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1 Introduction

Capital growth theory deals with the following multiperiod investment prob-
lem: starting from some initial wealth available at time 0, find a self-financing
trading strategy that maximizes the long-run growth rate of investor’s wealth.
This problem has been investigated by various authors: Kelly [30], Latané
[31], Breiman [6], Thorp [50], Ziemba and Vickson [51, 52], Algoet and Cover
[2], MacLean et al. [33, 34, 35], Hakansson and Ziemba [22], and others5.
However, for the most part, results available in this literature pertain to
frictionless markets. Some specialized models of markets with frictions have
been studied, e.g., by Hausch and Ziemba [23], Taksar et al. [49], Iyengar
and Cover [25], Akian et al. [1], and Iyengar [26].

To extend capital growth theory to models of asset markets with frictions,
we use the mathematical framework of von Neumann-Gale dynamical sys-
tems. Such systems are described in terms of set-valued operators specifying
for every state ”today” a set of possible states ”tomorrow”. Characteris-
tic features of the operators associated with von Neumann-Gale systems are
certain properties of convexity and homogeneity. The original theory of von
Neumann-Gale dynamics (von Neumann [53], Gale [20] and Rockafellar [46])
aimed basically at the mathematical modeling of economic growth. This
theory, in its classical form, was purely deterministic: it did not reflect the
influence of random factors on economic growth. The importance of tak-
ing these factors into account was realized early on. In the 1970s, Dynkin
[11, 12, 13], Radner [42, 43] and their research groups made first steps in de-
veloping stochastic analogues of the von Neumann-Gale growth model. The
initial attack on the problem left many questions unanswered since stud-
ies in this direction faced serious mathematical and conceptual difficulties.
Substantial progress was made only in the 2000s [16, 17, 4], when new mathe-
matical techniques were developed that made it possible to resolve a number
of fundamental problems in the field.

A new stage in the theory of von Neumann-Gale systems began when
Dempster et al. [9] observed that stochastic systems of the von Neumann-
Gale type can serve as a natural and convenient framework for the modeling
of financial markets with frictions. The first results in this direction obtained
in [9] were concerned with no-arbitrage pricing and hedging in markets with
proportional transaction costs. Extensions of these results to more general

5The state of the art in the field is reviewed in MacLean et al. [36]
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models, taking into account market interactions, were given by Evstigneev
and Zhitlukhin [19].

The first applications of von Neumann-Gale dynamics to capital growth
theory under proportional transaction costs were provided by Bahsoun et al.
[5]. The main focus of that work was on the analysis of rapid paths in von
Neumann-Gale systems, generating in financial market models benchmark
strategies (numeraire portfolios), see Platen and Heath [41] and Long [32],
and their applications in the theory of growth-optimal investments. In the
model examined in [5], as in many other discrete-time capital growth models,
short sales were ruled out, so that admissible portfolios were represented by
non-negative vectors. Mathematically, this means that the state space of
the von Neumann-Gale dynamical system under consideration is the non-
negative cone Rn

+ in the linear space Rn.
In real financial markets, short sales are typically allowed but restricted by

various trading rules (which might be different for different stock exchanges).
The most common rule of this kind is expressed in terms of margin require-
ments, stating that only those portfolios are admissible for which at any
moment of time the value of all long positions exceeds the value of all short
positions with some excess (margin). In this work, we develop a capital
growth model described in terms of a class of von Neumann-Gale dynamical
systems in which short selling is allowed under some constraints including,
in particular, margin requirements. We assume that the sets of admissible
portfolio vectors, as well as self-financing constraints, are described by ran-
dom cones depending on stochastic factors influencing the market. A crucial
mathematical assumption under which our theoretical tools are applicable is
the condition that the cones under consideration are polyhedral, i.e., gener-
ated by a finite number of (possibly random) extreme vectors. Under this
condition, we show that the main results of [17, 4, 5] can be extended to our
more general model, and moreover, deduced from those in the papers cited.
From the mathematical point of view, this assumption might seem restric-
tive, but it is acceptable in the applied perspective, since most, if not all,
common models of financial markets with frictions satisfy this requirement.

The paper is organized as follows. Section 2 describes the von Neumann-
Gale dynamical systems we deal with. In Section 3 the main assumptions and
results are formulated. Sections 4 and 5 provide proofs of the main results.
In Section 6, we apply the general results obtained to a specialized model
that covers most of the known examples and applications. The Appendix
contains some general mathematical facts used in this work.
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2 Von Neumann-Gale dynamical systems

Von Neumann-Gale dynamical systems. A von Neumann-Gale multi-
valued dynamical system is defined by a sequence of cones6 Xt, t = 0, 1, 2, ...,
in linear spaces and cones

Gt ⊆ Xt−1 ×Xt, t = 1, 2, .... (1)

Elements of Xt are states of the system at time t, Xt are state spaces, and
Gt are transition cones. Sequences x0, x1, ... such that

(xt−1, xt) ∈ Gt, t = 1, 2, ...,

are called paths (trajectories) of the dynamical system.
A stochastic von Neumann-Gale dynamical system is defined as follows.

Let (Ω,F , P ) be a complete probability space and F0 ⊆ F1 ⊆ ... ⊆ F a
sequence of σ-algebras containing all sets in F of measure zero. For each
t = 0, 1, 2, ..., let Xt(ω) be a random closed cone in a topological linear
space L (Xt(ω) is the random state space at time t). Further, let Gt(ω) ⊆
Xt−1(ω)×Xt(ω), t = 1, 2, ..., be random closed cones. It is assumed that the
cones Xt(ω) and Gt(ω) depend Ft-measurably7 on ω, which means that they
are determined by events occurring prior to time t. Let Lt (t = 0, 1, ...) be
a linear space of Ft-measurable vector functions x(ω), ω ∈ Ω, with values in
L. We say that a vector function x(ω) is a random state of the system and
write x ∈ Xt if x ∈ Lt and x(ω) ∈ Xt(ω) almost surely (a.s.). A sequence of
random states x0 ∈ X0, x1 ∈ X1, ... is called a path of the dynamical system
under consideration if

(xt−1(ω), xt(ω)) ∈ Gt(ω) (a.s.).

An stationary (autonomous) version of the stochastic von Neumann-Gale
dynamical system is defined as follows. Let T : Ω→ Ω be an automorphism
of the probability space (Ω,F , P ), i.e., a one-to-one mapping of Ω onto itself
such that T and T−1 are F -measurable and preserve the measure P :

P (T−1Γ) = P (TΓ) = P (Γ), Γ ∈ F .
6A set in a linear space is called a (convex) cone if it contains together with any vectors

a and b the vector λa+µb, where λ and µ are any non-negative numbers. We will assume
that all the cones under consideration contain non-zero vectors.

7A set X(ω) ⊆ L is said to depend Ft-measurably on ω if the graph {(ω, a) : a ∈ A(ω)}
of the multivalued mapping ω 7→ A(ω) belongs to the σ-algebra Ft ⊗ B(L), where B(·) is
the Borel σ-algebra. A random set is a set X(ω) ⊆ L depending F-measurably on ω.
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We shall say that the stochastic von Neumann-Gale dynamical system is
autonomous, or stationary, if

T−1(Ft) = Ft+1, Xt(Tω) = Xt+1(ω), and Gt(Tω) = Gt+1(ω). (2)

The mapping T is interpreted as a time shift : if Γ ∈ Ft is an event occurring
by time t, then T−1(Γ) ∈ Ft+1 is an analogous event occurring one unit of
time later (by time t + 1). Autonomous systems serve as a framework for
stationary models in various applications (e.g. [53], [20], [16] and [17]).

In this work we consider stochastic von Neumann-Gale dynamical sys-
tems for which L is an N -dimensional linear space RN and Lt is the space
L∞t (RN) = L∞(Ω,Ft, P,RN) consisting of essentially bounded Ft-measurable
functions with values in RN . Those systems for which Xt(ω) = RN

+ will be
called canonical. They are relatively well examined, and our central goal will
be to extend the corresponding results to the general setting in which Xt(ω)
are cones that do not necessarily coincide with RN

+ and, moreover, depend
on t and ω.

In financial applications, random states xt ∈ Xt of a von Neumann-Gale
system represent (contingent) portfolios of assets that can be chosen by an
investor at date t. These portfolios are specified by random Ft-measurable
vectors of dimension N , where N is the number of assets traded at each
date. Portfolio positions can be measured either in terms of ”physical units”
of assets, or in terms of their values. The transition cones Gt(ω) define self-
financing constraints : a portfolio x can be transferred to a portfolio y at date
t (under transaction costs) if and only if (x, y) ∈ Gt(ω). The cones Xt(ω)
can specify various constraints on admissible portfolios, such as short sell-
ing constraints for some or all assets, or margin requirements (long portfolio
positions must compensate with a certain excess its short positions). Paths
x0, x1, x2, ... of the dynamical system at hand are feasible (self-financing)
trading strategies, describing possible scenarios of the investor’s actions at
the financial market influenced by random factors. The fact that Gt(ω) and
Xt(ω) are cones means that the model takes into account in the most general
way proportional transaction costs. The generality of this framework makes it
possible to incorporate not only standard single-currency stock market mod-
els but also multicurrency models (see Kabanov [28], Kabanov and Safarian
[29] and references therein). In this framework, interest rates for borrowing
and lending might differ from each other and might be different for different
currencies—see Section 6.
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Let X∗t (ω) denote the dual cone of Xt(ω):

X∗t (ω) = {p ∈ RN : pa ≥ 0, a ∈ Xt(ω)},

where pa is the scalar product of the vectors p and a in RN . For shortness, we
will use the notation L1

t (RN) for the space L1(Ω,Ft, P,RN) of integrable Ft-
measurable vector functions with values in RN . A dual path (dual trajectory)
is a sequence of vector functions p1(ω), p2(ω), ... such that pt ∈ L1

t (RN) and
for almost all ω we have:

pt(ω) ∈ X∗t−1(ω), t = 1, 2, ..., (3)

and
p̄t+1(ω)b ≤ pt(ω)a for all (a, b) ∈ Gt(ω), t = 1, 2, ..., (4)

where p̄t+1(ω) := Etpt+1(ω) and Et(·) = E(·|Ft) is the conditional expecta-
tion given Ft.

Note that for a canonical system, we have X∗t−1(ω) = RN
+ , so that elements

pt of a dual path are functions belonging to the non-negative cones L1,+
t (RN)

of the spaces L1
t (RN).

It follows from (4) that for any path x0, x1, ..., the random sequence pt+1xt,
t = 0, 1, ..., is a supermartingale with respect to the filtration F1 ⊆ F2 ⊆
... and the random sequence p̄t+1xt, t = 0, 1, ..., is a supermartingale with
respect to the filtration F0 ⊆ F1 ⊆ .... This is immediate from the relations:

Etpt+1xt = p̄t+1xt ≤ ptxt−1 (a.s.), t = 1, 2, ...,

and
Et−1p̄t+1xt ≤ Et−1ptxt−1 = p̄txt−1 (a.s.), t = 1, 2, ...,

following from (4).
A standard argument using measurable selection (see Theorem A.1 in the

Appendix) shows that (4) holds if and only if

Ept+1(ω)yt(ω) ≤ Ept(ω)xt(ω) (5)

for all pairs (xt(ω), yt(ω)) of functions in L∞t (RN)× L∞t (RN) such that

(xt(ω), yt(ω)) ∈ Gt(ω) (a.s.).

In the financial context, dual paths are termed consistent price systems.
They generalize the concept of an equivalent martingale measure involved
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in classical no-arbitrage criteria—see Jouini and Kallal [27], Cvitanić and
Karatzas [8], Schachermayer [47], Dempster et al. [9], Guasoni et al. [21],
Kabanov and Safarian [29] and others. The coordinates pit of the vectors
pt are interpreted as market consistent prices of assets if portfolio positions
are measured in terms of units of assets. If they are measured in monetary
terms, then pit might be interpreted as market consistent discount factors.

A central notion in this theory is the notion of a rapid path. Let us say
that a dual path p1, p2, ... supports a path x0, x1, ... if

pt+1xt = 1, t = 0, 1, ... (a.s.). (6)

A trajectory is called rapid if there exists a dual trajectory supporting it.
The term ”rapid” is motivated by the fact that

p̄t+1yt
ptyt−1

≤ p̄t+1xt
ptxt−1

= 1, t = 1, 2, ... (a.s.) (7)

for each path y0, y1, ... with ptyt−1 > 0 (see (4) and (6)). This means that
the path x0, x1, ... maximizes the conditional expectation given Ft of the
growth rate pt+1yt/ptyt−1 at each time t, the maximum being equal to 1.
Growth rates are measured by using the random ”price systems” pt. Another
justification of the above term is related to the fact that rapid paths are
asymptotically growth-optimal almost surely: they exhibit the fastest growth
over an infinite time horizon with probability one (see Theorem 2 below).

In the context of the present model, rapid paths may be regarded as ana-
logues of benchmark strategies (numeraire portfolios), see Platen and Heath
[41] and Long [32]. As we have noticed, the price system (or the system of
discount factors) (pt) involved in the definition of a rapid path is such that the
value pt+1xt of the portfolio xt is always equal to one, while for any other fea-
sible sequence (yt) of contingent portfolios (self-financing trading strategy),
the values pt+1yt form a supermartingale. In models with unlimited short
selling (cf. [41]), one can speak of martingales rather than supermartingales.

3 Assumptions and the main results

For a vector a, let us denote by B(a, r) the ball {b : |b − a| ≤ r}, where
| · | is the sum of the absolute values of the coordinates of a vector. Let us
introduce the following conditions.
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(F) There exist Ft-measurable random vectors ft,k(ω), k = 1, ..., K, such
that for each ω we have ft,k(ω) 6= 0,

Xt(ω) =

{
a : a =

K∑
k=1

ft,k(ω)ck for some ck ≥ 0, k = 1, ..., K

}
(8)

and

θt|c| ≤ |
K∑
k=1

ft,k(ω)ck | ≤ Θt|c|, c = (c1, ..., cK) ∈ RK
+ , (9)

where 0 < θt < Θt (t = 0, 1, ...) are constants and K is a natural number.
(G1) For all t ≥ 1, ω ∈ Ω and a ∈ Xt−1(ω), the set {b : (a, b) ∈ Gt (ω)}

is non-empty.
(G2) For each t ≥ 1 there is a constant Mt such that the set Gt (ω) is

contained in {(a, b) : |b| ≤Mt|a|} for all ω ∈ Ω.
(G3) For every t ≥ 1 there exist a strictly positive constant αt > 0

and a bounded vector function ẑt(ω) = (x̂t−1(ω), ŷt(ω)) such that x̂t−1(ω) is
Ft−1-measurable, ŷt(ω) is Ft-measurable and B(ẑt(ω), αt) ⊆ Gt(ω) for all ω.

The representation (8) of the cone Xt(ω) means that this cone is polyhe-
dral : it is spanned on a finite set of Ft-measurable random vectors ft,k(ω) 6= 0,
k = 1, ..., K (generators of Xt(ω)). By virtue of (8), we have

Xt(ω) = Ft(ω)RK
+ , (10)

where Ft(ω) : RK
+ → RN is the linear operator transforming c = (c1, ..., cK) ∈

RK
+ into a =

∑K
k=1 ft,k(ω)ck ∈ RN . The inequalities in (9) can be written

θt|c| ≤ |Ft(ω)c| ≤ Θt|c|, c = (c1, ..., cK) ∈ RK
+ . (11)

For a real number r define r+ := max{r, 0} and r− := max{−r, 0}, so that
r = r+− r−. If c = (c1, ..., cK), then c+ and c− stand for the vectors with the
coordinates (ck)+ and (ck)−, respectively. Note that the second inequality in
(11) implies the analogous inequality holding for all c ∈ RK , and not only
for c ∈ RK

+ . Indeed, we have Ftc = Ftc+ − Ftc−, and so

|Ftc| = |Ftc+ − Ftc−| ≤ |Ftc+|+ |Ftc−| ≤ Θt(|c+|+ |c−|) = Θt|c|.

We formulate an assumption on the cone Xt(ω) that guarantees the va-
lidity of condition (9) and has a natural financial interpretation.
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(M) There exists a constant µt > 1 such that

µt

N∑
i=1

ai− ≤
N∑
i=1

ai+ for all a = (a1, ..., aN) ∈ Xt(ω). (12)

Proposition 1. If the cone Xt(ω) is representable in the form (8)
with some generators ft,k(ω), and condition (M) holds, then Xt(ω) is rep-
resentable in the form (8) with generators ft,k(ω) satisfying (9), i.e., Xt(ω)
satisfies condition (F).

To explain the meaning of condition (M) suppose that positions of a
portfolio a ∈ Xt(ω) are measured in terms of their values (expressed in some
price system). Then the sums

∑N
i=1 a

i
+ and

∑N
i=1 a

i
− represent the total

value of the long and the short positions of a, respectively. Condition (12)
means that for admissible portfolios, the long positions must cover the short
ones with a certain margin µt. Margin requirements of the type (12) are
quite common in financial practice. They restrict short selling to exclude
bankruptcy under sudden price jumps. For a proof of Proposition 1 see
Section 6.

The results of this paper are concerned with general (non-stationary) and
stationary von Neumann-Gale dynamical systems. The main result pertain-
ing to the former ones is as follows.

Theorem 1. Let conditions (G1)-(G3) and (F) hold. Let x0 be a func-
tion in X0 such that B(x0(ω), ε) ⊆ X0(ω) (a.s.), where ε is a strictly positive
constant. Then the following assertions are valid.

(i) For each n ≥ 1, there exists a finite rapid path of length n with the
initial state x0(ω).

(ii) There exists an infinite rapid path with the initial state x0(ω).
An important property of infinite rapid paths, which determines their role

in capital growth theory, is their a.s. asymptotic optimality. A path x0, x1, ...
is called asymptotically growth-optimal if for any other path y0, y1, ... there
exists a supermartingale ξt such that

|yt|
|xt|
≤ ξt, t = 0, 1, ... (a.s.).

The property of asymptotic growth-optimality, as defined above, has the
following important implications. If |yt|/|xt| ≤ ξt, t = 0, 1, ... (a.s.), where ξt
is a supermartingale, the following assertions hold.

9



(a) For any constant a > 0

P

(
sup
t≥0

|yt|
|xt|
≥ a

)
≤ Eξ0

a
,

and, in particular, supt(|yt|/|xt|) <∞ a.s., i.e. no strategy can grow asymp-
totically faster than x0, x1, ... (a.s.).

(b) The strategy x0, x1, ... maximizes a.s. the exponential growth rate:

lim sup
t→∞

1

t
ln
|yt|
|xt|
≤ 0 a.s.

(c) For any stopping time τ

E
|yτ |
|xτ |
≤ Eξ0 and E ln

|yτ |
|xτ |
≤ lnEξ0.

Assertion (a) follows from Doob’s inequality for non-negative supermartin-
gales: P (supt ξt ≥ a) ≤ Eξ0/a. Assertion (b) is immediate from that
supt(|yt|/|xt|) < ∞ a.s. The first part of assertion (c) holds because Eξτ ≤
lim inft→∞Eξτ∧t ≤ Eξ0 by Fatou’s lemma and Doob’s stopping theorem ap-
plied to bounded stopping times τ ∧ t. The second part of (c) follows from
there by Jensen’s inequality.

Note that the above properties (a)–(c) remain valid (but maybe with
different constants in the right-hand sides of the inequalities in (a) and (c))
if |xt| and |yt| are replaced by φt(ω, xt) and φt(ω, yt) respectively with any
function φt(ω, b), possibly random and depending on t, which satisfies the
following condition.

(L) There exist non-random constants 0 < l ≤ L such that l|b| ≤
φt(ω, b) ≤ L|b| for all t, ω and b ∈ Xt(ω).

As an example of such a function, we can consider the liquidation value
of a portfolio b = (b1, ..., bN) ∈ Xt(ω):

φt(ω, b) =
N∑
i=1

(1− λ+t,i(ω))bi+ −
N∑
i=1

(1 + λ−t,i(ω))bi−, (13)

where 0 ≤ λ+t,i(ω) < 1 and λ−t,i(ω) ≥ 0 are transaction cost rates for selling
and buying assets assets (for details see Section 6). Conditions under which
the function (13) satisfies (L) are given in Proposition 2 below.
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Proposition 2. Let all the cones Xt(ω) be representable in the form (8)
and the margin requirement (M) is satisfied with µt = µ independent of t. If
there exist constants Λ,Λ such that 0 < Λ ≤ 1− λ+t,i(ω) and 1 + λ−t,i(ω) ≤ Λ

for all ω, t, i, and µΛ > Λ, then the liquidation value φt(ω, b) defined in (13)
satisfies condition (L).

For a proof of this proposition, see Section 6.
Let us introduce the following condition:
(G4) There exist a real number γ > 0 and a natural number m such

that for every t ≥ 0 and every random vector yt ∈ Xt, one can find random
vectors yt+1 ∈ Xt+1,...,yt+m ∈ Xt+m satisfying

(yt, yt+1) ∈ Gt+1 (ω) , ..., (yt+m−1, yt+m + y) ∈ Gt+m (ω) (a.s.) (14)

for each y ∈ L∞t+m(RN) with |y(ω)| ≤ γ|yt(ω)| (a.s.).
The next result shows that under fairly general assumptions, any rapid

path is asymptotically growth-optimal.
Theorem 2. If condition (G4) and condition (G2) with a constant Mt =

M independent of t hold, then any rapid path is a.s. asymptotically growth-
optimal.

Remark 1. Theorem 2 remains valid if condition (G4) is replaced by
the following one:

(G5) The cones Xt(ω) (t = 0, 1, ...) contain RN
+ . There exist a real

number γ > 0 and a natural number m such that for every t ≥ 0 and every
random vector yt ∈ Xt, there are random vectors yt+1 ∈ Xt+1,...,yt+m ∈ Xt+m,
satisfying

(yt, yt+1) ∈ Gt+1(ω), ..., (yt+m−1, yt+m)) ∈ Gt+m(ω) (a.s.)

and
yt+m(ω) ≥ γe|yt| (a.s.). (15)

For a proof of this assertion see Proposition 5 in Section 4.
Let us formulate the main result pertaining to stationary (autonomous)

systems. Let T : Ω→ Ω be an automorphism of the given probability space
(Ω,F , P ) such that conditions (2) hold. In the stationary framework, an im-
portant role is played by a class of paths called balanced. A path x0, x1, x2, ...
is termed balanced if there exist an F0-measurable vector function x(ω) which
is normalized by the condition |x(ω)| = 1 (a.s.) and an F1-measurable scalar
function λ(ω) > 0 with E| lnλ(ω)| < +∞ such that

x0(ω) = x(ω); xt(ω) = λ(ω)...λ(T t−1ω)x(T tω), t ≥ 1. (16)
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This definition expresses the idea of growth with stationary proportions and
at a stationary rate. Clearly a pair of functions x(ω) and λ(ω), where x ∈
X0 and λ(ω) is an F1-measurable scalar function with E| lnλ(ω)| < +∞,
generates a balanced path if and only if |x(ω)| = 1 (a.s.) and

(x(ω), λ(ω)x(Tω)) ∈ G1(ω) (a.s.). (17)

A balanced path maximizing the expectation of the logarithm of the growth
rate E lnλ(ω) is called a von Neumann path. Note that condition (17) implies
(by virtue of (G2)) that λ(ω) is essentially bounded.

A dual path p1, p2, ... is called balanced if there exist an F1-measurable
vector function p(ω) and an F1-measurable scalar function λ(ω) > 0 such
that

p1(ω) = p(ω), pt(ω) =
p(T t−1ω)

λ(ω)...λ(T t−2ω)
, t = 2, 3, .... (18)

By virtue of (18) and using the invariance properties Gt+1(ω) = Gt(Tω)
and p̄t+1 = T p̄t we can see that a function p(ω) ∈ L1

1(RN) and an F1-
measurable scalar function λ(ω) > 0 with E| lnλ(ω)| < +∞ generate a
balanced dual path if and only if for almost all ω we have:

p(ω) ∈ X∗0 (ω), t = 1, 2, ..., (19)

and
E1p(Tω)b

λ(ω)
≤ p(ω)a for all (a, b) ∈ G1(ω). (20)

A triplet of functions (x, p, λ) forms a von Neumann equilibrium if the se-
quence x0, x1, ... defined by (16) is a balanced path and the sequence p1, p2, ...
defined by (18) is a dual balanced path supporting it.

Note that a triplet (x, p, λ) is a von Neumann equilibrium if and only if
the following conditions hold:

• x(ω) is a function in X0 normalized by the condition |x(ω)| = 1 (a.s.);

• λ(ω) > 0 is an F1-measurable scalar function with E| lnλ(ω)| < +∞
satisfying (17) and maximizing E lnλ(ω) among all balanced paths;

• p(ω) ∈ L1
1(RN), and conditions (19), (20) and

p(ω)x(ω) = 1 (21)

are fulfilled for almost all ω.
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Let us assume that conditions (F) and (G1)-(G4) hold and suppose,
additionally, that

ft+1,k(ω) = ft,k(Tω), ẑt+1(ω) = ẑt(Tω),

and the constants Mt, αt, θt and Θt do not depend on t. Under these as-
sumptions the following assertion is valid.

Theorem 3. A von Neumann equilibrium exists.
This result has the following important consequence. Let (x, p, λ) be

a von Neumann equilibrium, whose existence is established in Theorem 3.
Consider the balanced path (xt)

∞
t=0 generated by the pair (x, λ). By the

definition of an equilibrium, it is rapid. Consequently (see Theorem 2), it is
asymptotically growth-optimal. Thus, by virtue of Theorem 3, there exists a
balanced path that is asymptotically growth-optimal in the class of all, not
necessarily balanced paths!

4 General (non-stationary) model

This section contains proofs of the results related to general (non-stationary)
models of financial markets. We first establish Theorem 1 by deducing it
from analogous results known for canonical von Neumann-Gale systems. At
the end of the section, we prove Theorem 2 on the asymptotic optimality of
rapid paths.

Let us assume that condition (F) holds. A stochastic von Neumann-Gale
dynamical system G defined by the state spaces Xt(ω) and the transition
cones Gt(ω) generates a canonical von Neumann-Gale system H with the
state spaces RK

+ and the transition cones

Ht(ω) :=
{

(c, d) ∈ RK
+ × RK

+ : (Ft−1(ω)c, Ft(ω)d) ∈ Gt(ω)
}
. (22)

We will call H the canonical von Neumann-Gale dynamical system induced
by G.

Proposition 3. If G satisfies one of the conditions (G1)-(G3), then H
satisfies the analogous condition.

The analogous conditions for H will be referred to as (H1)-(H3). We
formulate them below.
(H1) For all t ≥ 1, ω ∈ Ω and c ∈ RK

+ , the set {d : (c, d) ∈ Ht (ω)} is
non-empty.
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(H2) For each t ≥ 1 there is a constant M ′
t such that the set Ht (ω) is

contained in {(c, d) : |d| ≤M ′
t|c|} for all ω ∈ Ω.

(H3) For every t ≥ 1 there exist a strictly positive constant δt > 0 and a
bounded vector function ŵt(ω) = (ût−1(ω), v̂t(ω)) such that ût−1(ω) is Ft−1-
measurable, v̂t(ω) is Ft-measurable and B(ŵt(ω), δt) ⊆ Ht(ω) for all ω.

Proof. Suppose (G1) holds. Consider any c ∈ RK
+ . Then Ft−1(ω)c ∈

Xt−1(ω), and so there exists b ∈ Xt(ω) with (Ft−1(ω)c, b) ∈ Gt(ω). Since
Xt(ω) = Ft(ω)RK

+ , there is d ∈ RK
+ such that Ft(ω)d = b. Thus

(Ft−1(ω)c, Ft(ω)d) = (Ft−1(ω)c, b) ∈ Gt(ω),

and so (c, d) ∈ Ht(ω), which proves (H1).
Assume that condition (G2) is satisfied: |b| ≤Mt|a| for all (a, b) ∈ Gt(ω).

Let (c, d) ∈ RK
+ × RK

+ belong to Ht(ω), i.e. (Ft−1(ω)c, Ft(ω)d) ∈ Gt(ω). By
virtue of (11), we have |Ft−1(ω)c| ≤ Θt−1|c|,

θt|d| ≤ |Ft(ω)d| ≤Mt|Ft−1(ω)c| ≤MtΘt−1|c|,

and so |d| ≤M ′
t|c|, which yields (H2) with the constant M ′

t = θ−1t MtΘt−1.
Consider the vector function ẑt(ω) = (x̂t−1(ω), ŷt(ω)) involved in (G3).

By using (10) and a measurable selection theorem (see Theorem A.1 in the
Appendix), we can construct an Ft−1-measurable vector function ût−1(ω) and
an Ft-measurable vector function v̂t(ω) with values in RK

+ such that

Ft−1(ω)ût−1(ω) = x̂t−1(ω) and Ft(ω)v̂t(ω) = ŷt(ω).

By virtue of the first inequality in (11), the function ŵt(ω) = (ût−1(ω), v̂t(ω))
is bounded. If (c, d) is a vector in RK

+ ×RK
+ such that |(c, d)− ŵt(ω)| ≤ δt :=

αt/max{Θt−1,Θt}, then |(Ft−1(ω)c, Ft(ω)d) − ẑt(ω)| ≤ αt. Consequently,
(Ft−1(ω)c, Ft(ω)d) ∈ Gt(ω), and so (c, d) ∈ Ht(ω). Thus B(ŵt(ω), δt) ⊆
Ht(ω), which proves (H3). �

To apply the results of the previous work to the dynamical system H, we
will need the following simple fact.

Remark 1. Condition (H3) implies the following one.
(h3) For every t ≥ 1 there exist a strictly positive constant ζt > 0 and a

bounded vector function ŵt(ω) = (ût−1(ω), v̂t(ω)) such that ût−1(ω) is Ft−1-
measurable, v̂t(ω) is Ft-measurable, ŵt(ω) ∈ Ht(ω) for all ω, and v̂t(ω) ≥ ζte
(coordinate-wise) for all ω, where e = (1, ..., 1) ∈ RK

+ .
Observe that the function ŵt(ω) involved in (H3) has the properties

described in (h3) with ζt = δt/K. Indeed, we have |ζte| = δt. Thus
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(ût−1(ω), v̂t(ω) − ζte) ∈ Ht(ω), and so v̂t(ω) − ζte ∈ RK
+ , which means that

v̂t(ω) ≥ ζte. �
Let us examine relations between paths in H and G.
Proposition 4. (a) If (ut) is a path in the dynamical system H, then the

sequence of functions xt(ω) = Ft(ω)ut(ω) forms a path (xt) in the dynamical
system G.

(b) If (xt) is a path in G, then for each t there exists an Ft-measurable
function ut(ω) such that xt(ω) = Ft(ω)ut(ω). The sequence (ut) is a path in
H.

Proof. (a) The function xt(ω) is Ft-measurable, and xt(ω) ∈ Xt(ω) by
virtue of (10). Furthermore, xt(ω) is essentially bounded because |Ft(ω)ut(ω)|
≤ Θt|ut(ω)| (see (11)). Since (ut−1(ω), ut(ω)) ∈ Ht(ω) (a.s.), we have

(Ft−1(ω)ut−1(ω), Ft(ω)ut(ω)) ∈ Gt(ω) (a.s.)

by the definition of Ht(ω). Thus (xt) is a path in G.
(b) Let (xt) be a path in G. Since xt(ω) ∈ Xt(ω) = Ft(ω)RK

+ (a.s.), by the
measurable selection theorem there exists an Ft-measurable function ut(ω)
with values in RK

+ such that xt(ω) = Ft(ω)ut(ω) (a.s.). In view of (11), we
have |ut(ω)| ≤ |xt(ω)|θ−1t (a.s.), so that ut is essentially bounded. Finally,
we obtain

(Ft−1(ω)ut−1(ω), Ft(ω)ut(ω)) = (xt−1(ω), xt(ω)) ∈ Gt(ω) (a.s.)

because (xt) is a path in G. This means that (ut−1(ω), ut(ω)) ∈ Ht(ω) (a.s.),
which proves that (ut) is a path in H. �

The path (xt) in the dynamical system G defined by xt(ω) = Ft(ω)ut(ω)
will be called the image of the path (ut) in H. A key role in the proof of
Theorem 1 is played by the following result.

Theorem 4. Let (ũt) be a path in the dynamical system H and (x̃t) its
image. If (ũt) is rapid, then (x̃t) is rapid in G.

Proof. Suppose ũ0, ũ1, ... is a rapid path in the dynamical system H, i.e.,
there exists a dual path q1, q2, ... (qt ∈ L1

t (RK
+ )) supporting it:

qt+1(ω)ũt(ω) = 1 (a.s.), t ≥ 0,

and for almost all ω,

q̄t+1(ω)d− qt(ω)c ≤ 0, (c, d) ∈ Ht(ω), t ≥ 1, (23)
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where q̄t+1 := Etqt+1. Define x̃t := Ftũt. Let us show that (x̃t) is a rapid
path in the dynamical system G.

Fix some t ≥ 1. By the definition of Ht(ω), a pair of vectors (c, d) ∈
RK

+ × RK
+ belongs to Ht(ω) if and only if (Ft−1(ω)c, Ft(ω)d) ∈ Gt(ω). Thus

with probability 1 (for all ω in a set Ω1 of full measure), we have

q̄t+1(ω)d− qt(ω)c ≤ 0,

for any (c, d) ∈ RK
+ × RK

+ satisfying

(Ft−1(ω)c, Ft(ω)d) ∈ Gt(ω).

We will fix ω ∈ Ω1 and omit it in the notation, if this does not lead
to ambiguity. Since ẑt = (x̂t−1, ŷt) = (Ft−1ût−1, Ftv̂t) is contained in Gt(ω)
together with a ball of radius αt, we can apply the Kuhn-Tucker theorem (see
Theorem A.2 in the Appendix) to the convex set X consisting of non-negative
vectors (c, d) in RK

+ × RK
+ , the function Φ(c, d) = q̄t+1d − qtc, the cone Z =

Gt(ω) and the mapping R transforming (c, d) into (Ft−1(ω)c, Ft(ω)d) ∈ RN×
RN . By using a measurable selection argument, we construct Ft-measurable
functions at(ω) and bt(ω) taking values in RN such that for all ω ∈ Ω1,

btb− ata ≤ 0, (a, b) ∈ Gt(ω) (24)

q̄t+1d− qtc− [btFtd− atFt−1c] ≤ 0, (c, d) ∈ RK
+ × RK

+ , (25)

and
|bt|+ |at| ≤ 2Nα−1t (qtût−1 − q̄t+1v̂t). (26)

Let us show that the sequence of vector functions

pt(ω) := at(ω), t ≥ 1,

forms a dual path in the dynamical system G supporting the path (x̃t). The
fact that E|at(ω)| < ∞ follows from (26). By setting first c = 0 and then
d = 0 in (25), we get

q̄t+1d ≤ btFtd, d ∈ RK
+ , t ≥ 1, (27)

qtc ≥ atFt−1c, c ∈ RK
+ , t ≥ 1. (28)

For all pairs (x, y) of functions in L∞t (RN) × L∞t (RN) with (x, y) ∈ Gt(ω)
(a.s.), there exist Ft-measurable vector functions u(ω) and v(ω) taking values
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in RK
+ , such that y = Ftv, x = Ft−1u and (u, v) ∈ Ht(ω) (a.s.). The functions

u and v are essentially bounded by virtue of the first inequality in (11).
Therefore

Eptx = Eatx ≥ Ebty = EbtFtv

≥ Eq̄t+1v = Eqt+1v ≥ Eat+1Ftv = Ept+1y , (29)

which yields (5) for t ≥ 1. In this chain of relations, the first inequality holds
because bty ≤ atx (a.s.) as long as (x, y) ∈ Gt(ω) (a.s.), which follows from
(24). The second inequality is a consequence of (27) and the third follows
from (28) with t+ 1 in place of t.

For t ≥ 0 we have

pt+1x̃t = at+1x̃t = at+1Ftũt ≤ qt+1ũt = 1 (a.s.), (30)

where the inequality follows from (28) with t replaced by t+1. Furthermore,
we get

Ept+1x̃t = Eat+1x̃t ≥ Ebt+1x̃t+1 = Ebt+1Ft+1ũt+1

≥ Eq̄t+2ũt+1 = Eqt+2ũt+1 = 1. (31)

In this chain of relations, the first inequality holds because (x̃t, x̃t+1) ∈
Gt+1(ω) (a.s.) and the second follows from (27) with t + 1 in place of t.
By combining (30) and (31), we conclude that pt+1x̃t = 1 (a.s.).

Let us show that for all t ≥ 1 and almost all ω ∈ Ω,

pt(ω)a ≥ 0 for a ∈ Xt−1(ω),

i.e. pt(ω) ∈ X∗t−1(ω) (a.s.). Denote by Ωt the set of those ω for which
btFt ≥ 0. By virtue of (27), we have P (Ωt) = 1. Fix any ω ∈ Ωt, a ∈ Xt−1(ω)
and consider some c ∈ RK

+ for which Ft−1(ω)c = a. In view of (H1), there
exists d ∈ RK

+ such that (c, d) ∈ Ht(ω). Then btFtd ≤ atFt−1c by virtue of
(24). From this we get

pta = atFt−1c ≥ btFtd ≥ 0,

which completes the proof. �
The following results in the case of a canonical von Neumann-Gale dy-

namical system are obtained in [4], Theorem 1.
Theorem 5. Let conditions (H1)-(H3) hold. Let u0(ω) be a vector

function in L∞0 (RK) such that u0(ω) ≥ δe for some constants δ > 0. Then
the following assertions are valid.
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(i) For each n ≥ 1, there exists a finite rapid path of length n with the
initial state u0(ω).

(ii) There exists an infinite rapid path with the initial state u0(ω).
Proof of Theorem 1. Let x0 be a function in X0 such that B(x0(ω), ε) ⊆

X0(ω) (a.s.), where ε is a strictly positive constant. By virtue of (10) and
the measurable selection theorem, there exists an F0-measurable function
u0(ω) with values in RK

+ such that x0(ω) = F0(ω)u0(ω) (a.s.). By virtue
of the first inequality in (11), the function u0(ω) is bounded. Let us prove
u0(ω) ≥ δe, where δ = ε/K and e = (1, ..., 1) ∈ RK

+ . To this end, we define
y(ω) = F0(ω)δe and observe that

|y(ω)| = δ |F0(ω)e| = δ|
K∑
k=1

f0,k(ω)| ≤ ε,

where the inequality follows form the fact we can assume that f0,k(ω), k =
1, 2, ..., K, ω ∈ Ω are normalized. Then x0(ω)− y(ω) ∈ X0(ω) (a.s.), and so
there exists an F0-measurable function h(ω) with values in RK

+ such that

F0(ω)u0(ω)− F0(ω)δe = F0(ω)h(ω).

Then u0(ω) = δe + h(ω), which means u0(ω) ≥ δe. Here, we use the fact
that F0(ω) is the one-to-one operator, which follows from (11).

By virtue of Proposition 3, conditions (H1)-(H3) hold. Then by assertion
(i) of Theorem 5, for each n ≥ 1, there exists a finite rapid path (ut)

n
t=0 of

length n with the initial state u0(ω). Let xt = Ftut. By virtue of Theorem
4, (xt)

n
t=0 is the rapid path of length n in the dynamical system G with the

initial state x0(ω). Further, by assertion (ii) of Theorem 5, there exists an
infinite rapid path (ut) with the initial state u0(ω). If we put xt = Ftut and
use Theorem 4, we conclude that (xt) is the infinite rapid path in G. The
proof is complete. �

Proof of Theorem 2. Let x0, x1, ... be a rapid path supported by a dual
path p1, p2, .... For all y ∈ L∞t+m(RN) with |y(ω)| ≤ γ|yt(ω)|, by using (4) and
(14), we have

pt+myt+m−1 ≥ p̄t+m+1(yt+m + y) = p̄t+m+1yt+m + p̄t+m+1y ≥ p̄t+m+1y (32)

because p̄t+m+1yt+m ≥ 0 (a.s.). The last inequality is valid since yt+m (ω) ∈
Xt+m (ω) and pt+m+1 (ω) ∈ X∗t+m (ω) (a.s.), which yields pt+m+1yt+m ≥ 0
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(a.s.) and so p̄t+m+1yt+m ≥ 0 (a.s.). Put

y =
p̄t+m+1

|p̄t+m+1|
γ|yt|. (33)

Then |y(ω)| = γ|yt(ω)| and y ∈ Xt+m. Consequently, (32) can be applied to
y defined by (33). Observe that

p̄t+m+1y =
||p̄t+m+1||2

|p̄t+m+1|
γ|yt| ≥ |p̄t+m+1|N−1γ|yt|, (34)

where || · || is the Euclidean norm in RN (note that || · || ≥ | · |/
√
N). Further,

the equality pt+m+1xt+m = 1 implies p̄t+m+1xt+m = 1, and so

|p̄t+m+1||xt+m| ≥ 1, (35)

and it follows from (G2) with a constant Mt = M independent of t that

|xt+m| ≤Mm|xt|. (36)

By combining (35) and (36), we get

|p̄t+m+1| ≥M−m|xt|−1, (37)

and by using (34), (32) and (37), we obtain

pt+myt+m−1 ≥M−mN−1γ|yt||xt|−1, (38)

which yields

pt+1yt ≥ Et+1pt+m+1yt+m−1 ≥M−mN−1γ|yt||xt|−1. (39)

Since pt+1yt is a non-negative supermartingale, the proof is complete. �
We provide a version of Theorem 2 in which (G4) is replaced by another

assumption.
Proposition 5. Theorem 2 remains valid if condition (G4) is replaced

by (G5).
Proof. Let x0, x1, ... be a rapid path supported by a dual path p1, p2, ....

Since Xt(ω) ⊇ RN
+ , any pt+1(ω) ∈ X∗t (ω) is non-negative (a.s.). By using

this, (4), (15) and the fact that |pt+m+1| ≥ M−m|xt|−1, which follows from
the equality pt+m+1xt+m = 1 and (G2) with a constant Mt = M independent
of t, we get

pt+1yt ≥ Et+1pt+m+1yt+m ≥ γEt+1|pt+m+1||yt|
≥ γEt+1(M

−m|xt|−1)|yt| = γM−m|xt|−1|yt|.
Thus |xt|−1|yt| is dominated by a non-negative supermartingale pt+1yt, which
completes the proof. �
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5 Stationary Model

In the case of a stationary system, let us assume that conditions (F) and
(G1)-(G4) hold and suppose, additionally, that

ft+1,k(ω) = ft,k(Tω), (40)

ẑt+1(ω) = ẑt(Tω), and the constants Mt, αt, θt and Θt do not depend on t.
Clearly (40) implies that Xt+1(ω) = xt(Tω). Let us formulate analogues of
the conditions (G1)-(G4) in the case of a stationary model as follows.

(G1
′
) For all ω ∈ Ω and a ∈ X0(ω), the set {b : (a, b) ∈ G1 (ω)} is

non-empty.
(G2

′
) There is a constant M such that the set G1 (ω) is contained in

{(a, b) : |b| ≤M |a|} for all ω ∈ Ω.
(G3

′
) There exist a strictly positive constant α > 0 and a bounded vector

function ẑ1(ω) = (x̂0(ω), ŷ1(ω)) such that x̂0(ω) is F0-measurable, ŷ1(ω) is
F1-measurable and B(ẑ1(ω), α) ⊆ G1(ω) for all ω.

(G4′) There exists a natural number m such that for every random state
y0 ∈ X0, one can find a real number γ > 0 and random states y1 ∈ X1,...,ym ∈
Xm, satisfying with probability one

(y0 (ω) , y1 (ω)) ∈ G1 (ω) , ..., (ym−1 (ω) , ym (ω) + y (ω)) ∈ Gm (ω) (41)

for all y ∈ L∞m (RN) with |y(ω)| ≤ γ|y0(ω)|.
Observe that the above conditions are versions of conditions (G1)-(G4)

formulated for one moment of time t = 0. Clearly in the stationary case,
these requirements hold for some t if and only if they hold for each t.

Proposition 6. If G satisfies one of the conditions (G1′)-(G4 ′), then
H satisfies the analogous condition.

The analogous conditions for H will be referred to as (H1′)-(H4′). We
formulate them below.

(H1′) For all ω ∈ Ω and c ∈ RK
+ , the set {d : (c, d) ∈ H1 (ω)} is non-

empty.
(H2′) There is a constant M ′ such that the set H1 (ω) is contained in

{(c, d) : |d| ≤M ′|c|} for all ω ∈ Ω.
(H3

′
) There exist a strictly positive constant δ > 0 and a bounded vector

function ŵ1(ω) = (û0(ω), v̂1(ω)) such that û0(ω) is F0-measurable, v̂1(ω) is
F1-measurable and B(ŵ1(ω), δ) ⊆ H1(ω) for all ω.
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(H4
′
) There exists a natural number m such that for every non-negative

function u0 ∈ L∞0 (RK), one can find a real number γ′ > 0 and non-negative
vector functions u1 ∈ L∞1 (RK),...,um ∈ L∞m (RK), satisfying with probability
one

(u0 (ω) , u1 (ω)) ∈ H1 (ω) , ..., (um−1 (ω) , um (ω) + u (ω)) ∈ Hm (ω) (42)

for all u ∈ L∞m (RK) with |u(ω)| ≤ γ′|u0(ω)|.
Proof of Proposition 6. If one of the conditions (G1′)-(G3′) holds, then

the analogous condition holds. The proof is exactly the same as the proof of
Proposition 3, with the additional assumption that the constants Mt, αt, θt
and Θt do not depend on t.

Suppose (G4′) holds. Consider any non-negative vector function u0 ∈
L∞0 (RK). Let y0(ω) = F0(ω)u0(ω). The function y0(ω) is F0-measurable, and
y0(ω) ∈ X0(ω) by virtue of (10). Furthermore, y0(ω) is essentially bounded
because |F0(ω)u0(ω)| ≤ Θ|u0(ω)| (see (11)). Then by virtue of (G4′) there
exist a natural number m, a real number γ > 0 and random states y1 ∈
X1,...,ym ∈ Xm, satisfying (41) with probability one for all y ∈ L∞m (RK) with
|y(ω)| ≤ γ|y0(ω)|. Since for every 1 ≤ t ≤ m, yt(ω) ∈ Xt(ω) = Ft(ω)RK

+

(a.s.), by the measurable selection theorem, there exists an Ft-measurable
function ut(ω) with values in RK

+ such that yt(ω) = Ft(ω)ut(ω) (a.s.). In view
of (11), the function ut is essentially bounded. Thus for every 0 ≤ t ≤ m−2,
we obtain

(Ft(ω)ut(ω), Ft+1(ω)ut+1(ω)) = (yt(ω), yt+1(ω)) ∈ Gt+1(ω) (a.s.),

which yields (ut(ω), ut+1(ω)) ∈ Ht+1(ω) (a.s.). Put γ′ = K−1Θ−1θγ and
consider u ∈ L∞m (RK) with |u(ω)| ≤ γ′|u0(ω)|. We wish to prove

(um−1 (ω) , um (ω) + u(ω)) ∈ Hm (ω) (a.s.).

To this end, let us first prove that um (ω) + u(ω) ∈ RK
+ . If we put y(ω) =

−γ′|u0(ω)|Fm(ω)e, then we have

|y(ω)| ≤ KΘγ′|u0(ω)| ≤ KΘγ′θ−1|y0(ω)| = γ|y0(ω)|,

where both inequalities follow from (11) and the fact that y ∈ L∞m (RN). Thus,
(ym−1 (ω) , ym (ω) + y (ω)) ∈ Gm (ω) and so there exists an Fm-measurable
function h(ω) ∈ RK

+ such that Fm(ω)h(ω) = ym (ω)+y (ω). As a consequence,
we have

Fm(ω)um (ω) = Fm(ω) (h(ω) + γ′|u0(ω)|e) ,
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and so um (ω) = h(ω) + γ′|u0(ω)|e, which yields um (ω) ≥ γ′|u0(ω)|e. Conse-
quently,

um (ω) + u(ω) ≥ γ′|u0(ω)|e+ u(ω) ≥ |u(ω)|e+ u(ω) ≥ 0.

Now put y(ω) = Fm(ω)(um (ω) + u(ω))− Fm(ω)um (ω). Observe that

|y(ω)| ≤ Θ|um (ω) + u(ω)− um (ω) | = Θ|u(ω)| ≤ Θγ′|u0(ω)|

≤ Θγ′θ−1|y0(ω)| = K−1γ|y0(ω)| ≤ γ|y0(ω)|,

and y ∈ L∞m (RN). Thus we have

(Fm−1(ω)um−1(ω), Fm(ω)(um (ω) + u(ω)))

= (ym−1 (ω) , ym (ω) + y (ω)) ∈ Gm(ω) (a.s.),

which means that (um−1 (ω) , um (ω) + u(ω)) ∈ Hm (ω) (a.s.). The proof is
complete. �

To apply the results of the previous work to the dynamical system H, we
will need the following fact.

Remark 2. Condition (H4′) implies the following one.
(h4′) There exists a natural number m such that for every non-negative

function u0 ∈ L∞0 (RK), one can find a real number ρ > 0 and non-negative
vector functions u1 ∈ L∞0 (RK), ..., um ∈ L∞m (RK), satisfying with probability
one

(u0 (ω) , u1 (ω)) ∈ H1 (ω) , ..., (um−1 (ω) , um (ω)) ∈ Hm (ω) (43)

and
um(ω) ≥ ρe|u0|,

where e = (1, ..., 1) ∈ RK
+ .

Observe that the functions u1,...,um involved in (H4′) have the properties
described in (h4′) with ρ = γ′/K. This is so because, if um (ω) + u(ω) ∈ RK

+

for all u ∈ L∞m (RK) with |u(ω)| ≤ γ′|u0(ω)| then um(ω) ≥ eρ|u0|. Indeed, the
inequality um(ω) ≥ ρe|u0(ω)| can be written as um(ω) + v(ω) ∈ RK

+ where
v := −ρe|u0| and |v(ω)| = γ′|u0(ω)|. �

A key role in the proof of Theorem 3 is played by the following result.
Theorem 6. Let (u0, q1, λ1) be a triplet of functions forming a von Neu-

mann equilibrium in the dynamical system H. Then there exists a triplet
(x̃0, p̃1, λ̃1) forming a von Neumann equilibrium in the dynamical system G.
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Proof. Suppose (u0, q1, λ1) is a triplet of functions forming a von Neu-
mann equilibrium in the dynamical system H. Then for almost all ω, we
have q1(ω) ∈ L1,+

1 (RK),

(u0(ω), λ1(ω)u1(ω)) ∈ H1(ω), q1(ω)u0(ω) = 1,

and
q̄2(ω)d

λ1(ω)
− q1(ω)c ≤ 0, (c, d) ∈ H1(ω),

where u1 = Tu0, q2 = Tq1 and q̄2 = E1q2. By the definition of H1(ω), a pair
of vectors (c, d) ∈ RK

+×RK
+ belongs to H1(ω) if and only if (F0(ω)c, F1(ω)d) ∈

G1(ω). Thus with probability 1 (for all ω in a set Ω1 of full measure), we
have

q̄2(ω)d

λ1(ω)
− q1(ω)c ≤ 0,

for any (c, d) ∈ RK
+ × RK

+ satisfying

(F0(ω)c, F1(ω)d) ∈ G1(ω).

We will fix ω ∈ Ω1 and omit it in the notation, if this does not lead to
ambiguity. Since ẑ1 = (x̂0, ŷ1) = (F0û0, F1v̂1) is contained in G1(ω) together
with a ball of radius α, we can apply the Kuhn-Tucker theorem (see Theorem
A.2 in the Appendix) to the convex set X consisting of non-negative vectors
(c, d) in RK

+ × RK
+ , the function

Φ(c, d) = q̄2d/λ1 − q1c,

the cone Z = G1(ω) and the mappingR transforming (c, d) into (F0(ω)c, F1(ω)d) ∈
RN × RN . By using a measurable selection argument, we construct F1-
measurable functions a1(ω) and b1(ω) taking values in RN such that for all
ω ∈ Ω1,

b1b− a1a ≤ 0, (a, b) ∈ G1(ω), (44)

for all (c, d) ∈ RK
+ × RK

+ ,

q̄2d

λ1
− q1c− [b1F1d− a1F0c] ≤ 0 (45)

and

|b1|+ |a1| ≤ 2Nα−1(q1û0 −
q̄2v̂1
λ1

). (46)
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Define x0 := F0u0. The function x0(ω) = F0(ω)u0(ω) is F0-measurable
and x0 ∈ X0 by virtue of (10). Furthermore, x0(ω) is essentially bounded.
Put

x1 = Tx0, x̃0 = x0/ |x0| , x̃1 = T x̃, and λ̃1 = λ1 |x1| / |x0| .

Let us show that the triplet (x̃0, p̃1, λ̃1) is an equilibrium in G. We have
x̃0 ∈ X0 and |x̃0| = 1. Since |u0| = 1 (a.s.), in view of (11) we have θ ≤
|x0| = |F0(ω)u0| ≤ Θ, and so E| ln |x0|| <∞. Therefore

E ln λ̃1 = E lnλ1 + E ln |x1| − E ln |x0| = E lnλ1. (47)

Further, we have

(x̃0, λ̃1x̃1) = (
x0
|x0|

,
λ1 |x1|
|x0|

x1
|x1|

) = (
x0
|x0|

,
λ1x1
|x0|

)

= |x0|−1 (F0u0, λ1F1 (u1)) = |x0|−1 (F0u0, F1 (λ1u1)) ∈ G1(ω) (a.s.). (48)

Thus the pair of functions x̃0 and λ̃1 generates a balanced path.
Put p̃1 := |x0| a1. We can see from (46) that E|a1(ω)| < ∞, and so

E|p̃1(ω)| <∞. By setting first c = 0 and then d = 0 in (45), we get

q̄2
λ1
≤ b1F1, (49)

q1 ≥ a1F0. (50)

By applying the operator T to both sides of inequality (50), we get

q2 ≥ a2F1, (51)

where a2 := Ta1. For all pairs (x, y) of functions in L∞1 (RN)×L∞1 (RN) such
that (x, y) ∈ G1(ω) (a.s.), there exist F1-measurable vector functions u and
v taking values in RK

+ , such that x = F0u, y = F1v and (u, v) ∈ H1(ω) (a.s.).
These functions are essentially bounded in view of the first inequality in (11).
By setting p̃2 = T p̃1, we get

Ep̃1x = E |x0| a1x ≥ E |x0| b1y = E |x0| b1F1v ≥ E
q̄2 |x0| v
λ1

= E
q2 |x0| v
λ1

≥ E
a2F1 |x0| v

λ1
= E
|x0| a2y
λ1

= E
p̃2y

λ̃1
= E

E1(p̃2)y

λ̃1
. (52)
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In this chain of relations, the first inequality holds because b1y |x0| ≤ a1x |x0|
(a.s.) as long as (x, y) ∈ G1(ω) (a.s.), which follows from (44). The second
inequality is a consequence of (49) and the third one holds by virtue of (51).
The last equality is valid since

p̃2

λ̃1
=

|x1| a2
λ1 |x1| / |x0|

=
|x0| a2
λ1

.

From (52) we obtain (in view of the equivalence of (4) and (5) that with
probability one

E1p̃1(Tω)b

λ1(ω)
≤ p(ω)a for all (a, b) ∈ G1(ω).

We have

p̃1x̃0 = |x0| a1
x0
|x0|

= a1F0u0 ≤ q1u0 = 1 (a.s.), (53)

where the inequality follows from (50). Further, we get

Ep̃1x̃0 = Ea1x0 ≥ Eb1λ1x1 = Eb1F1 (λ1u1)

≥ E
q̄2
λ1
λ1u1 = Eq2u1 = 1. (54)

In this chain of relations, the first inequality holds by virtue of (44) and
because (x0, λ1x1) ∈ G1(ω) a.s. (see (48)). The second follows from (49). By
combining (53) and (54), we conclude that p̃1x̃0 = 1 (a.s.).

Let us show that for almost all ω ∈ Ω,

p̃1(ω)a ≥ 0 for a ∈ X0(ω),

i.e. p̃1(ω) ∈ X∗0 (ω) (a.s.). Denote by Ω1 the set of those ω for which
b1(ω)F1(ω) ≥ 0. By virtue of (49), we have P (Ω1) = 1. Fix any ω ∈
Ω1, a ∈ X0(ω) and consider some c ∈ RK

+ for which F0(ω)c = a. By virtue
of (H1′), there exists d ∈ RK

+ such that (c, d) ∈ H1(ω). Then b1F1d ≤ a1F0c
in view of (44). From this we get

p̃1a = |x0| a1F0c ≥ |x0| b1F1d ≥ 0.

It remains to show that the balanced path generated by (x̃0, λ̃1) is a von
Neumann path, i.e. E lnλ′1 ≤ E ln λ̃1 as long as λ′1 is an F1-measurable scalar
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function with E| lnλ′1| < +∞ and such that (x′0, λ
′
1Tx

′
0) ∈ G1(ω) (a.s.) for

some x′0 ∈ X0 with |x′0(ω)| = 1. (a.s.). Consider an F0-measurable function
u′0(ω) such that F0u

′
0 = x′0. By virtue of (11), Θ−1 ≤ |u′0| ≤ θ−1. We have

F1(λ
′
1Tu

′
0) = λ′1F1(Tu

′
0) = λ′1TF0(u

′
0) = λ′1Tx

′
0.

Since (x′0, λ
′
1Tx

′
0) ∈ G1(ω) (a.s.), (u′0, λ

′
1Tu

′
0) ∈ H1(ω) (a.s.), and conse-

quently

(
u′0
|u′0|

,
λ′1|Tu′0|
|u′0|

Tu′0
|Tu′0|

) ∈ H1(ω).

By using (44), we get

E lnλ′0 = E ln
λ′1|Tu′0|
|u′0|

≤ E lnλ1 = E ln λ̃1,

which shows that the triplet (x̃0, p̃1, λ̃1) forms a von Neumann equilibrium
in the dynamical system G. �

An existence theorem for a von Neumann equilibrium in a canonical sta-
tionary von Neumann-Gale dynamical system was obtained in [17], Theorem
1 and Proposition 3. To formulate this result we introduce the following ad-
ditional assumption (known in Mathematical Economics as the ”free disposal
hypothesis”):

(FD) If (c, d) ∈ H1(ω), c′ ≥ c and 0 ≤ d′ ≤ d, then (c′, d′) ∈ H1(ω).
Theorem 7. Under assumptions (H1 ′), (H2 ′), (h4 ′) and (FD), a von

Neumann equilibrium exists.
It can be shown that condition (FD) in the present context is redundant:

Theorem 7 holds without it. To this end, let us define

Ĥ1(ω) :=
{

(c, d) ∈ RK
+ × RK

+ : there exists d̂ ≥ d such that (c, d̂) ∈ H1(ω)
}
.

It is clear that Ĥ1(ω) is a cone and H1(ω) ⊆ Ĥ1(ω).
Proposition 7. Ĥ1(ω) satisfies (FD).
Proof. Let (c, d) ∈ Ĥ1(ω) and 0 ≤ d′ ≤ d. Since (c, d) ∈ Ĥ1(ω), there

exists d̂ ≥ d ≥ 0 such that (c, d̂) ∈ H1(ω). Then (c, d′) ∈ Ĥ1(ω), because
d̂ ≥ d ≥ d′ ≥ 0. Observe that if (c, d) ∈ Ĥ1(ω), then (c, 0) ∈ Ĥ1(ω).

Let (c, d) ∈ Ĥ1(ω) and c′ ≥ c. Put c′ = c+h, h ≥ 0. By virtue of condition
(H1′), (h, g) ∈ H1 (ω) ⊆ Ĥ1(ω) for some g ≥ 0, then (h, 0) ∈ Ĥ1 (ω).
Therefore (c′, d) = (c+ h, d) ∈ Ĥ1 (ω). �
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Proposition 8. If (u, q, λ) is a von Neumann equilibrium for Ĥ1(ω),
then it is a von Neumann equilibrium for H1(ω).

Proof. By definition of von Neumann equilibrium, u(ω) ≥ 0 is an F0-
measurable vector function normalized by the condition |u(ω)| = 1 (a.s.),
λ(ω) > 0 is an F1-measurable scalar function with E lnλ(ω) < +∞, q(ω) ∈
L1,+
t (RK) such that

(u(ω), λ(ω)u(Tω)) ∈ Ĥ1(ω) (a.s.), (55)

for almost all ω

E1q(Tω)b

λ(ω)
≤ q(ω)a for all (a, b) ∈ Ĥ1(ω) (56)

and q(ω)u(ω) = 1 (a.s.).
By virtue of (55) and the measurable selection theorem, there exists an

F1-measurable vector function g(ω) ≥ 0 such that (u(ω), λ(ω)u(Tω) + g(ω)) ∈
H1(ω) (a.s.). By applying (56) to (u(ω), λ(ω)u(Tω) + g(ω)) and using the
fact that q(ω)u(ω) = 1 (a.s.), we obtain

Eq(Tω)g(ω) ≤ 0.

Since q(Tω)g(ω) ≥ 0 (a.s.), we conclude that q(Tω)g(ω) = 0 (a.s.) and so
g(ω) = 0 (a.s.) because q(Tω) 6= 0 (a.s.). Therefore (u(ω), λ(ω)u(Tω)) ∈
H1(ω) (a.s.) and (u, q, λ) > 0 is a von Neumann equilibrium for H1(ω). The
proof is complete. �

Proof of Theorem 3. By virtue of Proposition 6, conditions (H1′), (H2′)
and (H4′) hold. Note that these conditions hold true for Ĥ1 (ω). Therefore
from Theorem 7 and Proposition 7, we conclude that there exists a triplet
of functions (u, q, λ) forming a von Neumann equilibrium for Ĥ1 (ω) which
is also an equilibrium for H1(ω) by virtue of Proposition 8. Consequently,
Theorem 6 guarantees that there exists a triplet of functions (x, p, λ) forming
a von Neumann equilibrium in the dynamical system G. �

6 A specialized model

In this section we consider a specialized model for a financial market with
frictions and provide conditions guaranteeing that Theorems 1, 2, and 3 can
be applied to the model. We first prove Propositions 1 and 2.
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Proof of Proposition 1. Since ft,k(ω) 6= 0, we can assume without loss of
generality that all the generators ft,k(ω) of the cone Xt(ω) are normalized:
|ft,k(ω)| = 1. Then the second inequality in (9) will hold with Θt = 1.

To prove the first inequality, consider the non-random cone X̃t = {a ∈
RN : µt|a−| ≤ |a+|}, so that Xt(ω) ⊆ X̃t. Observe that since µt > 1
we have X̃t ∩ (−X̃t) = {0}. Therefore, the minimum of the continuous
function v(c, f1, . . . , fK) := |

∑
k ckfk| is strictly positive on the compact set

{(c, f) : c ∈ RK
+ , |c| = 1, fk ∈ X̃t, |fk| = 1, k = 1, . . . , K}. Then θt can be

taken equal to this minimum. �
Proof of Proposition 2. For every b = (b1, ..., bN) ∈ Xt(ω), we have

φt(ω, b) ≤ Λ|b+| −Λ|b−| ≤ Λ|b|. Then the second inequality in condition (L)
will hold with L = Λ.

Let us show the first inequality in (L). For every b ∈ Xt(ω), we have

φt(ω, b) ≥ Λ|b+| − Λ|b−| ≥
(
Λ− Λ/µ

)
|b+|.

Using that |b+| ≥ |b−|, the above inequality yields φt(ω, b) ≥ l |b| with con-
stant l =

(
Λ− Λ/µ

)
/2 > 0. �

We consider a market where N assets are traded at dates t = 1, 2, . . . A
portfolio of assets is represented by a vector a = (a1, ..., aN) ∈ RN . The ith
component of this vector is equal to the value of the portfolio position corre-
sponding to asset i. The value is measured in terms of some numéraire. It is
typically assumed that the numéraire is the base currency (domestic cash).
It does not necessarily need to be one of the N assets. The set {1, 2, ..., N}
of all the assets is decomposed into two subsets, I1 and I2, each of which
may be empty. Those assets that are indexed by i ∈ I1 represent currencies8

and those labeled by i ∈ I2 represent assets of other kind, typically shares of
stock.

For each t ≥ 1 and i, j = 1, . . . , N , the following Ft-measurable random
variables are given: the asset prices qt,i > 0 quoted in units of the numéraire,
transaction cost rates 0 ≤ λt,i,j < 1 (i 6= j) for exchanging asset i for asset
j, and dividend yields or interest rates 0 ≤ D+

t,i,j ≤ D−t,i,j for long and short
positions. If a = (a1, ..., aN) ∈ RN is a portfolio, then ai/qt,i is the number of
units of asset i held in it and Rt,i = qt,i/qt−1,i is the (gross) return on asset i.

The variables λt,i,j have the following meaning. Suppose the trader re-
duces the value of her ith portfolio position ai by θ ≥ 0 units of numéraire

8Models of currency markets with proportional transaction costs (bid-ask spreads) were
developed by Kabanov and co-authors—see, e.g., [28], [29] and references therein.
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with the view to increasing the jth position aj. Then the amount added to aj

will be equal to θ−λt,i,jθ, where λt,i,jθ is the transaction cost. This operation
comprises currency exchange when i, j ∈ I1, buying and selling assets j ∈ I2
for currencies i ∈ I1, and barter trading when i, j ∈ J2.

The meaning of the variables D±t,i,j is as follows. If i ∈ I1, i.e. i represents
a currency, then D+

t,i,j and D−t,i,j might be non-zero only if j = i: the interest
is paid in the same currency (but measured in terms of the numeraire). If
ai > 0, then D+

t,i,ia
i is the interest paid by the amount of currency i worth

ai > 0 units of numéraire. When ai < 0, i.e. some amount of currency i has
been borrowed, say, from a bank, then D−t,i,ia

i indicates the amount that has
to be returned, so that D−t,i,i represents the bank’s interest rate for lending.
The value of the dividends (in units of the numeraire) that is paid by asset
i ∈ I2 and added to the position corresponding to asset j ∈ I1 is equal to
D+
t,i,ja

i
+−D−t,i,jai−. It is natural to assume that the dividends on stock i ∈ I2

are paid in some currency j(i) ∈ I1, so that D±t,i,j = 0 for j 6= j(i).
The market in the model at hand is organized as follows. At each date

t, the trader receives dividends and interest D+
t,i,ja

i
+ − D−t,i,jai− on her port-

folio a(ω) purchased at the previous date t − 1. These amounts (positive
or negative) are added to the corresponding portfolio positions. After re-
ceiving dividend and interest payments, the trader will have the portfolio
dt(ω, a) = (d1t (ω, a), . . . , dNt (ω, a)) with the positions

djt(a) = Rt,ja
j +

N∑
i=1

(D+
t,i,ja

i
+ −D−t,i,jai−), j = 1, . . . , N,

where the first term in the right-hand side represents the new value (in units
of the numéraire) of the portfolio position in asset j after the change of
its price. Then the trader can rearrange her portfolio into a new portfolio
b(ω). The model assumes that such a rearrangement is possible if and only
if there exists an N × N matrix Θ = (θi,j) (a matrix of transactions) with
non-negative elements such that for each j = 1, . . . , N

djt(a) +
N∑
i=1

((1− λt,i,j)θi,j − θj,i) ≥ bj. (57)

The element θi,j of the matrix Θ is the value of the part of the position
in asset i which is exchanged for asset j, and λt,i,jθi,j is the corresponding
transaction cost.
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Denote the left-hand side of (57) by ψjt (ω, a,Θ) and consider the vector-
valued function ψt(ω, a,Θ) with the components ψjt (ω, a,Θ), j = 1, . . . , N .
The above description of the model corresponds to the cones

Gt(ω) :=
{

(a, b) ∈ Xt−1(ω)×Xt(ω) : ∃Θ ∈ RN×N
+ : ψt(ω, a,Θ) ≥ b

}
. (58)

As long as Xt−1 and Xt are cones, the fact that Gt are cones follows from
(57), where we need the assumption D+

t,i,j ≤ D−t,i,j to ensure that the functions

djt(a) are concave.
We will consider the cones Xt, that define portfolio constraints, of the

following form:

Xt(ω) =

{
a ∈ RN :

N∑
i=1

µ+
t,i(ω)ai+ ≥

N∑
i=1

µ−t,i(ω)ai−

}
, (59)

where 0 < µ+
t,i ≤ µ−t,i are positive Ft-measurable random variables. These

random variables can be used to specify margin requirements, as, for example,
in the following two particular models:

Xt(ω) =
{
a ∈ RN : |a+| ≥ Ut|a−|

}
, (60)

or

Xt(ω) =

{
a ∈ RN : a1+ +

N∑
i=2

(1− λt,i,1)ai+ ≥ Ut

(
a1− +

N∑
i=2

(1− λt,1,i)−1ai−

)}
,

(61)
where Ut > 1 are constants interpreted as margin coefficients: the trader must
be able to cover the short positions of the portfolio by its long positions with
excess determined by Ut. In (60) no transaction costs are taken into account
in the computation of the values of the short and long positions. In (61), the
transaction costs are calculated assuming that all the transactions performed
to cover the short positions are done through asset 1 (the base currency).

Note that the expression in parentheses on the right-hand side of the
inequality in (61) is equal to the numéraire value of the amount of asset 1
that is needed to close all the short positions under transaction costs. The
amount of asset 1 that is worth one unit of the numeraire (i.e. 1/qt,1 units
of asset 1) can be exchanged for the amount of asset i, which has the value
of (1 − λt,1,i)−1 units of the numeraire. Similarly, the left-hand side of the
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inequality in (61) is the value of the amount of asset 1 which can be obtained
by exchanging all the long positions for asset 1.

As a liquidation value function, which appears in condition (L), we will
use

φt(ω, b) = |b| −
N∑
i=2

(λt,i,1(ω)bi+ − λt,1,i(ω)bi−). (62)

This function is equal to the numéraire value of the position in asset 1 that
the trader can obtain if she closes all the other positions, assuming that all
the transactions are done through asset 1, i.e. the long positions in assets
i = 2, . . . , N are exchanged for asset 1, and then asset 1 is exchanged to close
all the short positions in assets i = 2, . . . , N .

Now we provide sufficient conditions to guarantee that this model satisfies
conditions (F), (G1)-(G4), (L), and so Theorems 1 and 2 can be applied to
it. Let Λ+

t,i = 1− λt,i,1, Λ−t,i = (1− λt,1,i)−1 for i = 2, . . . , N , and Λ±t,1 = 1.
We introduce the following conditions.
(A1) For each t, there exist constants Rt, Rt, Λt, Λt, Dt such that 0 <

Rt ≤ Rt,i(ω) ≤ Rt, 0 < Λt ≤ Λ+
t,i(ω), Λ−t,i(ω) ≤ Λt, D

−
t,i,j(ω) ≤ Dt for all i, j,

ω.
(A2) For each t, there exists a constant µt such that µ−t,i(ω)/µ+

t,j(ω) ≥ µt
for all ω, i 6= j, and µt > νt, where

νt :=

(
1 +

Λt+1

Λt+1

)
Rt+1 +NDt+1

Rt+1 +NDt+1

and Dt ≥ 0 is a constant such that Dt ≤ D+
t,i,j(ω) for all ω, i, j.

Observe that for the particular example of the cones Xt(ω) in (60), if
condition (A1) is satisfied, then (A2) will hold if Ut > νt for each t. In (61),
(A2) will hold if (A1) holds and Ut ≥ νtΛ

+
t,i/Λ

−
t,j + εt for each t and i 6= j,

where εt > 0 are some constants.
Proposition 9. Let conditions (A1), (A2) hold. Then:
(a) the cones Xt(ω) satisfy condition (F) and the cones Gt(ω) satisfy

conditions (G1)-(G3);
(b) if µt, Rt, Rt, Λt, Λt, Dt do not depend on t, then Gt(ω) satisfy

condition (G2) with constant M not depending on t and condition (G4)
with m = 1; if additionally and µΛ > Λ, then the function φt defined in (62)
satisfies condition (L).

We’ll need the following auxiliary result to prove Proposition 9.
Lemma 1. Let conditions (A1), (A2) hold. Then
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(a) For each t there exists a constant C1
t > 0 such that if a ∈ Xt(ω) then

|a+| − νt|a−| ≥ C1
t |a|.

(b) For each t there exists a constant C2
t such that if a ∈ Xt−1(ω),

b ∈ Xt(ω) and |b| ≤ C2
t |a|, then (a, b) ∈ Gt(ω).

Proof . (a) Consider the non-random cone X̃t = {a ∈ RN : µt|a−| ≤ |a+|}.
Condition (A2) implies that Xt(ω) ⊆ X̃t, i.e. Xt(ω) satisfies condition (M)
with constant µt. Observe that the continuous function ht(a) = |a+|− νt|a−|
is strictly positive on the compact set Kt = X̃t ∩ {a : |a| = 1}. Indeed,
since ht(a) ≥ (µt − νt)|a−| on X̃t, then the equality ht(a) = 0 would imply
|a−| = 0, and hence |a+| = ht(a) = 0, so that |a| = 0. Then ht(a) attains a
strictly positive minimum on Kt, which can be taken as C1

t .
(b) Let a ∈ Xt−1(ω), b ∈ Xt(ω). Consider the transaction matrix Θ

with the elements θi,1 = (dit(a) − bi)+, θ1,i = (1 − λt,1,i)
−1(dit(a) − bi)− for

i = 2, . . . , N and all the other elements being zero. Then ψit(a,Θ) = bi for
i = 2, . . . , N .

It is straightforward to check that for any numbers x, y we have (x−y)+ ≥
x+ − y+ and (x− y)− ≤ x− + y+. Using this, we obtain

ψ1
t (a,Θ)− b1 =

N∑
i=1

(
Λ+
t,i(d

i
t(a)− bi)+ − Λ−t,i(d

i
t(a)− bi)−

)
≥

N∑
i=1

(
Λ+
t,i[d

i
t(a)]+ − Λ−t,i[d

i
t(a)]− − (Λ+

t,i + Λ−t,i)b
i
+

)
≥

N∑
i=1

(
Λt[d

i
t(a)]+ − Λt[d

i
t(a)]−

)
− (1 + Λt)|b|.

Observe that

[dit(a)]+ ≥ dit(a) ≥ Rta
i
+ +Dt|a+| −Rta

i
− −Dt|a−|,

[dit(a)]− ≤ Rta
i
− +Dt|a−|.

Hence

ψ1
t (a,Θ)− b1 ≥ Λt(Rt +NDt)|a+| − (Λt + Λt)(Rt +NDt)|a−| − (1 + Λt)|b|

= Λt(Rt +NDt)(|a+| − νt−1|a−|)− (1 + Λt)|b|
≥ C1

t−1Λt(Rt +NDt)|a| − (1 + Λt)|b|.
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Then statement (b) can be fulfilled with the constant C2
t = C1

t−1Λt(Rt +
NDt)/(1 + Λt), since in that case ψ1

t (a, T )− b1 ≥ 0, implying (a, b) ∈ Gt. �
Proof of Proposition 9. (a) Let us show that each cone Xt is polyhedral.

Put ft,i,j = ei − (µ+
t,i/µ

−
t,j)ej for i 6= j, where ei is the i-th basis vector in

RN . Suppose a ∈ Xt(ω), a 6= 0. Denote by I = {i : ai > 0}, J = {j :
aj < 0} the sets of indices of positive and negative coordinates of a and put
δ = (

∑
j∈J µ

−
t,j|aj|)/(

∑
i∈I µ

+
t,ia

i). Clearly, δ ≤ 1 as a ∈ Xt. Then

a = δ
∑
i∈I

∑
j∈J

aiµ−t,j|aj|∑
k∈J

µ−t,k|ak|
ft,i,j + (1− δ)

∑
i∈I

aiei.

Hence the cone Xt can be represented in the form (8) with N2 generators:
ft,i,j and ei for i, j = 1, ..., N , j 6= i. As it was noted in the proof of statement
(a) of Lemma 1, the cones Xt satisfy (M). So, by Proposition 1, they also
satisfy (F).

Condition (G1) follows from that, according to statement (b) of Lemma
1, for any a ∈ Xt−1(ω) we have (a, 0) ∈ Gt(ω).

Let us prove (G2). Suppose (a, b) ∈ Gt. Since b ∈ Xt(ω), statement
(a) of Lemma 1 implies that |b| ≤ (C1

t )−1
∑N

i=1 b
i. Moreover, there exists a

transaction matrix Θ for which (57) holds, so we have

|b| ≤ 1

C1
t

N∑
i=1

dit(a) ≤ 1

C1
t

(Rt +NDt)|a|. (63)

This implies the validity of (G2) with constant Mt = (Rt +NDt)/C
1
t .

Now we will prove condition (G3). Let x̂ = (1, ..., 1) ∈ RN . Put
ẑt = (x̂, ŷt) with ŷt = (C2

t /2)x̂. Observe that there exists δt > 0 such that
B(ẑt, δt) ⊂ R2N

+ and therefore B(ẑt, δt) ⊂ Xt−1 ×Xt. Since |ŷt| < C2
t |x̂|, then

one can find 0 < αt ≤ δt such that |yt| ≤ C2
t |xt| for any zt = (xt−1, yt) ∈

B(ẑt, αt). Then statement (b) of Lemma 1 implies zt ∈ Gt for such zt. Hence,
the pair (ẑt, αt) satisfies condition (G3).

(b) From the proof of statement (a) of Lemma 1 one can see, that if
the constants from condition (A1) do not depend on t, then it is possible
to choose C1

t independent of t. Then (63) implies that Mt can be chosen
independent of t.

Let us prove that (G4) holds. It follows from the proof of Lemma 1, that
the constant C2

t can be chosen independent of t. Let γ = C2/2 and consider
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any yt ∈ Xt. Put yt+1 = γ|yt|x̂. Then B(yt+1, γ|yt|) ⊆ RN
+ ⊆ Xt+1. Hence

for any y ∈ Xt+1 such that |y| ≤ γ|yt| we have yt+1 + y ∈ Xt+1, and then
statement (b) of Lemma 1 implies that (yt, yt+1 + y) ∈ Gt+1, so condition
(G4) holds with m = 1.

Finally, we prove that the function φt(ω, b) satisfies condition (L). Observe
that it can be represented in the form φt(b) =

∑N
i=1(Λ

+
t,ib

i
+ − Λ−t,ib

i
−). From

the proof of Lemma 1, it follows that the cones Xt satisfy condition (M)
with constant µ independent of t. Using the condition µΛ > Λ and applying
Proposition 2, we see that (L) is satisfied. �

Now we provide a sufficient condition for the existence of a von Neumann
equilibrium in the autonomous variant of the model.

Proposition 10. Let T be an automorphism of the underlying probability
space such that

Ft+1 = T−1(Ft), µ±t+1,i(ω) = µ±t,i(Tω), Rt+1,i(ω) = Rt,i(Tω), .

λt+1,i,j(ω) = λt,i,j(Tω), D±t+1,i,j(ω) = D±t,i,j(Tω).

Let condition (A1), (A2) hold for some t, and, hence, for all t. Then a
von Neumann equilibrium exists.

The validity of this proposition follows from Proposition 9 and Theorem 3.
We conclude this section with the analysis of the following questions. Is

the single currency model, in which Gt(ω) is defined by

Gt(ω) := {(a, b) ∈ Xt−1(ω)×Xt(ω) : ψt(ω, a, b) ≥ 0} , (64)

where

ψt(a, b) =
N∑
i=1

(1−λ+t,i)(Rt,ia
i− bi)+−

N∑
i=1

(1 +λ−t,i)(Rt,ia
i− bi)−+dt(a), (65)

a special case of the above multi-currency (barter) one? If so, what is the
relation between λ±t,i and λt,i,j?

To answer these questions suppose G̃t is defined by (64) (and λ±t,1 = 0),
and Gt is defined by (58) with the following transaction costs

λt,i,1 = λ+t,i, λt,1,i = 1− 1

1 + λ−t,i
,

λt,i,j = 1− (1− λt,i,1)(1− λt,1,j), i 6= j, i, j ≥ 2,

34



and dividends
D±t,i,1 = D±t,i, D±t,i,j = 0, j ≥ 2.

Let us show that G̃t = Gt. If (a, b) ∈ G̃t, take the transaction matrix in
which

θi,1 = (Rt,ia
i − bi)+, θ1,i = (1− λt,1,i)−1(Rt,ia

i − bi)−
for i ≥ 2, and other elements are zero. Then ψit(a,Θ) = bi for i = 2. And for
i = 1 we have the inequality ψ1(a,Θ) ≥ b1 by (64).

If (a, b) ∈ Gt, there exists a transaction matrix Θ such that ψt(a,Θ) ≥ b.
We can assume that θi,j = 0 if i ≥ 2, j ≥ 2. Indeed, if the trader wants
to exchange the amount of asset i ≥ 2, which has the value of 1 unit of the
numeraire, for asset j, then she will receive the amount of asset j, which has
the value of 1 − λt,i,j units of the numeraire. The same transaction can be
done by first exchanging the same amount of asset i for asset 1 and then
asset 1 for asset j: in that case the trader will receive the amount of asset j
with the value (1−λt,i,1)(1−λt,1,j). We have (1−λt,i,1)(1−λt,1,j) = 1−λt,i,j
by the choice of λt,i,j.

We can also assume that θi,1θ1,i = 0. Then θi,1 ≤ (Rt,ia
i − bi)+, θ1,i ≥

(1− λt,1,i)−1(Rt,ia
i − bi)−.

Using that ψ1
t (a,Θ)− b1 ≥ 0, we obtain

0 ≤ ψ1
t (a,Θ)− b1 = [dt(a)]1 +

N∑
i=2

((1− λt,i,1)θi,1 − θ1,i)− b1

≤ [dt(a)]1 +
N∑
i=2

((1− λ+t,i)(Rt,ia
i − bi)+ − (1− λt,1,i)−1(Rt,ia

i − bi)− − b1

which is the same as the inequality ψt(a, b) ≥ 0 for the function ψt from (65).

7 Appendix

1. Measurable selection theorem. Let (Ω,F , P ) be a probability space
such that the σ-algebra F is complete with respect to measure P (all subsets
of F -measurable sets of measure 0 are F -measurable). Let B be a complete
separable metric space and B its Borel σ-algebra. Let ω 7→ A(ω) be a
multivalued mapping assigning a non-empty set A(ω) ⊆ B to each ω ∈ Ω.
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Theorem A1. If {(ω, a) : a ∈ A(ω)} ∈ F × B, then for each ω one can
select a point α(ω) ∈ A(ω) such that the mapping α : (Ω,F) → (B,B) is
measurable.

For a proof of this result see, e.g., Castaing and Valadier [7].
2. The Kuhn-Tucker theorem. We formulate a version of this the-

orem that is used in this work. Let X ⊆ Rn be a convex set, Φ : X → R1

a concave function, R : Rn → Rm a linear mapping and Z a cone in Rm.
Assume that the following assumption (Slater’s condition) holds.

(S) There exists an element x̂ of the set X such that the point ẑ := Rx̂
is contained in Z together with a ball B(ẑ, γ) (γ > 0).

Theorem A2. Let x∗ be a point in X where the function Φ(x) attains
its maximum on X subject to the constraint Rx ∈ Z. Then there exists a
linear functional g on Rm such that

Φ(x)− gRx ≤ Φ(x∗), x ∈ X, (66)

and
gz ≤ 0, z ∈ Z. (67)

Furthermore, we have

|g| ≤ mγ−1[Φ(x∗)− Φ(x̂)]. (68)

Proof. For the existence of g see, e.g., Luenberger [24]. The estimate (68)
is obtained as follows. We have

0 ≥ gẑ = gRx̂ ≥ Φ(x̂)− Φ(x∗), (69)

where the first inequality follows from (67) and the second from (66). Since
B(ẑ, γ) ⊆ Z, if |h| ≤ γ, then ẑ − h ∈ Z, and so g(ẑ − h) ≤ 0, i.e. gh ≥ gẑ.
By combining this inequality with (69), we get

gh ≥ gẑ ≥ Φ(x̂)− Φ(x∗) (70)

for any h such that |h| ≤ γ. Therefore

|gh| ≤ Φ(x∗)− Φ(x̂)

for all h with |h| ≤ γ. Put h = γm−1/2||g||−1g, where || · || is the Euclidean
norm in Rm. Then |h| = γm−1/2||g||−1|g| ≤ γ because |g| ≤

√
m||g|| for each

g ∈ Rm. From (70) we obtain

Φ(x∗)− Φ(x̂) ≥ |gh| = γm−1/2||g||−1||g||2 = γm−1/2||g|| ≥ γm−1|g|,
which proves (68). �
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