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Abstract

We introduce the idea of implementation under ambiguity. In particular, we
study an ex ante maximin core notion of an ambiguous asymmetric information
economy where agents’ preferences are maximin à la Gilboa-Schmeidler [7]. The
interest on the maximin core notion lies on the fact that it is always incentive
compatible (de Castro-Yannelis [3]) and of course efficient, a result which is false
with Bayesian preferences. A noncooperative notion called maximin equilibrium
is introduced which provides a noncooperative foundation for the maximin core.
Specifically, we show that given any arbitrary maximin core allocation, there is a
direct revelation mechanism that yields the core allocation as its unique maximin
equilibrium outcome. Thus, an incentive compatible and efficient outcome can be
reached by means of noncooperative behavior under ambiguity.

1 Introduction

We go beyond the Bayesian (standard) asymmetric information economy. In particular,
we study an ambiguous asymmetric information economy, i.e., an economy consisting
of a finite set of states of nature, a finite set of agents, each of whom is characterized
by an information partition, a (possibly incomplete1) private prior over the states of
nature, a random initial endowment and a privately known ex post utility function. An
ambiguous asymmetric information economy differs from the Bayesian one, in that we

∗On different occasions, we have benefited from comments, discussions, suggestions and questions by
Camelia Bejan, Jean-Marc Bonnisseau, Atsushi Kajii, John Ledyard, Stephen Morris, Walter Trockel
and Chi Leung Wong.
†Department of Economics, the University of Illinois, Urbana-Champaign, USA. liu108@illinois.edu
‡Department of Economics, the University of Iowa, Iowa City, USA; the University of Manchester,

Manchester, UK; and the University of Illinois, Urbana-Champaign, USA. nicholasyannelis@gmail.com
1It will be made clear in the definition of an ambiguous asymmetric information economy, that an

agent’s private prior is defined on the sigma-algebra generated by his information partition. Therefore,
had he observed a non singleton event in his information partition, he does not know the probability
of each of the states within the event, that is, he faces ambiguity. As for where the ambiguity comes
from, we refer interested readers to Ellsberg [6] and Riedel and Sass [16].
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do not require agents to be able to form a prior probability on every state of nature,
nor do we require the agents’ priors and their ex post utility functions to be common
knowledge. To accommodate the agents’ information constraints, we postulate that
they evaluate (random) allocations, hereafter allocations, with the help of the maximin
expected utility (see Gilboa and Schmeidler [7]).

For such an ambiguous asymmetric information economy, we adopt an ex ante
version of the maximin core2 first defined in de Castro-Yannelis [3]. The interest on the
maximin core arises from the fact that with maximin preferences, any Pareto optimal
allocation is incentive compatible (de Castro-Yannelis [3]), in other words, maximin
preferences solve the conflict between incentive compatibility and efficiency (recall that
in the standard expected utility/ Bayesian framework, an efficient allocation may not
be incentive compatible as it was shown in Holmström-Myerson [10]). We will show
by means of an example that the maximin core notion is different than the rational
expectations equilibrium (Radner [13]) or Walrasian expectations equilibrium (Radner
[12], [14]) or private core (Yannelis [18]). In particular, we show that the maximin
core not only exists in a situation that the Walrasian expectations equilibrium fails to
exist, but also achieves higher efficiency than all the above concepts.

It turns out that the maximin core, a cooperative solution concept, exists under
the standard continuity and concavity assumptions (de Castro-Yannelis [3]), also it
is incentive compatible (de Castro-Yannelis [3]) and obviously efficient. But, could
one provide a noncooperative foundation for the maximin core in terms of some game
theoretic solution concept? In other words, can the maximin core allocations be reached
by means of noncooperative behavior? What would be the appropriate game theoretic
solution concept?

In view of the ambiguous asymmetric information economy, one should not expect
to employ any Bayesian Nash type equilibrium notion. Indeed, we will show by means
of an example that the Bayesian Nash equilibrium notion fails. To this end, we intro-
duce the idea of a maximin equilibrium. Roughly speaking, in a maximin equilibrium,
each agent maximizes his payoff lowest bound, that is, each agent simply maximizes
the payoff that takes into account the worst actions of all the other agents against him
and also the worst state that can occur.

The main result of the paper is that given any arbitrary maximin core allocation,
there is a direct revelation mechanism that yields the core allocation as its unique
maximin equilibrium outcome, i.e., each maximin core allocation is implementable as
a maximin equilibrium. Therefore efficient and incentive compatible outcomes can be
reached by means of noncooperative behavior under ambiguity.

The paper is organized as follows. Section 2 defines an ambiguous asymmetric
information economy. Section 3 discusses the cooperative concept of the paper – the
maximin core. In Section 4, we introduce the direct revelation mechanisms, the max-
imin equilibrium, and present the main result of the paper. Finally, we conclude in
Section 5. Appendix contains proofs.

2Loosely speaking, the maximin core is the set of feasible allocations, that cannot be “improved
upon” by any coalition of agents. The “improved upon” idea is now based on the maximin preferences.
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2 Ambiguous asymmetric information economy

An ambiguous asymmetric information economy is an asymmetric information econ-
omy, in which agents have incomplete private priors and privately known utility func-
tions.

Formally, let Ω denote a finite set of states of nature, ω ∈ Ω a state of nature,
Rl+ the l good commodity space, and I the set of N agents, i.e., I = {1, · · · , N}. An
ambiguous asymmetric information economy E is a set

E = {Ω; (Fi, µi, ei, ui) : i ∈ I}

where for each i ∈ I,

1. the partition Fi of Ω denotes the set of all possible interim information of agent
i. More precisely, let EFi

i ∈ Fi denote an event, and ω ∈ EFi
i a state in the

event. Then, in the interim, if the state ω occurs, agent i only knows that the
event EFi

i has occurred. Also, we impose the standard assumption, that when a
state occurs, and all agents truthfully report their information, they will know
the realized state3. That is,

Assumption 1. For each ω,
⋂
j∈I E

Fj

j (ω) = {ω}, where E
Fj

j (ω) denotes the
element in Fj that contains the state ω.

2. µi : σ (Fi) → [0, 1] is agent i’s private prior, where σ (Fi) denotes the σ-algebra

generated by the partition Fi. Note, if EFi
i =

{
ω, ω

′
}

with ω 6= ω
′
, then the

probability of the event EFi
i is well defined, but not the probability of the event

{ω} or the event
{
ω
′
}

, i.e., an agent’s prior maybe incomplete. Here, we assume

Assumption 2. For each i and for each event EFi
i ∈ Fi, µi

(
EFi
i

)
> 0.

3. ei : Ω → Rl+ is agent i’s random initial endowment. We require ei to be Fi-
measurable4. So that the information partition Fi indeed contains all possible
interim information of agent i.

4. ui : Rl+×Ω→ R is agent i’s ex post utility function, taking the form of ui (ci;ω),
where ci denotes agent i’s consumption. The ex post utility function ui is strictly
monotone in consumption5, and only agent i knows the form of ui.

3This assumption is without loss of generality, since if there exist two different states ω and ω
′
,

such that no agent is able to distinguish them, then the two states may as well be treated as one state.
4That is, ei is constant on each element in Fi. More precisely, let agent i’s partition be Fi and fix

any ωk ∈ Ω. If ei : Ω→ Rl
+ is Fi - measurable, then ei (ω) = ei (ωk) for any ω ∈ EFi

i (ωk). Clearly, if
each ei is state independent, then it is automatically Fi-measurable.

5For each fixed ω, we have ui (ci;ω) < ui (ci + ε;ω), whenever ε is a none zero vector in Rl
+.
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Let xi : Ω → Rl+ denote agent i’s allocation (or in short, i-allocation). Denote by
Li the set of all possible allocations of agent i, and by x = (x1, · · · , xN ) an allocation
of the above economy E . An allocation x is said to be feasible, if for each ω ∈ Ω,∑

i∈I xi (ω) =
∑

i∈I ei (ω).
To accommodate the agents’ information constraints, we postulate that the agents

have the maximin preferences axiomatized by Gilboa and Schmeidler [7]. Unlike the
standard ex ante expected utility, the maximin ex ante expected utility of each alloca-
tion xi ∈ Li is well defined.

Let ∆i be the set of all probability measures over 2Ω, that agree with the agent i’s
prior µi, formally,

∆i =
{

probability measure πi : 2Ω → [0, 1] |πi (A) = µi (A) ,∀A ∈ σ (Fi)
}
.

Take any two allocations of agent i, fi and hi, from the set Li. Agent i prefers fi
to hi, fi �MP

i hi, if

min
πi∈∆i

∑
ω∈Ω

ui (fi (ω) ;ω)πi (ω) ≥ min
πi∈∆i

∑
ω∈Ω

ui (hi (ω) ;ω)πi (ω) . (1)

de Castro-Yannelis [3] adopt the following equivalent formulation to (1),

∑
E
Fi
i ∈Fi

(
min
ω∈EFii

ui (fi (ω) ;ω)

)
µi

(
EFi
i

)
≥

∑
E
Fi
i ∈Fi

(
min
ω∈EFii

ui (hi (ω) ;ω)

)
µi

(
EFi
i

)
.

(2)
We employ the utility formulation by de Castro-Yannelis.

Furthermore, we say agent i strictly prefers fi to hi, fi �MP
i hi, if he prefers fi to

hi but not the reverse, i.e. fi �MP
i hi but hi �MP

i fi.
The last assumption we impose is that

Assumption 3. For each i and for each fixed ci ∈ Rl+, ui (ci; ·) is Fi-measurable.
That is, given any ci ∈ Rl+, and any two states ω, ω̂ ∈ Ω, with ω 6= ω̂, we have

ui (ci;ω) = ui (ci; ω̂), whenever ω ∈ EFi
i (ω̂).

The Fi-measurability of the ex post utility functions is, in fact, often assumed in
games with incomplete information. Indeed, one may regard, Fi as agent i’s type
space, and EFi

i ∈ Fi as a possible type of agent i. Then clearly, assuming the function
ui (ci; ·) to be Fi-measurable, is the same as assuming ui to depend on agent i’s type.

3 Maximin core – a cooperative solution concept

Loosely speaking, an ex ante core of an economy is a collection of desirable allocations,
in the sense that, each allocation provides the best possible insurance for the agents.

The maximin core (an ex ante core concept), first defined in de Castro-Yannelis
[3], is the set of feasible allocations, that cannot be “improved upon” by any coalition
of agents. The “improved upon” idea is now based on the ex ante maximin expected
utility. Formally,
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Definition 1. A maximin core allocation is a feasible allocation x = (xi)i∈I for which
there is no coalition C ⊆ I, C 6= ∅, and an allocation of the coalition (yi)i∈C satisfying∑

i∈C yi (ω) =
∑

i∈C ei (ω), for all ω ∈ Ω, yi �MP
i xi for all i ∈ C, and yi �MP

i xi for
at least one i ∈ C.

de Castro-Yannelis [3] point out that the existence of the maximin core allocations
follows from the standard balancedness condition (e.g. Scarf [17]), provided that the
ex post utility functions are concave and continuous in consumption. Furthermore,
they [3] show that each maximin core allocation is incentive compatible.

We indicate by means of an example that the maximin core notion is different
than the rational expectations equilibrium (Allen [1], Radner [13]), or the Walrasian
expectations equilibrium (Radner [12], [14]) or the private core notion (Yannelis [18]).
We show that the maximin core not only exists in a situation that the Walrasian
expectations equilibrium (Radner [12]) fails to exist, but also achieves higher efficiency
than all the above concepts.

The rational expectations equilibrium, Walrasian expectations equilibrium and the
private core were first defined in a Bayesian asymmetric information economy6.

In a Bayesian (standard) asymmetric information economy, for each i-allocation
xi, the standard ex ante expected utility of player i is given by

νi (xi) =
∑
ω∈Ω

ui (xi (ω) ;ω)πi (ω) ,

where πi (ω) denotes the likelihood that agent i assigns to the state ω.
Denote by �i, the preference relation of agent i. Agent i weakly prefers the i-

allocation, fi to hi (written as fi �i hi), if the standard ex ante expected utility of fi
is greater than or equal to the standard ex ante expected utility of hi, i.e.,∑

ω∈Ω

ui (fi (ω) ;ω)πi (ω) ≥
∑
ω∈Ω

ui (hi (ω) ;ω)πi (ω) .

We write fi �i hi, whenever we have fi �i hi but hi �i fi.
Furthermore, for each agent i, let Gi be a partition of Ω. For ω ∈ Ω, denote by

EGii (ω) the element of Gi containing ω. Agent i’s Bayesian conditional probability is
defined as

πi

(
ω
′ | EGii (ω)

)
=


0 if ω

′
/∈ EGii (ω)

πi

(
ω
′)

πi

(
E
Gi
i (ω)

) if ω
′ ∈ EGii (ω),

where πi

(
EGii (ω)

)
:=
∑

ω′∈EGii (ω)
πi

(
ω
′
)

.

6A Bayesian asymmetric information economy is similar to an ambiguous asymmetric information
economy, except that there is no ambiguity – agents’ priors are defined at every element of the state
space; furthermore, the partitions, the priors, the random initial endowments, and the ex ante utility
functions are all common knowledge.
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The Bayesian interim expected utility function of agent i, νi

(
xi | EGii (ω)

)
, is given

by

νi

(
xi | EGii (ω)

)
=
∑
ω′∈Ω

ui

(
xi

(
ω
′
)

;ω
′
)
πi

(
ω
′ | EGii (ω)

)
.

Definition 2. Let C ⊂ I denote a coalition. An allocation x = (x1, · · · , xN ) is said
to be (Fi)i∈C -measurable, if for each i ∈ C, xi is Fi-measurable7 .

Note, if an i-allocation xi is not Fi-measurable, then the standard ex ante expected
utility of xi is not well defined. Take a very simple example. Suppose the state space
is Ω = {a, b} and agent i’s partition is Fi = {{a, b}}, that is, he cannot distinguish
the states a and b even in the interim. By definition, his private prior is given by
µi ({a, b}) = 1, µi (∅) = 0. Now, it is clear that he cannot evaluate the allocation

xi = (xi (a) , xi (b)) = (1, 0) ,

which fails to be Fi-measurable, based on the standard ex ante expected utility. Indeed,
the standard ex ante expected utility of agent i is ui (xi (a) ; a)µi (a)+ui (xi (b) ; b)µi (b),
and it is not well defined, since he does not know µi (a) or µi (b).

Now, let the non-zero function p : Ω → Rl+ denote a price system. Let σ (p)
be the smallest8 σ-algebra of Ω for which the price system p is measurable, and let
σ (Gi) = σ (p) ∨ σ (Fi) denote the smallest σ-algebra of Ω containing both σ (p) and
σ (Fi) 9. Then, Gi is the partition of Ω that generates the σ-algebra σ (Gi).

The two definitions below are taken from Allen [1] and Radner [13], [14], [12].

Definition 3. A rational expectations equilibrium (REE), (p∗, x∗), consists of a price
system p∗ and a (Gi)i∈I -measurable10 allocation x∗ = (x∗1, · · · , x∗N ), such that

1. for each i and for each ω, x∗i (ω) maximizes νi

(
xi | EGii (ω)

)
subject to the budget

constraint p∗ (ω)xi (ω) ≤ p∗ (ω) ei (ω);

2.
∑N

i=1 x
∗
i (ω) =

∑N
i=1 ei (ω), for each ω ∈ Ω.

Definition 4. A Walrasian expectations equilibrium (WEE), (p∗, x∗), consists of a
price system p∗ and an (Fi)i∈I -measurable allocation x∗ = (x∗1, · · · , x∗N ), such that

1. for each i, the i-allocation x∗i maximizes νi (xi), subject to the budget set

Bi (p∗) :=

{
xi : Ω→ Rl+ |xi is Fi-measurable, and

∑
ω∈Ω

p∗ (ω) · xi (ω) ≤
∑
ω∈Ω

p∗ (ω) · ei (ω)

}
.

2.
∑N

i=1 x
∗
i (ω) =

∑N
i=1 ei (ω), for each ω ∈ Ω.

7That is, xi is constant on each element in Fi.
8Let σ1, σ2 be two σ-algebras of Ω. σ1 is smaller than σ2, if σ1 ⊂ σ2.
9Recall, σ (Fi) denotes the σ-algebra generated by the partition Fi.

10For each i, the i-allocation x∗i is Gi-measurable.
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If we allow the total consumption at each state to be less than the total endowment
at that state,

∑N
i=1 x

∗
i (ω) ≤

∑N
i=1 ei (ω) for each ω ∈ Ω, and have the total spending

to be the same as the total income,
∑

ω∈Ω p (ω)
∑N

i=1 x
∗
i (ω) =

∑
ω∈Ω p (ω)

∑N
i=1 ei (ω),

then we have a free disposal WEE as defined by Radner [14].

The definition below is taken from Yannelis [18].

Definition 5. A private core allocation is a feasible and (Fi)i∈I -measurable allocation
x = (xi)i∈I for which there is no coalition C ⊆ I, C 6= ∅, and an (Fi)i∈C -measurable
allocation for the coalition (yi)i∈C satisfying

∑
i∈C yi (ω) =

∑
i∈C ei (ω), for all ω ∈ Ω,

yi �i xi for all i ∈ C, and yi �i xi for at least one i ∈ C.

But these three notions, rational expectations equilibrium, Walrasian expectations
equilibrium and the private core, can be readily applied to our ambiguous asymmetric
information economy11.

The difference of these three notions and the maximin core can be seen most clearly
by means of the following example.

Example 1. There are two agents, one commodity, and three possible states of nature
Ω = {a, b, c}. The ex post utility function of each agent i is ui (ci;ω) =

√
ci. The agents’

random initial endowments, information partitions and private priors are:

(e1 (a) , e1 (b) , e1 (c)) = (5, 5, 0); F1 = {{a, b} , {c}}

(e2 (a) , e2 (b) , e2 (c)) = (5, 0, 5); F2 = {{a, c} , {b}}

µ1 ({a, b}) = 2
3 ; µ1 ({c}) = 1

3

µ2 ({a, c}) = 2
3 ; µ2 ({b}) = 1

3

When calculating the private core, the REE and the WEE, we assume that each
agent ignores his information constraint, and completes his prior µi by assigning a
none zero probability to each state of nature12. In our setting, regardless of the ways
the agents complete their priors, the following results13 hold.

11In an ambiguous asymmetric information economy with Fi-measurable utility functions, the stan-
dard ex ante expected utility of any Fi-measurable i-allocation is well defined. Indeed, let xi be an
Fi-measurable i-allocation, then

νi (xi) =
∑

E
Fi
i ∈Fi

ui

(
xi
(
EFi

i

)
;EFi

i

)
µi

(
EFi

i

)
,

where ui

(
xi
(
EFi

i

)
;EFi

i

)
:= ui (xi (ω) ;ω) for some ω ∈ EFi

i . Similarly, the Bayesian interim expected

utility of a Gi-measurable allocation, νi
(
xi |EGii (ω)

)
, is also well defined.

12µi (ω) > 0, for all ω and for all i, is a standard assumption imposed on a Bayesian asymmetric
information economy (for example, Yannelis [18]).

13See Glycopantis-Yannelis [8] for detailed calculations.
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No trade (i.e., the initial endowment) is the unique private core allocation and
the unique REE allocation. Furthermore, it can be easily checked that a WEE with
positive prices14 does not exist. If we allow for free disposal, then

z =

(
z1 (a) z1 (b) z1 (c)
z2 (a) z2 (b) z2 (c)

)
=

(
4 4 1
4 1 4

)
is a (free disposal) WEE allocation, which requires each agent to throw away a unit of
the good at the state a.

Notice the allocation z is not incentive compatible. Indeed, suppose that the real-
ized state of nature is a, agent 1 is in the event {a, b} and he reports {c}. Observe that
agent 2 cannot distinguish between a and c, and may believe that state c has occurred.
In this case, agent 1 gets one unit from agent 2. His Bayesian interim expected utility
from lying is15

u1 (e1 (a) + z1 (c)− e1 (c) ; a)× π1 (a | {a, b}) + u1 (z1 (b) ; b)× π1 (b | {a, b})

=
√

6× π1 (a | {a, b}) +
√

4× π1 (b | {a, b}) ,

which is higher than the Bayesian interim expected utility of telling the truth,

u1 (z1 (a) ; a)× π1 (a | {a, b}) + u1 (z1 (b) ; b)× π1 (b | {a, b})

=
√

4× π1 (a | {a, b}) +
√

4× π1 (b | {a, b}) ,

where π1 (a | {a, b}) > 0 and π1 (b | {a, b}) > 0 are the conditional probabilities.
The initial endowment fails to be a maximin core allocation, since there exists an

alternative feasible allocation x that Pareto improves it16, where

x =

(
x1 (a) x1 (b) x1 (c)
x2 (a) x2 (b) x2 (c)

)
=

(
5 4 1
5 1 4

)
.

The feasible, individually rational, and Pareto optimal17 allocation x is in fact a max-
imin core allocation.

Clearly, in this example, the maximin core, the private core, the REE and the WEE
are different. Most importantly, the maximin core allows the agents to trade and reach

14That is, a WEE with (p (a) , p (b) , p (c)) ∈ R3
+.

15Agent 1 can only successfully lie in the states that agent 2 cannot distinguish.
16For each agent i, we have xi �MP

i ei, since

2

3

√
min {5, 4}+

1

3

√
1 = 1.67 >

2

3

√
min {5, 5}+

1

3

√
0 = 1.49.

17The allocation x solves

max
x

(
2

3

√
min {x1 (a) , x1 (b)}+

1

3

√
x1 (c)

)
+

(
2

3

√
min {x2 (a) , x2 (c)}+

1

3

√
x2 (b)

)
subject to x1 (a) + x2 (a) = 10, x1 (b) + x2 (b) = 5 and x1 (c) + x2 (c) = 5.
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a Pareto superior outcome, which is also incentive compatible (see de Castro-Yannelis
[3] for a rigorous definition).

de Castro-Yannelis [3] show that with the allocation x, no agent has an incentive
to misreport his privately observed event under the maximin preferences.

Indeed, if state a is realized, then agent 1 sees the event {a, b}. He can report the
true event {a, b} or he can lie and report the event {c}. Suppose agent 1 lies (i.e.,
reports the event {c}). Notice that agent 2 cannot distinguish the states a from state
c, and may believe that state c has occurred. In this case, agent 1 gets e1 (a) +x1 (c)−
e1 (c) = 6.

His maximin expected utility from lying is

min {u1 (e1 (a) + x1 (c)− e1 (c) ; a) , u1 (x1 (b) ; b)} = min
{√

6,
√

4
}

=
√

4.

When agent 1 does not misreport, he gets

min {u1 (x1 (a) ; a) , u1 (x1 (b) ; b)} = min
{√

5,
√

4
}

=
√

4.

Consequently, agent 1 does not gain by misreporting.
Clearly, the maximin core allocation x outperforms the free disposal WEE allo-

cation z. More precisely, the allocation x is both efficient and incentive compatible
in the maximin framework, whereas the allocation z is neither first best efficient nor
incentive compatible in the Bayesian framework.

Hence, the maximin core seems to be a desirable cooperative solution concept in
the sense that it exists under the continuity and concavity assumptions, it is incentive
compatible, and obviously efficient. But, could one provide a noncooperative founda-
tion for the maximin core? That is, can the maximin core allocations be reached by
means of noncooperation? We address this question in the next sections.

4 Implementation of a maximin core allocation

4.1 The direct revelation mechanism

A direct revelation mechanism, associated with a maximin core allocation and its
underlying ambiguous asymmetric information economy, is a noncooperative game, in
which agents (players) need to decide what to report after a state of nature is realized.
To ease the understanding, we describe the game first, and then define it formally.

In the interim, a state of nature ω is realized, each player i privately observes the
event EFi

i (ω) and receives the initial endowment ei (ω). Then, each player i strate-

gically writes down his report EFi
i ∈ Fi on a piece of paper and puts it in a sealed

envelope.
The report EFi

i , however, may or may not be truthful. That is, for player i, the

reported event EFi
i may be different from the observed true event EFi

i (ω).

9



Definition 6. Suppose the realized state (the true state) is ω. Then, a report of player
i, EFi

i ∈ Fi, is a lie, if it differs from the event EFi
i (ω).

The players’ envelopes are opened at the same time. Based on the players’ reports,
redistribution takes place. Figure 1 shows the time line.

A planned redistribution is the adjustments needed to go from the initial endow-
ment e to a planned allocation x.

Definition 7. If x is a maximin core allocation of an economy E, then the maximin
core redistribution (a planned redistribution) is given by x− e.

For example, given the maximin core allocation of Example 1, the maximin core
redistribution x− e is:

(x1 (a)− e1 (a) , x1 (b)− e1 (b) , x1 (c)− e1 (c)) = (0,−1, 1);

(x2 (a)− e2 (a) , x2 (b)− e2 (b) , x2 (c)− e2 (c)) = (0, 1,−1).

It says, if the players agree that state a has occurred, then everyone keeps what they
have; but if the players agree that state b has occurred, then player 1 is to give one
unit of the good to player 2; etc.

The actual redistribution, on the other hand, depends on the planned redistribu-
tion, the players’ reports EF1

1 , · · · , EFN
N , and the realized state of nature ω. From

Assumption 1, we know for any collection of reports EF1
1 , · · · , EFN

N , the
⋂
i∈I E

Fi
i is

either singleton or empty. So clearly, for the reports to be compatible, they must not
contradict with each other. Yet, this requirement is not sufficient. We also need ev-
ery player to have enough endowment to carry out the planned redistribution. More
precisely,

Definition 8. We say the reports EF1
1 , · · · , EFN

N are compatible at the state ω, if

1.
⋂
i∈I E

Fi
i = {ω̃}, and

10



2. ei (ω) + (xi (ω̃)− ei (ω̃)) ∈ Rl+ for all i ∈ I.

Furthermore, we refer the state ω̃ as the implied state (the agreed state).

When the reports EF1
1 , · · · , EFN

N are compatible at the state ω, the players will end
up with e (ω)+x (ω̃)−e (ω̃), where ω̃ is the implied state, and x (ω̃)−e (ω̃) is the planned
redistribution specified for the state ω̃. Clearly, if all the players tell the truth, then
ω̃ = ω and the players get what they planned to get, e (ω)+x (ω)−e (ω) = x (ω). But,
since some player may successfully lie, ω̃ may not be the true state. As a consequence,
e (ω) + x (ω̃) − e (ω̃) may differ from x (ω), i.e., the players may not end up with the
planned allocation.

If the reports are not compatible at the realized state ω, then the players redis-
tribute their initial endowments according to the planned redistribution specified for
the realized state18. Consequently, the players get, e (ω) + x (ω)− e (ω) = x (ω).

Definition 9. Let x − e denote a planned redistribution,
(
EF1

1 , · · · , EFN
N

)
a list of

reports, and ω a realized state of nature. Then the actual redistribution is given by

D
(
x− e,

(
EF1

1 , · · · , EFN
N

)
, ω
)

=

{
x (ω̃)− e (ω̃) if the reports are compatible at ω
x (ω)− e (ω) otherwise;

where ω̃ and ω denote the implied state and the realized state respectively, and

Di

(
x− e,

(
EF1

1 , · · · , EFN
N

)
, ω
)

denotes the amount player i gives to or takes from

the others.

Now, we gradually define the game. A decision node of player i is a circumstance
that he might be called upon to act (in Figure 2, it is denoted by a dot.). An infor-
mation set of player i, Ii, is the set of all of his decision nodes that look the same to
him (the players’ information sets are illustrated by the dotted lines in Figure 2). Let
Ii denote the set of player i’s information sets. That is, Ii contains all of the distinct
circumstances that player i might be called upon to act.

A strategy of player i is a function, si : Ii → Fi. In words, player i’s strategy is
a complete plan of reports, that specifies a report for the player conditional on each
distinct circumstance that he might be called upon to act. But each information set
corresponds to a unique event. Indeed, if state ω is realized and the player i ends up at
the information set Ii |ω, then he only knows that the event EFi

i (ω) has occurred. So
for simplicity, we slightly abuse the notation, defining player i’s strategy as a function
that goes from the set Fi to the set itself.

Definition 10. A strategy of player i is a function si : Fi → Fi.

In words, it says a strategy of player i is a complete plan of reports, that specifies
a report for him conditional on each possible event that he might observe from nature.

18The players believe that whenever their reports fail to be compatible, they will go back to the
planned allocation.
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Let Si denote player i’s strategy set – the collection of all possible strategies of
player i; S := ×i∈ISi the strategy set, and s ∈ S a strategy profile.

Furthermore, with a slightly abused notation, we use s (ω) to denote the players’
reports, when they adopt the strategy profile s, and the realized state is ω. That is,

s (ω) :=
(
s1

(
EΠ1

1 (ω)
)
, · · · , sN

(
EΠN
N (ω)

))
. Clearly, for any ω ∈ Ω, s (ω) ∈ ×i∈IFi.

Definition 11. A direct revelation mechanism, associated with a maximin core alloca-
tion x and its underlying ambiguous asymmetric information economy E = {Ω; (Fi, µi,
ei, ui)i∈I

}
, denoted by Γ =

〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
, is a set, where

1. I = {1, · · · , N} is the set of N players;

2. S is the players’ strategies set; for each s ∈ S, we have si : Fi → Fi for all i;

3. x− e denotes the planned redistribution;

4. gi : F1 × · · · ×FN ×Ω→ Rl+ is the outcome function for player i. It depends on

the reports of all the players
(
EF1

1 , · · · , EFN
N

)
∈ F1 × · · · × FN and the realized

state of nature ω ∈ Ω. It takes the form of

gi

((
EF1

1 , · · · , EFN
N

)
, ω
)

= ei (ω) +Di

(
x− e,

(
EF1

1 , · · · , EFN
N

)
, ω
)
, (3)

where ei (ω) + Di

(
x− e,

(
EF1

1 , · · · , EFN
N

)
, ω
)

is the quantity of the goods, that

player i ends up consuming. In particular, if the players adopt the strategy profile
s and the state ω is realized, then we have

gi (s (ω) , ω) = ei (ω) +Di (x− e, s (ω) , ω) ;

5. and finally, ui : Rl+×Ω→ R is player i’s ex post utility function, taking the form
of ui (ci;ω), where ci denotes agent i’s consumption (as defined in the economy
E).

For convenience, we define, for each player i, a final payoff function. It tells us the
final payoff that the player i ends up, given a list of reports and a realized state of
nature. Formally,

Definition 12. Denote by vi : F1 × · · · × FN × Ω → R, vi := ui ◦ gi, the final payoff

function of player i. It depends on the reports of all the players
(
EF1

1 , · · · , EFN
N

)
∈

F1 × · · · × FN and the realized state of nature ω ∈ Ω, taking the form of

vi

((
EF1

1 , · · · , EFN
N

)
;ω
)

= ui

(
gi

((
EF1

1 , · · · , EFN
N

)
, ω
)

;ω
)

= ui

(
ei (ω) +Di

(
x− e,

(
EF1

1 , · · · , EFN
N

)
, ω
)

;ω
)
.

To ease the understanding, we illustrate the mechanism with an example.
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4.2 An example

Example 2. Consider the ambiguous asymmetric information economy of Example 1.
That is, there are two agents, one commodity, and three possible states of nature
Ω = {a, b, c}. The ex post utility function of each agent i is ui (ci;ω) =

√
ci. The

agents’ random initial endowments, information partitions and private priors are:

(e1 (a) , e1 (b) , e1 (c)) = (5, 5, 0); F1 = {{a, b} , {c}}

(e2 (a) , e2 (b) , e2 (c)) = (5, 0, 5); F2 = {{a, c} , {b}}

µ1 ({a, b}) = 2
3 ; µ1 ({c}) = 1

3

µ2 ({a, c}) = 2
3 ; µ2 ({b}) = 1

3

Suppose the planned allocation is the maximin core allocation of Example 1. Then,
the planned redistribution x− e is

(x1 (a)− e1 (a) , x1 (b)− e1 (b) , x1 (c)− e1 (c)) = (0,−1, 1);

(x2 (a)− e2 (a) , x2 (b)− e2 (b) , x2 (c)− e2 (c)) = (0, 1,−1).

When a state of nature is realized, each player privately observes an event and
receives the initial endowment. Then, each player writes down his or her report on a
piece of paper and puts it in a sealed envelope. All the envelopes are opened at the
same time, and redistribution takes place.

For simplicity, let F1 = {A1, c1}, where A1 := EF1
1 (a) = EF1

1 (b) = {a, b}, c1 :=
EF1

1 (c) = {c}, and similarly let F2 = {A2, b2}, where A2 = {a, c}, b2 = {b}.
For purposes of clarity, we present the game in an informal game tree19 (Figure 2).
Nature chooses a state, a, b or c. Player 1 (pl1) cannot distinguish between a and b,

and player 2 (pl2) between a and c; furthermore, when a player acts, he does not know
what the other does. This accounts for the none singleton information sets I1, I2 and
I ′2 in Figure 2. At such an information set, the player of the move cannot distinguish
between the decision nodes within, and therefore his (or her) decisions are common to
all of them.

For example, if the state a is realized, then player 1 (she) observes the event A1

(she finds herself at the information set I1) and player 2 (he) observes the event A2

(he finds himself at the information set I2). Player 1 can report ‘I have seen the event
A1’ or ‘I have seen the event c1’; player 2 can report ‘I have seen the event A2’ or ‘I
have seen the event b2’.

The quantity of the good that each player ends up consuming, is determined by
the realized state and the reports of all the players, according to the outcome function
(equation (3)).

19It is an informal game tree, since the pair assigned to each terminal node of the tree does not
denote the players’ final payoffs, but rather the quantity of the good that player 1 and player 2 end
up consuming respectively.
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To illustrate, suppose the state a is realized, player 1 reports the event c1 (she lies),
and player 2 truthfully reports the event A2 (we are looking at the path ac1A2 on the
tree). Clearly, the reports are compatible at the state a, and the implied state is c.
The actual redistribution is then D (x− e, (c1, A2) , a) = x (c)− e (c), and the outcome
functions tell us that player 1 ends up with 6 units and player 2 ends up with 4 units,
i.e.,

g1 ((c1, A2) , a) = e1 (a) +D1 (x− e, (c1, A2) , a)

= e1 (a) + x1 (c)− e1 (c) = 5 + 1− 0 = 6;

and

g2 ((c1, A2) , a) = e2 (a) +D2 (x− e, (c1, A2) , a)

= e2 (a) + x2 (c)− e2 (c) = 5 + 4− 5 = 4.

We record this outcome (g1 ((c1, A2) , a) , g2 ((c1, A2) , a)) = (6, 4) at the end of the path
ac1A2 in Figure 2.

As a consequence, the final payoff each player enjoys is given by

v1 ((c1, A2) ; a) = u1 (g1 ((c1, A2) , a) ; a) = u1 (6; a) =
√

6

and
v2 ((c1, A2) ; a) = u2 (g2 ((c1, A2) , a) ; a) = u2 (4; a) =

√
4.

Furthermore, in this game, a strategy profile of the game can be (as indicated by
the bold lines on the tree)

s =
(
s1 (I1) = A1, s1

(
I ′1
)

= c1; s2 (I2) = A2, s2

(
I ′2
)

= b2

)
,
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or in our simplified notation,

s = (s1 (A1) = A1, s1 (c1) = c1; s2 (A2) = A2, s2 (b2) = b2) .

In words, this strategy profile says every player reports exactly what he or she sees.
Given this strategy profile s and a state of nature ω, the list of reports s (ω) is

uniquely determined. For example, s (a) = (s1 (A1) , s2 (A2)) = (A1, A2).
So if the players act according to the strategy profile s and state a is realized (we

are looking at the path aA1A2 on the tree), then both players will end up with 5 units
of the good, i.e.,

g1 (s (a) , a) = g1 ((A1, A2) , a) = e1 (a) + x1 (a)− e1 (a) = 5,

and
g2 (s (a) , a) = g2 ((A1, A2) , a) = e2 (a) + x2 (a)− e2 (a) = 5.

Hence, the players will end up at the pair (g1 ((A1, A2) , a) , g2 ((A1, A2) , a)) = (5, 5),
which is recorded at the end of the path aA1A2 in Figure 2.

4.3 The problem of implementation

We study the implementation of each maximin core allocation with the help of its
corresponding direct revelation mechanism. In particular, we say a maximin core
allocation x is implementable, if x can be realized through an equilibrium of the direct
revelation mechanism Γ =

〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
.

Let S denote a game theoretic solution concept, and S (Γ) the set of S equilibria of
the mechanism Γ =

〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
.

Definition 13. Let x denote a maximin core allocation of an ambiguous asymmet-
ric information economy E, and S (Γ) the set of S equilibria of the mechanism Γ =〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
. We say the allocation x is implementable as an S equi-

librium of the mechanism Γ if,

∃s∗ ∈ S (Γ) , such that gi (s∗ (ω) , ω) = xi (ω) ,

for each ω ∈ Ω and for each i ∈ I.

Definition 14. We say a strategy profile s is truth telling, if according to it, every
player reports the truth whenever it is his turn to report. That is, for each player i and
for each state ω, if he observes the event EFi

i (ω) from nature, then his action is to

report the true event, i.e., si

(
EFi
i (ω)

)
= EFi

i (ω). We denote such a strategy profile

by sT .

Remark 1. Clearly, if the truth telling strategy profile sT constitutes an S equilibrium
of the mechanism Γ, i.e., sT ∈ S (Γ), then the allocation x is implementable as an S
equilibrium of the mechanism Γ =

〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
.
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Indeed, under the truth telling strategy profile sT , the list of reports associated
with each state ω is

sT (ω) =
(
EF1

1 (ω) , · · · , EFN
N (ω)

)
.

That is, the players always tell the truth. As a consequence, we have

gi
(
sT (ω) , ω

)
= gi

((
EF1

1 (ω) , · · · , EFN
N (ω)

)
, ω
)

= ei (ω) +Di

(
x− e,

(
EF1

1 (ω) , · · · , EFN
N (ω)

)
, ω
)

= ei (ω) + xi (ω)− ei (ω) = xi (ω) ,

for each ω ∈ Ω and for each i ∈ I – the requirement of definition 13.
Furthermore, when sT ∈ S (Γ), we say Γ has a truth telling S equilibrium.

An immediate question is that, what would be a reasonable solution concept for Γ?
It is helpful, to clarify first, what does a player know and not know before his turn to
act. The players, in an ambiguous asymmetric information economy, have incomplete
private priors and privately known utility functions. These information constraints
give rise to interesting implications.

If a player has an incomplete prior, then upon observing a non-singleton event, not
only he does not know which state in the event is the true state, but also he is unable
to form a probabilistic assessment over the states in the event.

The lack of mutual knowledge of utility functions implies that a player cannot form
a probabilistic assessment over the possible actions of his opponents.

Clearly, the standard Bayesian Nash solution concept is not suitable here, in the
sense that it cannot accommodate the players’ information constraints. Nevertheless,
we can still use the Bayesian Nash solution concept, if we were to ignore these in-
formation constraints, and assume that the players are able to assign a probability to
everything they do not know. However, the predicted outcomes may fail to be convinc-
ing. Indeed, it is well known by now, from the Ellsberg’s paradox (recall the Ellsberg
example), that if we assume the players know more than what they actually know, we
may fail to explain their actions.

In Section 4.4, we introduce the maximin solution concept, which seems to be a
suitable equilibrium notion in our framework.

To illustrate the differences between the Bayesian Nash solution concept and the
maximin solution concept, we compare their predictions. In the remaining of this
section, we show, in Example 3, that the Bayesian Nash solution concept suggests no
truth telling. That is, the maximin core allocation x fails to be Bayesian incentive
compatible20.

Example 3. Recall, in Example 2, the players’ information partitions are F1 =
{A1, c1} and F2 = {A2, b2}, where A1 = {a, b}, c1 = {c}, A2 = {a, c}, and b2 = {b}.
Their private priors are

20As defined in Holmström and Myerson [10].
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µ1 ({a, b}) = 2
3 , µ1 ({c}) = 1

3 ; µ2 ({a, c}) = 2
3 , µ2 ({b}) = 1

3 .

In order to apply the Bayesian Nash equilibrium solution concept to Example 2, we
need to ignore the players’ information constraints on the state of nature, and assume
player 1’s private priors are µ1 ({a}) = p, µ1 ({b}) = 2

3 − p and µ1 ({c}) = 1
3 , where

0 < p < 2
3 ; player 2’s are µ2 ({a}) = q, µ2 ({b}) = 1

3 and µ2 ({c}) = 2
3 − q, where

0 < q < 2
3 .

The Bayesian Nash solution concept predicts no truth telling equilibrium. Indeed,
suppose that the realized state of nature is a, agent 1 is in the event A1 = {a, b}, and
she reports c1 = {c}. With the updated beliefs µ1 ({a} |A1) = µ1 ({a}) /µ1 (A1) = 3p

2

and µ1 ({b} |A1) = µ1 ({b}) /µ1 (A1) = 1 − 3p
2 , agent 1’s Bayesian interim expected

utility from lying is

u1 (g1 (c1, A2, a) ; a) · 3p

2
+ u1 (g1 (c1, b2, b) ; b) ·

(
1− 3p

2

)
= u1 (e1 (a) + x1 (c)− e1 (c) ; a)·3p

2
+u1 (x1 (b) ; b)·

(
1− 3p

2

)
=
√

6·3p
2

+
√

4·
(

1− 3p

2

)
,

which is higher than the Bayesian interim expected utility of telling the truth,

u1 (g1 (A1, A2, a) ; a) · 3p

2
+ u1 (g1 (A1, b2, b) ; b) ·

(
1− 3p

2

)

= u1 (x1 (a) ; a) · 3p

2
+ u1 (x1 (b) ; b) ·

(
1− 3p

2

)
=
√

5 · 3p

2
+
√

4 ·
(

1− 3p

2

)
.

Here, the Bayesian Nash equilibrium solution concept suggests no truth telling. We
will show that the maximin solution concept predicts truth telling.

4.4 Maximin equilibrium

We postulate that the players do not define their objectives based on something that
they do not know; and in an equilibrium, every player’s action choice is the best with
respect to his objective.

Clearly, with a limited ability to form probabilities, maximizing one’s standard
expected payoff may not be well defined. Here, we postulate that the players maximize
their payoff lower bound. This objective is well defined – every player knows the worst
possible payoff associated with each of his actions; and every player clearly knows what
to do to achieve his objective.

With this objective, an equilibrium becomes a situation in which, no matter what
event a player observes from nature, his action insures him the best worst payoff, hence
the name, a maximin equilibrium. In particular, each agent maximizes his payoff lowest
bound, i.e., each agent maximizes the payoff that takes into account the worst actions
of all the other agents against him and also the worst state that can occur.
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Definition 15. In a direct revelation mechanism Γ =
〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
, a

strategy profile s∗ = (s∗1, · · · , s∗N ) constitutes a maximin equilibrium (ME), if for each
player i, his strategy s∗i maximizes his interim payoff lower bound, that is, the function
s∗i : Fi → Fi satisfies, for each EFi

i ∈ Fi,

min
E
F−i
−i ∈F−i; ω

′∈EFii

vi

(
s∗i

(
EFi
i

)
, E
F−i

−i ;ω
′
)
≥ min

E
F−i
−i ∈F−i; ω

′∈EFii

vi

(
ÊFi
i , E

F−i

−i ;ω
′
)
, (4)

for all ÊFi
i ∈ Fi; where E

F−i

−i denotes the reports from all the other players, so E
F−i

−i ∈
F−i := ×j 6=iFj.

Definition 16. If the truth telling strategy profile sT 21 constitutes a maximin equilib-
rium of the mechanism Γ =

〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
, then we say that the mech-

anism Γ has a truth telling maximin equilibrium.

4.5 Implementation

This section presents our main result, i.e., in the mechanism Γ =
〈
I, S, x− e, {gi}i∈I ,

{ui}i∈I
〉
, no player has an incentive to lie. It implies that every maximin core alloca-

tion x of an ambiguous asymmetric information economy E is implementable through
its corresponding direct revelation mechanism Γ =

〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
. For-

mally,

Main Theorem: Denote by x a maximin core allocation of an ambiguous
asymmetric information economy E, and ME (Γ) the set of maximin equi-
libria of the direct revelation mechanism Γ =

〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
.

Then, there exists a truth telling maximin equilibrium sT , which is the
unique maximin equilibrium of the mechanism Γ ( i.e.,

{
sT
}

= ME (Γ) ),
for which we have gi

(
sT (ω) , ω

)
= xi (ω), for each ω ∈ Ω and for each

i ∈ I, i.e., the maximin core allocation x is implementable as a maximin
equilibrium of its corresponding mechanism Γ.

Remark 2. The implementation shares some similarities with the truthful implemen-
tation of Dasgupta, Hammond and Maskin [3, p.189] – an allocation can be truthfully
implemented, if there exists a direct revelation mechanism (a game in which players
report their private information) for which truth telling is its equilibrium (based on
some game theoretic solution concept), and the truth telling equilibrium yields the
allocation as its outcome.

Remark 3. We differ from the full implementation of Jackson [11], Palfrey and Sri-
vastava’s [15], and Hahn and Yannelis [9], in that, we do not implement the set of
core allocations. Instead, we show, given any arbitrary maximin core allocation, its
corresponding mechanism Γ =

〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
yields the core allocation

x as its unique maximin equilibrium outcome.

21The truth telling strategy profile sT takes the form of sTi

(
EFi

i

)
= EFi

i , for all EFi
i ∈ Fi, and for

all i.
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Here, we illustrate the main theorem by means of an example.

Example 4. We reconsider Example 2, i.e., there are two agents, one commodity, and
three possible states of nature Ω = {a, b, c}. The ex post utility function of each agent
i is ui (ci;ω) =

√
ci. The agents’ random initial endowments, information partitions

and private priors are:

(e1 (a) , e1 (b) , e1 (c)) = (5, 5, 0); F1 = {{a, b} , {c}}

(e2 (a) , e2 (b) , e2 (c)) = (5, 0, 5); F2 = {{a, c} , {b}}

µ1 ({a, b}) = 2
3 ; µ1 ({c}) = 1

3

µ2 ({a, c}) = 2
3 ; µ2 ({b}) = 1

3

The planned allocation is the maximin core allocation.

x =

(
x1 (a) x1 (b) x1 (c)
x2 (a) x2 (b) x2 (c)

)
=

(
5 4 1
5 1 4

)
.

The planned redistribution x− e is

(x1 (a)− e1 (a) , x1 (b)− e1 (b) , x1 (c)− e1 (c)) = (0,−1, 1);

(x2 (a)− e2 (a) , x2 (b)− e2 (b) , x2 (c)− e2 (c)) = (0, 1,−1).

The game tree is presented again in Figure 3, in which for simplicity, we let A1 =
{a, b}, c1 = {c}, A2 = {a, c}, and b2 = {b}.

We will show that the truth telling strategy profile constitutes the only maximin
equilibrium of the game, and the immediate consequence is that the allocation x is
implemented.

Formally, we will show that the strategy profile

s = (s1 (A1) = A1, s1 (c1) = c1; s2 (A2) = A2, s2 (b2) = b2) ,

constitutes the only maximin equilibrium of the game.
We look at player 1 first, she has two information sets I1 and I ′1. (Figure 4)
If she is at I1, then she must have seen the event A1 from nature. She can either

tell the truth A1 or the lie c1. Recall, player 1 cannot distinguish the two decision
nodes within the set I1, so her action is common at the two nodes. Figure 4a shows
that, being truthful (reports A1), she may end up with, from the left to the right, 5,
4, 5 or 4 units of the good22; and by lying (reports c1), she may end up with, from the
left to the right, 6, 5, 4 or 4 units of the good.

22That is, at the information set I1, if player 1 tells the truth, then she may go down one of the
four paths ‘aA1A2’, ‘aA1b2’, ‘bA1A2’ and ‘bA1b2’, for which she ends up with g1 ((A1, A2) , a) = 5,
g1 ((A1, b2) , a) = 4, g1 ((A1, A2) , b) = 5, and g1 ((A1, b2) , b) = 4 units of the good respectively.
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Clearly, when player 1 observes the event A1, telling the truth (reports A1) gives
her a lower bound payoff of

min {v1 (A1, A2; a) , v1 (A1, b2; a) , v1 (A1, A2; b) , v1 (A1, b2; b)}

= min
{√

5,
√

4,
√

5,
√

4
}

=
√

4;

lying (reports c1) gives her a lower bound payoff of

min {v1 (c1, A2; a) , v1 (c1, b2; a) , v1 (c1, A2; b) , v1 (c1, b2; b)}

= min
{√

6,
√

5,
√

4,
√

4
}

=
√

4.

So when she observes the event A1, she has no incentive to lie, i.e., s1 (A1) = A1

constitutes part of a maximin equilibrium of the game.
If player 1 is at I ′1, then she must have seen the event c1 from nature. Figure 4b

shows that, if she tells the truth (reports c1), then she will get 1 unit of the good, no
matter what player 2 reports; but if she lies (reports A1), then she may end up with,
0 or 1 unit of the good. Here, telling the truth (reports c1) gives her a lower bound
payoff of

min {v1 (c1, A2; c) , v1 (c1, b2; c)} = min
{√

1,
√

1
}

= 1;

lying (reports A1) gives her a lower bound payoff of

min {v1 (A1, A2; c) , v1 (A1, b2; c)} = min
{√

0,
√

1
}

= 0.
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So when she observes the event c1, she should report the event c1, i.e., s1 (c1) = c1

constitutes part of a maximin equilibrium of the game.
Now, turn to player 2. He has two information sets also, I2 and I ′2. (Figure 5)
If player 2 is at I2, then he must have seen the event A2 from nature. Figure 5a

shows that, being truthful (reports A2), he may end up with, from the left to the right,
5, 4, 5 or 4 units of the good; and by lying (reports b2), he may end up with, from the
left to the right, 6, 5, 4 or 4 units of the good.

Clearly, telling the truth (reports A2) gives him a lower bound payoff of

min {v2 (A1, A2; a) , v2 (c1, A2; a) , v2 (A1, A2; c) , v2 (c1, A2; c)}

= min
{√

5,
√

4,
√

5,
√

4
}

=
√

4;

lying (reports b2) gives her a lower bound payoff of

min {v2 (A1, b2; a) , v2 (c1, b2; a) , v2 (A1, b2; c) , v2 (c1, b2; c)}

= min
{√

6,
√

5,
√

4,
√

4
}

=
√

4.

So when he observes the event A2, he has no incentive to lie, i.e., s2 (A2) = A2 consti-
tutes part of a maximin equilibrium of the game.

If player 2 is at I ′2, then he must have seen the event b2 from nature. Figure 5b
shows that if he tells the truth, then he will get 1 unit of the good, no matter what
player 1 reports; but if he lies, then he may end up with, 0 or 1 unit of the good. Here,
telling the truth (reports b2) gives him a lower bound payoff of

min {v2 (A1, b2; b) , v2 (c1, b2; b)} = min
{√

1,
√

1
}

= 1;
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lying (reports A2) gives him a lower bound payoff of

min {v2 (A1, A2; b) , v2 (c1, A2; b)} = min
{√

0,
√

1
}

= 0.

So when he observes the event b2, he should report the event b2, i.e., s2 (b2) = b2
constitutes part of a maximin equilibrium of the game.

Now, put together, the strategy profile

s = (s1 (A1) = A1, s1 (c1) = c1; s2 (A2) = A2, s2 (b2) = b2) ,

is a maximin equilibrium of the game. It is, in fact, the only maximin equilibrium of
the game23.

The equilibrium report paths are s (a) = (s1 (A1) , s2 (A2)) = (A1, A2), s (b) =
(s1 (A1) , s2 (b2)) = (A1, b2) and s (c) = (s1 (c1) , s2 (A2)) = (c1, A2). (as marked in
Figure 6)

Now, it can be easily checked that the maximin core allocation

x =

(
x1 (a) x1 (b) x1 (c)
x2 (a) x2 (b) x2 (c)

)
=

(
5 4 1
5 1 4

)
23We assume that a player lies, only if he can benefit from doing so.
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is implemented, since we have

g1 (s (a) , a) = g1 ((A1, A2) , a) = 5 + 5− 5 = 5 = x1 (a) ,

and similarly, we have g2 (s (a) , a) = 5 = x2 (a), g1 (s (b) , b) = 4 = x1 (b), g2 (s (b) , b) =
1 = x2 (b), g1 (s (c) , c) = 1 = x1 (c), g2 (s (c) , c) = 4 = x2 (c). These outcomes are il-
lustrated in Figure 6, as pairs following the equilibrium paths.

4.6 Proof of the main theorem

To ease the explanation, we introduce a few notations. We use F−i := ×j 6=iFj to denote

the action set of all the players except player i, and E
F−i

−i :=
(
EF1

1 , · · · , EFi−1

i−1 , E
Fi+1

i+1 ,

· · · , EFN
N

)
∈ F−i reports of all the players expect player i.

Furthermore, we write ω ∈ EF−i

−i or E
F−i

−i (ω), if the state ω belongs to each element

in the list
(
EF1

1 , · · · , E
Fi−1

i−1 , E
Fi+1

i+1 , · · · , EFN
N

)
; and we use EFi

i

⋂
E
F−i

−i :=
⋂
j∈I E

Fj

j

to denote the information revealed by the reports of all the players.
Let x be a maximin core allocation and suppose that the mechanism Γ does not

have a truth telling maximin equilibrium. Then, there must exist a player i, an event
EFi
i , and a lie ẼFi

i ∈ Fi (clearly, ẼFi
i 6= EFi

i ), such that when the player i observes the

event EFi
i , he can insure a better lower bound payoff by lying, i.e.,

min
E
F−i
−i

∈F−i;

ω′∈EFii

{
vi

(
EFi
i , E

F−i

−i ;ω
′
)}

< min
E
F−i
−i

∈F−i;

ω′∈EFii

{
vi

(
ẼFi
i , E

F−i

−i ;ω
′
)}

. (5)
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We will show, in Step 1 and 2, that (5) cannot hold, and therefore every game Γ has
a truth telling maximin equilibrium.

To ease the explanation, denote the LHS of (5) by

vi

(
EFi
i , E∗−i;ω

∗
)

:= min
E
F−i
−i ∈F−i; ω

′∈EFii

{
vi

(
EFi
i , E

F−i

−i ;ω
′
)}

,

where E∗−i ∈ F−i and ω∗ ∈ EFi
i solve the minimization problem above.

Step 1 We will show that if vi

(
EFi
i , E∗−i;ω

∗
)

= ui (xi (ω∗) ;ω∗) and (5) holds,

then x fails to be a maximin core allocation.
Notice, vi

(
EFi
i , E∗−i;ω

∗
)

= ui (xi (ω∗) ;ω∗) implies24

vi

(
EFi
i , E∗−i;ω

∗
)

= min
ω′∈EFii

{
vi

(
EFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

. (6)

Also, (5) implies25

vi

(
EFi
i , E∗−i;ω

∗
)
< min

ω′∈EFii

{
vi

(
ẼFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

. (7)

Now, (6) and (7) together imply

min
ω′∈EFii

{
vi

(
EFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

< min
ω′∈EFii

{
vi

(
ẼFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

. (8)

Finally, Lemma 1 (see the Appendix) shows that if (8) holds, then x fails to be a
maximin core allocation, a contradiction.

Step 2 We will show that if vi

(
EFi
i , E∗−i;ω

∗
)
6= ui (xi (ω∗) ;ω∗) and (5) holds,

then x fails to be a maximin core allocation.

24Note ω∗ ∈ EFi
i , and

vi
(
EFi

i , E∗−i;ω
∗
)

:= min
E
F−i
−i

∈F−i;

ω
′∈EFi

i

{
vi
(
EFi

i , E
F−i

−i ;ω
′)}
≤ min

ω
′∈EFi

i

{
vi
(
EFi

i , E
F−i

−i

(
ω
′)

;ω
′)}

≤ vi
(
EFi

i , E
F−i

−i (ω∗) ;ω∗
)

= ui (xi (ω∗) ;ω∗) ,

imply that we must have equality throughout.
25Since by the definition of a minimum, we have that

min
E
F−i
−i

∈F−i;

ω
′∈EFi

i

{
vi
(
ẼFi

i , E
F−i

−i ;ω
′)}
≤ min

ω
′∈EFi

i

{
vi
(
ẼFi

i , E
F−i

−i

(
ω
′)

;ω
′)}

.

24



Notice, vi

(
EFi
i , E∗−i;ω

∗
)
6= ui (xi (ω∗) ;ω∗) holds, only if EFi

i , E∗−i are compatible

at the state ω∗, and EFi
i ∩ E∗−i = {ω̃} where ω̃ is some state different from ω∗. This

implies that we must have

vi

(
EFi
i , E∗−i;ω

∗
)

= ui (ei (ω∗) + xi (ω̃)− ei (ω̃) ;ω∗) = ui (xi (ω̃) ;ω∗) = ui (xi (ω̃) ; ω̃)

(9)
(recall that both the endowment ei and the utility function ui are Fi-measurable).

Now ω̃ ∈ EFi
i and the equation (9) together imply that

vi

(
EFi
i , E∗−i;ω

∗
)

= min
ω′∈EFii

{
vi

(
EFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

. (10)

It follows from (5) that

vi

(
EFi
i , E∗−i;ω

∗
)
< min

ω′∈EFii

{
vi

(
ẼFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

. (11)

Combining (10) and (11), it follows that

min
ω′∈EFii

{
vi

(
EFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

< min
ω′∈EFii

{
vi

(
ẼFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

. (12)

By Lemma 1 in the Appendix, if (12) holds, then x fails to be a maximin core
allocation, a contradiction.

Therefore, we conclude that the mechanism Γ has a truth telling maximin equilib-
rium, i.e., sT ∈ME (Γ).

We now show that the truth telling maximin equilibrium is the only maximin
equilibrium of the mechanism Γ, i.e.,

{
sT
}

= ME (Γ). So suppose otherwise, that is,
suppose both sT and s∗ are maximin equilibria of the mechanism Γ, and sT 6= s∗.

The truth telling strategy profile sT is different from the strategy profile s∗, implies
that there must exist a player i and an event EFi

i , such that

sTi

(
EFi
i

)
= EFi

i 6= ẼFi
i = s∗i

(
EFi
i

)
. (13)

But s∗i

(
EFi
i

)
= ẼFi

i 6= EFi
i holds, only if lying makes player i strictly better off

upon observing the event EFi
i , i.e.,

min
E
F−i
−i

∈F−i;

ω′∈EFii

{
vi

(
EFi
i , E

F−i

−i ;ω
′
)}

< min
E
F−i
−i

∈F−i;

ω′∈EFii

{
vi

(
ẼFi
i , E

F−i

−i ;ω
′
)}

,

a contradiction to the fact that the truth telling strategy profile constitutes a maximin
equilibrium of the mechanism.
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Clearly, the maximin core allocation x is implemented. Indeed, under the truth
telling strategy profile sT , the list of reports associated to each state ω is

sT (ω) =
(
EF1

1 (ω) , · · · , EFN
N (ω)

)
.

That is, the players always tell the truth. As a consequence, we have

gi
(
sT (ω) , ω

)
= gi

((
EF1

1 (ω) , · · · , EFN
N (ω)

)
, ω
)

= ei (ω) +Di

(
x− e,

(
EF1

1 (ω) , · · · , EFN
N (ω)

)
, ω
)

= ei (ω) + xi (ω)− ei (ω) = xi (ω) ,

for each ω ∈ Ω and for each i ∈ I – the requirement of definition 13.

5 Concluding remarks

The maximin core notion (a cooperative concept) introduces a collection of desirable
allocations, which are both incentive compatible and efficient, a property that the
rational expectations equilibrium and the Walrasian expectations equilibrium in the
sense of Radner [12] [14] fail to have.

We showed that any maximin core allocation is implementable by means of non-
cooperative behavior under ambiguity. That is, given any arbitrary maximin core
allocation, its corresponding direct revelation mechanism yields the core allocation as
its unique maximin equilibrium outcome.

The new equilibrium notion (maximin equilibrium) takes into account the agents’
information constraints – the inability to assign a probability to every state of nature,
and to each possible action of his opponents. In a maximin equilibrium, each agent
maximizes his payoff lowest bound, i.e., each agent maximizes the payoff that takes
into account the worst actions of all the other agents against him and also the worst
state that can occur. It turns out that, such a noncooperative behavior (i.e., the
maximin equilibrium) enables agents to reach a desirable outcome, i.e., a maximin
core allocation, which is both incentive compatible and efficient.

Interestingly, our counter example (Example 3) in Section 4.3 shows that, the
Bayesian Nash solution concept fails. In particular, the Bayesian Nash solution con-
cept does not predict truth telling, contrary to the maximin equilibrium solution con-
cept. This further highlights the disagreements in predictions, created by assuming
the agents know more than what they actually know, as originally demonstrated in
the Ellsberg’s experiment [6].

It is an open question whether or not the result of this paper holds in the presence
of infinitely many states. The difficulty arises from the fact that the minimum of the
utility over even countably many states may not exist.
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6 Appendix

Lemma 1. Given a direct revelation mechanism Γ =
〈
I, S, x− e, {gi}i∈I , {ui}i∈I

〉
, if

the allocation x is a maximin core allocation, then there does not exist a player i, an
event EFi

i , and a lie ẼFi
i ∈ Fi (clearly, ẼFi

i 6= EFi
i ), such that26

min
ω′∈EFii

{
vi

(
EFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

< min
ω′∈EFii

{
vi

(
ẼFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

. (14)

Proof. Suppose that there exist a player i, an event EFi
i , and a lie ẼFi

i 6= EFi
i , such

that (14) holds. We will show that the feasible allocation x fails to be Pareto optimal
under the maximin preferences, and therefore fails to be a maximin core allocation –
an idea similar to the one in theorem 4.1 of de Castro-Yannelis [3].

Note, for each ω
′ ∈ EFi

i , we have

vi

(
EFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)

= ui

(
xi

(
ω
′
)

;ω
′
)
,

and therefore, the LHS of (14) can be rewritten as

min
ω′∈EFii

{
vi

(
EFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

= min
ω′∈EFii

{
ui

(
xi

(
ω
′
)

;ω
′
)}

.

Define an i-allocation of player i, zi (·), such that for each ω
′ ∈ EFi

i ,

vi

(
ẼFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)

= ui

(
zi

(
ω
′
)

;ω
′
)
,

and therefore, the RHS of (14) can be rewritten as

min
ω′∈EFii

{
vi

(
ẼFi
i , E

F−i

−i

(
ω
′
)

;ω
′
)}

= min
ω′∈EFii

{
ui

(
zi

(
ω
′
)

;ω
′
)}

.

It follows from (14) that

min
ω′∈EFii

{
ui

(
xi

(
ω
′
)

;ω
′
)}

< min
ω′∈EFii

{
ui

(
zi

(
ω
′
)

;ω
′
)}

. (15)

Since ui is strictly monotone in consumption, and Fi-measurable, (15) then implies,

for each ω
′ ∈ arg min

ω′′∈EFii

{
ui

(
xi

(
ω
′′
)

;ω
′′
)}

, we have zi

(
ω
′
)

= xi

(
ω
′
)

+ ε
(
ω
′
)
,

(16)

where ε
(
ω
′
)

is a none zero vector in Rl+. For (16) to hold, it must be the case that

for each ω
′ ∈ arg min

ω′′∈EFii

{
ui

(
xi

(
ω
′′
)

;ω
′′
)}

, there exists a state ω̃, such that

26In words, (14) says that if all the other players are truthful, then player i can insure a higher lower
bound payoff by lying under the event EFi

i .
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1. ẼFi
i ∩ E

F−i

−i

(
ω
′
)

= {ω̃},

2. ẼFi
i , E

F−i

−i

(
ω
′
)

are compatible at ω
′
, and

3. zi

(
ω
′
)

= ei

(
ω
′
)

+xi (ω̃)−ei (ω̃) = xi

(
ω
′
)

+ε
(
ω
′
)

, where ε
(
ω
′
)

is a none zero

vector in Rl+.

Let
{
ω
′
, ω̃
}

denote a set, containing a state ω
′ ∈ arg min

ω
′′∈EFii

{
ui

(
xi

(
ω
′′
)

;ω
′′
)}

and its corresponding27 ω̃. It follows by 1 above that, for each ω
′ ∈ arg min

ω′′∈EFii

{
ui

(
xi

(
ω
′′
)

;ω
′′
)}

,

the set
{
ω
′
, ω̃
}

is a subset of E
F−i

−i

(
ω
′
)

.

Now, we are ready to define an allocation y that Pareto improves x under the
maximin preferences. Define for each j ∈ I, the j-allocation yj (·) by

yj(ω
′
) =

 zj

(
ω
′
)

= ej

(
ω
′
)

+ xj (ω̃)− ej (ω̃) if ω
′ ∈ arg min

ω′′∈EFii

{
ui

(
xi

(
ω
′′
)

;ω
′′
)}

xj

(
ω
′
)

otherwise.

Notice that the allocation y is feasible.

Indeed, for a state ω
′
/∈ arg min

ω′′∈EFii

{
ui

(
xi

(
ω
′′
)

;ω
′′
)}

, we have

∑
j∈I

yj

(
ω
′
)

=
∑
j∈I

xj

(
ω
′
)

=
∑
j∈I

ej

(
ω
′
)

;

and for a state ω
′ ∈ arg min

ω′′∈EFii

{
ui

(
xi

(
ω
′′
)

;ω
′′
)}

, we have

∑
j∈I

yj

(
ω
′
)

=
∑
j∈I

zj

(
ω
′
)

=
∑
j∈I

ej

(
ω
′
)

+
∑
j∈I

xj (ω̃)−
∑
j∈I

ej (ω̃) =
∑
j∈I

ej

(
ω
′
)

(recall that x is a feasible allocation at the state ω̃).
From (16) and the definition of yi, we have

min
ω′∈EFii

{
ui

(
yi

(
ω
′
)

;ω
′
)}

> min
ω′∈EFii

{
ui

(
xi

(
ω
′
)

;ω
′
)}

(17)

under the event EFi
i ; and for any other event ÊFi

i ∈ Fi, we have

min
ω′∈ÊFii

{
ui

(
yi

(
ω
′
)

;ω
′
)}

= min
ω′∈ÊFii

{
ui

(
xi

(
ω
′
)

;ω
′
)}

.

27To avoid confusion, it is worthwhile to re-emphasize that different ω
′

∈
arg min

ω
′′∈EFi

i

{
ui

(
xi
(
ω
′′
)

;ω
′′
)}

may be matched with a different ω̃.
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Therefore, combined with the assumption on µi (·) (Assumption 2), we conclude that,
for the player i,∑
Ei∈Fi

(
min
ω′∈Ei

ui

(
yi

(
ω
′
)

;ω
′
))

µi (Ei) >
∑
Ei∈Fi

(
min
ω′∈Ei

ui

(
xi

(
ω
′
)

;ω
′
))

µi (Ei) . (18)

Here we abuse the notations in (18) slightly, in particular, Ei denotes an arbitrary
event in Fi. Using the compact notation as in (2), we can rewrite (18) as yi �MP

i xi,
i.e., player i strictly prefers the i-allocation yi to the i-allocation xi. Now, it remains
to show that for any other player k 6= i, we have yk �MP

k xk.
Fix an arbitrary player k 6= i, and an arbitrary event that player k may observe,

EFk
k ∈ Fk. Notice, if the event EFk

k contains a state ω
′ ∈ arg min

ω′′∈EFii

{
ui

(
xi

(
ω
′′
)

;ω
′′
)}

,

then it contains the set
{
ω
′
, ω̃
}

. So, by the Fk-measurability of ek, we have zk

(
ω
′
)

=

ek

(
ω
′
)

+xk (ω̃)−ek (ω̃) = xk (ω̃). Now, for the event EFk
k , defineXk =

{
xk

(
ω
′
)

: ω
′ ∈ EFk

k

}
and Yk =

{
yk

(
ω
′
)

: ω
′ ∈ EFk

k

}
. We have Yk ⊂ Xk. Indeed, if ω

′ ∈ EFk
k and

ω
′ ∈ arg min

ω′′∈EFii

{
ui

(
xi

(
ω
′′
)

;ω
′′
)}

, then

yk

(
ω
′
)

= zk

(
ω
′
)

= xk (ω̃) ∈ Xk;

and if ω
′ ∈ EFk

k and ω
′
/∈ arg min

ω
′′∈EFii

{
ui

(
xi

(
ω
′′
)

;ω
′′
)}

, then

yk

(
ω
′
)

= xk

(
ω
′
)
∈ Xk.

Therefore, we have that

min
ω′∈EFkk

{
uk

(
yk

(
ω
′
)

;ω
′
)}
≥ min

ω′∈EFkk

{
uk

(
xk

(
ω
′
)

;ω
′
)}

.

Since the event EFk
k ∈ Fk is arbitrary, we conclude that

∑
E
Fk
k ∈Fk

(
min

ω′∈EFkk

uk

(
yk

(
ω
′
)

;ω
′
))

µk

(
EFk
k

)
≥

∑
E
Fk
k ∈Fk

(
min

ω′∈EFkk

uk

(
xk

(
ω
′
)

;ω
′
))

µk

(
EFk
k

)
.

Also, since player k 6= i is arbitrary, we have for every player k 6= i, yk �MP
k xk.

Thus, the allocation y Pareto improves the allocation x under the maximin pref-
erences, i.e., x fails to be a maximin core allocation. This contradiction completes the
proof of Lemma 1.
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