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Abstract

We study a Cournot duopoly where firms can decide to incur fixed
costs in activities that improve their competitiveness (i.e. product de-
velopment or process innovation). Innovation costs generate discontinu-
ities in the firms’quantity best response functions and, in turn, a variety
of equilibrium configurations, including multiple equilibria. We provide
a dynamic global analysis of the equilibria and show the way in which
firms’initial expectations regarding the rival’s level of output are crucial
in defining the configuration of the long run equilibrium.

Keywords: Process Innovation; Oligopolistic competition; Discontinuous
best response functions; Global analysis; Learning.
JEL codes: C73; D21; D43.

1 Introduction

In many industries firms can increase their competitiveness investing in innova-
tion to reduce costs (process innovation) or developing new products to better
meet consumers’preferences and increase their willingness to pay (product in-
novation).
Several contributions in the literature have studied the problem of strategic

investments in innovation. One very fruitful approach used to understand the
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effects of market and technical uncertainty as well as strategic interaction is
the stream of research on real options (see e.g. [13]). Other contributions
focus on innovation with multi-product competition and (production) capacity
constraints (see [11], [12]). A different branch of literature explores the effects
of various behavioral rules behind firms’decision making. Specifically, several
scholars have questioned the assumption of players’perfect knowledge on the
structure of the game. Some have thus formulated dynamic economic models
based on learning effects, misperception of market elements and expectations
on rivals’actions. One of the major contributors in this respect has been Carl
Chiarella, who touched upon all these elements in a number of his works (see,
among many others, [8], [9], [10], [7]).
Along the line of this last stream, our paper studies a dynamic Cournot

duopoly with adaptive expectations learning, where firms can initially decide to
invest in (product and/or process) innovation projects that will increase their
competitiveness, before competing in the market selecting quantities. Innova-
tion costs are assumed to be fixed. This is a suffi ciently realistic assumption
to describe those industries (e.g. pharmaceuticals and high-tech) experiencing
large economies of scale and requiring significant sunk investments. In what fol-
lows, we focus on industries in which the fixed cost component (e.g. high-tech
equipment, large pieces of machinery and advertising campaigns) are prevalent
compared to variable costs (such as better raw materials or cheaper labour). The
possibility of investing in product/process innovation that requires incurring
fixed costs introduces interesting features to the well-known Cournot duopoly.
In fact, it generates discontinuities in the firms’quantity best response functions
and, for some parameter configurations, a multiplicity of stable Cournot-Nash
equilibria, including asymmetric ones. This poses the necessity to introduce
dynamic adjustments to solve equilibrium selection problems. In addition, and
probably more importantly, we show that the likelihood that a particular equi-
librium configuration may be reached in the long run depends on the setup of the
learning process and on the initial expectations that each player forms regarding
the output level of the rival. With this respect, we assume that players update
their beliefs on rival’s strategies according to adaptive expectations, which con-
stitute a learning rule more sophisticated than static (or naive) expectations. As
we point out in the paper, under this more realistic scheme, players can indeed
learn to play symmetric as well as asymmetric Cournot-Nash equilibria. We
also show that learning to play an equilibrium configuration is path-dependent.
This calls for a full understanding of the dynamics of the system through its
global properties. The importance of such global analysis in economics, and in
particular in oligopoly models, has again been remarked several times also by
Carl Chiarella (see for instance [1], [2]). Indeed, this kind of analysis has critical
economic relevance. Firms may employ forms of strategic ambiguity and delib-
erate information leaks to the press in order to shape the expectations of rivals
to their advantage. Similarly, industrial reforms (e.g. market deregulation) may
induce firms to expect lower or higher levels of competition and create shocks
to the dynamic path of the game, eventually, affecting the equilibrium selection.
Moreover, the decision to participate/abandon trading agreements (e.g. the re-
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cent uncertainties connected to Brexit) may shape firms’expectations and have
dramatic effects in terms of equilibrium selection in the long run.
Our model produces asymmetric equilibria where only one firm innovates.

The innovator effectively dominates the market in equilibrium, earning higher
profits and serving a larger portion of the market compared to the rival. As
already pointed out in [14] in a static game, the existence of these asymmetric
equilibria raises important antitrust issues. Indeed competition can produce a
market configuration in which two ex-ante identical firms end up in an asym-
metric equilibrium in which the market is dominated by one of them. However,
[14] show that the equilibrium could also be produced if one of the firms decided
to employ unlawful predatory strategies targeted at monopolizing the market.
In other words in this environment predatory behavior may work as an equilib-
rium selection mechanism. The fact that the same asymmetric equilibria can be
produced both by fair competition and predatory behavior makes the correct
identification of antitrust cases problematic.1 Using only a static perspective,
market data would be of little help, because they would describe a particular
equilibrium, but they would not provide information about the way that par-
ticular equilibrium has been selected. We therefore study the local and global
stability of each equilibrium, focusing on two particular cases. First, similar
to [14], we consider the possibility that both firms can compete for the market
incurring fixed costs to invest in product/process innovation (two-sided inno-
vation). Second, we consider the possibility where only one firm can invest to
boost competitiveness (one-sided innovation). This case is interesting because it
allows us to study forms of natural product differentiation where, for example,
the country of origin of a good may impose advantages/disadvantage on a brand
(think of the importance of the "Made in" label for some brands).
The paper is organized as follows. Section two introduces the static model

of two-sided innovation and describes the best response functions. Section three
states the dynamic model and describes the different equilibria. Section four
analyzes the main dynamic features of the system under naive and adaptive
expectations. Section five proposes a variation of the previous model considering
one-sided innovation. Section six concludes.

2 The model

Here we develop the static model of the game. We shall study its dynamic
version in Section 3.
Let us assume that the market is served by two ex-ante identical firms.

Firm i, i = 1, 2, produces quantity xi. Both firms can decide to invest in
product/process innovation and incur cost ki > 0. For the moment, let us focus
out attention to the case in which k1 = k2 = k.

1The issue is known in the literature on predation in markets with winner-takes-all inno-
vation. [16] explain that "predation is often indistinguishable from intense competition". See
also [15] and [17].
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The inverse demand of a producer who does not innovate is

pl = al − b(x1 + x2)

whereas, by investing in innovation, the inverse demand is

ph = ah − b(x1 + x2)

Parameters ah ≥ al > 0 models the degree of vertical differentiation, see [18].
Firms face constant marginal costs. In particular the marginal cost is ch if the
firm decides to invest in innovation and cl otherwise. Assume that 0 < ch ≤ cl.
Normalize al − cl = 1 and define a ≡ ah − ch. Let us assume that a ∈ [1, 2);
a ≥ 1 ensures that the investment k can be seen both as process and product
innovation that, given the linearity of the demand, would produce the result
of an increase in the margin between the reservation price and marginal costs;
a < 2 ensures that in those asymmetric equilibria in which only one of the two
firms decides to invest in innovation, the other firm still provides a positive
quantity of output.
Player’s i earns profit

πi(xi, xj) =

{
πi,l(xi, xj) = xi (1− b(xi + xj)) if firm i does not invest in innovation
πi,h(xi, xj) = xi (a− b(xi + xj))− k if firm i invests in innovation

Given the production that player i expects from player j, denoted by xej , player
i solves the problem

argmax
xi

πi(xi, x
e
j)

If player i does not invest in innovation, then the maximization of πi,l(xi, xej)
with respect to xi and for a given level of xej (expected adversary’s produc-

tion) gives the ’best response’quantity x∗i =
1
2b −

xej
2 . Substituting back x

∗
i in

πi,l(xi, x
e
j) we get

πi,l(x
∗
i , x

e
j) = x∗i

(
1− b(x∗i + xej)

)
=

=

(
1− bxej

)2
4b

and analogously, in the case that player i invests in innovation, it produces
x∗i =

a
2b −

xej
2 earning profits

πi,h(x
∗
i , x

e
j) =

(a− bxej)2

4b
− k

Firm i does not invest in innovation if condition πi,l(x∗i , x
e
j) > πi,h(x

∗
i , x

e
j)

holds. In other words, firm i’s Best response can be written as follows:2

2The existence of discontinuities in the best response functions of the Cournot duopolists
is not a special feature created by the assumption of linear demands. In what follows, to
improve tractability, we limit ourselves to the case with linear demands. For related works
with discontinuous best response functions see [25], [4], [6].
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x∗i = B(xej) = max

[
0,

{
a
2b −

xej
2 if πi,l(x∗i , x

e
j) ≤ πi,h(x∗i , xej)

1
2b −

xej
2 if πi,l(x∗i , x

e
j) > πi,h(x

∗
i , x

e
j)

]
= (1)

= max

[
0,

{
BH(x

e
j) =

a
2b −

xej
2 if 0 ≤ xej ≤ x̂

BL(x
e
j) =

1
2b −

xej
2 if x̂ < xej ≤ 1

b

]
where the break point is

x̂ =
1 + a

2b
− 2k

a− 1 (2)

Condition xej ≤ 1
b in (1) ensures non-negativity of production by firm i, i.e.

x∗i ≥ 0. If in (2) it is x̂ < 0, then the best response (1) of firm i reduces to the
standard textbook case, with continuous best response:

x∗i = B̃(xej) = max

[
0,
1

2b
−
xej
2

]
(3)

Condition x̂ < 0 occurs for suffi ciently high fixed cost of differentiation k,

namely k > a2−1
4b . Thus, in the following we assume that k ∈

[
0, a

2−1
4b

]
, in order

to rule out uninteresting cases.

If x̂ ≥ 1
b or equivalently k ∈

[
0, (a−1)

2

4b

]
, then the lower branch BL(x

e
j)

in the best response (1) disappears. Stated differently, when the fixed cost
to differentiate is suffi ciently ’low’, then it is always convenient to invest in
innovation, given the expectation xej . Therefore, firm i’s best response when

k ∈
[
0, (a−1)

2

4b

]
simplifies to

x∗i = B(xej) =

{
a
2b −

xej
2 if 0 ≤ xej ≤ x̂

0 otherwise
(4)

In what follows we shall focus our interest on values of k ∈
(
(a−1)2
4b , a

2−1
4b

)
to

ensure that both BH(xej) and BL(x
e
j) in (1) lead to produce positive quantities

x∗i . Best response B(x
e
j) in (3) has the well-known linear form with decreasing

slope. Best response B̃(xej) in (1) is a piecewise linear function with two branches
both with slope − 12 and a jump discontinuity at x̂, see Figure 1.

3 Oligopoly dynamics

The previous Section described how best response functions are obtained for the
duopoly model at hand. Here we discuss how firms dynamically update their
production plans. As we shall see in this Section, this oligopoly game generates
several coexisting equilibria, so the dynamic adjustment is essential to solve the
equilibrium selection problem.
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Figure 1: Best response function (1).

To employ a widely adopted framework, assume that firms update their
beliefs according to adaptive expectations,3

xei (t+ 1) = xei (t) + α (xi(t)− xei (t)) (5)

In words, (5) says that the quantity that at time t firm j expects firm i will
produce at time t + 1, denoted by xei (t + 1), is given by firm’s j previous ex-
pectation, xei (t), corrected for the error observed between actual production by
firm i and firm’s j expected production for firm i at time t. With this respect,
parameter α ∈ [0, 1] represents agents’propensity to revisit expectations or the
speed of adjustment of the system. In this paper, we assume the same speed
of adjustment for both players. Note that for α = 0, firm j does not revise its
expectations about the rival’s production, i.e. xei (t + 1) = xei (t), whereas for
α = 1, firms have naive (or Cournot) expectations, i.e. firms assume that the
best proxy for their rival’s next-period production is the current production,
i.e. xei (t+ 1) = xi(t). Coupling the equation of adaptive expectations (5) with
best response functions B(.), see (1), a dynamical oligopoly game with adaptive
expectations is defined by iterating the map P : R4 → R4 given by:

P :

{
xj(t+ 1) = B(xei (t+ 1))
xei (t+ 1) = xei (t) + α (xi(t)− xei (t))

i, j = 1, 2; i 6= j (6)

3Empirical evidences that adaptive expectations are consistent with the mechanism of
individuals’expectation formation are reported in [20] and [21]. As explained in [2], dynamics
under adaptive expectations is equivalent to partial adjustment towards the best response
with naive expectations.
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The state variables of model (6) are expected productions, xe1(t), x
e
2(t),

and actual productions x1(t), x2(t), for the two players, hence P is a four-
dimensional map. Interestingly, as already highlighted in [19] and [3], the dy-
namics of the map P can be completely captured by a lower dimensional map
depending on expectations only. In fact, by substituting the first equation in
(6) written at period t for agent i, namely xi(t) = B(xej(t)), into the second
equation in (6) one obtains

T :
{
xei (t+ 1) = xei (t) + α

(
B(xej(t))− xei (t)

)
, i, j = 1, 2; i 6= j (7)

which is a two-dimensional discontinuous map in the space of expected quan-
tities xe1(t), x

e
2(t), i.e. T : R2 → R2. In this way, it is possible to study

the dynamic properties of model (6) through model (7): map T generates the
dynamics of expectations, which then, determine the dynamics of productions
through the transformation from the beliefs space to production space through
the first equation of (6). Observe that at equilibrium expected quantities co-
incide with actual quantities. Also attractors (e.g. cycles or more complex
attractors) of map P can be obtained through the simpler model T , as ex-
plained in the following. Also the stability properties remain unchanged by T ,
since all time-t actual productions can be obtained through the (non-dynamical
and) simultaneous transformations xj(t) = B(xei (t)), i, j = 1, 2; i 6= j.
To easy the notation, in the following we write xei (t) = xi and xei (t+1) = x′i.

Written extensively, map T assumes the following form

T :


x′1 = (1− α)x1 + α ·max

[
0,

{
fh(x2) =

a
2b −

x2
2 if 0 ≤ x2 ≤ x̂

fl(x2) =
1
2b −

x2
2 if x̂ < x2 ≤ 1−c

b

]
x′2 = (1− α)x2 + α ·max

[
0,

{
fh(x1) =

a
2b −

x1
2 if 0 ≤ x1 ≤ x̂

fl(x1) =
1
2b −

x1
2 if x̂ < x1 ≤ 1−c

b

]
(8)

where x̂ is given in (2).
Next we study the existence and stability of the equilibria of the map (8)

whose state variables are the beliefs xei (t). Importantly, any equilibrium in
the belief space is also a Cournot-Nash equilibria in the space of the produced
quantities. Notice that, although the best response functions are linear, the
discontinuity at x̂ entails that no symmetric equilibria or multiple equilibria
could exist for (8). We sum up the main results on existence and stability of
equilibria in the following proposition.

Proposition 1 Consider map T in (8) and define

kh =
(a−1)(3+a)

12b kl =
(a−1)(1+3a)

12b

k
−
hl =

(a−1)(5−a)
12b k

+

hl =
(a−1)(5a−1)

12b

(9)

with
k
−
hl < kh < kl < k

+

hl
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1. If 0 < k < k
−
hl, then there exists a unique equilibrium

Ehh =
( a
3b
,
a

3b

)
(10)

where both firms invest in innovation. Moreover, Ehh is locally asymp-
totically stable;

2. If k
−
hl < k < kh then, in addition to Ehh, there exist two additional

equilibria

Ehl = (x
∗
h, x
∗
l ) =

(
2a− 1
3b

,
2− a
3b

)
(11)

and
Elh = (x

∗
l , x
∗
h) (12)

where x∗h denotes the quantity by the innovator and x
∗
l the quantity by the

non-innovator. Ehh, Ehl and Elh are locally asymptotically stable;

3. If kh < k < kl then only Elh and Ehl exist and are both locally asymp-
totically stable;

4. If kl < k < k
+

hl then, in addition to Elh and Ehl, there exists an additional
equilibrium

Ell =

(
1

3b
,
1

3b

)
(13)

where both firms are non-innovators. Ell, Ehl and Elh are locally asymp-
totically stable;

5. If k > k
+

hl than only Ell exists and is locally asymptotically stable.

Proof See the Appendix.

Not surprisingly, the firm that invests in innovation dominates the market
and produces more than the rival, being x∗h > x∗l . Denoting by π

∗
mp the equilib-

rium profit for a firm playing m ∈ {l, h} when the rival plays p ∈ {l, h}, notice
that π∗hl ≥ π∗hh ≥ π∗ll ≥ π∗lh. Being the only innovator in the market is clearly the
most advantageous equilibrium for a firm: the innovator dominates the market
and earns higher profits. On the other hand, being the non-innovator when the
rival decides to innovate is the worst possible outcome for the non-innovator.
Thus, the presence of innovation fixed costs and the resulting discontinuities in
the best response functions produce equilibrium configurations in which one of
the two firms dominates the market, even if ex-ante the two firms are assumed
to be identical. Such asymmetric equilibrium has been described here as the
result of fair competition, but it could also be produced by unlawful predatory
behavior (as explained in [14]). This raises significant antitrust diffi culties in
recognizing whether market dominance as described in equilibria Ehl and Elh
is the product of fair or unlawful competition.
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The presence of multiple stable equilibria motivates a global analysis of the
dynamics of the system, in order to identify which trajectories converge to a
particular equilibrium or if some trajectories converge to an attractor different
from an equilibrium. For this reason, we present in the following an analysis
of the possible attractors of the system and their basins of attraction. This
analysis is also relevant from an economic point of view, since it can reveal
whether an asymmetric equilibrium is the product of fair competition or the
result of unlawful practices that have taken the system to a different dynamic
path.

4 Two-sided innovation

Here we analyze the dynamics of the model under symmetric innovation costs for
the two firms. Initially we provide analytical results on the attractors and the
respective basins of attraction for the particular case of naive expectations. This
constitutes an important benchmark often considered in the oligopoly literature
and sheds light on general key insights of the model. We then describe the
model with general adaptive expectations through numerical analysis.

4.1 Naive Expectations

Let us consider here as a benchmark case, the scenario in which both firms may
react to the best response with naive expectation, whose dynamics is obtained
through (8) with speed of adjustment α = 1. This benchmark case will prove
to be very insightful, while also being analytically tractable. In addition, notice
that equilibria configuration and stability are not affected by the particular
value of parameter α. As we shall discuss later, variations in α will only have
important effects on the shape of the basins of attraction.
Let us denote by T̃ map (8) with α = 1. Map T̃ is characterized by a second

iterate with separate variables. As proved in [5], this kind of maps usually
has the peculiarity of coexistence of several stable equilibria. Moreover the
dynamic behavior of such a duopoly model can be fully characterized by the
one dimensional map

X ′ = F (X) = fm(fp(X)),m, p ∈ {l, h} (14)

that governs our model.
If we include trajectories leading to the Milnor attractor X = 0 (correspond-

ing to O(0, 0) for the two-dimensional map T̃ ), which we will analyze separately
in the following, map F is in general discontinuous and can be formed by pieces
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of five different maps:

fhh(X) = fh ◦ fh(X) = a
4b +

X
4 if 0 ≤ X ≤ x̂ and 0 ≤ fh(X) ≤ x̂

flh(X) = fl ◦ fh(X) = 2−a
4b +

X
4 if 0 ≤ X ≤ x̂ and x̂ < fh(X) ≤ 1

b

fhl(X) = fh ◦ fl(X) = 2a−1
4b + X

4 if x̂ < X ≤ 1
b and 0 ≤ fl(X) ≤ x̂

fll(X) = fl ◦ fl(X) = 1
4b +

X
4 if x̂ < X ≤ 1

b and x̂ < fl(X) ≤ 1
b

f0(X) = 0 otherwise
(15)

The fixed points corresponding to the four (non-constant) linear maps are:

fhh =⇒ X∗hh =
a
3b

flh =⇒ X∗lh =
2−a
3b

fhl =⇒ X∗hl =
2a−1
3b

fll =⇒ X∗ll =
1
3b

(16)

and they are locally stable, as the slopes of the linear maps are all equal to
1
4 . It must be noticed that, given that the map F is in general discontinuous,
the local stability of each existing fixed point does not imply its global stability
despite the linearity of the single maps.
So the questions concerning existence and local stability of the fixed points

are not two different questions but are the same. Taking that into consideration,
we only need the find the conditions on the parameters that permit to the fixed
point to be inside to the domain of the corresponding map. Such conditions are
summarized in the following Proposition:

Proposition 2
Consider map F in (14) and (15) and the innovation costs thresholds in (9).

1. If 0<k<k
−
hl then X

∗
hh exists and is a locally stable fixed point for the map

F ;

2. If k
−
hl<k<kh then X∗hh , X

∗
lh and X∗hl exist and are locally stable fixed

points for the map F ;

3. If kh<k<kl then X∗lh and X
∗
hl exist and are both locally stable fixed points

for the map F ;

4. If kl<k<k
+

hl then X
∗
ll , X

∗
lh and X

∗
hl exist and are locally stable fixed points

for the map F ;
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5. If k>k
+

hl then X
∗
ll exists and is a locally stable fixed point for the map F .

[5] show that there exists a correspondence between the fixed points of the
one-dimensional map F and corresponding periodic points of the two-dimensional
map T̃ . In particular, given the symmetry between the reaction curves of the
two firms, we have that to each fixed point of F it corresponds a periodic cycle
on the diagonal of the phase plane of T̃ , that is a symmetric period point. In
particular, the fixed points X∗ll and X

∗
hh correspond to the symmetric equilibria

Ell and Ehh, respectively. Instead, the always coexisting fixed points X∗lh and
X∗hl correspond to the points of a symmetric 2-cycle for the map T̃ , that is
C1(x

∗
h, x
∗
h) and C2(x

∗
l , x
∗
l ).

Besides that, from [5] we also know that when N fixed points X∗1 , X
∗
2 , ..., X

∗
N

(with X∗1 < X∗2 < ... < X∗N ) characterize the one-dimensional map F , several
coexisting attractors characterize T̃ , whose points fill the Cartesian product
{X∗1}× {X∗N} .
So, from the Proposition 2, we must take into consideration five different

scenarios:

4.1.1 Scenario 1: Both the firms innovate

This scenario occurs for the lowest values of the differentiation costs:

0 < k < k
−
hl

In this case X∗hh is the only fixed point of F , to which corresponds the equilib-
rium Ehh for the two-dimensional map T̃ . All the feasible trajectories converge
to this fixed point, where both firms innovate.
The following figures are obtained by keeping fixed the parameters a = 1.3,

b = 1, whence k
−
hl = 0.0925. Figure 2 is obtained with k = 0.018, so that Sce-

nario 1 holds. In Figure 2a we can see the one-dimensional map F whose piece
fhh determines the fixed point X∗hh. In Figure 2b we have the corresponding
reaction curves for the duopolists, where we can see the intersection in Ehh.
Finally, Figure 2c shows that all initial beliefs generating feasible trajectories
indeed converge to Ehh, that is the Cournot-Nash equilibrium in the actual
production space where both firms innovate.

4.1.2 Scenario 2: Multistability with at least one innovating firm

When k
−
hl<k<kh the one-dimensional map F has three fixed points. For the two-

dimensional map T̃ , these coexisting fixed points on the branches fhh, fhl and
flh correspond to the fixed point Ehh (both firms innovate) and to a symmetric
two-cycles made up by the points Cl1(x

∗
l , x
∗
l ) and C

h
1 (x
∗
h, x
∗
h) (firms cyclically

innovate and do not innovate). However, they are not the only coexisting at-
tractors for the map T̃ . The Cartesian product {x∗l }× {x∗h} is filled with two
asymmetric equilibria Elh and Ehl (only one firm innovate) and two cycles of

11



Figure 2: Two-sided innovation - Scenario 1. a = 1.3, b = 1, k = 0.018. (a) Map
F and its unique fixed point X∗hh. (b) Reaction curves for the duopolists whose
intersection represents the unique Cournot-Nash equilibrium Ehh. (c) Basin of
attraction of Ehh (blue).
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Figure 3: Two-sided innovation - Scenario 2. a = 1.3, b = 1, k = 0.1. (a) Map
F and its fixed points X∗hl, X

∗
hh and X

∗
lh. (b) Reaction curves for the duopolists

whose intersection represents the coexisting Cournot-Nash equilibria Ehl, Ehh
and Elh (c) Basins of attraction of: Ehl (dark yellow), Ehh (blue), Elh (green),
symmetric 2-cycle

{
Cl1, C

h
1

}
(yellow), asymmetric 2-cycle

{
C12 , C

2
2

}
(red) and

asymmetric 2-cycle
{
C13 , C

2
3

}
(cyan).

period-2 with points C12 (x
∗
l ,

a
3b ) and C

2
2 (

a
3b , x

∗
h) for one cycle and C

1
3 (

a
3b , x

∗
l ) and

C23 (x
∗
h,

a
3b ) for the symmetric one.

This case is depicted in Figure 3. Considering that in our example it is
kh = 0.1075, we fixed k = 0.1 in Figure 3 to obtain an example of scenario 2.
Figure 3a shows the three fixed points of F , whereas Figure 3b and 3c show the
reaction curves and the basins of attraction of the coexisting cycles, respectively.
Moreover, the borders of the basins of attraction of the coexisting attractors are
not related to the presence of saddle cycles, that do not exist in our case, but are
related to the discontinuities of the map F (X). In fact, the borders of the basins
are marked by the discontinuity points of F (X), where from the domain of fhl
we pass to the domain of fhh and where from it we move to the domain of flh
(see [26]). This is clearly seen by inspecting Figures 3a and 3c. Moreover, the
symmetry properties of the map are responsible for the symmetric rectangular
shapes of the basins (see for details also [5]). The same mechanisms still work
in the next scenarios as well.
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Figure 4: Two-sided innovation - Scenario 3. a = 1.3, b = 1, k = 0.115. (a) Map
F and its fixed points X∗hl and X

∗
lh. (b) Reaction curves for the duopolists whose

intersection represents the coexisting asymmetric Cournot-Nash equilibria Ehl
and Elh (c) Basins of attraction of: Ehl (dark yellow), Elh (green) and symmetric
2-cycle

{
Cl1, C

h
1

}
(yellow).

4.1.3 Scenario 3: Asymmetric innovation equilibria and cycles

When the cost of differentiation is higher than kh but still lower than kl we are
in a new scenario. F only admits two fixed points X∗lh and X

∗
hl that correspond

to the symmetric 2-cycle made up by Cl1(x
∗
l , x
∗
l ) and C

h
1 (x
∗
h, x
∗
h) for the map T̃ .

Without any other fixed point of F (X), The Cartesian product is filled with the
two asymmetric equilibria Elh and Ehl.

In our example kl = 0.1225, so we fixed k = 0.115 in Figure 4 to be in this
scenario. Figure 4a shows the two fixed points of F . Reaction curves and basins
of attraction are depicted in Figures 4b and 4c.

4.1.4 Scenario 4: Multistability with at least one non-innovating
firm

When kl<k<k
+

hl the one-dimensional map F has again three fixed points but,
besides X∗lh and X

∗
hl now the branch fll intersects the bisector originating the

fixed point Ell. As a consequence this scenario looks like Scenario 2, with the
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Figure 5: Two-sided innovation - Scenario 4. a = 1.3, b = 1, k = 0.128. (a) Map
F and its fixed points X∗hl, X

∗
ll and X

∗
lh. (b) Reaction curves for the duopolists

whose intersection represents the coexisting Cournot-Nash equilibria Ehl, Ell
and Elh (c) Basins of attraction of: Ehl (dark yellow), Ell (blue), Elh (green),
symmetric 2-cycle

{
Cl1, C

h
1

}
(yellow), asymmetric 2-cycle

{
C14 , C

2
4

}
(red) and

asymmetric 2-cycle
{
C15 , C

2
5

}
(cyan).

differences due to the existence of Ell instead of Ehh. So, besides Elh and Ehl,
the map T̃ is characterized by the coexistence of three 2-cycles: the first one is the
symmetric Cl1(x

∗
l , x
∗
l ) and C

h
1 (x
∗
h, x
∗
h), the second has periodic points C

1
4 (x
∗
l ,

1
3b )

and C24 (
1
3b , x

∗
h) and the third is made up by C

1
5 (

1
3b , x

∗
l ) and C

2
5 (x
∗
h,

1
3b ). With

our parametrization, it is k
+

hl = 0.1375 and we fixed in Figure 5 k = 0.128 to be
in this scenario.

4.1.5 Scenario 5: Both firms do not innovate

In the final scenario, for the highest values of the differentiation cost (i.e.
k > k

+

hl) the Cournot-Nash equilibrium is the one without differentiation E∗ll,
corresponding to the unique steady state of the one-dimensional map X∗ll. In
Figure 6 we used k = 0.176 and all the feasible trajectories converge to E∗ll.
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Figure 6: Two-sided innovation - Scenario 5. a = 1.3, b = 1, k = 0.176. (a) Map
F and its unique fixed point X∗ll. (b) Reaction curves for the duopolists whose
intersection represents the unique Cournot-Nash equilibrium Ell. (c) Basin of
attraction of Ell (blue).
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Figure 7: (a) Map F with branch f0 mapping points to the origin (0, 0). (b)
Zomming out of Figure 2c showing the basin of equilibrium Ehh (blue) and the
basin of the origin (gray), e.g. initial beliefs leading to unfeasible trajectories.

4.1.6 The Milnor attractor

As we have already mentioned, although not stable in Lyapunov sense the origin
O(0, 0) is a stable attractor in Milnor (or weak) sense (see [22]) for the two-
dimensional map T̃ even if it is not locally stable. In fact, the origin still has
a basin of attraction with positive Lebesgue measure. This is only apparently
a contradiction and is due to the existence of zero-branches in the definition
of the map F (X) in (14) and (15), avoiding unfeasible (negative) values of the
production. This may occur for particularly high values of X, over a certain
threshold X̃. An example of its occurrence is depicted in Figure 7a, obtained
zooming out Figure 2a. For 0 ≤ X ≤ x̂, function fll applies, while for X > x̂
we are in the domain of f0, so every point is mapped to the origin. For the two-
dimensional map T it means that in the plane (x, y) any initial condition such
that x > x̂ (or y > x̂ for symmetry reasons) belongs to the basin of attraction
of the Milnor attractor at the origin, as can be seen in Figure 7b, zoom out of
Figure 2c.

4.2 Adaptive expectations

Up to now, we have addressed the model of two-sided innovation under naive
expectations. This benchmark case allowed us to provide analytical results on
the existence of fixed points and cycles of period two. When a stable cycle of
period two emerges, the long run play converges to a couple of beliefs, and hence
of productions, oscillating between the two values of the cycle. As these expec-
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tations are systematically wrong, what we observe is that players are unable to
learn the dynamics of the system. Of course, this is a rather implausible result
produced by the restrictive and extreme assumption of ’rational’players with
naive expectations (see [5] for a discussion on this issue).
We should instead expect rational players to learn from past mistakes, recog-

nize cyclic trajectories and revise their expectations accordingly. Moving away
from naive expectations, in this section we employ adaptive expectations as de-
scribed in equation (5) with α < 1, allowing players to gradually learn about
the opponent’s strategies.
The stability of cycles of period two is detailed in the following proposition

Proposition 3 Consider map T in (8). If a 2-cycle for (8) exists, then it
is locally asymptotically stable.
Proof See the Appendix.

We show numerically that for smaller values of α, even if stable cycles of
period two continue to exist, their basins of attraction shrink to negligible size
whereas the set of initial beliefs leading to the Cournot-Nash equilibria increases.
For α suffi ciently small, those cycles disappear.
Let us concentrate our discussion on an interesting scenario such as number

4, where equilibria involve at least one non-innovating firm (the discussion of the
other scenarios would be qualitatively similar and here omitted). The presence
of 2-cycles with naive expectations (α = 1) is due to the fact that players do
not learn about the cycle and expect the rival to maintain a constant level of
outcome. Figure 8a reproposes the example already discussed in Figure 5c.
A reduction of α entails that the new expected quantity at each time period

is anchored to the old expectation and updated according to the error in the old
expectation through equation (5). For the two-dimensional map T in (8), this
implies a deformation of the boundaries of all the basins of attraction. In fact,
map T is no more characterized by a second iterate with separable variables and
the image of an horizontal (resp. vertical) line is not a vertical (resp. horizontal)
line anymore. So the borders of the basins of attractions now are not horizontal
and vertical lines, even if they are still related with the discontinuities of the
map. Nevertheless, all the attractors survive for α suffi ciently high, see Figure
8b, where α = 0.9.
The symmetric 2-cycle

{
Cl1(x

∗
l , x
∗
l ), C

h
1 (x
∗
h, x
∗
h)
}
in Figure 8b is very close

to touch the boundary of its basin of attraction, represented in yellow. A slight
change of the speed of adjustment α can result in the disappearance of the
2-cycle together with its basin of attraction. This is an example of a contact
bifurcation (see [23]), due to contacts between an attractor and the boundary
of its basin, which determines the disappearance of the attractor, the 2-cycle in
this case, as shown in Figure 8c.
Further reductions of α produce similar effects on the basins of attraction. In

particular, the points of the asymmetric 2-cycles
{
C14 (x

∗
l ,

1
3b ), C

2
4 (

1
3b , x

∗
h)
}
and{

C15 (
1
3b , x

∗
l ), C

2
5 (x
∗
h,

1
3b )
}
get closer and their basins, depicted as the red and

cyan regions respectively, shrink in size, see Figure 8d,e,f,g. For α suffi ciently
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small, e.g. α = 0.2 in Figure 8h, any initial trajectory is attracted to a Nash
equilibrium of the game, be it the symmetric one Ell or an asymmetric one.

5 One-sided innovation

In this Section, we consider the possibility that only one firm, say, firm 1 can
decide to invest k1 and earn a margin equal to a.4 Firm 2 instead faces an insur-
mountable cost k2. This special case is particularly realistic and interesting. In
addition to the standard interpretation where only one of the two firms has the
know-how to innovate and obtain a margin equal to a, this case provides also a
framework to study an industry where competition between firms is influenced
by some form of natural product differentiation. If the brands and products of
the two firms are differentiated in the eyes of consumers by some unique, ex-
ogenously given characteristic, then one of the players may have a competitive
advantage over the rival. For example, due to differences in missions and histor-
ical positioning of the brands, only one of the competitors can be in a position
to exploit the advantage of incurring a fixed cost (e.g. charity donation or green
environmental investment) and being recognized (and rewarded) by the market
as a socially or environmentally concerned firm. The fixed cost incurred by
firms can be indeed interpreted as the cost of advertising campaigns that firms
need to incur in order to persuade consumers of their social or environmen-
tal responsibility. For some firms it is more expensive (sometimes impossible)
than for others to convince consumers of operating according to motives other
than profit maximization or market dominance. The case of natural product
differentiation is also particularly important in an international context. Firms
competing in an international market need to face and understand the compet-
itive (dis-)advantage that can be created by the country of origin of the brand.
This implies that there may be room for governments to invest in national labels
or consumer education in order to increase or eliminate the competitive advan-
tage created by product differentiation. It is therefore not surprising that firms
and Governments may invest in "Made In" labels. Depending on the particular
industry, country labels such as Made in Italy, Made in Germany and Made
in Japan may bear indeed very different messages for consumers. The asym-
metric case considered in this subsection provides room for interesting policy
considerations. For example, when should we expect a Government to subsi-
dize innovation (e.g. lowering k) or invest in national labels (with the effect of
lowering k or even increasing a) to take advantage of natural product differenti-
ation? The question is particularly important when at least one of the two firms
is not domestic. This implies that the policymakers’approach to the problem
will significantly depend on the nationality of the firms serving the market. For
example if both firms are foreign, it is reasonable to assume that a policymaker
will assess the role of innovation/product differentiation based on the effect on
consumer surplus. If instead one of the firms is domestic, the Government could

4The case in which only firm 2 will be able to invest in process/product innovation is
analogous and thus disregarded here.
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Figure 8: Two-sided innovation - Adaptive expectations. Basins of attraction
of Ehl (dark yellow), Ell (blue), Elh (green), symmetric 2-cycle

{
Cl1, C

h
1

}
(yel-

low), asymmetric 2-cycle
{
C14 , C

2
4

}
(red), asymmetric 2-cycle

{
C15 , C

2
5

}
(cyan).

Parameters as in Figure 5 for decreasing values of the speed of adjustment α.
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subsidize the innovation of the domestic firm or invest in media campaigns to
boost the domestic label against the foreign one. In what follows we shall con-
tinue focusing on the case of innovation, but similar conclusions could be drawn
for the case of natural product differentiation. We show that the multiplicity
of equilibria survives in this case, so that a dynamic analysis of the problem is
again essential.
Let us start the analysis with asymmetric players by considering the case in

which k2 >
(a2−1)
4b > k1. As previously explained, this implies that firm 2 will

never innovate, bearing too high costs for doing that. Therefore, firm 2 employs
the standard best response (3), whereas firm 1 uses (1) or (4), depending, re-

spectively, whether k1 ∈
(
(a−1)2
4b , (a

2−1)
4b

)
or k1 ∈

[
0, (a−1)

2

4b

]
. The analogous of

map T in (8) with only firm 1 innovating becomes

T1 :

 x′1 = (1− α)x1 + α ·max
[
0,

{
fh(x2) =

a
2b −

x2
2 if 0 ≤ x2 ≤ x̂

fl(x2) =
1
2b −

x2
2 if x̂ < x2 ≤ 1

b

]
x′2 = (1− α)x2 + α ·max

[
0, fl(x1) =

1
2b −

x1
2

]
(17)

where x̂ is given in (2) with k = k1. Reasoning in a similar way as for the
symmetric case, we can show that the following equilibria exist.

Proposition 4
Consider map T1 in (17) with k = k1 and kl, k

+

hl in (9).

• If 0 < k1 < kl then the only fixed point of (17) is Ehl = (x∗h, x
∗
l ) in (11).

• If kl < k1 < k
+

hl then (17) admits two fixed points, given by Ehl and
Ell = (x

∗
l , x
∗
l ) in (13)

• If k+hl < k1 then the only fixed point of (17) is Ell.

• Any equilibrium of (17) is always locally asymptotically stable.

Proof. The proof is analogous to the case with two-sided innovation and
therefore omitted.

Next we discuss in detail the case of one-sided innovation with naive expec-
tations.

5.1 Naive expectations

In the case of naive expectations, the dynamics is given by the map T1 in (17)
with α = 1 and denoted by T̂ in the following. Also map T̂ has a second iterate
with separate variables, so it can be studied through the one-dimensional map
G, defined as

X ′1 = G(X1) = f(g(X1)). (18)
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This map is in general discontinuous and made up by two pieces:5

fhl(X1) = fh ◦ fl(X1) =
2a−1
4b + X1

4 if 0 ≤ fl(X1) ≤ x̂

fll(X1) = fl ◦ fl(X1) =
1
4b +

X1

4 if x̂ < fl(X1) ≤ 1
b

(19)

characterized by two fixed points: X∗hl for fhl(X1) and X∗ll for fll(X1), see (16).
These fixed points are always locally stable whenever they exist. Similarly to
the two-sided innovation case, we have the following result:

Proposition 5
Consider map G in (18) and (19) and the innovation costs thresholds kl and

k
+

hl in (9).

• If 0 < k1 < kl then X∗hl exists and is a locally stable fixed point for the
map G;

• If kl < k1 < k
+

hl then X
∗
hl and X

∗
ll exist and are locally stable fixed points

for the map G;

• If k+hl < k1 then X∗ll exists and is a locally stable fixed point for the map
G.

The correspondence between the dynamic properties of the one-dimensional
map G and those of the two-dimensional map T̂ is similar to the previous case,
but now the two firms are not symmetric (i.e. only one may innovate); each
fixed point of G corresponds to a fixed point of the map T̂ according to:

x∗1 = X∗ and x∗2 = f(x∗1)

When there is only one fixed point for G then there is only one fixed point
for T̂ . Instead, when two fixed points of G coexist then the two-dimensional
map T̂ has three locally stable attractors: two fixed points and a cycle of period
two, whose points fill the Cartesian product in the two-dimensional plane.
Summarizing, we identify three scenarios:

5.1.1 Scenario 1: Asymmetric innovation equilibrium

This scenario occurs for the lowest values of the innovation costs:

0 < k1 < kl

In this case X∗hl is the only fixed point of G, to which corresponds the fixed point
Ehl = (X

∗
hl, f(X

∗
hl)) for the two-dimensional map T̂ . All the feasible trajectories

converge to Ehl.

5Here for simplicity we disregard the piece f0 = 0, as the considerations related to this
branch are similar to the two-sided cases.
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Figure 9: One-sided innovation - Scenario 1. a = 1.3, b = 1, k1 = 0.097. (a)
Map G and its fixed point X∗hl. (b) Reaction curves for the duopolists whose
intersection represents the asymmetric Cournot-Nash equilibrium Ehl (c) Basins
of attraction of Ehl (yellow).

Keeping fixed the parameters a = 1.3 and b = 1 as in our leading example
with two-sided innovation, it is kl = 0.1225. Figure 9 is obtained with k1 =
0.097, ensuring that we are in Scenario 1. In Figure 9a we can see the one-
dimensional map G whose piece fll determines the fixed point X∗hl. In Figure
9b we have the corresponding reaction curves of the duopolists, where we can see
the intersection at Ehl. Finally, Figure 9c shows that all the feasible trajectories
converge to Ehl.

5.1.2 Scenario 2: Multistability of Cournot-Nash equilibria

When kl<k1<k
+

hl the one-dimensional map G has two fixed points. Map T̂
admits the two fixed points Ehl and Ell and the 2-cycle that closes the Cartesian
product, whose points are C1(x∗l , f(x

∗
hl)) and C

2(x∗hl, x
∗
l ). Being k

+

hl = 0.1375,
in Figure 10 we fixed k1 = 0.131 to be in scenario 2. In Figure 10a we can
see the two fixed point of the one-dimensional map G, and in Figure 10b the
corresponding best response functions showing the Cournot-Nash equilibria for
the two-dimensional map T̂ . In Figure 10c the basins of attraction of the three
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Figure 10: One-sided innovation - Scenario 2. a = 1.3, b = 1, k1 =
0.131. (a) Map G and its fixed points X∗hl and X∗ll (b) Reaction curves
for the duopolists whose intersections represent Cournot-Nash equilibrium
Ehl and Ell (c) Basins of attraction of: Ehl (yellow) Ell (blue) and 2-cycle{
C1(x∗l , f(x

∗
hl)), C

2(x∗hl, x
∗
l )
}
(green).

coexisting attractors are represented in different colors.

5.1.3 Scenario 3: Symmetric equilibrium without innovation

For high values of k1 (i.e. k1 > k
+

hl) we have again a scenario with only one
fixed point, named X∗ll, for G to which it corresponds the fixed point Ell for the
two dimensional map T̂ , with coordinates: Ell(X∗ll, f(X

∗
ll)). Figures 11a,b,c are

obtained with k1 = 0.155.

5.2 Adaptive expectations

Here we briefly develop an numerical exploration of the asymmetric case along
the same line of Section 4.2. We only focus the discussion on scenario 2, which
was the most interesting due to multistability of attractors.
Figure 12a depicts again the example of Figure 10c with naive expectations

(α = 1). Reducing α has the similar effect discussed before. The set of initial
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Figure 11: One-sided innovation - Scenario 3. a = 1.3, b = 1, k1 = 0.155.
(a) Map G and its fixed point X∗ll (b) Reaction curves for the duopolists whose
intersection represents the Cournot-Nash equilibrium Ell (c) Basins of attraction
of Ell (blue).

25



beliefs leading to convergence to a Cournot-Nash equilibrium increases, see Fig-
ure 12b,c. Again, learning is path-dependent. For α suffi ciently low, the basins
of attraction of the 2-cycle shrink to the point of becoming negligible, see Figure
12d,e. Eventually, for further decreases of α, the points of the 2-cycle collide in
a saddle point, whose stable manifold separates the basins of attraction of the
two Cournot-Nash equilibria, as shown in Figure 12f.

6 Conclusions
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7 Appendix

Proof of Proposition 1
Let us first consider a symmetric equilibrium, characterized by the same

quantities for both firms E∗ = (x∗, x∗). The equilibrium where both firms inno-
vate, their production must satisfy the equation x = BH(x), i.e. this equilibrium
is given by

Ehh =
( a
3b
,
a

3b

)
The condition for having Ehh as an equilibrium is that a

3b < x̂, i.e., in terms of

fixed cost to differentiate that k < (a−1)(a+3)
12b ;

Similarly, both players do not innovate and play

Ell =

(
1

3b
,
1

3b

)
when 1

3b > x̂, i.e. when k > (a−1)(3a+1)
12b . Notice that when

(a− 1) (a+ 3)
12b

< k <
(a− 1)(3a+ 1)

12b

neither Ehh nor Ell exists (no symmetric equilibrium).
Now we consider asymmetric equilibria. An equilibrium where one firm

innovates and chooses x∗h whereas the other does not and produces x
∗
l must

satisfy the condition: {
x∗h =

a
2b −

x∗l
2

x∗l =
1
2b −

x∗h
2

thus getting the pair of equilibria

Ehl = (x
∗
h, x
∗
l ) =

(
2a− 1
3b

,
2− a
3b

)
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Figure 12: One-sided innovation - Adaptive expectations. Basins of attraction
of: Ehl (yellow) Ell (blue), and 2-cycle

{
C1(x∗l , f(x

∗
hl)), C

2(x∗hl, x
∗
l )
}
(green).

Parameters as in Figure 10 for decreasing speeds of adjustment α.
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and
Elh = (x

∗
l , x
∗
h)

Notice that equilibria Ehl and Elh are feasible, in the sense that firms find
it profitable to play them, provided that 0 ≤ x∗l ≤ x̂ ≤ x∗h, i.e. if the following
condition holds

(a− 1) (5− a)
12b

≤ k ≤ (a− 1) (5a− 1)
12b

Moreover, both equilibria Ehl (and Elh) and Ell coexist when:

(a− 1) (1 + 3a)
12b

< k <
(a− 1) (5a− 1)

12b

and that Ehl (and Elh) and Ehh coexist when

(a− 1) (5− a)
12b

< k <
(a− 1) (3 + a)

12b

With respect to stability, the Jacobian matrix at equilibrium, be it Ehh, Ell,
Ehl or Elh, has the form

J(T ) =

(
1− α −α2
−α2 1− α

)
(20)

for which it is very easy to calculate that its eigenvalues are always in modulus
less than one for any α ∈ (0, 1]. QED
Proof of Proposition 2
Since best response functions are piecewise-linear, the Jacobian matrix of T

(8) J(T ) reported in (20) does not depend on the coordinates of the point of
the 2-cycle. Being

J2(T ) =

(
(1− α)2 + α2

4 −α(1− α)
−α(1− α) (1− α)2 + α2

4

)

the eigenvalues of J2, λ1 =
(α−2)2

4 and λ2 =
(3α−2)2

4 , are both in modulus less
than one for any α ∈ (0, 1]. QED
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