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Abstract

In his 1999 paper with Breusch, Qian and Wyhowski in the Journal of Econometrics,

Peter Schmidt introduced the concept of “redundant” moment conditions. Such conditions

arise when estimation is based on moment conditions that are valid and can be divided

into two sub-sets: one that identifies the parameters and another that provides no further

information. Their framework highlights an important concept in the moment-based esti-

mation literature namely, that not all valid moment conditions need be informative about

the parameters of interest. In this paper, we demonstrate the empirical relevance of the

concept in the context of the impact of government health expenditure on health outcomes

in England. Using a simulation study calibrated to this data, we perform a comparative

study of the finite performance of inference procedures based on Generalized Method of

Moment (GMM) and info-metric (IM) estimators. The results indicate that the properties

of GMM procedures deteriorate as the number of redundant moment conditions increases;

in contrast the IM methods provide reliable point estimators but the performance of as-

sociated inference techniques based on first order asymptotic theory, such as confidence

intervals and overidentifying restriction tests, deteriorates as the number of redundant mo-

ment conditions increases. However, for IM methods, it is shown that bootstrap procedures

can provide reliable inferences; we illustrate such methods when analysing the impact of

government health expenditure on health outcomes in England.

Key words: Generalized Method of Moments, Info-metric estimation, Empirical Like-

lihood, Exponential Tilting



1 Introduction

The introduction by Lars Hansen (Hansen 1982) of Generalized Method of Moments (GMM)

offered a method for obtaining estimators of the parameters of economic models based on

the information in population moment conditions. So long as this information is both valid

and (strongly) identifies the parameters, Hansen (1982) established the consistency and

asymptotic normality of the estimator, and proposed a variant known as the “two-step”

GMM estimator which is asymptotically efficient in the class of semi-parametric estimators

based on the population moment condition in question, see Chamberlain (1987).

In practice, the underlying economic/statistical model typically implies an array of pos-

sible moment conditions, and it has been recognized that the choice of which to use impacts

on the comparative statistical properties of the resulting estimator. In essence, moment

conditions contain differing amounts of information about the parameters of interest. To

pursue this point further, we restrict attention to the class of population moment condi-

tions associated with generalized instrumental variables (IV) estimation that is, in which

the moment condition states the orthogonality of vector of instruments to a model resid-

ual. This is because this class of moment conditions is the most commonly encountered in

econometrics (and is the type involved in our empirical analysis below).

A lot of attention has focused on the two extreme cases, namely optimal instruments and

weak instruments. Hansen (1985) characterized the asymptotic efficiency bound for IV, and,

since then, various papers have examined how to construct so-called optimal instruments

that achieve this bound in certain cases of interest.1 However, a drawback to their use is that

the construction of the optimal instrument can be complicated and may require additional

assumptions about the data generation process beyond those implied by the economic

model; this often proves a significant limitation and the use of optimal instruments is not

common in empirical practice. At the other extreme is the weak instrument case. Following

the insight in Nelson and Startz (1990), Staiger and Stock (1997) demonstrated that the

standard first order statistical analysis of Hansen breaks down if the instrument is weak;

1For references see the survey in Newey (1993) or Hall (2005)[Ch. 7.2].
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that is, the population moment condition provides insufficient information to (strongly)

identify the parameters.2 Driven by a number of high profile empirical examples, the

problem of inference in the presence of weak instruments has received a lot of attention in

the literature.3

However, while both these extremes are of interest, they are not the only information

scenarios of relevance in empirical applications. In his 1999 Journal of Econometrics paper

with Breusch, Qian and Wyhowski, Peter Schmidt introduced the concept of redundant

moments—or instruments—which represents an important information scenario that, in

some sense, lies in between the two extremes described above. This covers the situation in

which a subset of the instruments, z1 say, lead to moment conditions that strongly identify

the parameters and the remainder, z2 say, provide no additional information. In such

circumstances, Hansen’s (1982) analysis still applies and implies that (suitably scaled) the

estimator has a limiting normal distribution with mean zero and variance V , say, whether

estimation is based on z1 alone or z1, z2 that is, given z1 is included the addition of z2

has no impact on the first order asymptotic properties of the estimator; in this case z2 is

said to be redundant given z1. While this result implies no (first order) asymptotic cost to

the inclusion of redundant instruments, we show below, using second order asymptotics,

that the finite sample properties of IV are adversely affected by the inclusion of redundant

moment conditions.

The concept of redundancy, as originally stated, is occasionally criticised for being

unrealistically strict in the sense that z2 provides no additional information beyond that

in z1. However, this seems pedantic to us: the key insight is to realize that there are

situations where some instruments provide identification and most of the information, and

the remainder of the instruments provide very little, for which redundancy, as defined above,

is just the limit case.4

2Also see Stock and Wright (2000) for an analysis of the consequence of weak identification in nonlinear
models.

3For a review of the weak instrument literature see Stock, Wright, and Yogo (2002) and Hall (2005)[Ch.
8.2].

4For example, the ideas can equivalently be expressed using the concept of near-redundancy as in Hall,
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In this paper we illustrate these ideas using an important empirical example in which

exactly this type of structure is present. For any economy, a key policy question is the extent

to which the level of government expenditure on health influences the populations’ health.

Even though there are surprisingly few estimates of the elasticity of health outcomes with

respect to government health expenditure in the literature, estimates of this parameter have

been found by regressing (log) mortality on (log) health expenditures, typically exploiting

cross-section variations in both variables by region/county/state etc. In this paper, the data

are from England (in 2005–06) and the unit of observation is a so-called Primary Care Trust

(PCT), of which there are 152. However, expenditures are correlated with the regression

error because expenditure is determined by a funding rule that involves four key variables,

one of which, a composite need index, is endogenous. As a result, OLS estimation is

inappropriate as it leads to inconsistent estimators of the elasticity. However, instrumental

variables estimation is feasible because the three other key variables in the funding rule are

arguably exogenous and can be used as instruments. Given the construction of the funding

rule, these three instruments are expected to be important determinants of expenditure.

In addition to these three variables, it is possible to include other instruments, such as

variables that are related to the needs index but not to mortality, which tend to be of

lesser importance in the determination of expenditure. The “funding rule instruments” are

expected to strongly identify the parameters of interest and contain most of the information,

whereas the remaining instruments—which we refer to as “secondary”—are likely to add

some information but are relatively less important.

The key question for a policy maker is to estimate the elasticity as precisely as possible—

especially when using IV estimation—and so directly leads to the issue of which instruments

to use in the estimation: if just the funding rule instruments then information from the

secondary instruments has been left out at the potential cost of increased asymptotic vari-

ance; however, if the secondary instruments are also included but provide so little extra

information that they are effectively redundant then their inclusion may adversely affect

Inoue, Jana, and Shin (2008). Also see this paper for a comparison of near-redundancy and weak identifi-
cation.
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finite sample properties. Or put another way, do the secondary instruments provide suf-

ficient additional information that it is beneficial to include them in a sample of size of

150? We explore this issue via a simulation study calibrated to our empirical example, with

“stronger instruments” and “less informative instruments” proxying respectively the roles of

the funding rule and secondary instruments. We find evidence that the inclusion of the “less

informative” instruments does have an adverse effect. This raises the question of how to

proceed. One option is to use GMM with just the stronger instruments but our simulation

evidence suggests coverage probabilities of confidence intervals based on asymptotic theory

may be significantly less than nominal levels in a sample size of 150. Therefore, we explore

the use of a member of the class of info-metric (IM) estimators that are argued to have

better finite sample properties than GMM.5 This class includes both Empirical Likelihood

(EL) and Exponential Tilting (ET) estimators. We therefore also explore the performance

of these IM estimators in our simulation study. While we find that IM estimators provide

more reliable point estimates than GMM, we also find that first order asymptotic theory

provides a poor approximation to the coverage probabilities of confidence intervals and

rejection frequencies of model specification tests. However, we find these problems can be

remedied by employing a bootstrap procedure proposed by Brown and Newey (2002) based

on the probabilities obtained as part of the IM estimation. We contrast the inferences based

on GMM and IM, and find significant differences in the elasticity of interest. Because the

elasticity can be interpreted as the “cost per life”, if our estimates are taken at face value,

this has important policy implications.

Section 2 provides the econometric analysis. In Section 3 we describe issues surrounding

the estimation of the elasticity of interest using English data, together with some back-

ground describing how funding is allocated in England. Section 4 reports the simulation

study. In Section 5, we return to our empirical example. Section 6 concludes.

5IM estimators can be characterised as Generalized Empirical Likelihood (GEL) estimators (Smith 1997).
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2 Moment based inference and redundancy

To formally define redundancy, it is necessary to first present the first order asymptotic

distribution of the moment based estimators. The model in our empirical study below fits

the following generic linear specification:

yt = x′tθ0 + ut, t = 1, 2, . . . T, (1)

where yt is the dependent variable, an observed scalar; xt is a (p × 1) vector of observed

explanatory (or regressor) variables; ut is the unobserved error term. The t subscript

indicates the observations pertain to the tth member of the sample, and T denotes the

sample size. The parameters of interest are denoted by the p× 1 vector θ0.

As noted above, IV involves the use of a set of variables as “instruments”; these are

denoted by zt, a (q × 1) vector of instruments. We assume these instruments are valid in

the sense that they are orthogonal to the error so that the following population moment

condition holds

E[ztut(θ0)] = 0, (2)

where ut(θ) = yt − x′tθ. For IV to work, it must be the case (amongst other things) that

there are at least as many instruments as parameters, and so we assume q ≥ p. For ease

of presentation, we assume all variables, vt = (x′t, ut, z
′
t)
′ are independently and identically

distributed.

There are a number of ways in which the information in (2) can be exploited to produce

estimators of θ0. As discussed in the Introduction, we focus on IV estimators (Two Stage

Least Squares and the Generalized Method of Moments) and the class of IM estimators

(EL and ET). Below we describe both the methods and also their statistical properties,

with particular emphasis on the impact of redundant moment conditions on the latter.
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2.1 GMM estimation

The GMM estimator based on (2) is defined to be:

θ̂T = argminθ∈ΘQT (θ),

where

QT (θ) = gT (θ)
′WT gT (θ),

gT (θ) = T−1
∑T

t=1 zt(yt − x′tθ), and WT is known as the “weighting matrix”.

For the method to work, the weighting matrix needs to satisfy certain restrictions.6 As

it is the most common choice in practice, we focus on the two-step GMM estimator that

is, WT
p→ W = {V ar[ztut]}−1 because this the optimal choice in the sense that yields the

minimum asymptotic variance. Notice that if ut is conditionally homoscedastic given zt,

then the optimal choice can be obtained using WT = (T−1
∑T

t=1 ztz
′
t)
−1 in which case GMM

equals 2SLS. However, if ut is conditionally heteroscedastic given zt, then 2SLS is inefficient

in large samples relative to the two-step GMM estimator, providing the motivation for using

two-step GMM rather than just 2SLS to implement IV.

First order asymptotic analysis

To develop our analysis, we impose a number of conditions. The first of these is to parti-

tion the instrument vector into two parts: zt = [z′1,t, z
′
2,t]

′. We then impose the following

assumption.

Assumption 1 (i) (ut, x
′
t, z

′
t)
′ are independently and identically distributed and yt is gen-

erated via (1); (ii) E[ztut] = 0, and rank{E[xtz
′
1,t]} = p; (iii) V ar[ut|zt] = σ2.

Assumption 1(ii) states that zt are both valid and relevant instruments. Assumption 1(iii)

states that the errors are conditionally homoscedastic (given the instruments) as a conse-

quence of which 2SLS and optimal GMM are the same. Under this assumption (and certain

6WT must be a positive semi-definite matrix that converges in probability to a positive definite matrix
of constants; see, for example, Hall (2005)[Chap.1].
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other regularity conditions), it can be shown that7

T 1/2(θ̂T − θ0)
d→ N ( 0, Vθ ) , (3)

where Vθ = σ2(MxzM
−1
zz Mzx)

−1 and Mab = E[atb
′
t] for any random vectors at, bt.

We now define the concept of redundancy; note that although stated in terms of GMM

it is equivalently defined for the IM estimators discussed below because they have the

same first order asymptotic distribution as two-step GMM. To this end, let θ̂1,T be the

two-step GMM estimator of θ0 based on E[z1,tut(θ0)] = 0 and assume T 1/2(θ̂1,T − θ0)
d→

N
(

0, V
(1)
θ

)

. (Notice that Assumption 1(ii) implies θ0 is identified by E[z1,tut(θ0)] = 0.)

Definition 1 E[z2,tut(θ0)] = 0 is said to be redundant for estimation of θ0 given E[z1,tut(θ0)] =

0 if Vθ = V
(1)
θ .

Or equivalently, the instruments z2,t are redundant given z1,t if the asymptotic variance

of the estimator is the same whether either z1,t or zt are used as instruments. In other words,

the inclusion of z2,t does not contribute to the asymptotic precision of the estimation. By

construction, if z2,t is non-redundant given z1,t, then V
(1)
θ −Vθ is positive semi-definite and

the inclusion of z2,t improves the asymptotic precision.

As might be expected, it is possible to relate redundancy to the properties of the rela-

tionship between the endogenous regressors and instruments. To demonstrate this, we focus

on the case that arises in our empirical examples, namely where there is one parameter of

interest. Accordingly we partition xt = [wt, c
′
t]
′ where wt is the scalar endogenous regressor

and ct is the vector of controls, and then also partition θ conformably as θ = (α, φ′)′. Thus

α is the scalar parameter of interest and φ is the (p − 1) × 1 vector of parameters on the

control variables. Let α̂T be the GMM estimator of α0 and Vα be the (1, 1) element of Vθ.
8

We further partition z1,t = [c′t, h
′
t]
′, where h′t are the identifying instruments, ie those not

used as controls.

7For example, see Hall (2005)[Chap. 2.3].
8It follows from (3) that T 1/2(α̂T − α0)

d→ N ( 0, Vα ).
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Proposition 1 If Assumption 1 (and certain other regularity conditions) hold then: z2,t

is redundant for estimation of α0 iff R2
w,z = R2

w,z1, where R2
w,z1 is the population multiple

correlation coefficient from the regression of wt on z1,t, R2
w,z is the population multiple

correlation coefficient from the regression of wt on zt.

The proof is given in the Appendix. Thus, z2,t is redundant given z1,t if it has no

additional linear explanatory power for wt above that of z1,t. Note that if z2,t is non-

redundant given z1,t then it must follow that R2
w,z > R2

w,z1 .

We can state the first order asymptotic consequences of augmenting an existing set of

instruments zt, by the addition of one extra instrument denoted z3,t. If z3,t is redundant

given zt then the inclusion of z3,t makes no difference, but if z3,t is non-redundant given

zt then the inclusion of z3,t improves precision. Either way, the inclusion of the additional

instrument never hurts.

Second order asymptotic analysis

For this part of our analysis, we impose one additional assumption.

Assumption 2 (i) E[u3t |zt] = 0; (ii) E[utvt|zt] = σuv 6= 0.

Here, vt is the implied reduced-form error term. Part (i) of this assumption states that the

errors are symmetrically distributed conditional on zt; part (ii) states that the covariance

of ut and vt is non-zero. Using results in Newey and Smith (2004), we can show the following.

Proposition 2 If Assumptions 1, 2 (and certain other regularity conditions) hold then:

bias(α̂T ) =
(q − p− 1)σuv

Tσ2
w

(

1

R2
w,z − R2

w,z1

)

. (4)
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Proposition 2 reveals that the second order bias depends on the number of instruments (q),

the explanatory power (over that of the controls) of the instruments for wt (R
2
w,z − R2

w,z1),

the covariance between ut and vt (σuv) and the sample size (T ). This is the bias formula

for 2SLS introduced by Nagar (1959).

To consider the implications of this second order asymptotic result for the issue of

instrument selection in our examples, we again frame our discussion in terms of considering

the consequences of augmenting an existing set of instruments zt by the addition of one

extra instrument denoted z3,t. Inspection of the formula for bias(α̂T ) in Proposition 2 it

can be seen that introduction of an additional instrument impacts both the numerator

(by increasing q) and the denominator (by increasing R2
w,z). The outcome is therefore

ambiguous except in one special case: if z3,t is redundant given zt then the denominator of

the bias term is unaffected by the introduction of z3,t but the numerator increases, meaning

the bias must also increase. However, note that this bias disappears as T increases: thus,

ceteris paribus, the larger the sample, the less the bias.

2.2 Info-metric estimation

Concerns about the finite sample performance of GMM have led to interest in alternative

methods of estimation based on the information in moment conditions. Leading examples

of such estimators are Empirical Likelihood (EL) (Qin and Lawless, 1994 or Owen, 2001)

and Exponential Tilting (ET) (Kitamura and Stutzer, 1997). While EL and ET can be

derived from distinct estimation principles, it has been recognized that they have a common

structure that has led to development of generic approaches of which both are special cases.

The two such generic approaches are Generalized Empirical Likelihood (GEL) (Smith 1997)

and Info-metric methods (Golan 2006). We focus on the second approach.

Within the Info-metric approach, the population moment condition (pmc) is viewed as

a constraint on true probability distribution of data. If M is set of all probability measures
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then the subset that satisfies pmc for a given θ is

P(θ) =

{

P ∈ M :

∫

f(v, θ)dP = 0

}

,

and the set that satisfies the pmc for all possible values of θ is

P = ∪θ∈ΘP(θ).

Estimation is based on the principle of finding the value of θ that makes P(θ) as close as

possible to true distribution of data.

To operationalize this idea, we work with discrete distributions. Let pt = P (v = vt) and

P = [p1, p2, . . . , pT ]. Assuming no ties, the empirical distribution of the data is: µ̂t = T−1;

let µ̂ = [µ̂1, . . . µ̂T ]. The Info-metric (IM) estimator is then defined to be:

θ̂IM = arg inf
θ

ρT (θ, µ̂)

where

ρT (θ, µ̂) = infP̂ D(P ‖ µ̂),

P̂(θ) =

{

P̂ : pt > 0,
T
∑

t=1

pt = 1,
T
∑

t=1

ptf(vt, θ)

}

,

and D( · ‖ ·) is a measure of distance. An interpretation of the estimator can be built up as

follows. P̂(θ) is the set of all discrete distributions that satisfy the pmc for a given value of

θ. ρT (θ, µ̂) represents the shortest distance between any member of P̂(θ) and the empirical

distribution for a particular value of θ. θ̂IM is the parameter value that makes this distance

as small as possible over θ.

To implement the estimator, it is necessary to specify a distance measure. A popular
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choice in this literature is the Cressie and Read (1984) distance measure, defined as

D
(η)
CR(p‖q) =

η

1 + η

T
∑

t=1

pt

{(

pt
qt

)η

− 1

}

which is defined for −∞ < η < ∞. This distance measure nests EL and ET as special

cases: limη→0D
(η)
CR(·‖·) yields the ET optimand; limη→−1D

(η)
CR(·‖·) yields the EL optimand.

In terms of statistical properties, EL/ET are consistent and have same limiting distri-

bution - and thus the same first order asymptotic properties - as optimal GMM. However,

their second order asymptotic properties are different. Using the same set-up as before and

the results in Newey and Smith (2004), we can show the second order bias properties of

EL/ET are as follows.

Proposition 3 If Assumptions 1, 2 (and certain other regularity conditions) hold then:

bias(α̂IM ) =
−σuv
Tσ2

w

(

1

R2
w,z − R2

w,z1

)

(5)

A comparison of the results in Propositions 2 and 3 reveals that the denominator of the

bias terms for GMM and IM estimators are the same but there is a crucial difference in

the numerators: for GMM the numerator depends on the number of instruments, for IM it

does not. So returning to the analysis of the consequence of including an extra instrument,

the inclusion of z3,t never increases the absolute bias. So, for IM estimators, there are

no potential negative consequences in terms of first or second order asymptotic properties

from the inclusion of an additional instrument. This indicates that IM estimators can be

expected to yield more reliable point estimators in moderate–sized samples.
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3 The impact of government health expenditure on health

outcomes in England

From a policy perspective, a key question is whether, and, if so, to what extent, the allo-

cation of funding to public sector health agencies can impact on population health. Such

evidence is required to inform decisions about appropriate levels of overall funding and

questions of distribution, such as whether differential allocation of funds can contribute to

the reduction of inequalities in population health between areas. The extent to which the

level of government expenditure on health influences the population’s health is particularly

important when assessing the wisdom of the UK Government’s decision, in 2000, to increase

health expenditure to the EU average by 2006 (Appleby and Boyle 2000). It is also relevant

for the measurement of public service productivity (ONS 2006).

As noted above, our empirical example comes from England. The National Health

Service in England is financed almost entirely from national taxation. The Department of

Health negotiates every year with HM Treasury over how much money the National Health

Service can spend. The size of the budget in 2005-06 was £53.9 billion, which averaged at

£1,097 per person.

The NHS is organised in geographical areas, with Primary Care Trusts taking responsi-

bility for local administration and purchasing of services. These PCTs receive fixed annual

budgets from central government and are required to meet their populations’ expenditure

needs on hospital and community-based services (including pharmaceuticals) and to im-

prove their local population’s health.

In England, a funding rule is used to allocate the overall budget to each PCT (DOH

2005). This funding rule creates shares of the overall budget for each PCT that reflect their

population size, age and other measured need factors, and expected input prices. These

target shares are used to calculate a “Distance From Target” (DFT) for each PCT, which

measures the extent to which their actual share of the national budget last year differs from

that indicated by their target share. All PCTs receive a minimum level of funding uplift
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and the residual funds are then distributed on the basis of the Distance From Target, with

the most under-target PCTs receiving the largest increases in budget.

A PCT’s budget can therefore be expressed as:

Budget per head = (National budget per head) * (Age Index) * (Additional

Needs Index) * (Input Price Index) * (DFT Index)

in which each of the four index adjustments takes a mean value of one.

The data are sourced from government websites. The health measure is a directly

age-standardised mortality rate for the period 2005-2007, expressed as deaths per 100,000

European Standard population.9 The funding variable is the 2005/6 allocations from the

Unified exposition book: 2003/04, 2004/05 & 2005/06 PCT revenue resource limits.10 The

formula adjustments are those for the Hospital and Community Health Services element

of the formula, taken from Table 5.12 of the same exposition book. The “Distances From

Target” are the closing figures for 2005/6 taken from Table 4.2 of the same exposition

book. The population counts used to calculate the allocations per head are based on the

2004 Attribution Data Set scaled to Office for National Statistics population projections.

The sample consists of the 152 PCT’s in England in 2005-06. In what follows, we

estimate the following equation with these data:

ln(H) = βln(E) + controls + u, (6)

where ln(H) denotes the log of the mortality rate, ln(E) is the log of the allocation of health

expenditure per head. The exact specification of our observed control variables is irrelevant

at this stage. u denotes everything that is unobserved or not included in the model. The

variable ln(E) is potentially endogenous because it is easy to see why expenditure levels

might be a function of historical mortality (reverse causality) and because expenditure

levels may reflect unobserved area-specific effects (unobserved heterogeneity). Indeed, both

9https://indicators.ic.nhs.uk/webview/
10http://webarchive.nationalarchives.gov.uk/+/www.dh.gov.uk/en/Managingyourorganisation/Financeand

planning/Allocations/DH 4000344
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sources of endogeneity mean that OLS is biased upwards.

With panel data, we might be able to deal with the latter, but the former can only be

addressed using IV. But can suitable instruments be found? For this example, such variables

naturally occur because of the funding rule discussed above, namely: the Age Index (Z1),

the Additional Needs Index (N), the Input Price Index (Z2), and the DFT Index (Z3).

Although N is endogenous, because it depends on historical mortality levels, we argue

that the other three variables are uncorrelated with u and can be used as instruments.

In practice, the funding rule is not exact but Z1, Z2 and Z3 are the main determinants

of E; as a result, we refer to these variables as “funding rule instruments” to reflect their

relative importance in the determination of E. We also consider the inclusion of other other

instruments, such as variables that are related to N (but not H), which tend to be of lesser

importance in the determination of E; these variables we have already labelled “secondary

instruments”, and are similar to those used by Martin, Rice, and Smith (2008).

To give a flavour of the issues that this paper addresses, we estimate the model in Equa-

tion (6) using the following variables as controls: income deprivation among older people,

education deprivation, and a constant term. Summary statistics for the data variables are

presented in Table 3.

When the model is estimated using OLS, β is estimated as 0.090 with a robust stan-

dard error of 0.064. If taken at face value, this elasticity would imply increases in health

expenditure levels have a positive, but statistically, insignificant effect on mortality. From a

policy perspective, this positive elasticity is counter intuitive. When re-estimated by 2SLS,

using only the three “funding rule instruments” for E, the estimate changes considerably,

being −0.705 with a robust standard error of 0.245. In other words, increases in spending

do have the expected negative effect on mortality, and the effect is significant, in spite of

the increase in its standard error by a factor of 3.8.

This is an excellent example of where 2SLS works: the instruments can only plausibly

work through the funding rule, and the upwards bias in OLS is ameliorated. To illustrate

the contribution of some of the secondary instruments, we re-estimate once more, adding
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the 7 secondary instruments (see Table 3 for full descriptions). Note that the R-squared

from the first-stage regression with only the three funding rule instruments is 0.793, and

this rises to 0.833 when the 7 secondary instruments are added.11 Now the 2SLS estimate

is −0.587 with a robust standard error of 0.132. The question is, which estimate should the

policy maker use? Or put another way, does the change in the estimate reflect increased

information due to the inclusion of the secondary instruments or does it reflect reflect finite

sample bias induced because the secondary instruments are effectively redundant?

Table 1: Summary statistics of variables in health expenditure example∗

Variable Mean S.D.
Dependent variable
Directly standardised mortality rate per 100,000: all causes (ln(H)) 614.5 76.33

Endogenous explanatory variable
Allocation per head (ln(E)) 1,106 138.5

Controls
Income deprivation among older people (proportion) 0.176 0.065
Education deprivation (proportion) 0.229 0.094

Funding rule instruments
Age index (Z1) 0.994 0.051
Input price index (Z2) 1.036 0.159
Distance from target (DFT) index (Z3) 1.005 0.081

Secondary instrumentsa

A: Inflow of persons all ages (rate per 1,000 persons) 0.845 0.140
A: Outflow of persons all ages (rate per 1,000 persons) 0.864 0.183
B: Proportion of people aged 16+ who have never married 0.314 0.077
B: Proportion of people in households that own their home 0.693 0.118
B: Proportion of houses failing ODPM ‘Decent Homes Standard’ 0.346 0.053
C: Proportion of people aged 16-74 that have never worked 0.031 0.021
C: Proportion of people aged 16-74 that are long-term unemployed 0.011 0.005

* Notes: All variables are subsequently expressed in natural logarithms in the regressions.
a We collect the secondary instruments into 3 groups later in the analysis, labelled A, B, and
C.

In the next section, we examine both this issue and also compare the performance of

11The instruments are clearly not “weak” in the usual sense of the label. The Cragg–Donald Wald F -
statistic is 29.2; the corresponding Stock–Yogo weak identification test critical values are 13.91, 9.08, 6.46
respectively for 5%, 10%, 20% maximal IV relative bias.
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GMM and IM estimation in a simulation calibrated to our health data. We then return to

the above example in Section 5.

4 Simulation study

4.1 Design

In the simulation, we mimic the key properties of our empirical health example introduced

in Section 3. However, for ease of exposition, we dispense with all the controls in the

regression model apart from the constant (ct ≡ 1), and so the model being estimated is

written

yt = αwt + φ0 + ut, t = 1, 2, . . . T. (7)

In other words, there are p = 2 regressors. Because we need to distinguish the stronger

instruments from the less informative instruments, we write the reduced-form explicitly as

wt = h′tπ1 + z′2,tπ2 + π0 + vt, t = 1, 2, . . . T. (8)

ht is (3 × 1) vector of stronger instruments, and z2,t is (k × 1) vector of less informative

instruments, with the reduced-form parameter vectors π1 and π2 having 3 and k elements

respectively. In other words, there are q = k + 4 instruments in total, and the model is

over-identified by k + 2. k is the first important parameter in the simulations, because the

number of less informative instruments has an ambiguous effect on the second order bias

of α̂ identified by Proposition 2.

In the simulations, throughout we fix the following parameters as follows. First, α =

−0.5, so that the true elasticity of health outcomes with respect to health expenditure is

negative; second, both constants φ0 and π0 are normalised to zero; third, π1 = 13, so that

the effect of the stronger instruments on health expenditures is normalised to unity; and

fourth, π2 = a1k, where 1k is a (k × 1) vector of ones and a is a scalar. a is the second

important choice parameter, because it captures the relative strength of the less informative
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instruments compared with their stronger counterparts.

All k + 3 instruments are Normally distributed and are drawn independently of each

other, each with a variance σ2
z . σ2

z is the third choice parameter in the simulation design.

The reduced-form error vt and the regression error ut are drawn independently of the k+3

instruments, but are jointly Normally distributed with the variance of vt denoted σ2
v , the

variance of ut normalised to unity, and the covariance between vt and ut denoted ς. When

ς is non-zero, wt is endogenous. ς is the fourth choice parameter in the simulation design.

As already explained, we restrict ς to being positive because OLS is upwards biased. Also,

because the correlation between u and v is ς/σv, and is less than unity, ς is ultimately

restricted to 0 ≤ ς < σv. Finally, all of ut, vt, ht, z2,t have zero mean, which implies that yt

and wt also have zero mean (given φ0 = π0 = 0).

Of the four parameters yet to be fixed, namely a, ς, σ2
z and k, we note that the number

of less informative instruments k varies hereafter as 0, 4, 7, and 10. Although the other

three parameters are allowed to vary, in what follows we report only what happens when

a = 1/
√
10, σ2

z = 1/4, and σ2
v = 3/2.12 Our choices are explained as follows. We choose

σ2
v = 3/2 because this is what happens in the data. We then set the covariance to ς = 1

to ensure a strong degree of endogeneity of the health expenditure variable w, with the

correlation between u and v being ς/σv = 0.816. Noting that

R2
w,h =

3σ2
z

3σ2
z + σ2

v

,

and setting R2
w,h = 1/3 throughout, again because of the real data, this implies that

σ2
z = 1/4 throughout. Next, note that

σ2
w = σ2

z(3 + ka2) + σ2
v (9)

and

R2
w,[h,z2]

=
σ2
z(3 + ka2)

σ2
z(3 + ka2) + σ2

v

. (10)

12The wider set of results is available on request.
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We now choose ka2 = 1 so that the contribution of the less informative instruments moves

R2
w,h from 1/3 to R2

w,[h,z2]
= 2/5 when there are k = 10 less informative instruments in the

reduced form for w. Hence a = 1/
√
10 throughout. To check that these are sensible choices,

when k = 7 and σ2
w = 2.425, the bias in the OLS estimator, ς/σ2

w, is 0.412. In other words,

a true α of –0.5 is estimated, on average, as –0.088 using OLS, which is roughly consistent

with the real data described in Section 3.

Table 2 summarises the population values of the key parameters for k = 0, 4, 7, 10,

together with the second order population biases given in Propositions 2 and 3 above. We

do this for T = 150 and T = 300. The former is the sample size for the real data; the latter

is to illustrate how the comparisons between the biases evolve as the sample size increases.

Table 2: Summary of simulation design as number of less informative instruments varies

Number less informative instruments k
0 4 7 10

Variance of endogenous regressor σ2
w (Equation 9) 2.250 2.350 2.425 2.500

First stage R2
w,[h,z2]

(Equation 10) 0.333 0.362 0.381 0.400

T = 150

Asy Std Error of IV estimator
√

Vα/T (Equation 12) 0.0943 0.0886 0.0849 0.0817
Second order bias IV estimators (Equation 4) 0.00889 0.03921 0.05766 0.07233
Second order bias IM estimators (Equation 5) –0.00889 –0.00784 –0.00721 –0.00667
First order bias OLS ς/σ2

w 0.444 0.426 0.412 0.400
Average F -statistic when estimating Equation (8) 151 35.0 24.1 19.2

T = 300

Asy Std Error of IV estimator
√

Vα/T (Equation 12) 0.0667 0.0626 0.0600 0.0577
Second order bias IV estimators (Equation 4) 0.00444 0.01961 0.02883 0.03667
Second order bias IM estimators (Equation 5) –0.00444 –0.00392 –0.00360 –0.00333
First order bias OLS ς/σ2

w 0.444 0.425 0.412 0.400
Average F -statistic when estimating Equation (8) 301 69.0 47.2 37.4

* Data generation process given by Equations (7, 8). p = 2, q = k + 4, α = −0.5, φ0 = π0 = 0, π1 = 13,
π2 = a1k, and σ2

v = 3/2. In these simulations, a = 1/
√
10, σ2

z = 1/4, and ς = 1.

The table shows that magnitude of the second order bias for the IV and IM estimators

is the same when there are no less informative instruments, because q − p − 1 = 1. When

T = 150, the bias is 0.00889. We now see what happens as more and more less informative

instruments are added. The variance of the endogenous regressor σ2
w increases, and so the
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first stage R2
w,[h,z2]

also increases. As the Propositions assert, the second order bias for the

IM estimator falls, to 0.00667 for k = 10, whereas that for IV increases to 0.07233. For the

latter, this is sizeable, as a true parameter of –0.5 will estimated as -0.4277 on average; in

Equation (4), the effect of q in the numerator is outweighing the increase in the fit in the

denominator. When the sample size doubles to T = 300, the IV estimator is more precise,

by a factor
√
2. Also, the second order biases all halve, whereas the first order bias of OLS

remains the same.

We now examine the other properties of the IV estimators (2SLS and GMM) and

IM estimators (ET and EL) assuming that the sample size is large whereas, in fact, it

is a moderate T = 150 or T = 300. All estimations are performed using the Matlab R©

Optimization Toolbox. The EL and ET estimations utilize a GEL toolbox written by

Kostas Kyriakoulis; this toolbox uses fmincon with the so-called interior point algorithm.

This algorithm obtains EL (or ET) estimators by optimizing the EL objective with respect

to the probabilities and θ subject to the constraints that the probabilities are non-negative,

sum to one, and satisfy the moment condition. The number of replications is N = 1000.

4.2 Results

Table 3 summarises the properties of the estimators; that is, biases, coverage proportions,

and rejection frequencies based on first order asymptotics (FOA).

The results for the 2SLS and GMM estimators are roughly the same throughout Table 3

because there is no heteroskedasticity in the simulation design. Given the analytical formu-

lae already discussed, the biases reported in the first row of the table can be compared with

Table 2: we see that the biases for all the estimators are close to their theoretical counter-

parts. (Recall that 2SLS/GMM are biased upwards whereas ET/EL are biased downwards.)

The biases reported in the second row use the median rather then mean over N = 1000

replications; this is because the true sampling distributions might be non-symmetric. Now

the biases for 2SLS/GMM get worse, whereas EL/ET get considerably better (roughly 5

times smaller).
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Table 3: Coverage and rejection proportions assuming first order asymptotics, T = 150

2SLS GMM
0 4 7 10 0 4 7 10

Biasa 0.0091 0.0374 0.0517 0.0661 0.0091 0.0372 0.0520 0.0666
Bias (median)b 0.0175 0.0417 0.0592 0.0694 0.0176 0.0414 0.0587 0.0710
Bias mean corrected estc 0.0015 0.0093 0.0174 0.0311

Coverage prop, 95% nom, t-statd 0.939 0.893 0.838 0.774 0.929 0.862 0.808 0.732
Coverage prop, 99% nom, t-stat 0.976 0.950 0.937 0.899 0.972 0.940 0.906 0.850

Rejection prop, 5% nom, J-state 0.052 0.065 0.066 0.079 0.053 0.046 0.045 0.047
Rejection prop, 1% nom, J-stat 0.009 0.013 0.017 0.019 0.008 0.005 0.007 0.009

EL ET
0 4 7 10 0 4 7 10

Bias -0.0096 -0.0086 -0.0098 -0.0092 -0.0094 -0.0090 -0.0100 -0.0093
Bias (median) -0.0019 -0.0021 -0.0007 -0.0024 -0.0018 -0.0022 0.0001 -0.0030
Bias mean corrected est -0.0004 -0.0012 -0.0034 -0.0037 -0.0003 -0.0016 -0.0036 -0.0038

Coverage prop, 95% nom, t-stat 0.944 0.928 0.907 0.889 0.942 0.925 0.900 0.882
Coverage prop, 99% nom, t-stat 0.980 0.972 0.968 0.960 0.978 0.970 0.961 0.951

Rejection prop, 5% nom, LRf 0.059 0.078 0.120 0.178 0.063 0.113 0.173 0.262
Rejection prop, 5% nom, LM 0.056 0.081 0.137 0.208 0.056 0.062 0.075 0.079
Rejection prop, 5% nom, W 0.056 0.081 0.137 0.208 0.073 0.149 0.232 0.350
Rejection prop, 1% nom, LR 0.013 0.025 0.041 0.064 0.018 0.038 0.072 0.115
Rejection prop, 1% nom, LM 0.012 0.029 0.045 0.087 0.010 0.010 0.019 0.018
Rejection prop, 1% nom, W 0.012 0.029 0.045 0.087 0.023 0.064 0.121 0.215

a Bias is N−1
∑

r α̂r − α, where α̂r is the estimate of α on the r-th replication.
b As [a], but using median rather than sample mean.
c Estimate of α̂r is bias-corrected using suggestion of Newey and Smith (2004).
d Proportion of replications where H0 : α = 0 not rejected using t-statistic

√
T α̂/

√

V̂α.
e Proportion of replications where usual GMM overidentifying restrictions test is rejected.
f Same as [e], but for LR, LM, and Wald analogues of overidentifying restrictions test for ET/EL.
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Table 4: Coverage and rejection proportions assuming first order asymptotics, T = 300∗

2SLS GMM
0 4 7 10 0 4 7 10

Biasa 0.0038 0.0182 0.0269 0.0349 0.0040 0.0182 0.0271 0.0353
Bias (median)b 0.0086 0.0201 0.0282 0.0359 0.0089 0.0207 0.0280 0.0347
Bias mean corrected estc -0.0005 0.0011 0.0066 0.0114

Coverage prop, 95% nom, t-statd 0.933 0.907 0.879 0.856 0.930 0.891 0.860 0.823
Coverage prop, 99% nom, t-stat 0.980 0.965 0.954 0.935 0.977 0.956 0.939 0.922

Rejection prop, 5% nom, J-state 0.054 0.053 0.058 0.062 0.047 0.052 0.056 0.056
Rejection prop, 1% nom, J-stat 0.013 0.014 0.010 0.012 0.010 0.013 0.007 0.006

EL ET
0 4 7 10 0 4 7 10

Bias -0.0051 -0.0052 -0.0047 -0.0035 -0.0052 -0.0053 -0.0049 -0.0036
Bias (median) -0.0001 -0.0031 -0.0031 -0.0027 -0.0005 -0.0032 -0.0038 -0.0033
Bias mean corrected est -0.0005 -0.0013 -0.0013 -0.0004 -0.0006 -0.0015 -0.0014 -0.0005

Coverage prop, 95% nom, t-stat 0.937 0.928 0.917 0.910 0.935 0.926 0.919 0.911
Coverage prop, 99% nom, t-stat 0.980 0.979 0.976 0.971 0.980 0.980 0.972 0.970

Rejection prop, 5% nom, LRf 0.056 0.068 0.085 0.102 0.059 0.082 0.103 0.139
Rejection prop, 5% nom, LM 0.055 0.064 0.084 0.104 0.050 0.060 0.063 0.077
Rejection prop, 5% nom, W 0.055 0.064 0.084 0.104 0.062 0.095 0.132 0.175
Rejection prop, 1% nom, LR 0.012 0.016 0.019 0.025 0.014 0.025 0.030 0.052
Rejection prop, 1% nom, LM 0.011 0.016 0.019 0.028 0.011 0.013 0.014 0.017
Rejection prop, 1% nom, W 0.011 0.016 0.019 0.028 0.014 0.031 0.045 0.078

* See tablenotes to Table 3.
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For the GMM/EL/ET estimators, we implement a second-order bias-correction using a

suggestion of Newey and Smith (2004). For ET/EL, this reduces the bias by a factor of 2

to 3. However, we note the correction seems sensitive to k with the remaining biases are

3 times worse for k = 7, 10 compared with k = 4. Importantly, our simulations confirm

that EL/ET exhibits relatively little bias, even when there are k = 10 less informative

instruments. Throughout, the biases for ET are very similar to EL. On the other hand,

it is clear that the 2SLS/GMM estimators are biased, and the bias gets worse as more

less informative instruments are added. However, the bias correction does make the biases

smaller, and the “drift” with k is less pronounced. However, the bias corrected GMM

estimator always exhibits more bias than bias corrected EL/ET and more bias than the

uncorrected EL/ET for k = 4, 7, 10.

We now examine whether we obtain correct inference when testing the null hypothesis

that α = −0.5. The table shows that the coverage proportions are all too small for k = 0

(for example, the ET coverage is 0.944 instead of 0.95 and is 0.980 instead of 0.99) and these

get worse as k increases. There is no difference between ET and EL. This deterioration is

much worse for the 2SLS/GMM estimators.

Finally, we consider the performance of the standard model specification test statistics

within the GMM and IM framework. For GMM, this is the overidentifying restrictions test

statistic:

J = TgT (θ̂T )
′WT gT (θ̂T )

where gT (θ) = T−1
∑T

t=1 ztut(θ) and WT = {T−1
∑T

t=1 u
2
t (θ̂T )ztz

′
t}−1; the 2SLS version

uses WT = {σ̂2T−1
∑T

t=1 ztz
′
t}−1. For the IM, we consider three model specification tests:
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the LR, Wald and LM given respectively by13

LR = 2
T
∑

t=1

[ρ
(

λ̂′ztut(θ̂IM )
)

− ρ0]

Wald = TgT (θ̂IM )′Ω̂−1gT (θ̂IM )

LM = T λ̂′Ω̂λ̂,

where ρ(a) equals ln(1−a) for EL and −ea for ET, ρ0 = ρ(0), λ̂ is the Lagrange Multiplier

associated with constraint that the moment conditions are satisfied in the sample, Ω̂ =

T−1
∑T

t=1 u
2
t (θ̂IM )ztz

′
t. Under H0 : E[ztut(θ0)] = 0 all four statistics converge to a χ2

q−p

distribution. From Table 3, it can be seen the GMM overidentifying restrictions test, the

so-called J-statistic, has the correct rejection proportions, and they are marginally worse

for 2SLS. For the EL/ET estimators, when there are no less informative instruments, the

rejection frequencies are also correct. However, when k increases, for the ET/EL estimators

both the LR and Wald over-reject (for example, for ET and k = 10, the null hypothesis is

rejected 35.0% of the time when using the Wald statistic when it should be 5%). Of the

three IM-based statistics, only the LM exhibits a rejection frequency close to the nominal

size.

Table 4 reports what happens when we double the sample size. As expected, all the

biases halve. Also, for obvious reasons, the rejection proportions for EL/ET improve con-

siderably.

To conclude, while EL and ET provide accurate point estimators, inferences based on

the first order asymptotic distribution of the estimator and overidentification restriction

tests are unreliable in these samples when less informative instruments are included. In the

next sub-section, we explore whether a bootstrap can correct this problem.

13See Smith (2011)[Section 4].
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4.3 Bootstrap

In this sub-section, we outline Brown and Newey’s (2002) bootstrap procedure for construct-

ing confidence intervals for the parameter estimators and performing the various versions

of the overidentifying restrictions tests.14 For purposes of presentation, we let the random

vector containing the data variables be d = [y, w, z′]′, and dt denote the tth observation in

the sample on d, that is dt = [yt, wt, z
′
t]
′. The statistics of interest are:

t-statistics:

τ(·)(θ̂j , β0,j , V̂jj) =

∣

∣

∣

∣

θ̂
(·)
j − θ0,j
√

V̂jj

∣

∣

∣

∣

for (·) = GMM , EL, ET with θ̂j and V̂jj denoting the appropriate estimator and its

estimated first order asymptotic variance based on estimation method indicated by

(·).

Overidentifying restrictions tests: O
(·)
s (d1, d2, . . . dT ) where (·) =GMM , EL, ET , and

for (·) = GMM then s = 1 denotes the usual GMM overidentifying restrictions test,

for (·) = EL or ET then s = 1 denotes the Wald statistic for the overidentifying

restrictions, s = 2 denotes the LR statistic and s = 3 denotes the LM statistic.

Brown and Newey (2002) propose a version of the bootstrap based on GEL estimation

of this model. To describe their procedure, we introduce the following definition.

• Let πt = P (d = dt) and π̂t denote the GEL estimator of π based on the sample.

For the purposes of the bootstrap, we treat d as discrete random vector with sample space

DT = {dt; t = 1, 2, . . . , T} and probability distribution function PT (d = dt) = π̂t.
15 The

bootstrap samples are then created by sampling from replacement from this distribution

14Brown and Newey (2002) propose this procedure for GMM-based inference only but it can also be used
for EL and ET because it is an example of the “b-bootstrap” methods analyzed in Hall and Presnell (1999).
It has become customary in the econometrics literature to ascribe this resampling based on EL/ET to Brown
and Newey, for example see Kitamura (2007), and so we continue this practice here.

15We ignore the possibility here that dt = ds for some t 6= s as this does not occur in our simulations or
the health data.
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for d. Let B be the total number of bootstrap samples generated, and index the bootstrap

sample by b; so we have b = 1, 2, . . . , B. Then, for each step of the bootstrap b, we proceed

as follows.

1. On the bth step of the bootstrap, draw a sample T observations d
(b)
t with replacement

from PT (d = dt) = π̂t.

2. Based on {d(b)t ; t = 1, 2, . . . , T}, calculate:

• the GEL and GMM estimators, denoted here by θ̂
(b)
GMM , θ̂

(b)
EL and θ̂

(b)
ET .

• the test statistics:

– τ
(b)
(·) (θ̂

(b)
j , θ̂j , V̂

(b)
jj ) where θ̂

(b)
j and V̂

(b)
jj denote the appropriate estimator and

its estimated first order asymptotic variance based on estimation method

indicated by (·)

– O
(·),b
s (d

(b)
1 , d

(b)
2 , . . . d

(b)
T ) where (·) =GMM , EL, ET and s is defined as above.

As a result of applying the bootstrap, this procedure generates a sampling distribution

for each statistic of interest. It uses these distributions to provide bootstrap-based con-

fidence intervals for the parameters and bootstrap-based p-values for the overidentifying

restrictions tests as follows:

• bootstrap-based confidence interval for β0,j : Let τb = τ
(b)
(·) (θ̂

(b)
j , θ̂j , V̂

(b)
jj ), that is the

value of τ
(b)
(·) (θ̂

(b)
j , θ̂j , V̂

(b)
jj ) based on the bth bootstrap sample16. From the boot-

strap, the procedure generates the following sampling distribution for τ(·)(θ̂j , β0,j , V̂jj),

{τb}Bb=1. Let q
B
α be the 100(1− α)th quantile of {τb}Bb=1: the 100(1− α)% bootstrap-

based symmetric confidence interval for β0,j is:

θ̂j ± qBα

√

V̂jj . (11)

16Note this depends on j but this suppressed to simplify the notation
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• bootstrap-based p-values for the overidentifying restrictions tests: To illustrate, con-

sider the overidentifying restrictions test based on GMM, denotedOGMM
1 (d1, d2, . . . dT )

above. Put Ob = OGMM
1 (d

(b)
1 , d

(b)
2 , . . . d

(b)
T ), that is the value of the GMM overiden-

tifying restrictions test based on the bth bootstrap sample - again, for simplicity of

notation, we suppress dependence (this time) on (·) and s. From the bootstrap,

the procedure generates the following sampling distribution for OGMM
1 (d1, d2, . . . dT ),

{Ob}Bb=1. Redefine qBα to be the 100(1−α)th quantile of {Ob}Bb=1: then the bootstrap

version of the decision rule for this test is as follows: reject H0 : E[ztut(θ0)] = 0

if OGMM
1 (d1, d2, . . . dT ) ≥ qBα , that is test statistic from original data is compared to

the appropriate quantile obtained from the bootstrapped sampling distribution.

Table 5: Coverage and rejection proportions using the bootstrap, T = 150

EL ET
0 4 7 10 0 4 7 10

Coverage prop, 95% nom, t-stat 0.951 0.954 0.945 0.942 0.951 0.956 0.939 0.938
Coverage prop, 99% nom, t-stat 0.984 0.988 0.985 0.983 0.987 0.986 0.985 0.983

Rejection prop, 5% nom, LRf 0.049 0.042 0.045 0.039 0.052 0.047 0.047 0.045
Rejection prop, 5% nom, LM 0.052 0.052 0.045 0.043 0.049 0.034 0.029 0.019
Rejection prop, 5% nom, W 0.052 0.052 0.045 0.043 0.055 0.053 0.051 0.047
Rejection prop, 1% nom, LR 0.008 0.005 0.007 0.006 0.010 0.009 0.007 0.007
Rejection prop, 1% nom, LM 0.008 0.009 0.009 0.006 0.005 0.005 0.003 0.004
Rejection prop, 1% nom, W 0.008 0.009 0.009 0.006 0.011 0.011 0.011 0.006

* See tablenotes to Table 3.

Tables 5 and 6 report the outcomes, and shows that all the coverage and rejection

probabilities are consistent with the nominal size.
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Table 6: Coverage and rejection proportions using the bootstrap, T = 300

EL ET
0 4 7 10 0 4 7 10

Coverage prop, 95% nom, t-stat 0.942 0.943 0.928 0.937 0.942 0.938 0.934 0.932
Coverage prop, 99% nom, t-stat 0.985 0.987 0.985 0.985 0.985 0.988 0.987 0.985

Rejection prop, 5% nom, LRf 0.050 0.048 0.054 0.053 0.052 0.049 0.056 0.056
Rejection prop, 5% nom, LM 0.055 0.051 0.051 0.055 0.043 0.042 0.049 0.041
Rejection prop, 5% nom, W 0.055 0.051 0.051 0.055 0.051 0.047 0.056 0.058
Rejection prop, 1% nom, LR 0.009 0.011 0.010 0.006 0.009 0.012 0.010 0.007
Rejection prop, 1% nom, LM 0.011 0.010 0.010 0.006 0.010 0.007 0.007 0.003
Rejection prop, 1% nom, W 0.011 0.010 0.010 0.006 0.009 0.013 0.010 0.007

* See tablenotes to Table 3.

5 The health expenditure example continued

We continue with the empirical example we introduced in Section 3 above. Table 7 reports

results from 2SLS and GMM estimation of the model using various choices of instrument.17

To recap Section 3, in contrast to the OLS estimate of 0.090 (0.064), the 2SLS estimate

with the funding rule instruments is –0.705 (0.245) (see the column labelled “Base” and

row labelled “2SLS”). We now report what happens when we add up to seven secondary

instruments, and re-estimate the models using GMM, EL and ET.

In the rest of the row labelled “2SLS”, the secondary instruments are added in groups,

so that the final column has 7 such instruments. Now the estimate is −0.587 (0.132). Recall

that the first stage R-squared is 0.793 for the Base model and rises to 0.833 when the 7

extra instruments are included. In the second row, all the models are re-estimated using

GMM. All the estimates are smaller in absolute value, and have larger standard errors,

except for the Base model.

The issue we have addressed in this paper is the fact that the 2SLS/GMM estimates are

sensitive to the number of secondary instruments. In particular, we note that the estimated

elasticity tends to become smaller in absolute value as more instruments are included. By

17We have applied standard tests available in the literature to confirm the relevance and validity of all
choices of instruments considered here. Details are omitted for brevity.
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Table 7: 2SLS, GMM, EL and ET estimates of β and standard errors∗

Estimator Base A B C AB AC BC ABC
2SLS –0.705 –0.656 –0.705 –0.642 –0.608 –0.625 –0.641 –0.587

(0.245) (0.148) (0.158) (0.148) (0.135) (0.142) (0.145) (0.132)
GMM –0.627 –0.593 –0.574 –0.518 –0.527 –0.536 –0.507 –0.511

(0.200) (0.192) (0.175) (0.172) (0.162) (0.171) (0.160) (0.157)
EL –0.743 –0.787 –0.683 –0.658 –0.753 –0.694 –0.642 –0.734

(0.218) (0.233) (0.192) (0.191) (0.204) (0.200) (0.179) (0.196)
ET –0.747 –0.786 –0.681 –0.665 –0.729 –0.709 –0.642 –0.710

(0.218) (0.231) (0.190) (0.192) (0.197) (0.201) (0.178) (0.189)

Bias corrected
GMM –0.659 –0.684 –0.646 –0.589 –0.638 –0.652 –0.608 –0.654
EL –0.711 –0.756 –0.655 –0.633 –0.725 –0.670 –0.619 –0.708
ETa –0.731 –0.770 –0.663 –0.653 –0.716 –0.698 –0.629 –0.698

Bootstrap-based p-values for the overidentifying restrictions testsb

EL, LR 0.81 0.74 0.47 0.75 0.69 0.65 0.41 0.57
EL, LM 0.80 0.73 0.45 0.74 0.68 0.63 0.39 0.56
EL, Wald 0.80 0.73 0.46 0.74 0.68 0.64 0.39 0.56
ET, LR 0.80 0.71 0.47 0.74 0.65 0.63 0.41 0.53
ET, LM 0.83 0.77 0.55 0.77 0.72 0.68 0.49 0.61
ET, Wald 0.79 0.70 0.44 0.72 0.64 0.62 0.39 0.52

Bootstrapped-based confidence intervalc

EL (upper) -0.216 -0.184 -0.186 -0.210 -0.239 -0.178 -0.188 -0.165
EL (lower) -1.270 -1.390 -1.180 -1.105 -1.268 -2.211 -1.096 -1.303
ET (upper) -0.160 -0.186 -0.088 -0.205 -0.193 -0.163 -0.119 -0.120
ET (lower) -1.334 -1.387 -1.275 -1.125 -1.265 -1.254 -1.165 -1.299

* Notes: for definitions see Table 3. “Base” specification is 3 funding rule instruments only.
“A” adds 2 migration variables; “B” adds 3 further socioeconomic variables; “C” adds 2
further labour market variables; so that . . . “ABC” adds all 7 variables.

a ET based on B ≈ 950 because ET did not always converge.
b See Section 4.3 for full details. (The numbers of bootstrapped samples that were discarded
are 41, 30, 51, 21, 38, 29, 43, and 54 resp.)

c See Equation (11).
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contrast, the EL/ET estimates exhibit far less sensitivity to the choice of instrument than

their 2SLS/GMM counterparts. In particular, it is interesting to compare the estimates of

the Base specification (funding–rule instruments only) with the “ABC” specification (all the

instruments). For GMM, the estimates for Base are −0.627 and with “ABC” are −0.511;

where as for EL they are −0.743 and −0.734 respectively, and for ET, −0.747 and −0.710

respectively. As is apparent, the EL and ET estimates are close and different from those

obtained via 2SLS/GMM.

Given the insights from first and second order asymptotic theory described above, we

believe that the EL/ET estimates are the more reliable. Our simulations also suggest that

the Newey and Smith (2004) second order bias correction reduces the bias for all values of k;

see the second panel of the table. In Table 7, the implied biases match the patterns predicted

by the simulations. The biased-corrected EL estimates are approximately 0.03 closer to

zero than the uncorrected estimate and for ET this is about 0.015, ie the estimates move

in the right direction. There is no systematic variation across the columns. On the other

hand, again as predicted, the GMM estimates move in the other direction, move further

than EL/ET, are get bigger as more of the secondary instruments are added. The net

effect is that the bias-corrected GMM estimates do not vary with the number of secondary

instruments, as one would hope.

However, our simulations also show that the “usual” inference techniques based on first

order asymptotic theory are unreliable and this problem can be corrected using the boot-

strap. Therefore, we apply Brown and Newey’s (2002) procedure, described in Section 4.3,

to our example. In the third panel, the p-values for the overidentifying restrictions tests all

pass comfortably, and, in the fourth panel, we report the corresponding bootstrapped-based

confidence intervals.

Of the second order biased corrected EL/ET estimates, which should we choose? Whilst

the EL estimates range between −0.619 and −0.756 and the ET estimates range between

−0.629 and −0.770, because this paper is concerned with the relevance of secondary in-

struments, we focus on the ABC specifications, namely −0.708 for EL and −0.698 for ET.
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These estimates are roughly in the middle of the 8 possibilities.

Thus we conclude that elasticity of mortality with respect to health expenditure is

roughly -0.71. The equivalent GMM estimate is roughly -0.51, which we believe is biased

because of the inclusion of the secondary instruments. In terms of policy implications,

the differences between the GMM and EL estimators can be demonstrated as follows: the

GMM estimates imply that increasing NHS expenditure by 10% leads to a 5.1% reduction

in deaths which translates to a cost per death averted of approximately £350,000, but the

EL estimates imply that a 10% increase in NHS expenditure would lead to 7.3% fewer

deaths which translates to a cost per death averted of £250,000.18 However, the bootstrap

confidence intervals suggest that there is considerable uncertainty about the estimate, with,

for example, the EL estimate having a confidence interval of (–0.152, –1.264). The corre-

sponding cost per death calculations turn out to be £1,120,000 and £140,000 respectively.

6 Concluding remarks

In his 1999 paper with Breusch, Qian and Wyhowski in the Journal of Econometrics, Peter

Schmidt introduced the concept of “redundant” moment conditions. Such conditions arise

when estimation is based on moment conditions that is valid and can be divided into two

sub-sets: one that identifies the parameters and another that provides no further informa-

tion. Their framework highlights an important concept in the moment-based estimation

literature namely, that not all valid moment conditions need be informative about the

parameters of interest.

In this paper, we demonstrate the empirical relevance of the concept in the context

of the impact of government health expenditure on health outcomes in England because

this is where exactly this type of structure is present. From the funding rule, there are

18These figures are obtained as follows. Using the summary statistics reported in Table 3 above, an
increase in NHS expenditure by 10% would cost £107 per capita. The death probability is 0.006 and a 5.1%
reduction in the death probability (from GMM) is a change of 0.000306. The cost per death averted is then
£107/(0.000306) = £350,000 approximately. With the coefficient estimated from the EL (–0.71) the change
in death probability is 0.000426, giving a cost per death averted of £250,000 approximately. In general, the
cost per death averted is £180,000/β.
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a set of 3 instruments that strongly identify the parameters and an additional group of

seven secondary instruments capturing socio-economic charactersitics that are potentially

redundant, or nearly so, given the funding rule instruments. In estimating the elasticity of

mortality with respect to health expenditure using English data for 152 PCTs in 2005–06,

the 2SLS estimate falls from –0.705 (0.245) with only the funding rule instruments are used

to −0.587 (0.132) when the additional seven instruments are also included. This raises the

obvious question of which figure the policy maker should use.

Using second order asymptotic analysis backed up by a simulation study calibrated to

these data, we perform a comparative study of the finite performance of inference proce-

dures based on Generalized Method of Moment (GMM) and info-metric (IM) estimators.

The results indicate that the properties of GMM procedures deteriorate as the number of

less informative moment conditions increases; in contrast the IM methods provide reliable

point estimators but the performance of associated inference techniques based on first or-

der asymptotic theory, such as confidence intervals and overidentifying restriction tests,

deteriorates as the number of less informative moment conditions increases. These results

suggest that IM estimates combined with the Brown and Newey (2002) bootstrap provide

reliable inferences.

When we return to the health example, we find that the IM point estimate implies a

substantially lower cost per life saved than the GMM estimator. However, the bootstrapped

confidence intervals suggest that there is considerable uncertainty about the estimate.
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Appendix

Proof of Proposition 1: Using the arguments in Section 2, we have

Vθ = σ2(MxzM
−1
zz Mzx)

−1 = σ2A−1, say,

V
(1)
θ = σ2(Mxz1M

−1
z1z1Mz1x)

−1 = σ2{A(1)}−1, say.

Consider A. Using x = [w, c′]′, we have (dropping the t for simplicity)

A =







E[wz′]

E[cz′]






{E[zz′]}−1

[

E[zw] E[zc′]

]

=







MwzM
−1
zz Mzw MwzM

−1
zz Mzc

MczM
−1
zz Mzw MczM

−1
zz Mzc






.

Using the partitioned inversion formula, it follows that

Vα =
{

MwzM
−1
zz Mzw −MwzM

−1
zz Mzc

(

MczM
−1
zz Mzc

)−1
MczM

−1
zz Mzw

}−1
.

Since zM−1
zz Mzc is the (population) projection of c on z and z = [c′, h′, z′2]

′, it follows that

c = zM−1
zz Mzc and

Vα = σ2(MwzM
−1
zz Mzw − MwcM

−1
cc Mcw)

−1 =
σ2

σ2
w

(

1

R2
w,z − R2

w,c

)

, (12)

where σ2
w denotes the variance of w. Similarly, we have

V (1)
α =

σ2

σ2
w

(

1

R2
w,z1 − R2

w,c

)

. (13)

The result then follows from (12)–(13).

Proof of Propositions 2 and 3: From Newey and Smith (2004)[Theorem 4.5] and the

discussion below on p.230, it follows that, under our assumptions, the second order biases
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are as follows:

bias(θ̂T ) = (q − p− 1)VθE[xtut]/σ
2T

bias(θ̂IM ) = −VθE[xtut]/T.

The results the follow from E[xtut] = [σuv, 01×(p−1)] where 01×(p−1) is the 1 × (p − 1) null

vector, and (12).
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