st|(ht, Y1:t)). This latest statistic is obtained by

exploiting the Gaussian nature of the state-space system, with linear Kalman filtering.
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Then we insert the resulting approximation of the likelihood function, i.e. P̂ (Y|Θ), into a

standard Metropolis-Hastings algorithm. This allows to generate the posterior distribution

of the parameter vector Θ, i.e. P (Θ|Y).2

Parameter Estimates. For the estimation, we use uninformative uniform priors for the

majority of our parameters. The only exception is represented by σ2
h , i.e. the volatility of

the volatility parameter, where we impose instead an Inverse-Gamma distribution. For the

persistence coefficients we also choose dispersed priors: the 90 percent credible interval for

ρx and ρy ranges from 0.71 to 0.99. These numbers cover the values reported in Bansal

and Yaron (2004); Bansal, Kiku and Yaron (2009); Yang (2011); Schorfheide, Song and Yaron

(2018); Eraker, Shaliastovich and Wang (2015).

Table 1 reports the 90 percent credible intervals for the priors of the parameters as well

as the percentiles of the posterior distribution for the estimated parameters.

Table 1: Estimated Coefficients of the Endowment Process.

Parameter Distribution Prior Posterior
5% 95% 5% 50% 95%

ρx Uniform 0.71 0.99 0.79 0.85 0.91
ψx Uniform 0.05 9.95 0.25 0.31 0.38
ψd Uniform 0.05 9.95 0.01 0.05 0.13
ρy Uniform 0.71 0.99 0.88 0.91 0.95
ψy Uniform 0.05 9.95 0.60 0.69 0.79
φy Uniform 1 19 0.40 0.69 0.80
πc Uniform 1 19 0.00 0.03 0.12
πd Uniform 1 19 0.08 0.60 1.22
ψs Uniform 0.05 9.95 0.13 0.83 1.26
ρh Uniform 0.90 0.99 0.93 0.96 0.98
σ2

h Inverse-Gamma 0.06 0.37 0.24 0.40 0.67

Estimation results are based on quarterly consumption and dividend data from 1952:Q1 to 2014:Q4. Parameter
values µc = 0.0049, µd = 0.0083 and µs = 0.0016 are set at their sample averages, further σ̂ = 0.0096 and
φx = 4.

The posterior estimates of the persistence of the long-run components are ρx = 0.85

and ρy = 0.91. The long-run component of the durable good is more persistent but also

more volatile (ψy = 0.69) than that of the non-durable good (ψx = 0.31), in line with Er-

aker, Shaliastovich and Wang (2015). Moreover, dividends depend on both non-durable and
2Andrieu, Doucet and Holenstein (2010) show that use of the approximation of the likelihood function as

implemented in this paper delivers draws from the true posterior distribution.

13



durable long-run components, with the larger effect coming from the non-durable long-run

component (setting φx = 4, we estimate φy = 0.69, similar to Yang, 2011). We also find a

non-zero loading on dividend growth from the noise to non-durable and durable consump-

tion, with πc and πd both being strictly positive. Finally, the volatility process is highly

persistent, with ρh = 0.96.

3.1.1 Estimating the Elasticity of Substitution

Equation (10) allows estimating the elasticity of substitution ρ directly from the data. Taking

logarithms of equation (10) we get

log
(

α

1− α

)
+

1
ρ
(ct − dt)− pt = qt − pt

where a lower case variable denotes the logarithm of the corresponding uppercase variable.

Assuming that the user cost and the spot price of durable goods are cointegrated (so that

qt− pt is stationary) implies that ct− dt and pt are cointegrated with the cointegrating vector

equal to (1,−ρ). Hence, we can estimate the elasticity of substitution without observing the

user cost of durable goods (see Ogaki and Reinhart, 1998, where ρ is estimated by regressing

ct − dt on pt). We estimate the elasticity of substitution by a dynamic ordinary least square

regression of ct− dt on pt with four leads and lags, as proposed by Stock and Watson (1993):

ct − dt = const. + ρ pt +
4

∑
s=−4

bp,s∆pt−s + εt.

For the full sample 1952:Q1 - 2014:Q4, we estimate ρ = 0.78 with standard error of 0.03. We

test the null hypothesis of no composition H0 : ρ = 1. The t-statistics is t = −6.85 and thus

we reject the hypothesis of no composition at 1 percent significance level.

3.1.2 Estimating the Linear Model

As a starting point we derive and estimate a linearised version of the model. This is instruc-

tive for three reasons. First, the linear model admits an analytical solution of the equilibrium

dynamics. Second, it allows to compare the estimates of our model with a large part of the

LRR literature that studies linear models. Third, it enables us to assess the relative impor-

tance of non-linearities in our class of models.3

3In a recent contribution, Pohl, Schmedders and Wilms (2018) show the importance of non-linearities for
inference in LRR models. Here we extend that result in LRR models with durable consumption.
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Technically, we derive an analytical solution through a linear approximation of the condi-

tional volatility process (7). Furthermore, we assume that the volatility is given by a process

that has a Gaussian distribution, i.e.

σ2
t+1 ≈ σ̄2(1− ρh) + ρhσ2

t + 2σ̄2σh

√
1− ρ2

hwt+1

= σ̂ + ρhσ2
t + σwwt+1.

Next, we derive the asset prices using the standard asset pricing conditions

Et [exp(mt+1 + ri,t+1)] = 1

for any asset return ri,t+1 = log (Ri,t+1). Recall that the log-pricing kernel of the economy

can be written as

mt+1 = θ log β− θ

ψ
∆ct+1 + θ

(
1
ρ
− 1

ψ

)
∆ ft+1 + (θ − 1) rw,t+1

where rw,t+1 is the log return on the consumption claim and rm,t+1 is log market return.

Then, we use the standard approximation of Campbell and Shiller (1988) for the returns, i.e.

rw,t+1 = zw,t+1 − κ0 − κ1zw,t − zt + ∆ct+1

rm,t+1 = κm
0 + κm

1 zm,t+1 − zm,t + ∆st+1

where zt = log (Dt/Ct) , zw,t is the log wealth-consumption ratio, and zm,t is the log price-

dividend ratio. This yields to a solution for the log wealth-consumption ratio and the log

price-dividend ratio that is linear in state variables, i.e.

zw,t = A0 + A1xt + A2yt + A3zt + A4σ2
t

(18)
zm,t = B0 + B1xt + B2yt + B3zt + B4σ2

t

where the functions Ak, Bk, k = 0, ..., 4, depend on the preference parameters. Given this

solution, we can derive analytical expressions for both the market return and for the risk-

free rate. Details are provided in Appendix A.1.

Finally, we use the analytical solution of the linear model to estimate the set of preference

parameters as defined in Section 2:

Λ = (γ, ψ, β, α) .
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We estimate Λ by solving a sample minimum distance problem with the identity weight-

ing matrix, as the problem is exactly identified. To do so, we simulate 100,000 samples of

length equal to our sample size and use those to calculate the market and the risk-free re-

turns. Next we estimate Λ to match the first two unconditional moments of the market and

risk-free returns.

Table 2 (Panel A, Linear Model) reports the values of the estimated parameters. We find

that the subjective discount factor is estimated at β = 0.9985 and the share of durable con-

sumption in the intraperiod utility function α is about 30 percent. Crucially, the estimate

of risk aversion coefficient γ is 2.7 and the estimate of the elasticity of intertemporal sub-

stitution ψ is around 1.3. It is interesting to note that while the risk aversion coefficient is

relatively low and within the accepted range (less than 10), the elasticity of intertemporal

substitution is significantly above 1. This means that in this (linear) economy, the house-

hold has a strong preference for early resolution of risk. As we will discuss in details later,

these parameters are smaller than those calibrated by Bansal and Yaron (2004) (γ = 10 and

ψ = 1.5). The difference is mainly due to the composition risk between durable and non-

durable goods: if the two consumption goods are gross complements, and given a level of

risk aversion, then marginal utility of consumption rises more sharply when durable con-

sumption falls. Assets deliver unexpectedly low returns when marginal utility rises strongly,

that is, during downturns, when durable consumption expenditure falls sharply relative to

non-durable consumption. Therefore composition risk implies that the household must be

compensated with higher expected returns to hold stocks during recessions.

Table 2 (Panel B, Linear Model) reports the simulated moments. The mean of the risk-free

rate and of the risky return is about 1 and 6 percent, which is close to the values observed

in the data. The linear model also generates a high volatility of the risky return (about 20

percent compared to the 19 percent that is observed in the data). However the linear model

fails to match the standard deviation of the risk free rate, despite it being one of the targeted

moments in our estimation exercise. This is mainly due to the assumption of linearity in the

variance of the returns. To check the performance of the model, we also report two non-

targeted moments, the mean and the variance of the price-dividend ratio. The linear model

fails to generate the level and the volatility of these statistics.
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3.1.3 Estimating the Non-Linear Model

We now estimate the non-linear version of the model. As we will argue, the numerical errors

that are introduced in the LRRM using the Campbell-Shiller linearisation are economically

significant and could lead an incorrect inference of the model, see also Pohl, Schmedders

and Wilms (2018).

To carry out this task, we employ a semi-parametric estimation methodology similar to

that of Chen, Favilukis and Ludvigson (2013). Our procedure consists of two steps. In the

first step, for a fixed value of preference parameters, we approximate the unknown wealth-

consumption and price-dividend ratios as a series of Chebyshev polynomials, and we esti-

mate non-parametrically these functions by using the intertemporal conditions (i.e. the Euler

equations) on the returns of wealth and stock. In the second step, for a given set of fitted

functions, we estimate the preference parameters by a sample minimum distance estimator

(the analogue of GMM). Details are provided in Appendix A.2.

Table 2 (Panel A, Full Model) reports the values of the estimated parameters of a full

model. First, we find that the subjective discount factor is estimated at β = 0.9914, a value

similar to its counterpart in the linear model. Second, and perhaps more strikingly, we es-

timate the risk aversion coefficient to 1.86 and the elasticity of intertemporal substitution ψ

to around 1.18. Both these numbers are substantially smaller than their linear-model coun-

terparts. These differences are due to the importance of non-linearities that our solution

fully exploits and which allows to adopt parameters that are more in line with accepted

macroeconomic wisdom.

Table 2 (Panel B, Full Model) reports the model-implied simulated moments. The main

result from this exercise is that the non-linear model outperforms its linear counterpart in

capturing the volatility of the risk free rate as well as both the mean and volatility of the

price-dividend ratio. These latter two statistics are quite informative about the performance

of the non-linear model since they are not part of the estimation targets and thus represent

an external validation of our model.
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Table 2: Estimated Preference Parameters and Unconditional Moments of Returns.

A. Estimated Preference Parameters

Linear Model Full Model

Risk aversion γ = 2.78 γ = 1.86
IES ψ = 1.29 ψ = 1.18
Subjective discount factor β = 0.998 β = 0.991
Share of durable consumption α = 0.30 α = 0.15

B. Unconditional Moments of Returns

Data Linear Model Full Model
5% 50% 95% 5% 50% 95%

Mean of r f 0.95 0.69 1.08 1.62 -0.59 1.01 8.16
Standard Deviation of r f 1.61 0.26 0.36 0.49 1.08 1.61 3.40
Mean of rm 5.57 2.50 6.21 9.84 1.66 5.78 10.89
Standard Deviation of rm 18.94 16.16 20.52 25.44 13.03 16.85 20.97
Mean of (p− d) 4.93 4.20 4.27 4.35 3.83 4.60 5.20
Standard Deviation of (p− d) 0.38 0.12 0.17 0.23 0.18 0.31 0.58

C. Timing and Risk Premia

Timing Premium π∗ = 11%
Risk Premium π̄ = 16%

Timing and risk premia for different time horizons in the simulated model are presented

in Figure 2. T = 30 years corresponds to the duration of US Treasury bonds, T = 63 years

corresponds to the sample size of the data used, and long time horizons are T = 100, 300, 625

and 1, 000 years, see also Epstein, Farhi and Strzalecki (2014). The timing premium increases

from 5 percent for 30 years to 11 percent for 300 years and remains at that level for all longer

time horizons. The risk premium increases from 11 percent for a 30 year time horizon to

16 percent for 100 years and then stays at that level. For 1, 000 years the model generates a

timing premium of 11 percent and a risk premium of 16 percent (see also Table 2, Panel C).

The estimated timing and risk premia are 11 and 16 percent, respectively, about a third

of what emerge in single consumption good LRR models, e.g. Epstein, Farhi and Strzalecki

(2014). This result derives from the fact that durable goods yield utility over several periods

as their service flow spans over a relatively long time horizon, see for instance Browning

and Crossley (2009). In other words, in bad times households can cut their expenditure on
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durable goods, while benefiting from the service flow that their stock of owned durables

provides. As such, durable consumption supplies partial insurance against future uncer-

tainty, thus mitigating both the timing and risk premia.
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Figure 2: Timing Premium and Risk Premium. The figure displays the timing premium
(dashed line) and the risk premium (solid line) as functions of time horizon.

To further understand the contribution of composition risk to our results, we analyse the

alternative scenario with ρ = 1, so that composition risk is completely shut down. In order

to do so, we re-estimate both the linear and the fully non-linear model for this case. Table 3

contains the results. Comparing with the benchmark case in Table 2, we find that with-

out the composition effect the values of the estimated parameters as well as the estimated

moments change substantially. Risk aversion and intertemporal elasticity of substitution

(IES) are much higher, and, moreover, the model fails to match some of the asset pricing

moments. There are also substantial differences between the linear and full model, e.g. the

linear model fails to match the mean values of the risk-free and equity returns. While the

model without the composition effect generates a low value of the timing premium, it gen-

erates an unreasonably high value of the risk premium, about twice as high as in Bansal and

Yaron (2004). The results in Table 3 suggest that the composition effect plays an important

role for the estimated preference parameters and for matching the asset markets’ moments.
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Table 3: No Composition Risk (ρ = 1)

A. Preference Parameters

Linear Model Full Model

Risk aversion γ = 15.35 γ = 4.83
IES ψ = 1.18 ψ = 1.79
Subjective discount factor β = 0.997 β = 0.998
Share of durable consumption α = 0.42 α = 0.47

B. Unconditional Moments of Returns

Data Linear Model Full Model
5% 50% 95% 5% 50% 95%

Mean of r f 0.95 -0.87 0.34 1.39 -0.99 0.26 1.31
Standard Deviation of r f 1.61 0.90 1.27 1.70 0.91 1.27 1.71
Mean of rm 5.57 -3.09 0.72 4.78 2.67 6.20 10.04
Standard Deviation of rm 18.94 14.61 18.88 23.41 13.46 17.43 21.61
Mean of (p− d) 4.93 8.43 8.49 8.55 4.22 4.28 4.33
Standard Deviation of (p− d) 0.38 0.11 0.15 0.21 0.10 0.14 0.19

C. Timing and Risk Premia

Timing Premium π∗ = 4%
Risk Premium π̄ = 52%

The intuition for these results is the following. When non-durable consumption growth

is low, the household’s marginal utility increases. However, if low consumption growth

is compounded by a decline in the flow of durable consumption services relative to non-

durable consumption, marginal utility increases less when the two goods are complements

(ρ < 1). Therefore, if consumption of non-durables is declining and durable consumption

also declines relative to non-durables, the complementarity between the two types of goods

causes a smaller increase in marginal utility compared to the case when composition risk

is absent. In other words, in our model, the household’s concern with composition risk

implies that recessions are not perceived as particularly severe when the expenditure on

durable consumption is low and there is complementarity between the two consumption

goods. When we eliminate the composition risk, the risk aversion parameter necessary to

explain movements in financial markets increases and so does the overall risk premium.

However, timing premium decreases compared to the benchmark case. This is because
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the lack of composition risk increases the relative importance in the utility function of the

durable goods (α = 0.47). The household will pay less for having all risk resolved in the

next period as it can rely on the partial insurance provided by durables more effectively on

a longer horizon.

4 Conclusion

We introduce a long-run risk model where durable and non-durable consumption goods are

non-separable and gross complements, thus generating the household’s concern with short

and long run composition risk, i.e. fluctuations in the relative share of durables in their

consumption basket. We show that our model matches the key stylized facts of financial

markets and at the same time generates levels of timing and risk premia that are consistent

with the conventional macroeconomic wisdom. In its benchmark calibration, our model

matches financial data well with a risk aversion of 1.86, an elasticity of intertemporal sub-

stitution of 1.18, and an elasticity of substitution between durable and non-durable goods

of 0.78. With this estimation the timing premium is 11 percent and the risk premium is 16

percent. Compared to the its single consumption good counterpart, our model reduces the

timing and risk premia by around two thirds. The paper holds an important message for

financial economists: the importance of durable consumption is not limited to explaining

financial data but it represents an important factor for obtaining reasonable timing and risk

premia in the LRRM.
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A Appendix

A.1 Solving the Linear Model

An analytical solution to the linear model is obtained using a linear approximation to the

conditional volatility process (7) and expressing volatility as a process that follows a Gaus-

sian distribution:

σ2
t+1 ≈ σ̄2(1− ρh) + ρhσ2

t + 2σ̄2σh

√
1− ρ2

hwt+1

= σ̂ + ρhσ2
t + σwwt+1.

The endowment process for the economy is then given by

∆Ct+1 = µc + xt + σtε
c
t+1

∆Dt+1 = µd + yt + ψdσtε
d
t+1

∆St+1 = µs + φxxt + φyyt + πcσtε
c
t+1 + πdσtε

d
t+1 + ψsσtε

s
t+1

xt+1 = ρxxt + ψxσtε
x
t+1

yt+1 = ρyyt + ψyσtε
y
t+1

σ2
t+1 = σ̂ + ρhσ2

t + σwwt+1

εc
t+1, εd

t+1, εs
t+1, εx

t+1ε
y
t+1, wt+1 ∼ N (0, 1).

We derive the asset prices using the standard asset pricing condition

Et
[
emt+1+ri,t+1

]
= 1

for any asset ri,t+1 = log (Ri,t+1) , where the log-pricing kernel of the economy is

mt+1 = θ log β− θ

ψ
∆ct+1 + θ

(
1
ρ
− 1

ψ

)
∆ ft+1 + (θ − 1) rw,t+1.

rw,t+1 is the log return on the consumption claim, and rm,t+1 is log market return. We use

the approximation of Campbell and Shiller (1988) for the returns:

rw,t+1 = zw,t+1 − κ0 − κ1zw,t − zt + ∆ct+1

rm,t+1 = κm
0 + κm

1 zm,t+1 − zm,t + ∆st+1
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where zt = log (Dt/Ct) , zw,t is the log wealth-consumption ratio, and zm,t is the log price-

dividend ratio. The approximating constants are given by

κ0 = log
(
ez̄w − 1− q(z̄)

)
+

1
ez̄w − 1− q(z̄)

[
−ez̄w z̄w −

α

1− α

(
1− 1

ρ

)
e
(

1− 1
ρ

)
z̄z̄
]

,

κm
0 = log

(
1 + ez̄m

)
− ez̄m z̄m

1 + ez̄m
, κm

1 =
ez̄m

1 + ez̄m
.

A.1.1 Consumption Claim

We conjecture that the log wealth-consumption ratio zw,t is a linear function of state vari-

ables:

zw,t = A0 + A1xt + A2yt + A3zt + A4σ2
t .

Then

rw,t+1 =zw,t+1 − κ0 − κ1zw,t − κ2zt + ∆ct+1

=A0 + A1xt+1 + A2yt+1 + A3zt+1 + A4σ2
t+1

− κ0 − κ1A0 − κ1A1xt − κ1A2yt − κ1A3zt − κ1A4σ2
t − κ2zt + ∆ct+1

= {A0(1− κ1)− κ0 + A3(µd − µc) + A4σ̂ + µc}

+ {A1ρx − A3 − κ1A1 + 1} xt

+
{

A2ρy + A3 − κ1A2
}

yt

+ {A3 − κ1A3 − κ2} zt

+ {A4ρh − κ1A4} σ2
t

+ A1ψxσtε
c
t+1 + A2ψyσtε

y
t+1 + (1− A3)σtε

c
t+1 + A3ψdσtε

d
t+1 + A4σwwt+1.

Using

∆ ft+1 =
ρ

ρ− 1
α exp

((
1− 1

ρ

)
z̄
)(

1− 1
ρ

)
︸ ︷︷ ︸

K

(zt+1 − zt)

= K
(

µd + yt + ψdσtε
d
t+1 − µc − xt − σtε

c
t+1

)
and

mt+1 = θ log β− θ

ψ
∆ct+1 + θ

(
1
ρ
− 1

ψ

)
∆ ft+1 + (θ − 1) rw,t+1
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we obtain

mt+1 = θ log β− θ

ψ
µc + θ

(
1
ρ
− 1

ψ

)
K(µc − µd)

+ (θ − 1)(A0(1− κ1)− κ0 + A3(µd − µc) + A4σ̂ + µc)

+
{
− θ

ψ
− θ

(
1
ρ
− 1

ψ

)
K + (θ − 1) (A1ρx − A3 − κ1A1 + 1)

}
xt

+
{

θ

(
1
ρ
− 1

ψ

)
K + (θ − 1)(A2ρy + A3 − κ1A2)

}
yt

+ {(θ − 1)(A3 − κ1A3 − κ2)} zt

+ {(θ − 1)(A4ρh − κ1A4)} σ2
t

+ (θ − 1)A1ψxσtε
x
t+1

+ (θ − 1)A2ψyσtε
y
t+1

+

{
(θ − 1)(1− A3)−

θ

ψ
− θ

(
1
ρ
− 1

ψ

)
K
}

σtε
c
t+1

+

{
(θ − 1)A3 + θ

(
1
ρ
− 1

ψ

)
K
}

ψdσtε
d
t+1

+ (θ − 1)A4σwwt+1.

Since both mt+1 and rw,t+1 are conditionally normal, the Euler equation for wealth can be

written as

Et [mt+1 + rw,t+1] +
1
2

Vart [mt+1 + rw,t+1] ≈ 0.

We use this equation to solve for the coefficients A0, ..., A4. These are

A0 = − 1
(κ1 − 1) (θ − 1)

×
{
(θ − 1) (κ0 − µc − A4 σ̂ + A3 (µc − µd))− θ log β

−
A2

4 σ2
w (θ − 1)2

2
+

µc θ

ψ
+ K θ

(
1
ψ
− 1

ρ

)
(µc − µd)

}

A1 =
1

(κ1 − ρx) (θ − 1)
×
{(

κ2

κ1 − 1
+ 1
)

(θ − 1) + K θ

(
1
ψ
− 1

ρ

)
− µcθ

ψ

}

A2 = − 1(
κ1 − ρy

)
(θ − 1)

×
{

Kθ

(
1
ψ
− 1

ρ

)
+

κ2 (θ − 1)
κ1 − 1

}
A3 = −κ2/(κ1 − 1)

A4 =
1

2 (κ1 − ρh) (θ − 1)
×
{

ψd
2
(

A3 (θ − 1)− K θ

(
1
Ψ
− 1

ρ

))2
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+

(
(A3 − 1) (θ − 1)− K θ

(
1
Ψ
− 1

ρ

)
+

µc θ

Ψ

)2

+ A1
2 ψx

2 (θ − 1)2 + A2
2 ψy

2 (θ − 1)2

}
.

The innovation to mt+1 is given by

mt+1 −Et[mt+1] = λxσtε
x
t+1 + λyσtε

y
t+1 + λcσtε

c
t+1 + λdσtε

d
t+1 + λwσwwt+1,

where the coefficients λ· represent the market price of risk for each source of risk:

λx =(θ − 1)A1ψx, λy = (θ − 1)A2ψy, λc = (θ − 1)(1− A3)−
θ

ψ
− θ

(
1
ρ
− 1

ψ

)
K,

λd =

(
(θ − 1)A3 + θ

(
1
ρ
− 1

ψ

)
K
)

ψd, λw = (θ − 1)A4.

Similarly, the innovation to rw,t+1 is given by

rw,t+1 −Et[rw,t+1] = −βxσtε
x
t+1 − βyσtε

y
t+1 − βcσtε

c
t+1 − βdσtε

d
t+1 − βwσwwt+1

where

βx = −A1ψx, βy = −A2ψy, βc = −(1− A3), βd = −A3ψd, βw = −A4.

The risk premium for the consumption claim is

Et[rw,t+1 − r f ,t] +
1
2

Vart[rw,t+1] = −Covt[mt+1, rw,t+1]

=
(

βxλx + βyλy + βcλc + βdλd
)

σ2
t + βwλwσ2

w.

A.1.2 Market Return

We conjecture that the log price-dividend ratio for the claim on dividends is

zm,t = B0 + B1xt + B2yt + B3zt + B4σ2
t .

Then

rm,t+1 = κm
0 + κm

1 zm,t+1 − zm,t + ∆st+1

= κm
0 + κm

1

(
B0 + B1xt+1 + B2yt+1 + B3zt+1 + B4σ2

t+1

)
− B0 − B1xt − B2yt − B3zt − B4σ2

t
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+ µs + φxxt + φyyt + πcσtε
c
t+1 + πdσtε

d
t+1 + ψsσtε

s
t+1

= {κm
0 + B0(κ

m
1 − 1) + κm

1 (B3(µd − µc) + B4σ̂) + µs}

+ {κm
1 B1ρx − κm

1 B3 − B1 + φx} xt

+
{

κm
1 B2ρy + κm

1 B3 − B2 + φy
}

yt

+ {κm
1 B3 − B3} zt

+ {κm
1 B4ρh − B4} σ2

t

+ {κm
1 B1ψx} σtε

x
t+1

+
{

κm
1 B2ψy

}
σtε

y
t+1

+ {−κm
1 B3 + πc} σtε

c
t+1

+ {κm
1 B3ψd + πd} σtε

d
t+1

+ {ψs} σtε
s
t+1

+ {κm
1 B4} σwwt+1

Since both mt+1 and rm,t+1 are conditionally normal, the Euler equation can be written as

Et [mt+1 + rm,t+1] +
1
2

Vart [mt+1 + rm,t+1] ≈ 0.

We use this equation to solve for the coefficients B0, ..., B4. They are given by

B0 = − 1
κm

1 − 1
×
{(

B2
4κm

1
2

2
+

M2
w

2

2

)
σ2

w + M0 + κm
0 + µs + κm

1 (B4 σ̂− B3 (µc − µd))

}

B1 = −
Mx + φx − B3 κm

1
κm

1 ρx − 1

B2 = −
My + φy + B3 κm

1
κm

1 ρy − 1

B3 =
Mz

1− κm
1

B4 = − 1
2 κm

1 ρh − 2
×
{

2Mσ + (πc − B3κm
1 )

2 +
(
πy + B3κm

1 ψd
)2

+ M2
ec + M2

ed + M2
ex

+ M2
ey + ψ2

s + B2
1κm

1
2ψ2

x + B2
2 κm

1
2 ψ2

y

}
where

M0 =
{

θ log β− θ

ψ
µc + θ

(
1
ρ
− 1

ψ

)
K(µc − µd)
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+ (θ − 1)(A0(1− κ1)− κ0 + A3(µd − µc) + A4σ̂ + µc)
}

Mx = − θ

ψ
− θ

(
1
ρ
− 1

ψ

)
K + (θ − 1) (A1ρx − A3 − κ1A1 + 1)

My = θ

(
1
ρ
− 1

ψ

)
K + (θ − 1)(A2ρy + A3 − κ1A2)

Mz = (θ − 1)(A3 − κ1A3 − κ2)

Mσ = (θ − 1)(A4ρh − κ1A4)

Mex = (θ − 1)A1ψx

Mey = (θ − 1)A2ψy

Mec = (θ − 1)(1− A3)−
θ

ψ
− θ

(
1
ρ
− 1

ψ

)
K

Med =

{
(θ − 1)A3 + θ

(
1
ρ
− 1

ψ

)
K
}

ψd

Mw = (θ − 1)A4.

The innovation to rm,t+1 is given by

rm,t+1 −Et[rm,t+1] =

− βm,xσtε
x
t+1 − βm,yσtε

y
t+1 − βm,cσtε

c
t+1 − βm,dσtε

d
t+1 − βm,sσtε

s
t+1 − βm,wσwwt+1

where

βm,x = −κm
1 B1ψx, βm,y = −κm

1 B2ψy, βm,c = κm
1 B3 − πc,

βm,d = −κm
1 B3ψd − πd, βm,s = −ψs, βm,w = −κm

1 B4.

The risk premium for the dividend claim is

Et[rm,t+1 − r f ,t] +
1
2

Vart[rm,t+1] = −Covt[mt+1, rm,t+1]

=
(

βm,xλx + βm,yλy + βm,cλc + βm,dλd
)

σ2
t + βm,wλwσ2

w.

A.1.3 Risk-Free Rate

Using the Euler equation, the model-implied risk-free rate is given by

r f ,t = −Et [mt+1]−
1
2

Vart [mt+1] .

Using the derived expression for mt+1, the risk-free rate will be given by

r f ,t = C0 + C1xt + C2yt + C3zt + C4σ2
t
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where

C0 =−
{

θ log β− θ

ψ
µc + θ

(
1
ρ
− 1

ψ

)
K(µc − µd)

+ (θ − 1)(A0(1− κ1)− κ0 + A3(µd − µc) + A4σ̂ + µc) +
λ2

wσ2
w

2

}
C1 =−

{
− θ

ψ
− θ

(
1
ρ
− 1

ψ

)
K + (θ − 1) (A1ρx − A3 − κ1A1 + 1)

}
C2 =−

{
θ

(
1
ρ
− 1

ψ

)
K + (θ − 1)(A2ρy + A3 − κ1A2)

}
C3 =− {(θ − 1)(A3 − κ1A3 − κ2)}

C4 =−
{
(θ − 1)(A4ρh − κ1A4) +

λ2
x + λ2

y + λ2
c + λ2

d

2

}
.

A.2 Solving the Non-Linear Model

In our estimation exercise, we use a Euler equation to back out the asset returns as a func-

tion of model parameters and fully estimate these parameters. As the Euler equation does

not admit analytical solution, we rely on numerical methods. We proceed in several steps.

First, we analytically derive the pricing kernel of the model, as well as price-dividend and

wealth-consumption ratios. Second, we express returns in the model as functions of these

two ratios, using a simple asset pricing identity. Third, we approximate these ratios (and

as a consequence the returns in the model) as a series of Chebyshev polynomials and ap-

ply projection methods to the Euler equation to numerically derive the price-dividend and

wealth-consumption ratio as a function of model parameters alone. This, in turn, allows us

to estimate model parameters using the techniques described in main text.

A.2.1 Pricing Kernel

We first analytically derive the pricing kernel of the economy. Define the return on total

consumption as

RW,t+1 =
W̃t+1

W̃t − Ct −QtDt

where total consumption Gt is given by

Gt = Ct + QtDt
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and Qt denotes the user cost of the service flow for the durable good. Following Yogo (2006),

Qt is given as a marginal rate of substitution between non-durable and durable consumption

good

Qt =
∂Ct

∂Dt

/
∂Ct

∂Ct
.

Given the functional form for Ct, we get

Qt =
α

1− α

(
Dt

Ct

)− 1
ρ

.

Define

Ft =

(
1− α + α

(
Dt

Ct

)1− 1
ρ

) 1
1− 1

ρ

to write the intertemporal marginal rate of substitution as

Mt+1 = βθ

(
Ct+1

Ct

)− θ
ψ
(

Ft+1

Ft

)θ
(

1
ρ−

1
ψ

)
Rθ−1

W,t+1. (19)

Furthermore,

RW,t+1 =
W̃t+1

W̃t − Gt
=

W̃t+1
Gt+1

W̃t
Gt
− 1

Gt+1

Gt

where we can rewrite Gt as

Gt = Ct + QtDt = Ct +
α

1− α

(
Dt

Ct

)− 1
ρ

Dt = Ct

(
1 +

α

1− α

(
Dt

Ct

)1− 1
ρ

)
and Ft as

Ft = (1− α)
1

1− 1
ρ

(
1 +

α

1− α

(
Dt

Ct

)1− 1
ρ

) 1
1− 1

ρ

.

Substituting the terms in (19) using the above relations, we obtain

Mt+1 = βθ

(
Ct+1

Ct

)θ
(

1− 1
ψ

)
−1(At+1

At

)θ
(

1− 1
ψ

)
−1
 W̃t+1

Gt+1

W̃t
Gt
− 1

θ−1

where

At = 1 +
α

1− α

(
Dt

Ct

)1− 1
ρ

.

The evolution of Dt+1/Ct+1 (which enters At+1) can be written as

Dt+1

Ct+1
=

Dt+1/Dt · Dt

Ct+1/Ct · Ct
=

Dt+1

Dt

(
Ct+1

Ct

)−1 Dt

Ct
.
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Setting zt = log(Dt/Ct), we find

zt+1 = ∆Dt+1 − ∆Ct+1 + zt = µd + yt + σdεd
t+1 − µc − xt − σxεx

t+1 + zt.

A.2.2 Application of Projection Method

We now show how the projection method can be applied to the wealth-Euler equation to

numerically derive the wealth-consumption ratio as a function of model parameters alone.

We start with the Euler equation for wealth

Et [Mt+1RW,t+1] = 1

where

Mt+1 = βθ

(
Ct+1

Ct

)−θ/ψ (v(Dt+1/Ct+1)

v(Dt/Ct)

)θ(1/ρ−1/ψ)

Rθ−1
W,t+1

and

v
(

Dt

Ct

)
= Ft =

[
1− α + α

(
Dt

Ct

)1−1/ρ
]1/(1−1/ρ)

.

Here, RW,t+1 is the return on wealth. In logarithms, the Euler equation for wealth becomes

Et

[
exp

(
θ log β− θ

ψ
∆ct+1 + θ

(
1
ρ
− 1

ψ

)
∆ ft+1 + (θ − 1)rw,t+1

)]
= 1,

where lowercase variables denote the logs of the corresponding uppercase variables, and

∆ct+1 = ct+1 − ct and ∆ ft+1 = ft+1 − ft. Log-return on wealth rw,t+1 can be further written

as

rw,t+1 = log

(
W̃t+1

W̃t − Ct −QtDt

)
= log

 W̃t+1
Ct+1

W̃t
Ct
− 1−Qt

Dt
Ct

· Ct+1

Ct


= wct+1 − log

(
wct − 1−Qt

Dt

Ct

)
+ ∆ct+1

where wct = log(W̃t/Ct) is the log wealth-consumption ratio.

We approximate today’s and tomorrow’s wealth-consumption ratio as a series of Cheby-

shev polynomials and substitute it back into the log-version of the wealth-Euler equation.

We then apply projection methods to numerically solve for the wealth-consumption ratio.
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