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1. Introduction

De Castro and Yannelis (2009) introduce a private information maximin value

allocation notion in an exchange economy with partition type differential information

and ambiguity. The economy was assumed to be finite. That is, containing a finite

number of states and commodities, while being comprised of a finite number of non-

Bayesian agents.

Angelopoulos and Koutsougeras (2014) enrich and generalize this maximin general

equilibrium concept in various aspects. First, they assume arbitrary information ex-

change protocols within agents’ coalitions, so that agents’ prior beliefs and maximin

utilities become coalitional dependent, accommodating any kind of information for

individuals as group members, not necessarily and only their private information. In

this way, the private (information) maximin value allocation becomes just a special

(yet, notable) case. Second, with these conceptual tools in hand, the authors of this

paper introduce both ex ante and interim maximin value allocation notions. Finally,

they allow for an infinite dimensional commodity space in the underlying economy.

In this paper we restrict our attention to the (ex ante) private maximin value

allocation only, which is worth pursuing for the following sequence of reasons of

increasing significance:

To begin with, it is a Shapley (1969) value allocation notion, hence it is a fair

cooperative equilibrium concept. Indeed, each agent is assigned with a utility level,

which is the expected marginal contribution of this agent to all the coalitions he

participates.

Thereafter, it is a direct extension of the private (Bayesian) value allocation of

Krasa and Yannelis (1994, 1996). Thus, within it, fairness is strengthened; better

informed agents are assigned with higher utility.

Unlike the private value allocation, however, the maximin value allocation exists

without being necessarily tied with the private information measurability assumption

on agents’ net trades (see in Angelopoulos and Koutsougeras, 2014). Thereby, all

the maximin (Pareto efficient) value allocations are taken into account and there is

no efficiency loss in equilibrium.
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More importantly, for the accomplishment of incentive compatibility of this no-

tion1, less informational measurability restrictions are imposed. That is, assuming

only informational measurable initial endowments, every maximin value allocation is

maximin efficient incentive compatible (see again in Angelopoulos and Koutsougeras,

2014). In that sense, no conflict between efficiency and incentive compatibility oc-

curs.

Many real life economies are better modeled and explained via a non-finite number

of states, countable or uncountable depending on the case. In the maximin pref-

erences framework, nevertheless, this poses elemental analytical obstacles: agents’

maximin utilities (minimized over the states) are not well defined to begin with.

Existence issues of the maximin value allocation with a non - finite set of states were

raised in Angelopoulos and Koutsougeras (2014). This paper attempts to deal with

this matter when, specifically, the set of states is countable.

In sections 2 and 3 the appropriate analytical framework is established; the am-

biguous economy and the maximin value allocation are, respectively, defined. The

existence result of the paper is provided in section 4. Existence of the maximin value

allocation is proved by truncating the countability of the set of states; a technique

also adopted in He and Yannelis (2013), but for the maximin Walrasian expectations

equilibrium. In section 5 we conclude.

2. The Ambiguous Economy

The ambiguous economy is a two (ex ante - ex post) period exchange economy,

within which the non-Bayesian asymmetrically informed agents are, in particular,

maximin ambiguity averse. There is a finite number of individuals (maximin agents)

participating into the ambiguous economy, who are allowed to cooperate and form

alliances. Their trade (contract writing) occurs in Euclidean spaces. They write

their consumption contacts facing, specifically, countable infinitely many states of

nature of the world.

1Incentive compatibility is a contract theoretic property of an allocation. It is originated by the
contracts’ ex post fulfillment issue. See, for example, in the introduction of de Castro et al (2011)
or of Angelopoulos and Koutsougeras (2014).
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We construct such an economy following the footsteps of de Castro and Yannelis

(2009), de Castro et al. (2011, 2012), Angelopoulos and Koutsougeras (2014) and

He and Yannelis (2013).

I = {1, 2, ..., s} is the finite set of agents of the economy and an S ∈ P(I) is

a coalition of agents. There is a finite number, l, of commodities traded in the

market and Rl is the economy’s commodity space. The underlying state contingent

uncertainty, state dependent randomness and informational structure in the economy

are summarized by a countable set of states Ω = N = {ωn}n∈N. F = P(Ω) is the

natural σ - algebra of Ω, containing all the events of the economy.

Rl, Ω and F are common (factors) to all the economy’s agents. Agents, particu-

larly, are assigned with the following differential characteristics:

1. Informational sets. Πi is the agent’s i partition of Ω and Fi ⊆ F is the same

agent’s σ - algebra, generated by Πi. Both of them interchangeably represent the

private (or asymmetric) information of the i agent. It is specifically assumed that the

agent’s i partition of N contains countable infinitely many finite (only) sets. That is,

the states between which the agent i cannot distinguish are always of finite number.

In other words, the privately informed agent i cannot be “too uninformed”. Finally,

it is maintained that the agent i retains his private information within his coalitions.

There are no underlying information exchange protocols inside agents’ groups. Con-

sequently, the agents’ priors and preferences are not coalitional dependent2.

2. Prior beliefs. The (σ - additive) probability measure qi : Fi → [0, 1] is the

informationally restricted private prior of the i agent. By definition, qi satisfies the

following incompleteness property: qi(Bi) may be unknown for a ∅ 6= Bi ⊂ Ai ∈ Fi,
even though qi(Ai) is provided (known) by qi. That is, the economy’s agents may be

unable to completely form a prior belief. In other words, agents face ambiguity.

3. Preferences, consumption sets and endowments. With ui(ω) := uωi : Rl
+ → R+,

ω ∈ Ω, we denote the agent’s i random state dependent (r.s.d.) utility function(s),

representing the same agent’s preferences (over r.s.d. consumption). For each agent

i, uωi , ω ∈ Ω, is taken to be continuous and concave. Additionally, for each agent i,

2Of course, one can proceed as in Angelopoulos and Koutsougeras (2014): allow individuals to
exchange information within their groups by obeying to arbitrary information sharing rules and,
thereby, examine generalized informational aspects of the (ex ante) maximin value allocation.
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the family of utility functions {uωi : Rl
+ → R+, ω ∈ Ω} is assumed to be uniformly

bounded. An xi(ω) ∈ Rl
+, ω ∈ Ω, is a r.s.d. consumption bundle of the i agent.

Then, an {xi(ω)}ω∈Ω := xi ∈ (Rl
+)∞ is a r.s.d. consumption plan of the i agent.

Followingly, Xi = {xi : xi ∈ (Rl
+)∞} ⊂ (Rl

+)∞ is the (feasible) r.s.d. consumption

set of this agent3. An ei(ω) ∈ Rl
+, ω ∈ Ω, is a r.s.d. initial endowment of the agent

i and {ei(ω)}ω∈Ω := ei ∈ `1
+ ∩ Xi 6= ∅ is the same agent’s r.s.d. initial endowment

plan4. Agents’ preferences over r.s.d. consumption bundles give rise to their maximin

preferences as well, over r.s.d. consumption plans. Agent’s i maximin preferences

are represented by his maximin (expected) utility function υi : Xi → R+, which is

defined by

υi(xi) =
∑

Ai∈Πi

[min
ω∈Ai

uωi (xi(ω))]qi(Ai).

Agents are thought to be rational, that is, utility maximizers. Hence, agents are

maximin utility maximizers as well. Lastly, agents are assumed to have monotone

(increasing) maximin preferences5.

Remark 1 The formulation above was established in de Castro and Yannelis (2010)

with a finite Ω. With a countable Ω, He and Yannelis (2013) (well) define and use it

as well, in a close (but different) to ours manner6. In our setting, this format is well

defined because, for each agent i: (i) each Ai ∈ Πi is finite (so the minimum in the

expression above is attained) and (ii) {uωi : Rl
+ → R+, ω ∈ Ω} is uniformly bounded

(so the the sum above is finite). �

3For each agent i, Xi is presumed to be an uncountably infinite set.
4Note that (Rl)∞ = Rl×∞ is an infinite dimensional Euclidean space (i.e., of dimension l.∞ =∞).
It is the space of all l ×∞ matrices with real entries. Equivalently viewed, it is the space of all
sequences of real l× 1 vectors. Henceforth, `1 is thought of as the subspace of (Rl)∞ containing all
the summable sequences of real l × 1 vectors.
5First the column wise and then the coordinate wise ordering is assumed on (Rl)∞ .
6He and Yannelis (2013) define (on Ω × Rl+) one r.s.d. utility function for each agent, instead
of defining a class of r.s.d. utility functions (one for each state) for each agent. They also use a
different assumption to derive the fact that all the elements of an agent’s partition are finite. The
essential difference, however, is that He and Yannelis (2013) allow for the maximin utility of an
agent to be infinity.
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Remark 2 It is worth observing that if (i) agents are assumed to have private

information measurable r.s.d. utility functions, i.e., if for any i ∈ I we have that:

ω, ω̄ ∈ Ai ∈ Πi, then u
ω
i (xi(ω)) = uω̄i (xi(ω̄)) and (ii) agents’ priors are assumed to be

non - informationally restricted and of full support, the previous formula reduces to

the standard Bayesian (or subjective) expected utility. As it was to be expected: (i)

the private information measurability condition is necessary (and unavoidable) in the

Bayesian context, while (ii) Bayesian agents (i.e., agents with Bayesian preferences)

are accommodated in our model as a special case. �

We have finally derived the following ambiguous economy:

E = { (Rl)∞ ; (Ω,F) ; ( [ Fi(Πi), Xi, ei, υi(u
ω
i , qi) ] : i ∈ I ) }.

A r.s.d. allocation (contract) of E is a list of all the economy’s agents’ r.s.d.

consumption plans. It is notated as

x = (x1, x2, ...., xi, ...., xs) ∈ X =
∏
i∈I
Xi ⊂ ((Rl

+)∞)s

and is said to be feasible if
∑
i∈I
xi =

∑
i∈I
ei ⇐⇒

∑
i∈I
xi(ω) =

∑
i∈I
ei(ω), for all ω ∈ Ω.

According to the feasibility condition, the market (i.e., the economy) clears with-

out free disposal.

3. The maximin value allocation

Upon the ambiguous economy constructed in the previous section, we can now

define the (ex ante private) maximin value allocation of Angelopoulos and Kout-

sougeras, 2014.

First, however, we have to define a Shapley (1953) - value - solvable maximin

transferable utility (MTU) game.

Let the MTU game Γ = (I, Vλ,υ, Sh). Γ is a cooperative (coalitional) game, allow-

ing for side payments among its finitely many players 1, 2, ..., s ∈ I. Within Γ, the

players’ payoffs are identified with maximin utilities and:
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1. υ is the set of all the players’ maximin utility functions. The players’ maximin

utilities υi(·), i ∈ I, become common scaled (hence, interpersonally comparable)

and transferable by a personal factor λi ≥ 0 assigned to each player i, such that

not all λi are equal to zero. λ ∈ Rs
+ \ {0} is the vector of all the players’ factors.

At the same time, λi is the player’s i weight to Γ, so that
∑
i∈I
λi = 1. Finally,

V (λ, υ) := Vλ,υ : 2I → R+ is a set function, called the maximin characteristic function

of Γ. It measures the gain (i.e., the maximin utility level) of every coalition S ⊆ I7.

The Vλ,υ of Γ must have a specific (any) functional form, satisfying monotonicity,

superadditivity and normalized to become zero for the empty set (coalition).

2. V is the class of all the Vλ,υ of Γ. Then, Sh : V → Rs
+ is the maximin Shapley value

function of Γ, assigning: (i) to Γ the maximin Shapley (1953) value Sh(Vλ,υ), which

is a vector of Rs
+ and (ii) to each player i of Γ the respective coordinate Shi(Vλ,υ)

of the previous vector. The latter is the maximin Shapley value of the i player, a

proposed (positive) maximin utility level to be received by this player. For each

player i of Γ, his Shi(Vλ,υ) is given by the formula

Shi(Vλ,υ) =
∑

S⊆I,i∈S

(|S|−1)!(|I|−|S|)!
|I|! [Vλ,υ(S)− Vλ,υ(S \ {i})], where |I| = s,

which conveys the following interpretation: each player i is assigned with a maximin

utility Shi(Vλ,υ) ∈ R+, which is the expected marginal contribution of this player

to all the different(ly sized) coalitions S he becomes a member of. Therefore, for

any Vλ,υ ∈ V , Sh(Vλ,υ) is a fair solution to Γ. Sh(Vλ,υ) is a normative solution as

well, satisfying: (i) (group rationality)
∑
i∈I
Shi(Vλ,υ) = Vλ,υ(I) and (ii) (individual

rationality) Shi(Vλ,υ) ≥ Vλ,υ({i}), for all i ∈ I.

Now, by associating E with Γ and by appropriately defining the Vλ,υ of Γ, i.e., by

attaching a specific functional form to Vλ,υ, we define the maximin value allocation

of E as follows:

7Hence, Vλ,υ measures the worth or power of every coalition.
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Definition Let the Vλ,υ of Γ be given for every coalition S ⊆ I by

Vλ,υ(S) = max
xi∈Xi

∑
i∈S

λi
∑

Ai∈Πi

[min
ω∈Ai

uωi (xi(ω))]qi(Ai),

subject to
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), for all ω ∈ Ω.

Then, an allocation x ∈ X of E is said to be an (ex ante private) maximin value

allocation if the following two conditions are satisfied:

1.
∑
i∈I
xi(ω) =

∑
i∈I
ei(ω), for all ω ∈ Ω.

2. For all i ∈ I, we have that λi
∑

Ai∈Πi

[min
ω∈Ai

uωi (xi(ω))]qi(Ai) = Shi(Vλ,υ),

where λi ≥ 0 for all i and
∑
i∈I
λi = 1. �

The following series of remarks is in order:

Remark 3 The maximin value allocation is a cardinal value allocation. It is easy

to show that the group rationality (individual rationality, respectively) of Sh(Vλ,υ)

guarantees the maximin Pareto efficiency (maximin individual rationality, respec-

tively) of the maximin value allocation. Let Πi(ω) be the element of the agent’s i

partition Πi containing ω, the state realized in the economy’s second period. Then,

by appropriately adjusting Theorem 2 of Angelopoulos and Koutsougeras (2014), it

is straightforward to prove that (i) the maximin efficiency and (ii) the condition if

for any i ∈ I we have that: ω, ω̄ ∈ Ai ∈ Πi, then ei(ω) = ei(ω̄)8 secure the transfer

8This is the private information measurability assumption, imposed on the agents’ initial endow-
ments. Private information measurable agents’ consumption is not, on the other hand, demanded.
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maximin coalitional incentive compatibility of the maximin value allocation9. �

Remark 4 It can be easily verified that the Vλ,υ of Γ is (indeed) monotone, su-

peradditive and becomes zero for the empty coalition (of none agent). A coalition

S obtains for its members a total gain of Vλ,υ(S). By the way Vλ,υ is defined, it

is secured that every coalition S of E acts rationally, i.e., maximizes its maximin

utility, subject to the feasibility of consumption within S. The coalition’s S max-

imin utility is its agents’ aggregate common scaled (and weighted) maximin utility. �

Remark 5 When agents have monotone maximin preferences, it can be easily

understood that the following property is valid for every (feasible and maximin in-

dividually rational Pareto optimal) maximin value allocation of E : Every coalition

maximizes its maximin utility subject to its consumption constraints if and only if

every agent in a coalition independently maximizes his maximin utility subject to

the feasibility of consumption within this coalition. This allows us to deduce that if

x ∈ X is a maximin value allocation of E , then the Vλ,υ of Γ ends up being defined by

Vλ,υ(S) = max
xi∈Xi

∑
i∈S

λi
∑

Ai∈Πi

[min
ω∈Ai

uωi (xi(ω))]qi(Ai)=

=
∑
i∈S

λi max
xi∈Xi

∑
Ai∈Πi

[min
ω∈Ai

uωi (xi(ω))]qi(Ai)=

=
∑
i∈S

λi
∑

Ai∈Πi

[min
ω∈Ai

( max
xi(ω)

uωi (xi(ω)) ) ]qi(Ai),

subject to
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), for all ω ∈ Ω,

that is, finally, by Vλ,υ(S) =
∑
i∈S

λi
∑

Ai∈Πi

[min
ω∈Ai

uωi (x?i (ω))]qi(Ai). �

9The reader is referred to Angelopoulos and Koutsougeras (2014), for the definition of the notions of
maximin: Parato optimality, individual rationality and (transfer coalitional) incentive compatibility
of an allocation. De Castro and Yannelis (2010) first introduced the maximin version of these
properties an allocation should (desirably) satisfy. Angelopoulos and Koutsougeras (2014) enrich
them and provide a stronger notion of incentive compatibility.
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Remark 6 Within any maximin value allocation, a coalition S cannot redistribute

among its members its allocated maximin utility. That is to say, side payments are

not allowed within a maximin value allocation10. Finally, although an agent’s i λi

may be zero, the maximin value allocation may still generate a strictly positive max-

imin utility for this agent. However, an agent’s zero weight leads, irrespective of the

agent’s maximin utility level, to the same agent’s zero Shapley value. �

Remark 7 Assuming that: (i) the agents’ maximin expected utilities are speci-

fied to Bayesian ones as in Remark 2 and (ii) the agents’ consumption and initial

endowments (i.e., net trades) are, specifically, private information measurable, the

definition above reduces to the one of the private (Bayesian) value allocation of Krasa

and Yannelis (1994). �

4. Existence

The analysis has revealed that although we begun with a finite dimensional Eu-

clidean space, Rl, as the economy’s commodity space, E ended up being defined

with the infinite dimensional Euclidean commodity space (Rl)∞. (Rl)∞ is a separa-

ble, partially ordered vector space. The product topology, that is, the topology of

point wise (or coordinate wise) convergence, can be supplied to (Rl)∞. (Rl)∞, how-

ever, does not carry any norm. Thus, the standard separable Banach space methods

are not applicable for existence purposes, now that the economy is underpinned by

countably many states of nature.

Other techniques, therefore, have to be adopted. Towards this objective, instead

of truncating the infinite dimension of the commodity space à la Bewley (1972), we

truncate (as in He and Yannelis, 2013) the countability of the set of states. By doing

so, the infinite - dimensionality of the commodity space is automatically reduced (to

sequential finite dimensions) as well.

To be more precise: (i) We sequentially reduce the economy into its Ω - finite

traces, (ii) we prove existence of the maximin value allocation in each one of these

10Despite it being associated with a λ - transferable utility game.
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truncated economies and (iii) we use limiting arguments to prove existence of the

maximin value allocation under the desirable infinity of Ω.

Therefore, given the economy with countable states, we first have to appropriately

define a sequence of (truncated) economies with finitely many states. We begin by

considering the (countable) set of all the finite subsets of Ω = N. We then assume

any sequence En, n ∈ N, of (not all the) finite subsets of Ω, satisfying the following

condition:

(C) For each n ∈ N, for each i ∈ I and for each Ai ∈ Πi, we have that

either Ai ∩ En = ∅ or Ai ⊆ En.

Finally, for each n ∈ N, we construct a truncated ambiguous economy En with a finite

number of states, such that the finite set of states of En coincides with the term En of

the aforementioned sequence. Given E , therefore, we construct a sequence {En}n∈N
of ambiguous economies containing a finite set of states as follows:

For each n ∈ N, we define the economy En as

En = { (Rl)|Ω
n| ; (Ωn,Fn) ; ( [ Fni (Πn

i ), Xn
i , e

n
i , υ

n
i ((uωi )n, qni ) ] : i ∈ I ) },

where Ωn = En, Fn = {A ⊆ Ωn : A ∈ F} ⊂ F 11 and for each agent i:

1. The private informational sets Πn
i and Fni are now finite and defined as

Πn
i = {Ai ⊆ Ωn : Ai ∈ Πi} ⊂ Πi and Fni = Fni (Πn

i ) = {Ai ⊆ Ωn : Ai ∈ Fi} ⊂ Fi,

i.e., they are the restrictions of Πi and Fi to Ωn respectively12 13.

2. The private prior qni is now a finitely additive probability measure, defined as

qni = qi|Ωn , satisfying qni (Ai ∈ Πn
i ) = qi(Ai ∈ Πi).

3. Xn
i = Xi|Ωn = {{xi(ω)}ω∈Ωn := xni | xni ∈ (Rl

+)|Ω
n|} ⊂ (Rl

+)|Ω
n|, so that Xn

i ⊂ Xi;

it is further assumed that Xn
i is convex and (naturally) that {ei(ω)}ω∈Ωn := eni ∈ Xn

i .

11That is, Fn is the power set (algebra) of Ωn, which is the restriction of the power set (σ - algebra)
F of Ω to Ωn.
12Notice that condition C (i.e., the criterion of choosing the sequence En = Ωn, n ∈ N) guarantees
that Πn

i is well defined, that is to say, Ωn is well partitioned by every agent i. Consequently,
condition C ensures that every truncated ambiguous economy En is well defined.
13Note also that Fni ⊆ Fn.
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4. {(uωi )n : Rl
+ → R+, ω ∈ Ωn} ⊂ {uωi : Rl

+ → R+, ω ∈ Ω}, so that, for each ω ∈ Ωn,

(uωi )n = uωi : Rl
+ → R+(which is continuous, concave and has a uniform bound).

5. υni : Xn
i → R+, defined by υni (xni ) =

∑
Ai∈Πn

i

[min
ω∈Ai

uωi (xi(ω))]qni (Ai).

A r.s.d. allocation of En is denoted as

xn = (xn1 , x
n
2 , ...., x

n
i , ...., x

n
s ) ∈ Xn =

∏
i∈I
Xn
i ⊂ ((Rl

+)|Ω
n|)s

and is said to be feasible, if
∑
i∈I
xni =

∑
i∈I
eni ⇐⇒

∑
i∈I
xi(ω) =

∑
i∈I
ei(ω), for all ω ∈ Ωn.

We now state and prove the following lemma:

Lemma If the function f : X ⊆ Rm<∞ → R is continuous and bounded on X, then

X is closed in Rm 14.

Proof. Assume that X is not closed. Then, we have that ∂X 6⊂ X, i.e., there exists

y ∈ ∂X, such that y /∈ X. Considering the Euclidean norm on Rm, let the continuous

and bounded function f : X → R be defined by f(x) = 1
||x−y|| . Note that f is con-

tinuous on X and because f is bounded on X we have that for all x ∈ X, 1
||x−y|| ≤ ε,

ε > 0. Consider now the (open) ball B(y, 1
ε
), for any ε > 0. Since y ∈ ∂X, it must

be true that X ∩ B(y, 1
ε
) 6= ∅. This is turn implies that there exists x ∈ X such

that x ∈ B(y, 1
ε
), so that ||x−y|| < 1

ε
, or that 1

||x−y|| > ε, which is a contradiction. �

We finally state and prove the following existence result:

14With respect to the standard topology of Rm.
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Theorem A maximin value allocation exists in E .

Proof. step 1

We prove that a maximin value allocation exists in En, n ∈ N. Wlog, we write En

as En = { (Rl)|Ω
n| ; (Xn

i , e
n
i , υ

n
i ) : i ∈ I }, n ∈ N, which can be directly related with

the deterministic economy E ′ = {Rk<∞ ; (Xi, εi, wi) : i ∈ I}. According to Emmons

and Scafuri (1985), a cardinal value allocation exists in E ′ if for each agent i: (i) εi ∈
Xi ⊂ Rk

+, (ii) Xi is closed, below bounded and convex in Rk and (iii) wi : Xi → R+ is

continuous and concave. Hence, a (cardinal) maximin value allocation exists in En,

n ∈ N, if the same conditions are accordingly satisfied. Consider the Euclidean norm

|| · ||, the standard topology and the point wise ordering on any finite dimensional

Euclidean space. Fix a n ∈ N and an agent i ∈ I of the (fixed) economy En. The

continuity of uωi , ω ∈ Ωn, secures continuity for υni as well. Indeed: uωi , ω ∈ Ωn,

is continuous on Rl
+ iff for all xi(ω) ∈ Rl

+, ω ∈ Ωn and for all ε > 0, there exists

δ(xi(ω), ε) > 0, such that for all yi(ω) ∈ Rl
+, ω ∈ Ωn, with 0 < ||yi(ω)− xi(ω)|| < δ,

we have that 0 < |uωi (yi(ω))− uωi (xi(ω))| < ε. Now, assume that υni is continuous on

Xn
i . This would mean that for all xni ∈ Xn

i and for all ε > 0, there exists δ(xni , ε) > 0,

such that for all yni ∈ Xn
i , with 0 < ||yni − xni || < δ, we have that

0 < |
∑

Ai∈Πn
i

[min
ω∈Ai

uωi (yi(ω))]qni (Ai)−
∑

Ai∈Πn
i

[min
ω∈Ai

uωi (xi(ω))]qni (Ai) | < ε, or

0 < |
∑

Ai∈Πn
i

[min
ω∈Ai

uωi (yi(ω))− min
ω∈Ai

uωi (xi(ω))] qni (Ai) | < ε, or

0 <
∑

Ai∈Πn
i

|min
ω∈Ai

uωi (yi(ω))− min
ω∈Ai

uωi (xi(ω))| qni (Ai) < ε, or

0 <
∑

Ai∈Πn
i

min
ω∈Ai

| uωi (yi(ω))− uωi (xi(ω)) | qni (Ai) < ε.

From the last expression it is implied that for each Ai ∈ Πn
i , we have that

0 < min
ω∈Ai

| uωi (yi(ω))− uωi (xi(ω)) | < ε.
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But this is true, because 0 < |uωi (yi(ω)) − uωi (xi(ω))| < ε, ω ∈ Ωn. The concavity

of uωi , ω ∈ Ωn, implies concavity for υni on Xn
i as well (besides, by assumption, Xn

i

is convex in (Rl)|Ω
n|). Indeed: Since uωi , ω ∈ Ωn, is concave on Rl

+, it holds that for

every xi(ω), yi(ω) ∈ Rl
+, ω ∈ Ωn and for every t ∈ [0, 1] we have that

uωi (txi(ω) + (1− t)yi(ω)) ≥ tuωi (xi(ω)) + (1− t)uωi (yi(ω)).

It follows from the last expression and for an Ai ∈ Πn
i that

min
ω∈Ai

uωi (txi(ω) + (1− t)yi(ω)) ≥ min
ω∈Ai

[ tuωi (xi(ω)) + (1− t)uωi (yi(ω)) ] =

tmin
ω∈Ai

uωi (xi(ω)) + (1− t) min
ω∈Ai

uωi (yi(ω))

and hence that

min
ω∈Ai

uωi (txi(ω) + (1− t)yi(ω)) qni (Ai) ≥

t min
ω∈Ai

uωi (xi(ω)) qni (Ai) + (1− t) min
ω∈Ai

uωi (yi(ω)) qni (Ai).

Finally, we conclude that∑
Ai∈Πn

i

[ min
ω∈Ai

uωi (txi(ω) + (1− t)yi(ω)) ] qni (Ai) ≥

t
∑

Ai∈Πn
i

[min
ω∈Ai

uωi (xi(ω))]qni (Ai) + (1− t)
∑

Ai∈Πn
i

[min
ω∈Ai

uωi (yi(ω))]qni (Ai), i.e., that

υni (txni + (1− t)yni ) ≥ tυni (xni ) + (1− t)υni (yni ), for any xni , y
n
i ∈ Xn

i and t ∈ [0, 1].

By assumption, eni ∈ Xn
i (so that Xn

i 6= ∅). By construction, Xn
i is below (order)

bounded by the zero vector. Since uωi , ω ∈ Ωn, is bounded on Rl
+, υni is also bounded

on Xn
i . Then, from the previous lemma, it follows that Xn

i is closed in (Rl)|Ω
n|.

Therefore, there exists an allocation xn ∈ Xn of the economy En such that:

1.
∑
i∈I
xi(ω) =

∑
i∈I
ei(ω), for all ω ∈ Ωn,
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2. for all i ∈ I, we have that λni
∑

Ai∈Πn
i

[min
ω∈Ai

uωi (xi(ω))]qni (Ai) = Shi(V
n
λn,υn), where:

(i) λni ≥ 0 for all i, with
∑
i∈I
λni = 1 and

(ii) Shi(V
n
λn,υn) =

∑
S⊆I,i∈S

(|S|−1)!(|I|−|S|)!
|I|! [V n

λn,υn(S)− V n
λn,υn(S \ {i})]

is the Shapley value of the i agent, derived from the truncated maximin TU game

Γn = (I, V n
λn,υn , Sh), whose characteristic function V n

λn,υn is defined by

V n
λn,υn(S) = max

xni ∈Xn
i

∑
i∈S

λni
∑

Ai∈Πn
i

[min
ω∈Ai

uωi (xi(ω))]qni (Ai),

subject to
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), for all ω ∈ Ωn.

step 2

We approximate the existence of a feasible allocation in E by all the existing maximin

value allocations in the sequence of economies {En}n∈N. Consider a feasible allocation

x ∈ X of E . From this allocation’s feasibility condition∑
i∈I
xi(ω) =

∑
i∈I
ei(ω), for all ω ∈ Ω,

the following condition is implied∑
ω∈Ω

∑
i∈I
xi(ω) =

∑
ω∈Ω

∑
i∈I
ei(ω) = e (<∞, because ei ∈ `1

+ ∩Xi, for all i).

This means that for each agent i, each xi(ω), ω ∈ Ω, belongs in the compact rectangle

[0, e] of Rl. Define now, for each agent i, the set

Ci = C = {xi : 0 ≤ xi(ω) ≤ e, ω ∈ Ω } = [0, e]∞ ⊂ (Rl
+)∞.

Clearly, C is compact in (Rl)∞ with respect to the product topology of (Rl)∞. Cer-

tainly, the set
∏
i∈I
Ci = C |I|=s (which contains all the feasible allocations of E) is also

compact in ((Rl)∞)s. Fix now again a n ∈ N and consider the corresponding (fixed)

economy En with its (feasible) maximin value allocation xn ∈ Xn. As previously,
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i∈I
xi(ω) =

∑
i∈I
ei(ω), for all ω ∈ Ωn ⇒

∑
ω∈Ωn

∑
i∈I
xi(ω) =

∑
ω∈Ωn

∑
i∈I
ei(ω) = en,

from which it is implied that for each agent i, each xi(ω), ω ∈ Ωn, belongs in the

rectangle [0, en] of Rl
+. We define now the set

Cn
i = Cn = {xni : 0 ≤ xi(ω) ≤ en, ω ∈ Ωn } = [0, en]|Ω

n| ⊂ (Rl
+)|Ω

n|.

Since by construction [0, en] ⊆ [0, e] and, thus, [0, en]|Ω
n| ⊂ [0, e]∞, we conclude that

for each agent i it holds that xi(ω) ∈ [0, e], ω ∈ Ωn and xni ∈ C. So that finally

xn ∈ Cs. Observe also that the agents’ vector λn belongs in the unit (s − 1) - sim-

plex of Rs, which we denote as ∆. Then, by notating the maximin value allocation

xn ∈ Xn of En with the augmented form (xn1 , ........, x
n
s , λn1 , ........λ

n
s ) = (xn, λn), we

have that (xn, λn) ∈ Cs × ∆ = K. Evidently, K is compact in ((Rl)∞)s × Rs, so

that every sequence of K has a convergent subsequence in K. Consider the sequence

{(xm, λm) : m ∈ N} of K and its convergent subsequence {(xn, λn) : n ∈ N} to

the point (x, λ) of K. Since for each n ∈ N the maximin value allocation of the

economy En belongs in K, we can wlog identify the previous (sub)sequence with

the sequence of the existing maximin value allocations in the sequence of economies

{En}n∈N. Concluding, the sequence of the maximin value allocations (of the trun-

cated economies of the original economy) converges to the point (x, λ) ∈ K, which

is a feasible allocation of the default economy E .

step 3

We verify that (x, λ) is a maximin value allocation for E , i.e., that conditions 1, 2 of

the definition in section 3 are satisfied in the limit of the sequence {(xn, λn) : n ∈ N}.
Condition 1, i.e., the feasibility of the allocation (x, λ), was derived in step 2. For

condition 2, we need to show that for the existing (by step 2) λi ≥ 0 for all i ∈ I,

with
∑
i∈I
λi = 1, the following condition is satisfied

λi
∑

Ai∈Πi

[min
ω∈Ai

uωi (xi(ω))]qi(Ai) = Shi(Vλ,υ), for all i.

For all n ∈ N and for any i, we have proven that
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λni
∑

Ai∈Πn
i

[min
ω∈Ai

uωi (xi(ω))]qni (Ai) = Shi(V
n
λn,υn).

Hence, for any i (and provided that the following limits exist), it holds that

lim
n→∞

λni
∑

Ai∈Πn
i

[min
ω∈Ai

uωi (xi(ω))]qni (Ai) = lim
n→∞

Shi(V
n
λn,υn), or that

λi lim
n→∞

∑
Ai∈Πn

i

[min
ω∈Ai

uωi (xi(ω))]qni (Ai) =

lim
n→∞

∑
S⊆I,i∈S

(|S|−1)!(|I|−|S|)!
|I|! [V n

λn,υn(S)− V n
λn,υn(S \ {i})] =

∑
S⊆I,i∈S

(|S|−1)!(|I|−|S|)!
|I|! [ lim

n→∞
V n
λn,υn(S)− lim

n→∞
V n
λn,υn(S \ {i})] = Shi( lim

n→∞
V n
λn,υn).

Since Ω = N, there exists an increasing (by containment) sequence {An}n∈N of sub-

sets of Ω, such that An is finite for all n ∈ N and
⋃
n∈N

An = Ω. Since {An}n∈N satisfies

condition C, we do not loose in generality if we identify the sequence {An}n∈N with

the sequence {Ωn}n∈N. Then, the increasing set sequence {Ωn}n∈N is above bounded

by and convergent to Ω, i.e.,

lim
n

sup Ωn = lim
n

inf Ωn = lim
n

Ωn = Ω.

It is then implied that lim
n
En = E and in particular (for any i) that:

As n→∞, uωi (xi(ω)), ω ∈ Ωn → uωi (xi(ω)), ω ∈ Ω, (ii) lim
n→∞

qni (Ai) = qi(Ai),

(iii) lim
n→∞

Πn
i = Πi and (iv) lim

n→∞
Xn
i = Xi (hence, lim

n→∞
xni = xi, for any xni ∈ Xn

i ).

The previous establish the fact that the expression

λi lim
n→∞

∑
Ai∈Πn

i

[min
ω∈Ai

uωi (xi(ω))]qni (Ai) = Shi( lim
n→∞

V n
λn,υn), i ∈ I,

leads to the desirable expression λi
∑

Ai∈Πi

[min
ω∈Ai

uωi (xi(ω))]qi(Ai) = Shi(Vλ,υ), i ∈ I.
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The left hand side limit is the well defined maximin utility of each agent. The proof

concludes by showing that the right hand side limit is well defined as well. For

this, we have to prove that the Vλ,υ of Γ15 exists (is well defined). For every n ∈ N,

consider the existing maximin value allocation (xn, λn) of En, in which (by definition)

feasibility of consumption is satisfied within any coalition. Then, for any S ⊆ I,∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), for all ω ∈ Ωn ⇒
∑
ω∈Ωn

∑
i∈S

xi(ω) =
∑
ω∈Ωn

∑
i∈S

ei(ω) = εn,

which means that for every i ∈ S, each xi(ω), ω ∈ Ωn, belongs in the compact

rectangle [0, εn] of Rl. For every i ∈ S, we know that uωi , ω ∈ Ωn is continuous on

Rl
+, thus on [0, εn] ⊂ Rl

+ as well. Then, for every i ∈ S and for any ω ∈ Ωn, it follows

from the Weierstrass’ Extreme Value Theorem that

max
xi(ω)∈[0,εn]

uωi (xi(ω)) = uωi (x?i (ω)) exists.

For every i ∈ S, however, as n → ∞, uωi (x?i (ω)), ω ∈ Ωn → uωi (x?i (ω)), ω ∈ Ω, thus

uωi (x?i (ω)), ω ∈ Ω, exists as well16. Since for every i ∈ S each Ai ∈ Πi is finite and

the family {uωi : Rl
+ → R+, ω ∈ Ω} is uniformly bounded, we conclude that

both the min
ω∈Ai

uωi (x?i (ω)) exists and the
∑

Ai∈Πi

[min
ω∈Ai

uωi (x?i (ω))]qi(Ai) (finitely) exists,

for each i ∈ S. So that then the∑
i∈S

λi
∑

Ai∈Πi

[min
ω∈Ai

uωi (x?i (ω))]qi(Ai) also exists.

According to Remark 5, this finally means that

Vλ,υ(S) = max
xi∈Xi

∑
i∈S

λi
∑

Ai∈Πi

[min
ω∈Ai

uωi (xi(ω))]qi(Ai),

subject to
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), for all ω ∈ Ω (⇒ subject to∑
ω∈Ω

∑
i∈S

xi(ω) =
∑
ω∈Ω

∑
i∈S

ei(ω) = ε), exists. �

15In the way it was specified in the definition of section 3.
16Note that lim

n→∞
εn = ε =

∑
ω∈Ω

∑
i∈S

ei(ω) =
∑
ω∈Ω

∑
i∈S

xi(ω) (<∞, since ei ∈ `1+ ∩Xi, for all i ∈ S).
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5. Conclusions

In this paper we allowed for countably infinite states in an ambiguous economy

and established the viability of a maximin value allocation in it.

One may reasonably argue that the maximin value allocation is a pessimistic equi-

librium notion. Nevertheless, as in de Castro and Yannelis (2009), de Castro et al.

(2011, 2012), He and Yannelis (2013) and Angelopoulos and Koutsougeras (2014),

pessimism turns out to be a normative attitude in general equilibrium terms. In-

deed, maximin-pessimistic agents enjoy higher (first best) efficiency in equilibrium;

the maximin value allocation exists without (necessarily) private information mea-

surable consumption and initial endowments. On top of that, less maximin (efficient)

value allocations are lost for the achievement of incentive compatibility of this con-

cept.

Given that uncountable set of states arise naturally in many real life economies, the

issue of examining the possibility of existence of a maximin (efficient incentive com-

patible) value allocation with a continuum of states bears considerable importance.
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