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Abstract

We define secure implementation with partially honest agents in a social choice

model and we show that strategy-proofness is a necessary and sufficient condition for

it. This result offers a behavioral foundation for rectangularity ; and it remains valid

even with only one partially honest agent. We apply the concept to a single-crossing

voting environment, and we prove that it characterizes the family of augmented

representative voter schemes. JEL Codes: C72, D03, D71, D82.

Key-words: Secure implementation; partial honesty; strategy-proofness; single-

crossing preferences; representative (median) voter.

1 Introduction

It is well known in the literature on social choice that many strategy-proof mechanisms

possess multiple Nash equilibria, some of which produce undesirable outcomes. This obvi-

ously creates problems when the mechanism is used in practice, since the designer cannot

rule out completely the possibility of observing equilibrium behavior that is inconsistent

with truth-telling and with the designer’s objectives.

To deal with this problem and to provide a better foundation for implementation

theory, Saijo, Sjöström, and Yamato (2007) have recently proposed the concept of secure

implementation. Roughly speaking, a social choice rule is securely implementable if there

exists a game form (mechanism) that simultaneously implements it in dominant strategy

equilibria and in Nash equilibria.

Appealing as it might sound, secure implementation has been shown to be hard to

achieve, especially in the context of voting, where non-pivotal voters are allowed to behave
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in arbitrary ways by the Nash equilibrium concept. This obviously renders the imple-

mentation of social goals a difficult task. A compelling example is provided by Saijo,

Sjöström, and Yamato (2007) themselves, who show that on the classical single-peaked

preference domain of public economics, if a Pareto efficient social choice rule is secure

implementable, then it must be dictatorial.1

This paper reexamines the concept of secure implementation in a social choice model

where agent are partially honest. This behavioral hypothesis, which has been recently

considered by Matsushima (2008), Dutta and Sen (2012) and Kartik, Tercieux and Holden

(2014), among others, postulates essentially that economic agents in a mechanism design

environment strictly prefer to report their true preferences whenever misrepresenting

them does not produce a better social outcome according with their true preferences.

Apart from assuming partially honesty, the current work focuses on a model where

each agent receives a preference ordering from an admissible preference domain over a

finite set of alternatives. This constitutes each agent’s private information. Society wishes

to achieves a certain goal represented by a social choice rule, that is, by a mapping from

the admissible preference profiles to the set of outcomes. To do that, every individual is

required to submit simultaneously and independently a preference relation, which does

not need to be the true one. Abstention is not permitted.

In this framework, the paper shows that a well known incentive compatibility prop-

erty, namely, strategy-proofness, is necessary and sufficient for secure implementation. A

previous characterization without partially honest agents, due to Saijo et al. (2007), has

demanded in addition to strategy-proofness, the so-called rectangularity property. Thus,

the result found here can be interpreted as providing a behavioral foundation for rectan-

gularity, in the sense that under partial honesty, the condition is automatically satisfied.

Moreover, the result remains valid even with only one partially honest agent. Thus, it

also indicates that rectangularity might not be after all too strong.

After deriving the result pointed out above, the paper applies the concept of secure

implementation with partially honest agents to a voting environment with single-crossing

preferences. This preference domain plays an important role in political economics by

guaranteing the existence of Condorcet winners when convexity is violated. Moreover, as

is known from Saporiti (2009), it also allows for the existence of appealing strategy-proof

mechanisms, such as the median choice rule. The current paper proves that a social

choice rule is securely implementable on a maximal single-crossing domain if and only if

it is a member of the family of augmented representative voter schemes. This generalizes

Saporiti’s (2009) characterization by including within the family non-anonymous social

1As is well known from Moulin (1980), this restricted domain allows for the existence of ‘nice’ strategy-
proof social choice rules, such as the median voter scheme, which is also anonymous and efficient.
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choice rules. It also stands in sharp contrast with Saijo et al.’s (2007) results for voting

environments with single-peaked preferences and without partial honesty, where secure

implementation comes at the price of democracy.

The rest of the paper is organized as follows. Section 2 presents the model, the

notation and the main definitions. It also describes an example that is used throughout

the paper to explain the intuitions behind the results. Section 3 contains the main

contributions of this work, as well as an informal discussion of the results. All proofs are

collected in Appendix A at the end of the paper.

2 Preliminaries

Consider a social choice environment with a finite set of agents N = {1, . . . , n}, n ≥ 2.

Let X = {x, y, z, . . .} be a finite set of mutually exclusive alternatives, with |X| > 2.2

Denote by R the set of all complete and transitive binary relations on X, with generic

element R, where P (resp., I) represents the strict (resp., indifference) preference relation

induced by R. For any R ∈ R and any Y ⊆ X, define a top or peak alternative of R on

Y as τ |Y (R) ∈ argmaxY (R). For simplicity, τ |X(R) = τ(R).

Let D ⊂ R be the admissible domain of individual preferences, which is as-

sumed to be the same for everybody and commonly known. Suppose each agent

i ∈ N is endowed with a preference relation Ri ∈ D, which constitutes i’s pri-

vate information. Let Dn =
∏n

i=1D be the set of all preference profiles ρ =

(R1, . . . , Rn). As usual, ρ−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn); for each R̂i ∈ D, (R̂i, ρ−i) =

(R1, . . . , Ri−1, R̂i, Ri+1, . . . , Rn); and, for every set S ⊆ N , ρS = (Ri)i∈S ∈
∏

i∈S D = D|S|.

The problem for this society is to make a social choice from the set of alternatives X.

Each agent is entitled to report a preference relation from the admissible set D. These

reports are intended to provide information about the true preferences of society, although

agents’ sincerity cannot be guaranteed. A social choice rule f : Dn → X associates to

each profile of reported preferences ρ ∈ Dn a unique social alternative f(ρ) ∈ X. Denote

the range of f by rf = {x ∈ X : ∃ ρ ∈ Dn such that f(ρ) = x}. In the sequel, assume

that f has a full range, so that rf = X. In particular, given that |X| > 2, this rules out

constant social choice functions.

A mechanism Γ with consequences in X is a strategic game form (Si, ϕ)i∈N , where Si

is the set of actions (pure strategies) of each agent i ∈ N , and ϕ : S → X is an outcome

function that associates an alternative from X with every action profile s = (si, s−i) ∈
S =

∏
i∈N Si. The mechanism Γ is called the direct mechanism associated with f if

2For every set A, |A| stands for the cardinality of the set, and Ā for the complement of A.
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Si = D for all i ∈ N , and ϕ = f . A mechanism Γ together with a preference profile

ρ = (Ri, ρ−i) ∈ Dn induces a game G = (Γ, ρ).

A Nash equilibrium for G is a strategy profile s∗ ∈ S such that for all i ∈ N , there does

not exist si ∈ Si such that ϕ(si, s
∗
−i)Pi ϕ(s

∗
i , s

∗
−i). Similarly, the strategy profile s ∈ S is

said to be a dominant strategy equilibrium for G = (Γ, ρ) if si ∈ Si is a dominant strategy

for each agent i ∈ N , (i.e., if there does not exist ŝi ∈ Si such that ϕ(ŝi, ŝ−i)Pi ϕ(si, ŝ−i)

for some ŝ−i ∈ S−i). Let N(G) (resp., DS(G)) denote the set of Nash (resp., dominant

strategy) equilibria of G.

A mechanism Γ securely implements the social choice rule f if for all ρ ∈ Dn, (i)

there exists s ∈ DS(Γ, ρ) such that f(ρ) = ϕ(s), and (ii) for all s ∈ N(Γ, ρ), f(ρ) = ϕ(s).

In words, secure implementation requires that for each preference profile, there exists

a dominant strategy equilibrium whose outcome coincides with the designer’s objective

(alternatively, is “f -optimal”), and all Nash equilibria produce the f -optimal outcome.

A social choice rule f : Dn → X is said to be strategy-proof if for all i ∈ N and all

(Ri, ρ−i) ∈ Dn, there is no R′
i ∈ D such that f(R′

i, ρ−i)Pi f(Ri, ρ−i). If a social choice

rule f is not strategy-proof, then f is said to be manipulable by i ∈ N at (Ri, ρ−i) ∈ Dn

via R′
i ∈ D. The next example illustrates that although strategy-proofness is necessary

for secure implementation (Saijo et al. 2007), it is not sufficient.

Example 1 Let n = 3 and X = {x, y, z}, with z > y > x. Suppose the admissible

preference domain is D = {xyz, xzy, zxy, zyx}, where each abc, a, b, c ∈ X, represents

a preference ordering P ∈ D with the property that aP bP c.3 Let ρ̄ = (xyz, xzy, zxy)

be the profile of true preferences. Fix the median choice rule f , defined as f(ρ) =

median(τ(P1), τ(P2), τ(P3)) for all ρ ∈ D3. As is shown later in Corollary 1, f is strategy-

proof. Moreover, it is easy to show that the direct mechanism (D, f) has a dominant

strategy equilibrium at ρ̄ given by the strategy profile s∗ = (xyz, xzy, zxy). Indeed,

consider first the incentives of agent 1 to deviate from s∗. For each s−1 ∈ D2 such that

f(·, s−1) = median(·, x, x), reporting any ordering s1 ∈ D produces the same outcome

f(s1, s−1) = x; in particular, that holds for s∗1. On the other hand, for any s−1 ∈ D2

such that either f(·, s−1) = median(·, x, z), or f(·, s−1) = median(·, z, x), reporting 1’s

true preferences xyz generates a social choice that coincides with his preferred alternative.

Thus, true-telling is a dominant strategy for agent 1; and, by the same token, so is for any

other individual. However, as is illustrated in Table 1, the mechanism (D, f) possess Nash

equilibria where the outcomes differ from the true-telling equilibrium.4 A case in point is

3As a passing remark, notice that D is not a single-peaked domain.
4For expositional convenience, in the payoff matrices it has been assumed that the preferences of

all agents are represented by the same utility function, which gives a numerical value of 1 to the top
alternative onX, 0 to the middle ranked alternative, and -1 to the bottom option. Apart from the payoffs,
the cells also display the social choice, i.e., the median top corresponding to each strategy profile.
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the profile s = (zxy, zyx, zxy), which is a Nash equilibrium for ((D, f), ρ̄) because any

individual deviation from s is incapable of modifying the social choice f(s) = z. The

same is true for any other profile corresponding to the pink cells of Table 1.5 Thus, the

median choice rule is not securely implementable on this preference domain.6

Table 1: Example 1

As happens in other voting environments, the previous example illustrates that in the

case under study, the direct mechanism admits undesirable Nash equilibrium outcomes

when one or more agents are unable to influence the social choice given the strategies of

the others. In those cases, Nash equilibrium allows individuals to report any preference

relation as part of their best responses, and that creates unappealing results. Precisely, to

rule out this, it is common in political economics to refine the equilibrium concept and to

demand for example that voters do not play in equilibrium weakly dominated strategies.

An alternative to equilibrium refinements comes from recent research on implemen-

tation theory, which departures from the classical theory by assuming that people face

an intrinsic lying cost that holds them back from misreporting, at least to some extent

5Note in the Table that truth-telling is not the unique dominant strategy equilibrium; in effect, so is
any profile associated with the blue cells. However, all of them lead to the same social choice x.

6A similar conclusion applies to other members of the family of social choice rules characterized in
Proposition 1.
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(Matsushima 2008, Dutta and Sen 2012, and Kartik et al. 2014).7 In the context of

mechanism design, this implies that individuals have preferences not just on the set of

outcomes, but also directly on the messages that they are required to send. Specifically,

agents are assumed to be partially honest, in the sense that they strictly prefer to report

the true state rather than a false state when misreporting does not provide any individual

gains from the chosen outcome.

To be more formal, suppose ρ = (Ri, ρ−i) ∈ Dn is the profile of true preferences over

X. For each agent i ∈ N , define a complete and transitive preference relation &ρ
i on

D ×X as follows. For all ρ̂−i ∈ Dn−1, and all R̂i ∈ D, with R̂i ̸= Ri,

(i) If f(Ri, ρ̂−i) Ii f(R̂i, ρ̂−i), then (Ri, f(Ri, ρ̂−i)) >ρ
i (R̂i, f(R̂i, ρ̂−i)),

(ii) Otherwise, (Ri, f(Ri, ρ̂−i)) &ρ
i (R̂i, f(R̂i, ρ̂−i)) if and only if f(Ri, ρ̂−i)Ri f(R̂i, ρ̂−i),

where >ρ
i denotes the antisymmetric part of &ρ

i . Let &ρ= (&ρ
i )i∈N be the profile of

preferences over the augmented set D ×X.

Example 2 (Continued Example 1). Table 2 reproduces Example 1’s payoffs when all

individuals are partially honest. Following Kartik et al. (2014), this is done by adding an

ϵ > 0 to the individual payoffs when the agent makes an honest report. The table displays

the best responses of players 1, 2 and 3, in yellow, green and blue, respectively, and it

shows that there exists a unique dominant strategy equilibrium, which is also the unique

Nash equilibrium of the game. That’s actually the strategy profile s∗ = (xyz, xyz, zxy),

where each agent announces his true preferences. Thus, when all agents are partially

honest, the median choice rule is securely implementable in this example.

More generally, a mechanism Γ is said to securely implements the social choice

rule f when individuals are partially honest if for all ρ ∈ Dn, (i) there exists

s ∈ DS(Γ, ρ,&ρ) such that f(ρ) = ϕ(s), and (ii) for all s ∈ N(Γ, ρ,&ρ), f(ρ) = ϕ(s),

where DS(Γ, ρ,&ρ) (resp., N(Γ, ρ,&ρ)) represents the set of dominant strategy equilibria

(resp., Nash equilibria) with partially honest players. Specifically, a strategy profile

s ∈ DS(Γ, ρ,&ρ) (resp., s ∈ N(Γ, ρ,&ρ)) if for all i ∈ N there does not exist ŝi ∈ Si

such that for some ŝ−i ∈ S−i, (ŝi, ϕ(ŝi, ŝ−i)) >ρ
i (si, ϕ(si, ŝ−i)) (resp., there does not exist

ŝi ∈ Si such that (ŝi, ϕ(ŝi, s−i)) >ρ
i (si, ϕ(si, s−i))), where si is what agent i considers

“truthful” at ρ.

The next section explores the implementation concept just defined in both, an ab-

stract setting with no specific restriction on the preference domain, and in a model that

generalizes Examples 1 and 2.

7Evidence on lying costs comes from lab experiments. A robust result is that many subjects misreport
their private information to their own advantage, but that a significant number refrains from reporting
the payoff maximizing type, and that some subjects are fully honest (Abeler, Becker and Falk 2014).
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Table 2: Continued Example 1

3 Results

The following result offers a necessary and sufficient condition for secure implementation

with partial honesty that is domain independent, in the sense that it doesn’t depend on

the structure of the set of admissible preferences. Instead, it holds for every preference

domain that allows for the existence of strategy-proof social choice rules.

Theorem 1 A mechanism Γ securely implements the social choice rule f when individ-

uals are partially honest if and only if f is strategy-proof.8

One could misread Theorem 1 and conclude erroneously that it improves upon Saijo

et al. (2007) by ensuring secure implementation without their rectangular condition.

However, a more accurate interpretation of this result is that it provides a behavioral

foundation for Saijo et al.’s (2007) rectangular property, in the sense that under individual

behavior consistent with partial honesty, the condition becomes automatically satisfied.

So long as there could be different rationales for rectangularity, one of which is par-

tial honesty, Saijo et al.’s (2007) characterization of securely implementable social choice

functions remains the more general one. But Theorem 1 is nevertheless interesting be-

cause of the behavioral content that it provides to their otherwise abstract condition. It

8The discussion in the paragraph following Figure 1, as well as the proof of the Theorem 1 make clear
that the result holds even if there exists only one partially honest individual.
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is, of course, an empirical matter to verify whether partial honesty is actually observed

in experiments and field data.

To gain more insight about how partial honesty relates with Saijo et al.’s (2007) con-

dition, recall that a social choice function f satisfies the rectangularity property if for

all ρ, ρ̂ ∈ Dn, if f(Ri, ρ̂−i) Ii f(R̂i, ρ̂−i) for all i ∈ N , then f(ρ) = f(ρ̂). Clearly, Example

1’s social choice rule does not satisfy rectangularity. In effect, consider the left-hand

table of Figure 1, which reproduces one of the payoffs matrices of Table 1. For simplicity,

only the information relevant for the present analysis has been kept. Take the preference

profiles ρ̄ = (xyz, xzy, zxy) and ρ = (zxy, zyx, zxy). Recall that the former is the truth-

telling dominant strategy equilibrium, and the second one of the Nash equilibria. As the

figure shows, f(zxy, zyx, zxy) = f(zxy, xzy, zxy) = f(xyz, zyx, zxy) = z, implying that

individual deviations are useless to modify the social choice. Therefore, for all i = 1, 2, 3,

f(P̄i, ρ−i) Ii f(Pi, ρ−i). However, f(ρ) = z ̸= x = f(ρ̄), contradicting rectangularity.

That explains why the game form allows two different equilibrium outcomes, one that

coincides with the designer’s objective (blue cell), and the other not (pink cell).

What if agents are partially honest? As is illustrated in Figure 1b, it is still the case

that f(zxy, zyx, zxy) = f(zxy, xzy, zxy) = f(xyz, zyx, zxy) = z. However, it does not

follow from that that all agents are indifferent between these outcomes. On the contrary,

their preference for honesty implies that they are strictly better off by reporting their true

preference ordering. Therefore, rectangularity holds; and the social choice rule, which is

strategy-proof in this example, is securely implementable.

(a) Example 1 (b) Example 2

Figure 1: Rectangularity with and without partial honesty

What’s more, notice that this is also the case even if only one agent is partially honest:

just repeat the analysis above after deleting the extra payoff ϵ > 0 in all but one agent’s

payoffs, say for example individual 1. This suggests that rectangularity might actually
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be not as demanding as one could initially imagine before having a behavioral foundation

of it. Highlighting this is probably the main contribution of this work.

We now apply the previous result to a single-crossing voting environment that gen-

eralizes the example provided in Section 2.9 To be precise, let P ⊂ R be the universal

set of strict preference relations on X. An admissible domain D ⊂ P is said to have the

single-crossing property if there exists a linear order > on X and a linear order ≻ on

D such that for all x, y ∈ X and all P, P ′ ∈ D, (1) if y > x, P ′ ≻ P and y P x, then

y P ′ x, and (2) if y > x, P ′ ≻ P and xP ′ y, then xP y.10 Fix a maximal set D ⊂ P of

single-crossing preferences, with X(D) = {τ(P ) ∈ X, P ∈ D}.11 A particular instance of

this preference domain was given in Example 1.

Given any profile ρ = (P1, . . . , Pn) ∈ Dn, let ℓ1, ℓ2, . . . , ℓn be a relabeling of the set

of agents N such that τ(Pℓ1) ≤ τ(Pℓ2) ≤ . . . ≤ τ(Pℓn). For any odd positive integer k,

define the k-median function on Xk, mk : Xk → X, in such a way that for each x =

(x1, . . . , xk) ∈ Xk, |{xi : m
k(x) ≥ xi}| ≥ (k+1)

2
and |{xj : xj ≥ mk(x)}| ≥ (k+1)

2
. A social

choice rule f : Dn → X is said to be an augmented representative voter scheme

if for all ρ ∈ Dn and all L,M ⊂ N , there exist fixed ballots αL, αM ∈ X(D) such that

αL ≥ αM if L ⊆ M , and f(ρ) = m2n−1(τ(P1), . . . , τ(Pn), α{ℓ1}, α{ℓ1,ℓ2}, . . . , α{ℓ1,...,ℓn−1}).

Proposition 1 A social choice rule f is strategy-proof on a maximal single-crossing

domain if and only if f is an augmented representative voter scheme.

In spite of having this strong incentive compatibility property, Example 1 illustrates

that none of these rules is securely implementable on single-crossing preferences. Fortu-

nately, the conclusion changes quite dramatically with a little bit of honesty in society.

Indeed, Theorem 1 and Proposition 1 together offer the following characterization result.

Theorem 2 On a maximal single-crossing domain, a social choice rule f is securely

implementable when individuals are partially honest if and only if f is an augmented

representative voter scheme.

Recall that a social choice rule f : Dn → X is anonymous if ∀ρ, ρ̂ ∈ Dn, f(ρ) = f(ρ̂)

if ρ is a permutation of ρ̂. That is, a social choice rule is anonymous if the names of

the individuals holding particular preferences are immaterial in deriving social choices.

Notice that, since Dn is a Cartesian product domain, if a profile ρ belongs to Dn, then

9For specific applications, particulary on income taxation, see for instance Gans and Smart (1996),
Austen Smith and Banks (1999), Persson and Tabellini (2000), and the references therein.

10For any x, y ∈ X, we write x = y if and only if ¬[x > y] and ¬[y > x]; and x ≥ y if and only if either
x = y or x > y. Similarly, for any two distinct preferences P, P ′ ∈ D, P ≺ P ′ if and only if ¬[P ≻ P ′].

11Recall that a set of single-crossing preferences D is maximal if there does not exist D′ ⊂ P such that

D ⊂ D′ and D′ is single-crossing. The largest size of D is |X| · |X|−1
2 + 1 (Saporiti, 2009).
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any of its permutations is also in Dn. Thus, anonymity is non-vacuous in our framework.

It is easy to show that an augmented representative voter scheme is anonymous only if

for all L,M ⊂ N , |L| = |M | implies that αL = αM .

With this in mind, the following is an immediate corollary of Theorems 1 and 2.

Corollary 1 On a maximal single-crossing domain, an anonymous social choice rule f

is securely implementable when individuals are partially honest if and only if there exist

n − 1 fixed ballots α1, . . . , αn−1 ∈ X(D) such that for every preference profile ρ ∈ Dn,

f(ρ) = m2n−1(τ(P1), . . . , τ(Pn), α1, . . . , αn−1).

The previous corollary generalizes the intuition about the median choice rule coming

from Example 2.12 Its main message as well as the message given by Theorem 2 contrasts

sharply with Saijo et al.’s (2007) predictions for voting environments with single-peaked

preferences. The reason lies obviously in the behavioral departure adopted by this work,

according to which agents’ preferences possess an extra bit of structure and satisfy partial

honesty. It is left for future research to test whether this hypothesis finds any support

in laboratory experiments. As is nicely explained by a recent paper on lying costs by

Abeler, Becker and Falk (2014), there are good reasons to be optimistic about that. In

any case, the only purpose of this paper has been to report the positive theoretical results

associated with partial honesty and secure implementation.

A Appendix: Missing Proofs

Proof of Theorem 1. (Sufficiency). Let ρ = (Ri, ρ−i) ∈ Dn be the true preference

profile. Consider the direct mechanism (D, f). Since f is by hypothesis strategy-proof,

∀i ∈ N, ∀ρ̂−i ∈ Dn−1, ∀R̂i ∈ D, f(Ri, ρ̂−i)Ri f(R̂i, ρ̂−i). (1)

Using the definition of &ρ
i , (1) implies that

∀i ∈ N, ∀ρ̂−i ∈ Dn−1, ∀R̂i ∈ D, R̂i ̸= Ri, (Ri, f(Ri, ρ̂−i)) &ρ
i (R̂i, f(R̂i, ρ̂−i)).

Thus, ρ ∈ DS((D, f), ρ,&ρ), and consequently N((D, f), ρ,&ρ) ̸= ∅.
Suppose there exists a Nash equilibrium ρ̃ = (R̃i, ρ̃−i) ∈ N((D, f), ρ,&ρ) such that

f(ρ̃) ̸= f(ρ). (Otherwise, this part of the proof is complete.) By (1),

∀i ∈ N, f(Ri, ρ̃−i)Ri f(R̃i, ρ̃−i). (2)

12Notice that the median choice rule is a particular member of the family of augmented representative
voter schemes, where the fixed ballots are located on the lower and the upper bounds of X.
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Since ρ̃ ∈ N((D, f), ρ,&ρ),

∀i ∈ N, (R̃i, f(R̃i, ρ̃−i)) &ρ
i (Ri, f(Ri, ρ̃−i)),

which implies using the definition of &ρ
i that

∀i ∈ N, f(R̃i, ρ̃−i)Ri f(Ri, ρ̃−i). (3)

Thus, combining (2) and (3), it follows that for all i ∈ N , f(R̃i, ρ̃−i) Ii f(Ri, ρ̃−i).

Finally, by the definition of partial honesty, there exists j ∈ N such that

(Rj, f(Rj, ρ̃−j)) >ρ
j (R̃j, f(R̃j, ρ̃−j)), which stands in contradiction with the fact that

ρ̃ is a Nash equilibrium for the game ((D, f), ρ,&ρ). Therefore, the direct mechanism

(D, f) securely implements f .

(Necessity). By hypothesis, there exists a mechanism Γ = (Si, ϕ) that securely imple-

ments f when agents are partially honest. That means that for all ρ ∈ Dn, there exists

s ∈ DS(Γ, ρ,&ρ) such that ϕ(s) = f(ρ). Moreover, for all s ∈ N(Γ, ρ,&ρ), ϕ(s) = f(ρ).

Thus, Γ dominant strategy implements f when agents are partially honest.

Suppose f is not strategy-proof. Then, there exists j ∈ N , and ρ′ = (R′
j, ρ

′
−j) and

ρ′′ = (R′′
j , ρ

′
−j), with ρ′, ρ′′ ∈ Dn, such that f(R′′

j , ρ
′
−j)P

′
j f(R

′
j, ρ

′
−j). By hypothesis,

there exists s′ = (s′j, s
′
−j) ∈ DS(Γ, ρ′,&ρ′) such that ϕ(s′) = f(ρ′), where s′i is what

agent i considers truthful at ρ′. Consider a dominant strategy s′′j ∈ Sj at R′′
j . Note

that (s′′j , s
′
−j) ∈ DS(Γ, (R′′

j , ρ
′
−j),&(R′′

j ,ρ
′
−j)). By dominant implementability, ϕ(s′′j , s

′
−j) =

f(R′′
j , ρ

′
−j). By hypothesis, ϕ(s′′j , s

′
−j)P

′
j ϕ(s

′
j, s

′
−j). Using the definition of &ρ′

j ,

(s′′j , ϕ(s
′′
j , s

′
−j)) >ρ′

j (s′j, ϕ(s
′
j, s

′
−j)),

contradicting that s′ ∈ DS(Γ, ρ′,&ρ′). Therefore, f is strategy-proof.

Proof of Proposition 1. (Sufficiency). Suppose, by contradiction, that f is manipulable

at ρ ∈ Dn. Relabel N (if necessary) so that τ(P1) ≤ τ(P2) ≤ . . . ≤ τ(Pn). By hypothesis,

there exist i ∈ N and P ′
i ∈ D such that f(P ′

i , ρ−i)Pi f(Pi, ρ−i). Hence, f(P ′
i , ρ−i) ̸=

f(Pi, ρ−i) ̸= τ(Pi). Without loss of generality, assume that f(Pi, ρ−i) > τ(Pi).

By definition of f , f(Pi, ρ−i) ∈ X(D). Let f(ρ) = τ(Pj) for some j ∈ N , j ̸= i,13 with

τ(P1) ≤ . . . ≤ τ(Pi) ≤ . . . < . . .︸ ︷︷ ︸
j−1

≤ τ(Pj) = f(ρ) ≤ τ(Pj+1) ≤ . . . ≤ τ(Pn)︸ ︷︷ ︸
n−j

. (4)

13The other case, i.e., f(ρ) = αL ∈ X(D) for some L ⊂ N , with αL ̸= τ(Pj) for all j ∈ N , is proved
in a similar fashion. Results are available from the author upon request.
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Notice that f leaves n− 1 peaks and fixed ballots to each side of f(ρ). From (4), only

the first j−1 individual peaks are lower than or equal to f(ρ). Thus, there must be n− j

fixed ballots which are smaller than or equal to f(ρ). Specifically,

α{1,...,n−1} ≤ . . . ≤ α{1,...,j}︸ ︷︷ ︸
n−j

≤ τ(Pj) = f(ρ) ≤ α{1,...,j−1} ≤ . . . ≤ α{1}︸ ︷︷ ︸
j−1

. (5)

Denote ρ′ = (P ′
i , ρ−i), and relabel N such that τ(P ′

ℓ1
) ≤ τ(P ′

ℓ2
) ≤ . . . ≤ τ(P ′

ℓn
), where

τ(P ′
k) = τ(Pk) for all k ̸= i. Clearly, for all k < j, k ̸= i, τ(P ′

k) ≤ τ(Pj); and, for all k > j,

τ(P ′
k) ≥ τ(Pj). First, suppose that τ(P ′

i ) ≤ f(ρ). That means that τ(P ′
i ) ≤ τ(P ′

j); and,

consequently, that agent i is a member of every set L ∈ {{ℓ1, . . . , ℓk}, k = j−1, . . . , n−1}.
Hence, α{ℓ1,...,ℓk} = α{1,...,k} for all k = j − 1, . . . , n− 1, which results by (5) in that

α{ℓ1,...,ℓn−1} ≤ . . . ≤ α{ℓ1,...,ℓj}︸ ︷︷ ︸
n−j

≤ τ(P ′
j) ≤ α{ℓ1,...,ℓj−1}. (6)

To recap, the profile ρ′ = (P ′
i , ρ−i) is such that j − 1 (resp., n − j) individual peaks

are smaller (resp., greater) than or equal to τ(P ′
j). In addition, (6) implies that n − j

(resp., j−1) fixed ballots are located at or below (resp., above) τ(P ′
j). (Recall that for all

L ⊂ {ℓ1, . . . , ℓj−1}, αL ≥ α{ℓ1,...,ℓj−1}.) Therefore, f(ρ′) = τ(P ′
j) = f(ρ), a contradiction.

Second, assume that τ(P ′
i ) > f(ρ). Notice that {ℓ1, . . . , ℓj−2} = {1, . . . , i − 1, i +

1, . . . , j − 1} ⊂ {1, . . . , j − 1}. Therefore, (5) and the definition of f imply that

α{ℓ1} ≥ α{ℓ1,ℓ2} ≥ . . . ≥ α{ℓ1,...,ℓj−2}︸ ︷︷ ︸
j−2

≥ τ(P ′
j). (7)

Combining (7) with the fact that n− j + 1 individual peaks of ρ′ (namely, τ(P ′
i ) and

{τ(P ′
k)}k>j) are greater than or equal to τ(P ′

j), it follows that f(ρ′) > τ(P ′
j) = f(ρ).

Moreover, Pj ≻ Pi. Otherwise, if Pi ≻ Pj, then τ(Pi) < f(ρ) would imply by single-

crossing that τ(Pi)Pj τ(Pj), a contradiction. But then, since by hypothesis f(ρ′)Pi f(ρ),

it follows from single-crossing that f(ρ′)Pj f(ρ), contradicting again that τ(Pj) is agent

j’s most preferred alternative on X.

(Necessity). Fix a strategy-proof social choice function f : Dn → X. Following

Saporiti (2009), f is tops-only and top-monotonic.14 Moreover, f is strategy-proof only

if for all i ∈ N and all ρ ∈ Dn, f(Pi, ρ−i) = m3(τ(Pi), f(P i, ρ−i), f(P i, ρ−i)), where P

(resp., P ) stands for the most leftist (resp., rightist) preference relation on X, so that

14A social choice rule f is tops-only if for all ρ, ρ̂ ∈ Dn such that τ |rf (Pi) = τ |rf (P̂i) for all i ∈ N ,
f(ρ) = f(ρ̂). On the other hand, f is top-monotonic if for all i ∈ N , all (Pi, ρ−i) ∈ Dn, and all P ′

i ∈ D
such that τ(P ′

i ) ≥ τ(Pi), f(P
′
i , ρ−i) ≥ f(Pi, ρ−i).
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for any pair x, y ∈ X, xP y (resp., y P x) if and only if y > x. Clearly, P , P ∈ X(D).

Moreover, τ(P ) = min> X = X and τ(P ) = max> X = X.

For any L ⊂ N , define αL = f(ρ
L
, ρL̄). By top monotonicity, it is easy to prove that

αL ≥ αM for all L ⊆ M , with L,M ⊂ N . Next, we show that αL ∈ X(D). Consider first

any L = {ℓ}, with ℓ ∈ N . Without loss of generality, assume that f(P ℓ, ρ−ℓ) = z ̸= τ(P )

for all P ∈ D. Take a preference Pα
ℓ ∈ P with the property that τ(Pα

ℓ ) = τ(P ℓ) and

X Pα
ℓ z. If Pα

ℓ ∈ D, we are done. By tops-only, f(Pα
ℓ , ρ−ℓ) = z. By unanimity over the

range (which is implied by strategy-proofness), f(ρ) = X. Thus, agent ℓ can manipulate

f at (Pα
ℓ , ρ−ℓ) via P ℓ.

Instead, if Pα
ℓ ̸∈ D, then there must exist a P ∗ ∈ D such that τ(P ∗) > τ(P ℓ) and

z P ∗ X. Let P β
ℓ = min≻{P ′ ∈ D : τ(P ′) > X}. Clearly, z P β

ℓ X because either P β
ℓ

coincides with P ∗ or P β
ℓ ≺ P ∗. Let f(P β

ℓ , ρ−ℓ) = zβ. If z > zβ, agent ℓ would manipulate

f at (P ℓ, ρ−ℓ) via P β
ℓ . Similarly, if zβ = X, then ℓ would manipulate f at (P β

ℓ , ρ−ℓ) via

P ℓ. Hence, X > zβ ≥ z.

Suppose zβ = τ(P β
ℓ ). Then, zβ > z. Furthermore, there exists a Pα′

ℓ ∈ D such that

τ(Pα′

ℓ ) = X and zβ Pα′

ℓ z. Indeed, to rule out Pα′

ℓ from D there should be a P ∗∗ ∈ D
such that τ(P ∗∗) > X and z P ∗∗ zβ. By the definition of P β

ℓ , P ∗∗ ≻ P β
ℓ (note that

they cannot be equal because by hypothesis zβ = τ(P β
ℓ ) and z P ∗∗ zβ); and, by single-

crossing we would have that z P β
ℓ zβ, a contradiction. Thus, Pα′

ℓ ∈ D. By tops-only,

f(Pα′

ℓ , ρ−ℓ) = z. Hence, agent ℓ can manipulate f at (Pα′

ℓ , ρ−ℓ) via P β
ℓ , a contradiction.

Therefore, zβ ̸= τ(P β
ℓ ).

Consider a preference Pα+1
ℓ ∈ P such that τ(Pα+1

ℓ ) = τ(P β
ℓ ) and X Pα+1

ℓ zβ. If

Pα+1
ℓ ∈ D, by tops-only, f(Pα+1

ℓ , ρ−ℓ) = zβ. Thus, agent ℓ can manipulate f at

(Pα+1
ℓ , ρ−ℓ) via P ℓ. On the contrary, if Pα+1

ℓ ̸∈ D, then we can repeat the previous argu-

ment and find a preference P β+1
ℓ ∈ D such that τ(P β+1

ℓ ) > τ(P β
ℓ ) and zβ P β+1

ℓ X. Since

X is finite and in each step the top of the blocking ordering gets larger and larger, the se-

quence {τ(P β+n
ℓ )}∞n=0 approaches τ(P ℓ) as n increases. Hence, if we continue applying the

same argument over and over again at some point we will either find the desired contra-

diction, or a preference P β+n
ℓ ∈ D such that (i) τ(P β+n

ℓ ) = τ(P ℓ) and (ii) zβ+n−1 P β+n
ℓ X,

which leads to a violation of strategy-proofness because f(P β+n
ℓ , ρ−ℓ) = X. Therefore,

f(P ℓ, ρ−ℓ) = α{ℓ} ∈ X(D) for all ℓ ∈ N .

Using the induction argument, assume that α{ℓ1,...,ℓk} = f(ρ{ℓ1,...,ℓk}
, ρ{ℓk+1,...,ℓn}) ∈

X(D) for some coalition of individuals {ℓ1, . . . , ℓk} ⊂ N , with k = 1, . . . , n − 2, and

let’s prove the claim for α{ℓ1,...,ℓk+1} = f(ρ{ℓ1,...,ℓk+1}
, ρ{ℓk+2,...,ℓn}). Proceeding by way

of contradiction, suppose that α{ℓ1,...,ℓk+1} ̸= τ(P ) for all P ∈ D. By top mono-

tonicity, α{ℓ1,...,ℓk} > α{ℓ1,...,ℓk+1}, with strict inequality because α{ℓ1,...,ℓk} ∈ X(D) and

α{ℓ1,...,ℓk+1} ̸∈ X(D). As explained above, there must exist Pα
ℓk+1

∈ D and P β
ℓk+1

∈ D
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such that τ(Pα
ℓk+1

) = τ(P β
ℓk+1

) and α{ℓ1,...,ℓk} P
α
ℓk+1

f(ρ{ℓ1,...,ℓk}
, P β

ℓk+1
, ρ{ℓk+2,...,ℓn}). By tops-

only, f(ρ{ℓ1,...,ℓk}
, P α

ℓk+1
, ρ{ℓk+2,...,ℓn}) = f(ρ{ℓ1,...,ℓk}

, P β
ℓk+1

, ρ{ℓk+2,...,ℓn}). Hence, agent ℓk+1

can manipulate f at (ρ{ℓ1,...,ℓk}
, Pα

ℓk+1
, ρ{ℓk+2,...,ℓn}) via P ℓk+1

(which results in α{ℓ1,...,ℓk} be-

ing chosen), a contradiction. Therefore, α{ℓ1,...,ℓk+1} ∈ X(D). The rest of the proof follows

from Austen-Smith and Banks (2005, pp. 48-50).
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