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Abstract
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Expected Utility (MEU). The interest of considering ambiguity arises from the fact that,

in the presence of MEU decision making, there is no conflict between efficiency and in-

centive compatibility, (contrary to the Bayesian decision making). Our new modeling of

an ambiguous asymmetric information economy requires new equilibrium notions and new
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1 Introduction

Modeling the market with uncertainty is of important academic significance and realistic

value in economics as most decision making is made under uncertainty. Towards this

direction, the Arrow-Debreu ‘state contingent model’ allows the state of nature of the world

to be involved in the initial endowments and payoff functions, which is an enhancement

of the deterministic general equilibrium model of Arrow-Debreu-McKenzie. According to

Arrow-Debreu, agents make contacts ex ante (in period one) before the state of nature

is realized and once the state is realized (in period two) the contract is executed and

consumption takes place. The issue of incentive compatibility doesn’t arise in this model,

as all the information is symmetric. However, for the state contingent model to make sense

one must assume that there is an exogenous court or government that enforces the contract

ex post, otherwise agents may find it beneficial to renege. Radner (1968, 1982) extended

the analysis of Arrow and Debreu by introducing asymmetric (differential) information; in

particular, each agent is now characterized by his own private information, a random initial

endowment, a random utility function and a prior. The private information is modeled as a

partition of a finite state space and the allocation of each agent is assumed to be measurable

with respect to his own private information. This means each agent only knows the atom of

his partition including the true state, but cannot distinguish those states within the same

atom when making decisions. The Walrasian equilibrium notion in this model is called

‘Walrasian expectations equilibrium’, or WEE in short. Along this line, Yannelis (1991)

proposed a core concept, which is called private core.1

The Walrasian expectations equilibrium and private core share some interesting proper-

ties (in fact, the Walrasian expectations equilibrium is a strict subset of the private core):

without the assumption of free disposal, whenever agents are Bayesian expected utility

maximizers and allocations are private information measurable, the two above notions are

both Bayesian incentive compatible and private information measurable efficient (see K-

outsougeras and Yannelis (1993) and Krasa and Yannelis (1994)). However, these solution

concepts are only efficient in the second best sense, i.e., they are only private information

measurable efficient allocations and may result in a possible welfare loss (recall that from

Holmstrom and Myerson (1983) we know that with the standard/Bayesian expected utility

it is not possible to have allocations which are both first best efficient and also incentive

compatible). The existence of WEE in a free disposal economy can be found in Radner

(1968, 1982). However, the free disposal WEE allocations may be not incentive compatible

(see Glycopantis et al. (2003)). Furthermore, if we require non-free disposal, then a WEE

may not exist with positive price (see Einy and Shitovitz (2001)). Therefore, a natural

question arises:

Can one find an appropriate framework in the asymmetric information economy

such that the existence of equilibrium and core notions continues to hold and

furthermore, these notions are both incentive compatible and first best efficient?

A crucial assumption in the frameworks of Radner (1968, 1982) and Yannelis (1991) is

that agents maximize Bayesian expected utilities. Nevertheless, from Ellsberg (1961), there

1For a recent treatment of general equilibrium with asymmetric information see the books Glycopantis and
Yannelis (2005) and Marakulin (2013).
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is a huge literature which criticizes the Bayesian paradigm and explores the non-expected

utility theory. The maximin expected utility of Gilboa and Schmeidler (1989) is one of the

successful alternatives. Indeed, recently de Castro et al. (2011) and de Castro and Yannelis

(2010) applied the maximin expected utility to an asymmetric information economy with

with a finite number of states of nature,2 and introduced various core and Walrasian equi-

librium notions. With the maximin expected utilities, agents take into account the worst

possible state that can occur and choose the best possible allocations. de Castro et al. (2011)

proved that the ex ante equilibrium and core notions based on the maximin expected utility,

which are called maximin expectations equilibrium (MEE) and maximin core (MC) therein,

are incentive compatible in the economy without free disposal. Moreover, it is noteworthy

that since the allocations are not required to be measurable with respect to agents’ private

information, MEE and MC allocations are also first best efficient. Therefore, the conflict

between efficiency and incentive compatibility is solved in this new approach. Indeed de

Castro and Yannelis (2010) showed that the conflict of incentive compatibility and first best

efficiency is inherent in the standard expected utility decision making (Bayesian) and it is

resolved only when agents maximize the maximin expected utility (MEU). In particular,

they proved that the MEU is a necessary condition for efficient allocations to be incentive

compatible. The above work has left a main open question:

Can one obtain the classical core-Walras existence and equivalence results for

asymmetric information economies where agents are ambiguous (i.e., are MEU

maximizers) and also the state space is not necessarily finite?

An affirmative answer to this question is of great importance because not only this

way one develops a new equilibrium theory where there is no conflict between efficiency

and incentive compatibility, but also such positive results could become the main tool for

applications in other fields of Economics.

The first aim of this paper is to prove the existence of the maximin expectations equi-

librium and maximin core in a non-free disposal economy with countably many states of

nature. Since there is a countable number of states in the economy, the allocations are

infinite dimensional. Unlike the proofs of the existence of Walrasian expectations equilib-

rium in an economy with an infinite dimensional commodity space (e.g. Bewley (1972)),

our proof does not use Banach space methods; as a matter of fact, the space of allocations

in this paper may not be a Banach space. The argument in the proof of Bewley (1972)

cannot be applied to our model even though we only consider finite dimensional commodity

spaces. Since there are countably many states, the minimum of ex post utilities may not

exist and the maximin expected utility is not well-defined. It is exactly for this reason our

truncation is on the state space rather than on the commodity space. The introduction of

countably many states requires new definitions of equilibrium, and also new proofs seem to

be needed. Specifically, we proceed in three steps: first, we prove the existence of MEE in

the economy with finitely many states; second, we generate a sequence of economies with

finitely many states which are all truncations of the economy with countably many states;

2MEU is first applied to a general equilibrium model of an asymmetric information economy by Correia-da-
Silva and Hervés-Beloso (2009). They proved the existence of the ex ante Walrasian equilibrium in an asymmetric
information economy with maximin preferences and a finite state space. However, their setup is different from
ours and they do not consider the issue of incentive compatibility.
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third, we show that the sequence of equilibria generated by the sequence of finite state

economies has a convergent point, which is the maximin expectations equilibrium in the

economy with a countable number of states. As a corollary we obtain that the consistency

between incentive compatibility and efficiency also holds with a countable number of states.

The second aim of the current paper is to prove a core equivalence theorem for an

economy with asymmetric information where agents are ambiguous (i.e., maximize MEU).

In a finite agent framework and complete information, Debreu and Scarf (1963) considered

a sequence of replicated economy and showed that the set of non-blocked allocations in

every replicated economy converges to the set of Walrasian equilibria. In Section 4, we

follow the Debreu-Scarf approach and establish a similar equivalence result for an equal

treatment economy with asymmetric information, a countable number of states and MEU

preferences. In an atomless economy with complete information, Schmeidler (1972), Grodal

(1972) and Vind (1972) improved the core-Walras equivalence theorem of Aumann (1964),

by showing that if an allocation is not in the core, then it can be blocked by a non-

negligible coalition with any given measure less than 1. Hervés-Beloso et al. (2005a,b)

first extended this result to an asymmetric information economy with the equal treatment

property and with an infinite dimensional commodity space by appealing to the finite

dimensional Lyapunov’s theorem. Bhowmik and Cao (2012a,b) obtained further extensions

based on an infinite dimensional version of Lyapunov’s theorem. All the above results rely

on the Bayesian expected utility formulation and therefore the conflict of efficiency and

incentive compatibility still holds despite the non atomic measure space of agents.3 Our

Theorem 4 is an extension of Vind’s theorem to the asymmetric information economy with

the equal treatment property and a countable number of states of nature, where agents

behave as maximin expected utility maximizers. Thus, our new core equivalence theorem

for the MEU framework, resolves the inconsistency of efficiency and incentive compatibility.

Finally, we provide two characterizations for maximin expectations equilibrium. In the

complete information economy with finite agents, Aubin (1979) introduced a new approach

that at a first glance seems to be different from the Debreu-Scarf; however one can show that

they are essentially equivalent. Aubin considered a veto mechanism in the economy when a

coalition is formed; in particular, agents are allowed to participate with any proportion of

their endowments. The core notions defined by the veto mechanism, is called Aubin core and

it coincides with the Walrasian equilibrium allocations. The approach of Aubin has been

extended to an asymmetric information economy to characterize the Walrasian expectations

equilibrium (see for example Graziano and Meo (2005), Hervés-Beloso et al. (2005b) and

Bhowmik and Cao (2012b)). Another approach to characterize the Walrasian expectations

equilibrium is due to Hervés-Beloso et al. (2005a,b). They showed that the Walrasian

expectations equilibrium allocation cannot be privately blocked by the grand coalition in any

economy with the initial endowment redistributed along the direction of the allocation itself.

This approach has been extended to a pure exchange economy with an atomless measure

space of agents and finitely many commodities, and an asymmetric information economy

with an infinite dimensional commodity space (e.g., see Hervés-Beloso and E. Moreno-

Garćıa (2008), Bhowmik and Cao (2012b, 2013)). Our Theorem 5 and 6 extended these

3As the work of Sun and Yannelis (2008) indicates, even with an atomless measure space of agents we cannot
guarantee that WEE allocations are incentive compatible.
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two characterizations to the asymmetric information economy with ambiguous agents and

with countably many states of nature.

The paper is organized as follows. Section 2 states the model of ambiguous asymmetric

information economies with a countable number of states and discusses main assumptions.

Section 3 introduces the maximin expectations equilibrium and maximin core and proves

their existences. Section 4 extends the maximin expectations equilibrium and maximin

core to an economy with a continuum of agents, and interprets the asymmetric information

economy with finite agents as a continuum economy with finite types. In addition, two core-

Walras equivalence theorems and an extension of Vind’s result are given for an asymmetric

information economy with a countable number of states. Section 5 contains two different

characterizations of maximin expectations equilibrium by using the maximin blocking power

of the grand coalition. Section 6 shows maximin efficient allocations are coalitional incentive

compatible in economies with finite agents and atomless economies with the equal treatment

property. Section 7 collects some concluding remarks and open questions. The appendix

(Section 8) discusses the truncated economy for an ambiguous asymmetric information

economy with a countable number of states and contains longer proofs.

2 Ambiguous Asymmetric Information Economy

We introduce a model of the exchange economy with uncertainty and asymmetric informa-

tion. The uncertainty is represented by a measurable space (Ω,F), where Ω = {ωn}n∈N is

a countable set and F is the power set of Ω. Rl+ is the commodity space and I = {1, 2, · · · , s}
is the set of agents.

For each i ∈ I, Fi, the σ-algebra on Ω generated by the partition Πi of agent i, rep-

resents the private information. Πi(ω) is the element in the partition Πi which includes

ω. Therefore, if any state ω ∈ Ω is realized in the interim, agent i only observes the event

Πi(ω). πi is i’s private prior defined on Fi, i.e., πi is a mapping from Fi to R+ such that∑
E∈Πi

πi(E) = 1 and πi(E) > 0 for every E ∈ Πi. πi can be incomplete, i.e., the probabil-

ity of each element in the information partition Πi is well defined, but not the probability of

the event {ω} for every ω ∈ Ω.4 ui(ω, xi) is the positive ex post utility function of agent

i at state ω with consumption plan xi. ei : Ω→ Rl+ is i’s random initial endowment.

E denotes the ambiguous asymmetric information economy, where

E = {(Ω,F); (Fi, ui, ei, πi) : i ∈ I = {1, . . . , s}}.

A price vector p is a nonzero positive5 function from Ω to the simplex of Rl+. Without

loss of generality, we may assume that 4 denotes the set of all price vectors.

4 = {p ∈ (Rl+)∞ :
∑
ω∈Ω

l∑
j=1

p(ω, j) = 1},

4This setup is consistent with the MEU assumption, but obviously inconsistent with the Bayesian expected
utility where all agents are assumed to know the probability of every state of nature.

5p(ω) is a nonzero function means that p is not a 0 constant function, but it is possible that p(ω) = 0 for
some ω.
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where p(ω, j) is the price of the commodity j at state ω.

There are three stages in this economy: at the ex ante stage (t=0), the information

partition, the economy structure and the price are all common knowledge; at the interim

stage (t=1), each individual i learns his private information Πi(ω) which includes the true

state ω, and makes his consumption plan; at the ex post stage (t=2), agent i receives the

endowment and consumes according to his plan.

An allocation is a mapping x from I × Ω to Rl+. For all i ∈ I, Li = {xi : xi(ω) ∈
Rl+ for all ω ∈ Ω} is the set of all random allocations and ei ∈ Li. It is easy to see that

Li is (Rl+)∞ for every i and 4 is a subset of (Rl+)∞. If xi ∈ Li and p ∈ 4, we denote∑
ω∈Ω p(ω) · xi(ω) as p · xi, which could be infinity.

Suppose x is an allocation, for any i ∈ I, xi(ω) is a vector in Rl+, it represents the

allocation at the state ω, and xi(ω, j) denotes the allocation of commodity j at the state

ω. Suppose ‖ · ‖ is the natural norm in Rl+, xi and yi are two points in (Rl+)∞, then the

metric

d(xi, yi) = sup
n∈N

[
1

n
min{‖xi(ωn)− yi(ωn)‖, 1}]

induces the product topology on (Rl+)∞. Hereafter all statements on (Rl+)∞ about conti-

nuity, convergence, etc., will be with respect to this topology.

An allocation x is said to be feasible if
∑
i∈I xi =

∑
i∈I ei, i.e., ∀ω ∈ Ω,∑

i∈I
xi(ω) =

∑
i∈I

ei(ω).

The feasibility here indicates that the economy is non-free disposal.

Assumption (E). 1. For each i ∈ I, ei is Fi-measurable.6

2. ei � 0 for any i ∈ I.

3. ∃M > 0, ∀ω ∈ Ω and 1 ≤ j ≤ l,
∑
i∈I ei(ω, j) ≤M .

Assumption (E) is about the endowment. Condition (1) says that each agent’s endow-

ment should be measurable with respect to his private information, otherwise the agent

may disclose the true state from his endowment. Condition (2) says for every agent i, ei

is an interior point of (Rl+)∞. Condition (3) says the resource of the economy is limited

no matter what the state is, this condition will be automatically satisfied if there are only

finitely many states.

Assumption (U). 1. For each ω ∈ Ω and i ∈ I, ui(ω, ·) is continuous, strictly increas-

ing and concave.

2. For each i ∈ I and x ∈ Rl+, ui(·, x) is Fi-measurable.7

3. ∀a ∈ Rl+, if there exists K0 > 0, such that |a(j)| ≤ K0 for 1 ≤ j ≤ l, then ∃K > 0,

such that 0 ≤ ui(ω, a) ≤ K, ∀i ∈ I and ∀ω ∈ Ω. ui(ω, 0) = 0 for all i ∈ I and ω ∈ Ω.

Assumption (U) is about the utility. Condition (1) and (2) are standard in the literature.

Condition (3) basically says that there is no ‘bubble’ in the world, i.e., people’s utility cannot

be arbitrarily large with limited goods. This condition can be removed if Ω is finite: for each

6Clearly, if ei is independent of ω, then it is Fi-measurable.
7If ui is state independent, then it is automatically Fi-measurable.
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i ∈ I and every ω, ui(ω, a) is continuous at a, if a is bounded, then ui(ω, ·) is bounded, since

there are only finitely many states, ui(ω, ·) is uniformly bounded among all ω. Moreover,

ui(ω, 0) = 0 is a normalization, meaning that people have no payoff if they have no goods.

For every agent i, his private prior may be incomplete and the allocation in Li is not

required to be Fi-measurable, thus agents cannot evaluate the allocation based on the

Bayesian expected utility. In the current paper, we will adopt the maximin preference

axiomatized by Gilboa and Schmeidler (1989). Let Mi be the set of probability measures

on F which agree with πi on Fi, i.e.,

Mi = {µ : F → [0, 1] : µ(E) = πi(E),∀E ∈ Fi}.

Then for any two allocation xi, yi ∈ Li, agent i prefers the allocation xi to the allocation

yi if

inf
µ∈Mi

∑
ω∈Ω

ui(ω, xi(ω))µ(ω) ≥ inf
µ∈Mi

∑
ω∈Ω

ui(ω, yi(ω))µ(ω).

de Castro and Yannelis (2010) shows that the inequality above is equivalent to the

following one:8∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, xi(ω))]πi(Ei) ≥
∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, yi(ω))]πi(Ei).

In this paper, we will follow the second formulation. For any allocation {xi}i∈I , the

maximin ex ante utility of agent i is:

Vi(xi) =
∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, xi(ω))]πi(Ei).

Let Mi(ω) be the set of all probabilities with support concentrated at Πi(ω), then the

maximin interim utility of agent i with allocation xi at state ω is

vi (ω, xi) = inf
µ∈Mi(ω)

Eµ[ui(·, xi(·))] = inf
ω1∈Πi(ω)

ui(ω1, xi(ω1)).

We will slightly abuse the notations by letting vi (Ei, xi) = infω∈Ei ui(ω, xi(ω)), where Ei

is an atom in the information partition Πi of agent i.

Remark 1. It should be noted that the asymmetric information in a Bayesian model comes

from the private information measurability of allocations. For example, if allocations are

not required to be private information measurable, then the framework of Radner (1968) is

reduced to the standard Arrow-Debreu state-contingent model. In other words, the private

information measurability of allocations captures the information asymmetry in a Bayesian

model.

However, in an ambiguity model, the information asymmetry is captured by the maximin

8First, we use ‘inf’ in these two inequalities instead of ‘min’ used in de Castro and Yannelis (2010), since there
are infinite states here. The existence of infimum is guaranteed since the ex post utility function is nonnegative.
Thus the ex ante utility Vi is well defined. Second, although de Castro and Yannelis (2010) only argued that
these two inequalities are equivalent when there are finitely many states, this observation is still true in our
context.
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expected utility itself. In particular, priors are defined on the information partition of each

agent (while they are defined on the whole state space Ω in a Bayesian model). Thus, it is

natural to relax the restriction of private information measurability of allocations in an am-

biguity model. As pointed out in the current paper as well as de Castro and Yannelis (2010),

requiring the private information measurability will reduce the efficiency of allocations, and

that is why in the Bayesian model we only have second best efficiency.

The last assumption (I) is used to guarantee the continuity of the maximin ex ante

utility.

Assumption (I). 9 There exists an increasing sequence of subsets {Fn}n∈N such that

1. ∀n, Fn ⊆ Ω is finite and ∪n∈NFn = Ω;

2. For any agent i, ∀Ei ∈ Πi, ∀n ∈ N, Ei ∩ Fn = ∅ or Ei ⊆ Fn.

This assumption will be automatically satisfied in either of the following cases: (1) Ω

is finite, then we can choose Fn = Ω for all n ∈ N; (2) the information of all agents is

symmetric, then we can choose Fn = {ωi}1≤i≤n. If this assumption holds, then for any ω,

the states which agent i cannot distinguish are at most finite. Thus we have:

Vi(xi) =
∑
Ei∈Πi

[ min
ω∈Ei

ui(ω, xi(ω))]πi(Ei);

it is similar for the maximin interim utility.

We define the continuity property of the maximin ex ante utility function on the space

of allocations.

Definition 1. A function V is said to be uniformly continuous on (Rl+)∞ if for all xn and

z in (Rl+)∞, d(xn, z)→ 0 implies |V (xn)− V (z)| → 0.

Proposition 1. If Assumptions (U.3) and (I) hold, ui(ω, ·) is continuous for all ω ∈ Ω

and i ∈ I, then Vi is uniformly continuous on the set

G = {x ∈ Li : 0 ≤ x(ω, j) ≤M for all ω ∈ Ω and j = 1, 2, · · · , l.},

where M > 0.

Proof. See appendix.

3 Maximin Expectations Equilibrium and Maximin Core

3.1 Basic Definitions

In this section we define the notions of the maximin core (MC) and maximin expectations

equilibrium (MEE).

Given a price vector p, the budget set of agent i is defined as follow:

Bi(p) = {xi ∈ Li :
∑
ω∈Ω

p(ω) · xi(ω) ≤
∑
ω∈Ω

p(ω) · ei(ω)}.

9This condition basically says that the information partitions of all agents cannot be too asymmetric.
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Definition 2. An allocation x is said to be a maximin expectations equilibrium allo-

cation for the economy E, if there exists a price vector p such that for any agent i

1. xi maximizes Vi(·) subject to the budget set Bi(p);

2. x is feasible.

The following definition of a core concept in the current context implies that coalitions

of agents cannot cooperate to become better off in terms of MEU.

Definition 3. A feasible allocation x is said to be a maximin core allocation for the

economy E, if there do not exist a coalition C ⊆ I, C 6= ∅, and an allocation {yi ∈ Li}i∈C
such that

(i) Vi(yi) > Vi(xi) for all i ∈ C;

(ii)
∑
i∈C yi(ω) =

∑
i∈C ei(ω) for all ω ∈ Ω.

The allocation is said to be maximin efficient if C = I.

Remark 2. If Bayesian expected utilities, instead of maximin expected utilities, are used

in Definition 2 and 3, and the private information measurability assumption is imposed

on allocations, then these two solution concepts are Walrasian expectations equilibrium and

private core defined in Radner (1968) and Yannelis (1991) respectively.

The following example shows that MEE could exist in an economy where there is no

(non-free disposal) WEE, and the efficiency of MEE allocations can be strictly higher than

the efficiency of (free disposal) WEE allocations.

Example 1. 10 Consider the following economy with one commodity, the agent space is

I = {1, 2} and the state space is Ω = {a, b, c}. The initial endowments and information

partitions of agents are given by

e1 = (5, 5, 0),Π1 = {{a, b}, {c}};

e2 = (5, 0, 5),Π2 = {{a, c}, {b}}.

It is also assumed that for i ∈ I, ui(ω, xi) =
√
xi, which is strictly concave and monotone

in xi, and the priors for both agents are the same: µ({ω}) = 1
3 for every ω ∈ Ω.

Suppose that agents are both Bayesian expected utility maximizers, it can be easily

checked that there is no (non-free disposal) WEE with positive prices. If we allow for

free disposal, x1 = (4, 4, 1) and x2 = (4, 1, 4) is a (free disposal) WEE allocation with the

equilibrium price p(a) = 0 and p(b) = p(c) = 1
2 . However, this allocation is not incentive

compatible (see Example 2 in Section 6 for details).

If agents are maximin expected utility maximizers, then there exists an MEE (y, p), where

y1 = (5, 4, 1), y2 = (5, 1, 4) and p(a) = 0, p(b) = p(c) = 1
2 . This allocation is maximin

incentive compatible (see Example 3 in Section 6).

If state b or c realizes, the ex post utility of agent 1 will be the same in both Bayesian

preference setting and maximin preference setting, since x1(b) = y1(b) and x1(c) = y1(c).

10This example has been analyzed in Glycopantis et al. (2003) in Bayesian preference setting for the existence
and incentive compatibility of Walrasian expectations equilibrium and private core, and in Liu and Yannelis
(2013) in maximin preference setting for the existence and incentive compatibility of maximin core.
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But if state a occurs, the ex post utility of agent 1 with maximin preference will be strictly

higher than that in the Bayesian preference setting, since

x1(a) = 4 < 5 = y1(a).

Therefore, the maximin preference allows agents to get incentive compatible allocations and

reach higher efficiency, contrary to the Bayesian preference.

The lemma below shows that the set of maximin expectations equilibrium allocations is

included in the set of maximin core allocations.

Lemma 1. The set of MEE allocations is a subset of the MC, hence any maximin expec-

tations equilibrium allocation is maximin efficient.

Proof. Let x be an MEE allocation and p be the corresponding equilibrium price vector.

Suppose x /∈ MC, then there is a coalition C ⊆ I, C 6= ∅, and an allocation {yi ∈ Li}i∈C
satisfying

∑
i∈C yi =

∑
i∈C ei, Vi(yi) > Vi(xi) for all i ∈ C.

Since Vi(yi) > Vi(xi) for all i ∈ C, by the definition of MEE, we have yi /∈ Bi(p), thus

p · yi > p · ei for all i ∈ C.

Sum up all the inequality and we get

p ·
∑
i∈C

yi > p ·
∑
i∈C

ei.

Which contradicts the condition that
∑
i∈C yi =

∑
i∈C ei.

Therefore, MEE ⊆MC.

This inclusion can be strict. It is clear that both the Arrow-Debreu ‘state contingent

model’ and the deterministic general equilibrium model are special cases of our model: if

Fi = F for every i ∈ I then the maximin expected utility coincides with the Bayesian

expected utility and E is indeed the state contingent model; if Ω is a singleton, then E is

the deterministic model. Moreover, it is well known that in those two models, the set of

core allocations could strictly contain the set of Walrasian equilibrium allocations.

3.2 Existence of MEE and MC

We now turn to the issue of the existence of MEE.11 The proof will be divided into two

parts. In the first part we consider an ambiguous asymmetric information economy where

there are only finitely many states. This result is stated as a lemma, the proof is left in the

appendix.

Lemma 2. Suppose that Assumptions (E.2), (U.1) hold and Ω = {ω1, · · · , ωr} is finite.

Then there exists an MEE.

In the second part we use a sequence of finite states economy to approximate the count-

able states economy; in particular, the sequence of equilibria for these finite states economies

has a convergent point, which is exactly the equilibrium of the countable states economy.

11Podczeck et al. (2008) showed that the WEE may not exist in an asymmetric information economy with
Bayesian expected utility maximizers and infinitely many states. Our assumption (I) does not hold in their
model since the requirement that Fn is finite for each n ∈ N could fail there.
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A generalization of Lemma 2 to the countable states case is given below.

Theorem 1. For the ambiguous asymmetric information economy E, if Assumptions (E),

(U) and (I) hold, then there exists an MEE.12

Proof. See appendix.

Based on Theorem 1 and Lemma 1, it is straightforward to show that the maximin core

is also nonempty.

Corollary 1. Under the conditions of Theorem 1, the maximin core is nonempty.

4 A Continuum Approach

4.1 Basics

Now we introduce the maximin expectations equilibrium and maximin core for an atomless

economy. The atomless probability space (T, T , λ) denotes the agent space. We can define

an atomless ambiguous asymmetric information economy as

E0 = {(Ω,F); (Ft, ut, et, πt) : t ∈ T}.

An allocation in the continuum economy E0 is a mapping f from T × Ω to Rl+ such that

f(·, ω) is integrable for every ω ∈ Ω, the allocation is said to be feasible if
∫
T
f(t, ω) dλ(t) =∫

T
e(t, ω) dλ(t) for every ω ∈ Ω.

A coalition in T is a set S ∈ T such that λ(S) > 0. An allocation f is maximin

blocked by a coalition S in the economy E0 if there exists g : S × Ω → Rl+ such that∫
S
g(t, ω) dλ(t) =

∫
S
e(t, ω) dλ(t) for every ω ∈ Ω, and Vt(g(t)) > Vt(f(t)) for almost every

t ∈ S.

Definition 4. An allocation f is said to be the maximin core for the economy E0 if it is

not maximin blocked by any coalition.

Definition 5. An allocation f is said to be a maximin expectations equilibrium allo-

cation for the economy E0, if there exists a price vector p such that

1. ft maximizes Vt(·) subject to the budget set Bt(p) for almost all t ∈ T ;

2. f is feasible.

4.2 A Continuum Interpretation of the Finite Economy

We associate an atomless economy Ec with the discrete economy E , as in Garćıa-Cutŕın and

Hervés-Beloso (1993), Hervés-Beloso et al. (2005a,b) and Bhowmik and Cao (2012b). The

space of agents in Ec is the Lebesgue unit interval (T, T , µ) such that T = ∪si=1Ti, where

Ti = [ i−1
s , is ) for i = 1, · · · , s − 1 and Ts = [ s−1

s , 1]. For each agent t ∈ Ti, set Ft = Fi,

12Assumptions (E.1) and (U.2)) are not needed in the proof of this theorem.
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πt = πi, ut = ui and et = ei. Thus the maximin ex ante utility Vt of agent t is Vi. We refer

to Ti as the set of agents of type i, and

Ec = {(Ω,F); (T,Fi, Vi, ei, πi) : i ∈ I = {1, · · · , s}}

is the economy with the equal treatment property. The allocations in E and Ec are

closely related: for any allocation f in Ec, there is an corresponding allocation x in E , where

xi(ω) = 1
µ(Ti)

∫
Ti
f(t, ω) dµ(t) for all i ∈ I and ω ∈ Ω; conversely, an allocation x in E can

be interpreted as an allocation f in Ec, where f(t, ω) = xi(ω) for all t ∈ Ti, ω ∈ Ω and

i ∈ I. f is said to be a step allocation if f(·, ω) is a constant function on Ti for any ω ∈ Ω

and i ∈ I.

Analogously to the theorems in Hervés-Beloso et al. (2005a,b), the next proposition

shows that the maximin expectations equilibrium can be considered equivalent in discrete

and continuum approaches.

Proposition 2. Suppose Assumption (U.1) holds, then we have the following properties:

• If (x, p) is an MEE for the economy E, then (f, p) is the MEE for the associated

continuum economy Ec, where f(t, ω) = xi(ω) if t ∈ Ti.

• If (f, p) is an MEE for the economy Ec, then (x, p) is the MEE for the economy E,

where xi(ω) = 1
µ(Ti)

∫
Ti
f(t, ω) dµ for any ω ∈ Ω.

The proof is straightforward, interested readers may refer to Theorem 3.1 of Hervés-

Beloso et al. (2005b).

4.3 Core Equivalence with a Countable Number of States

The core-Walras equivalence theorem has been recently extended to a Bayesian asymmetric

information economy. Specifically, Einy et al. (2001) showed that the Walrasian expec-

tations equilibrium is equivalent to the private core for atomless economies with a finite

number of commodities in a free disposal setting, Angeloni and Martins-da-Rocha (2009)

completed the discussion by proposing appropriate conditions which guarantees the core e-

quivalence result in non-free disposal context. Hervés-Beloso et al. (2005a,b) and Bhowmik

and Cao (2012b) followed the Debreu- Scarf approach and showed that the set of Walrasian

expectations equilibrium allocations coincides with the private core in the asymmetric in-

formation economy with the equal treatment property, finitely many states and infinitely

many commodities.

However, all these discussions focus on the asymmetric information economy with Bayesian

expected utilities and a finite state space. Our aim here is to examine whether this result is

still true when agents are ambiguous (have maximin expected utilities) and the state space

is countable. The theorems below show that the core equivalence theorem holds with either

of the following conditions:

1. Maximin expected utility and finitely many states;

2. Maximin expected utility, countably many states and the equal treatment property

holds.
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Theorem 2. Let Ω be finite in the atomless economy E0. Assume that (E.2) and (U.1)

hold. Then the set of MC allocations coincides with the set of MEE allocations.

We omit the proof since it is standard, interested readers may check that the proof of

the core equivalence theorem in Hildenbrand (1974) with minor modifications still holds.

Theorem 3. Suppose Assumptions (E), (U) and (I) hold.13 Let the step allocation f be

feasible in the associated continuum economy Ec. Then f is an MEE allocation if and only

if f is an MC allocation.

Proof. See appendix.

4.4 An Extension of Vind’s Theorem

Hervés-Beloso et al. (2005a,b) and Bhowmik and Cao (2012b) extended Vind’s theorem to

an asymmetric information economy with the equal treatment property. Sun and Yannelis

(2007) established this theorem in an economy with a continuum of agents and negligible

asymmetric information. Below, we extend this result to the atomless ambiguous asym-

metric information economy with a countable number of states of nature.

Theorem 4. Suppose Assumptions (E.3), (U.1), (U.3) and (I) hold. If the feasible step

allocation f is not in the MC of the associated continuum economy Ec, then for any α,

0 < α < 1, there exists a coalition S such that µ(S) = α, which maximin blocks f .

Proof. See appendix.

5 Equivalence Theorems

Consider the finite agent economy E , Hervés-Beloso et al. (2005b) provided two equivalence

results for the Walrasian expectations equilibrium in terms of the private blocking power

of the grand coalition, and Bhowmik and Cao (2012b) extended this result to an asym-

metric information economy whose commodity space is a Banach lattice. We will follow

this approach and characterize the maximin expectations equilibrium. The following two

theorems correspond to Theorem 4.1 and 4.2 of Hervés-Beloso et al. (2005b), the proofs are

omitted since the same technique can be followed here.

For an allocation x = {xi}i∈I and a vector a = (a1, · · · , as) ∈ [0, 1]s, consider the

ambiguous asymmetric information economy E(a, x) which is identical with E except for

the random initial endowment of each agent i given by the convex combination ei(ai, xi) =

aiei + (1− ai)xi.

Definition 6. An allocation z is maximin dominated (or maximin blocked by the

grand coalition) in the economy E(a, x) if there exists a feasible allocation y in E(a, x) such

that Vi(yi) > Vi(zi) for every i ∈ I.

Theorem 5. The allocation x is an MEE in E if and only if x is not a maximin dominated

allocation in every economy E(a, x).

13Indeed we do not need Assumptions (E.1) and (U.2).
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Definition 7. A coalition S ⊆ I maximin blocks an allocation x in the sense of Aubin via

y = {yi}i∈S if for all i ∈ S, there is αi ∈ (0, 1] such that Vi(yi) > Vi(xi) and
∑
i∈S αiyi ≤∑

i∈S αiei. The Aubin maximin core is the set of all feasible allocations that cannot be

maximin blocked by any coalition in the sense of Aubin. An allocation x is called Aubin

non-dominated if x is not maximin blocked by the grand coalition in the sense of Aubin.

Theorem 6. The allocation x is an MEE in E if and only if x is not a maximin dominated

allocation in the sense of Aubin in the economy E.

6 Efficiency and Incentive Compatibility under Ambi-

guity

6.1 Efficiency and Incentive Compatibility

First We recall the notion of coalitional incentive compatibility of Krasa and Yannelis

(1994).

Definition 8. An allocation x is said to be coalitional incentive compatible (CBIC) if

the following does not hold: there exist a coalition C ⊆ I and two distinct states a and b

such that

1. Πi(a) = Πi(b) for all i /∈ C;

2. ei(a) + xi(b)− ei(b) ∈ Rl+ for all i ∈ C;

3. ui(a, yi) > ui(a, xi) for all i ∈ C;

where for all i ∈ C,

yi(ω) =

ei(a) + xi(b)− ei(b) if ω = a,

xi(ω) otherwise.

Example 2. [Example 1 with Bayesian preference]

Suppose that agents are Bayesian expected utility maximizers, therefore all allocations are

required to be private information measurable. The allocation x1 = (5, 5, 0) and x2 = (5, 0, 5)

is in the (non-free disposal) private core and it is incentive compatible. Indeed, it has been

shown in Koutsougeras and Yannelis (1993) that private core allocations in non-free disposal

economies are always CBIC provided that the utility functions are monotone and continuous.

This conclusion is not true in free disposal economies. Glycopantis et al. (2003) pointed

out that private core and Walrasian expectations equilibrium allocations need not be in-

centive compatible in an economy with free disposal. In this example, x1 = (4, 4, 1) and

x2 = (4, 1, 4) is a (free disposal) WEE allocation with the equilibrium price p(a) = 0 and

p(b) = p(c) = 1
2 , and hence in the (free disposal) private core. However, this allocation is

not incentive compatible. Indeed, if agent 1 observes {a, b}, he has an incentive to report c

to become better off. Note that agent 2 cannot distinguish the state a from the state c. In

particular, if the state a occurs and agent 1 reports state c, then his utility is

u1(e1(a) + x1(c)− e1(c)) = u1(5 + 1− 0) =
√

6 >
√

4 = u1(x1(a)).
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Hence, the free disposal WEE allocation is not incentive compatible.

6.2 Maximin Incentive Compatibility

In this subsection, we will prove that any maximin efficient allocation is maximin coalitional

incentive compatible. The notion of maximin coalitional incentive compatibility have been

introduced in de Castro et al. (2011) and de Castro et al. (2012), which is an extension of

the coalitional incentive compatibility in Krasa and Yannelis (1994) and allows agents to

have maximin preferences.

Definition 9. An allocation x is said to be maximin coalitional incentive compatible

(MCIC) if the following does not hold: there exist a coalition C ⊆ I and two distinct states

a and b such that

1. Πi(a) = Πi(b) for all i /∈ C;

2. ei(a) + xi(b)− ei(b) ∈ Rl+ for all i ∈ C;

3. vi(a, yi) > vi(a, xi) for all i ∈ C;

where for all i ∈ C,

yi(ω) =

ei(a) + xi(b)− ei(b) if ω = a,

xi(ω) otherwise.

If C is restricted to be a singleton, then it is individual maximin incentive compatible

(MIC).

An allocation is said to be maximin coalitional incentive compatible if no coalition can

misreport the realized states and make its members better off. Below, we revisit Example

2 and show that if agents are maximin expected utility maximizers, then the maximin core

allocation in the above example is maximin incentive compatible.

Example 3. [Example 1 with maximin preference]

Now we assume that agents 1 and 2 are both maximin expected utility maximizers. As

shown in Example 1, x1 = (5, 4, 1) and x2 = (5, 1, 4) is an MEE allocation, and hence in

the maximin core. Now we check that this allocation is maximin incentive compatible.

Suppose state a occurs, if agent 1 truthfully reports, then his payoff is

v1(a, x1) = min{u1(a, x1(a)), u1(b, x1(b))} = min{
√

5,
√

4} = 2;

if agent 1 reports state c, then his payoff is

min{u1(a, e1(a) + x1(c)− e1(c)), u1(b, x1(b))} = min{
√

6,
√

4} = 2.

Therefore, agent 1 has no incentive to misreport as he doesn’t gain anything by misreporting.

Similarly we could show that agent 2 also has no incentive to misreport.

In the following theorem we show that any maximin efficient allocation is maximin

coalitional incentive compatible. If the state space is finite, this result has been established.

For example, (1) de Castro et al. (2011) showed that any maximin interim efficient allocation
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is maximin coalitional incentive compatible; (2) de Castro and Yannelis (2010) showed that

any maximin ex ante efficient allocation (which is called maximin efficient allocation therein)

is maximin interim efficient. Below we extend their results to an economy with a countable

number of states. For simplicity, we only prove the relation between maximin efficient

allocation and maximin coalitional incentive compatibility, interested readers may check

that (1) and (2) above are still valid.

Theorem 7. If Assumptions (E), (U) and (I) hold, then any maximin efficient allocation

in E is MCIC.

Proof. See appendix.

Corollary 2. Under the conditions of Theorem 7, any MC or MEE allocation is maximin

coalitional incentive compatible.

Now we extend the notion of maximin coalitional incentive compatibility to the atomless

economy E0 defined in Subsection 4.1.

Definition 10. An allocation x in E0 is said to be maximin coalitional incentive com-

patible (MCIC) if the following does not hold: there exist a non-negligible subset S ∈ T
and two distinct states a and b such that

1. Πt(a) = Πt(b) for all t /∈ S;

2. et(a) + xt(b)− et(b) ∈ Rl+ for all t ∈ S;

3. vt(a, yt) > vt(a, xt) for all t ∈ S;

where for all t ∈ S,

yt(ω) =

et(a) + xt(b)− et(b) if ω = a,

xt(ω) otherwise.

The following theorem is an extension of Theorem 7 to the economy Ec with the equal

treatment property. We omit the proof since it is analogous to Theorem 7.

Theorem 8. If Assumptions (E), (U) and (I) hold, and the step allocation f in Ec is

maximin efficient, then it is MCIC.

7 Concluding Remarks

We presented a new asymmetric information economy framework, where agents face am-

biguity (i.e., they are MEU maximizers) and also the state space is not necessarily finite.

This new set up allowed us to derive new core -Walras existence and equivalence results.

It should be noted that contrary to the Bayesian asymmetric information economy frame-

work, our core and Walrasian equilibrium concepts formulated in an ambiguous asymmetric

information economy framework are now incentive compatible and obviously efficient. For

this reason, we believe that our new results will be useful to other fields in economics.

In addition to the new conceptual results obtained in this paper, we also introduced

a new way of proving theorems for an infinite (countable) number of states. Recall that
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even with one good the countable number of states brings us to an infinite dimensional set

up. One way to prove infinite dimensional results in economics is to trace them in finite

dimensions by truncating the dimensionality of the commodity space and then take limits

to cover the full space (e.g. Bewley (1972)). In this paper we truncated the set of states

and then allowed them to go to infinity. This way we avoided Banach space methods and

made the arguments rather transparent and easier to read.

We would like to conclude by saying that the continuum of states and modeling perfect

competition as in Sun and Yannelis (2007, 2008) and Sun, Wu and Yannelis (2012, 2013),

or modeling the idea of informational smallness (i.e., approximate perfect competition) in

countable replica economies as in McLean and Postlewaite (2003a,b, 2005), in the presence

of ambiguity remains an open question and further research in this direction seems to be

needed.

8 Appendix

8.1 Truncated Economy

Suppose that Assumption (I) holds.

E = {(Ω,F); (Fi, ui, ei, πi) : i ∈ I = {1, . . . , s}} is an ambiguous asymmetric information

economy with a countable number of states. For every n ∈ N, we define a truncated economy

with a finite number of states as follow:

En = {(Ωn,Fn); (Fni , ui, ei, πni ) : i ∈ I = {1, . . . , s}},

where Ωn = Fn, Fn is the restriction of F on Fn, i.e., Fn = {E ⊆ Fn : E ∈ F}. Similarly,

Fni and Πn
i are restrictions of Fi and Πi on Fn respectively. πni (Ei) = πi(Ei)

πi(Fn) for every i ∈ I
and Ei ∈ Fni . ui and ei are unchanged except that their domains are restricted on Ωn. For

any allocation xi of agent i in the economy En, the maximin ex ante utility function is

V ni (xi) =
∑

Ei∈Πn
i

[ min
ω∈Ei

ui(ω, xi(ω))]πni (Ei).

Then En is a well defined ambiguous asymmetric information economy with finitely many

states.

If f is an allocation in the economy E , then fn will be the allocation in the economy

En such that fn is the restriction of f on Ωn. Given any allocation fn in the economy En,

fn,e and fn,0 are two allocations in the economy E defined as follow: for every i ∈ I,

fn,ei (ω) =

fi(ω) if ω ∈ Fn
ei(ω) if ω /∈ Fn

, fn,0i (ω) =

fi(ω) if ω ∈ Fn
0 if ω /∈ Fn

.

Similarly, given the price vector p in the economy E , pn is the restriction of p on Fn and

pn,0(ω) =

pn(ω) if ω ∈ Fn
0 if ω /∈ Fn

.
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8.2 Proof of Section 2

Proof of Proposition 1.

For any i ∈ I, we check that Vi is uniformly continuous on G. Suppose d(zk, z)→ 0 as

k →∞, z ∈ G and zk ∈ G for all k, we need to show
∣∣Vi(zk)− Vi(z)

∣∣→ 0, i.e., ∀ε > 0, ∃k1

sufficiently large, ∀k ≥ k1,
∣∣Vi(zk)− Vi(z)

∣∣ < ε.

By Assumption (U.3), ∃K > 0 such that ui(ω, y(ω)) ≤ K for all y ∈ G and ω ∈ Ω. Since

∪m∈NFm = Ω, ∃m0 sufficiently large, such that πi(Fm0
) > 1 − ε

2K . Πm0
i is the restriction

of Πi on Fm0
.

Therefore:

∣∣Vi(zk)− Vi(z)
∣∣ =

∣∣∣∣∣ ∑
Ei∈Πi

[ min
ω∈Ei

ui(ω, z
k(ω))]πi(Ei)−

∑
Ei∈Πi

[ min
ω∈Ei

ui(ω, z(ω))]πi(Ei)

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

Ei /∈Π
m0
i

[ min
ω∈Ei

ui(ω, z
k(ω))− min

ω∈Ei

ui(ω, z(ω))]πi(Ei)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

Ei∈Π
m0
i

[ min
ω∈Ei

ui(ω, z
k(ω))− min

ω∈Ei

ui(ω, z(ω))]πi(Ei)

∣∣∣∣∣∣ .
For the first term,∣∣∣∣∣∣

∑
Ei /∈Π

m0
i

[ min
ω∈Ei

ui(ω, z
k(ω))− min

ω∈Ei

ui(ω, z(ω))]πi(Ei)

∣∣∣∣∣∣
≤

∑
Ei /∈Π

m0
i

Kπi(Ei)

= Kπi(F
c
m0

)

<
ε

2
.

For any ω, ui(ω, ·) is continuous on the set G0 = {x ∈ Rl+ : 0 ≤ x(j) ≤ M, j =

1, 2, · · · , l.}; since G0 is compact, ui(ω, ·) is uniformly continuous. Since Fm0
has only

finitely many states, ∃δ > 0, ∀a, b ∈ G0, if ‖a− b‖ < δ, then |ui(ω, a)− ui(ω, b)| < ε
2 for all

ω ∈ Fm0 .

We claim that ∃k1 ∈ N, such that ∀k ≥ k1, ‖zk(ω)− z(ω)‖ < δ for all ω ∈ Fm0
.

Suppose the claim is not true, then ∀k1 ∈ N, ∃k ≥ k1, ‖zk(ω) − z(ω)‖ ≥ δ for some

ω ∈ Fm0
. Since Fm0

has only finitely many states, ∃ωq0 ∈ Fm0
and a sequence {km}m∈N,

such that ‖zkm(ωq0) − z(ωq0)‖ ≥ δ for all km. Thus d(zkm , z) = supt[
1
t min{‖zkm(ωt) −

z(ωt)‖, 1}] ≥ 1
q0

min{‖zkm(ωq0)− z(ωq0)‖, 1} ≥ 1
q0

min{δ, 1}, which contradicts the assump-

tion that d(zk, z)→ 0 as k →∞. Hence we prove the claim.

For k ≥ k1, ‖zk(ω)−z(ω)‖ < δ for all ω ∈ Fm0
, so

∣∣ui(ω, zk(ω))− ui(ω, z(ω))
∣∣ < ε

2 for all

ω ∈ Fm0
. Therefore, for any Ei ∈ Πm0

i ,
∣∣minω∈Ei

ui(ω, z
k(ω))−minω∈Ei

ui(ω, z(ω))
∣∣ < ε

2 ,

hence
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∣∣∣∣∣∣
∑

Ei∈Π
m0
i

[ min
ω∈Ei

ui(ω, z
k(ω))− min

ω∈Ei

ui(ω, z(ω))]πi(Ei)

∣∣∣∣∣∣
≤

∑
Ei∈Π

m0
i

∣∣∣∣min
ω∈Ei

ui(ω, z
k(ω))− min

ω∈Ei

ui(ω, z(ω))

∣∣∣∣πi(Ei)
<
ε

2
πi(Fm0

)

<
ε

2
.

Summing up the two terms,
∣∣Vi(zk)− Vi(z)

∣∣ < ε for all k ≥ k1, we prove that Vi(·) is

uniformly continuous.

8.3 Proof of Section 3

Proof of Lemma 2.

We will divide the proof into three parts. Firstly, we restrict the commodity space

to be a compact set and show that the set of MEE is nonempty. Secondly, we relax the

compactness assumption in step 1 and construct a sequence of economies, for each economy

in this sequence we could get an equilibrium based on the results of step 1, then the sequence

of equilibria has a convergent point. Thirdly, we prove that this convergent point is exactly

the MEE for the original economy.

Let now Ω be a finite set, this restriction will be relaxed in Theorem 1.

Step 1: This step is standard and we include it for the sake of completeness.

Let Xi be the compact commodity space for agent i such that ei(ω) is an interior point

of Xi for any i ∈ I and ω ∈ Ω.

For any price vector q ∈ 4, the budget set is Bi(q) = {yi ∈ Li : q · yi ≤ q ·
ei, yi(ω) ∈ X for all ω ∈ Ω} . Since ei is an interior point of X, it is lower-hemicontinuous;

moreover, Bi(·) has compact range and obviously has a closed graph (hence it is upper-

hemicontinuous). Thus, Bi(·) is continuous.

Define the demand correspondence as follow: Di(q) = {xi ∈ Bi(q) : Vi(xi) ≥ Vi(yi),∀yi ∈
Bi(q)}, where q ∈ 4. By Berge’s maximum theorem, Di(·) is upper-hemicontinuous,

nonempty and compact-valued. Moreover, Vi is a concave function since ui is concave

and Bi(q) is convex, and therefore Di(q) is convex.

Define Z(q) =
∑
i∈I Di(q) −

∑
i∈I ei. Since Di(·) is upper-hemicontinuous, nonempty,

convex and compact-valued for any i ∈ I, so is Z(·).
∀q ∈ 4, ∀z ∈ Z(q), ∃xi ∈ Di(q) for all i ∈ I, such that z =

∑
i∈I xi −

∑
i∈I ei. Since

xi ∈ Di(q) ⊆ Bi(q), so q · xi ≤ q · ei for all i ∈ I, thus q · z ≤ 0.

It follows from the Gale-Nikaido-Debreu lemma, ∃p∗ ∈ 4, such that Z(p∗) ∩ Rml− 6= ∅,
where m is the number of states in Ω. Suppose z ∈ Z(p∗) ∩ Rml− , then ∃xi ∈ Di(q) for all

i ∈ I , such that z =
∑
i∈I xi −

∑
i∈I ei. This means that

• ∀i ∈ I , xi maximizes the ex ante utility Vi subject to the budget set Bi(p
∗);

•
∑
i∈I xi ≤

∑
i∈I ei.
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Step: 2: We now relax the compactness assumption.

For all k ∈ N and i ∈ I, let Xk
i be the set:

Xk
i = {x :

l∑
h=1

x(ω, h) ≤ k
∑
ω′∈Ω

l∑
h=1

ei(ω
′, h) for all ω ∈ Ω}.

Then Xk
i is compact, convex and nonempty. Define Xk =

∏
i∈I
Xk
i , by the proof in step 1,

for every k, there exists a sequence (pk, xk) ∈ 4×Xk, such that for all k ∈ N,

(i-k) for all i ∈ I, xki ∈ Bi(pk);

(ii-k) for all i ∈ I, Vi(x
k
i ) = max

yi∈Bi(pk)
Vi(yi);

(iii-k)
∑
i∈I x

k
i (ω) ≤

∑
i∈I ei(ω) for all ω ∈ Ω.

Define Y =
(∏

ω∈Ω

∏l
h=1[0,

∑
i∈I ei(ω, h)]

)I
, then Y is compact and xk ∈ Y for each k. It

means that there is a subsequence, say {(pk, xk)}, which converges to some (p∗, x∗) ∈ 4×Y .

Moreover, ∀i ∈ I, xki ∈ Bi(p
k) for every k implies that x∗i ∈ Bi(p

∗), and
∑
i∈I x

k
i ≤∑

i∈I ei for every k implies that
∑
i∈I x

∗
i ≤

∑
i∈I ei. Because of the strong monotonicity

assumption of the utility function, we get the equality
∑
i∈I x

∗
i =

∑
i∈I ei.

Step 3: We check that (p∗, x∗) is an MEE.

Suppose that there exist i ∈ I and yi ∈ Li such that Vi(yi) > Vi(x
∗
i ) and yi ∈ Bi(p∗),

by the continuity of ui(ω, ·) for every ω, without loss of generality we may assume that

Vi(yi) > Vi(x
∗
i ) and yi · p∗ < ei · p∗.

Moreover, xki → x∗i implies that there exists a k1, such that for k > k1, Vi(yi) > Vi(x
k
i ).

Because Vi(x
k
i ) = max

zi∈Bi(pk)
Vi(zi), so yi · pk > ei · pk. Taking the limit, yi · p∗ ≥ ei · p∗, a

contradiction.

Therefore, we have proved the existence of MEE, i.e.,

1. for all i ∈ I, x∗i maximizes Vi(·) in the budget set Bi(p
∗);

2.
∑
i∈I x

∗
i (ω) =

∑
i∈I ei(ω) for all ω ∈ Ω.

Proof of Theorem 1.

For every m ∈ N, Em is a truncated economy of E defined in the subsection 8.1. By

Lemma 2, there is an MEE for every economy Em, say {pm, xm}.
By Assumption (E.3), ∃M > 0, such that ∀ω ∈ Ω and 1 ≤ j ≤ l,

∑
i∈I ei(ω, j) ≤ M .

Define

G = {x ∈ (Rl+)∞ : 0 ≤ x(ω, j) ≤M for all ω ∈ Ω and j ∈= 1, 2, · · · , l.}.

For any m ∈ N, i ∈ I, ω ∈ Ω and j = 1, · · · , l, xm,ei (ω, j) ≤
∑
i∈I ei(ω, j) ≤ M , thus

xm,ei ∈ G.
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Since 4×GI is a compact set, {(pm,0, xm,e)} has a convergent subsequence, w.l.o.g, we

assume that there exists an allocation (x, p) ∈ 4 × GI such that (pm,0, xm,e) → (p, x) as

m→∞. Moreover, it is easy to see that x is feasible since xm,e is feasible for every m.

We verify that (p, x) is an MEE.

First xi ∈ Bi(p), since xm,ei → xi, p
m,0 → p and xm,ei ∈ Bi(pm,0).

For any y ∈ Bi(p), let yk be the restriction of y on Fk, then d(yk,0, y) → 0 as k → ∞,

hence Vi(y
k,0)→ Vi(y).

For every k, ∃mk sufficiently large such that mk ≥ k and yk is in i’s budget set14

Bi(p
mk) in the truncated economy Emk , since xmk

i is the maximal point,∑
Ei∈Π

mk
i

[ min
ω∈Ei

ui(ω, y
k(ω))]πmk

i (Ei) ≤
∑

Ei∈Π
mk
i

[ min
ω∈Ei

ui(ω, x
mk
i (ω))]πmk

i (Ei),

so ∑
Ei∈Π

mk
i

[ min
ω∈Ei

ui(ω, y
k(ω))]πi(Ei) ≤

∑
Ei∈Π

mk
i

[ min
ω∈Ei

ui(ω, x
mk
i (ω))]πi(Ei),

which implies Vi(y
k,0) ≤ Vi(xmk,e

i ) for every k.

Then Vi(xi) = limk→∞ Vi(x
mk,e
i ) ≥ lim supk→∞ Vi(y

k,0) = Vi(y), xi is the agent i’s

maximal point in his budget set.

The proof completes.

8.4 Proof of Section 4

8.4.1 Proof of Subsection 4.3

Definition 11. A feasible allocation x is said to be an ε-maximin core allocation (ε-

MC) in the economy Ec, if there do not exist a coalition C ⊆ T , µ(C) > 0, and an allocation

y such that

(i) Vt(yt) > Vt(xt) + ε for µ-almost all t ∈ C;

(ii)
∫
C
y(t, ω) dµ =

∫
C
e(t, ω) dµ for all ω ∈ Ω.

For any allocation x, agent t ∈ T and ε > 0, let P εt (xt) = {y ∈ Lt : Vt(y) > Vt(xt) + ε}
and Pt(xt) = {y ∈ Lt : Vt(y) > Vt(xt)}. Throughout this subsection, we assume that

the step allocation f is in the maximin core of the economy Ec. φ(t) = Pt(ft) ∪ {et} and

φm(t) = P
1
m
t (fmt )∪{emt }, where fmt and emt are the restrictions of ft and et in the truncated

economy Emc .

Lemma 3. Suppose Assumptions (E), (U) and (I) hold. For any ε > 0, there exists M

such that for every m > M , fm is an ε-MC allocation in the truncated economy Emc .

Proof. By Assumptions (E) and (U), ∃K > 0, such that ut(ω, ft(ω)) < K for every ω ∈ Ω

and t ∈ T . By Assumption (I), ∃M > 0,
πi(F

C
M )

πi(FM ) <
ε
K , ∀i ∈ I.

For any m > M ,

Vt(ft)

14Here we slightly abuse the notation, yk is now considered as an allocation of the economy Emk , such that
yk(ω) = 0 for ω ∈ Fmk \ Fk.
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=
∑
E∈Πt

[min
ω∈E

ut(ω, ft(ω))]πt(E)

=
∑
E∈Πm

t

[min
ω∈E

ut(ω, ft(ω))]πt(E) +
∑
E/∈Πm

t

[min
ω∈E

ut(ω, ft(ω))]πt(E)

<
∑
E∈Πm

t

[min
ω∈E

ut(ω, ft(ω))]πt(E) +Kπt(F
C
m)

< πt(Fm)V mt (fmt ) + επt(Fm).

Then fix m > M , suppose fm is not an ε-MC allocation in the truncated economy Emc ,

then there exists a coalition C ⊆ T , µ(C) > 0, and an allocation g such that

(i) V mt (gt) > V mt (fmt ) + ε for almost all t ∈ C;

(ii)
∫
C
g(t, ω) dµ =

∫
C
e(t, ω) dµ for all ω ∈ Ωm.

Define

z(t, ω) =

g(t, ω), if ω ∈ Ωm;

e(t, ω), if ω /∈ Ωm.

Then in the economy Ec, Vt(z(t)) > πt(Fm)V mt (gt) > πt(Fm)[V mt (fmt ) + ε] > Vt(ft). If ω ∈
Ωm,

∫
C
z(t, ω) dµ =

∫
C
g(t, ω) dµ =

∫
C
e(t, ω) dµ; if ω /∈ Ωm,

∫
C
z(t, ω) dµ =

∫
C
e(t, ω) dµ.

The coalition C maximin blocks f via z, a contradiction.

Lemma 4. Suppose Assumptions (E), (U) and (I) hold. If pm ·a ≥ pm ·
∫
T
emt dµ for every

a ∈
∫
T
φm(t) dµ and pm,0 → p as m → ∞, then p · b ≥ p ·

∫
T
et dµ for every b such that

b(ω) =
∫
T
g(t, ω) dµ for some g(t) ∈ φ(t).

Note that
∫
T
emt dµ is well defined since it is only finite dimensional, but

∫
T
et dµ is not

the Bochner integral: p ·
∫
T
et dµ denotes

∑
ω∈Ω p(ω) ·

∫
T
e(t, ω) dµ.

Proof. By way of contradiction, suppose that there exists an allocation g such that g(t) ∈
φ(t) for every t ∈ T , b(ω) =

∫
T
g(t, ω) dµ for any ω and p · b < p ·

∫
T
et dµ.

We claim that for every t ∈ T , ∃Mt > 0, ∀m ≥ Mt, g
m(t) ∈ φm(t) in the truncated

economy Emc .

Define E0 = {t ∈ T : g(t) = e(t)}. If t ∈ E0, gm(t) = em(t) ∈ φm(t) for any m.

Otherwise, let εt = Vt(g(t)) − Vt(f(t)) > 0. In the proof of Lemma 3 we have shown

that ∃K > 0 such that ut(ω, ft(ω)) < K for every ω ∈ Ω and t ∈ T . Then there exist M1
t

and M2
t such that

πt(F
C

M1
t

)

πt(FM1
t

) <
εt

2K and 1
πt(FM2

t
) −

1
2 >

1
M2

t ·εt
. Let Mt = max{M1

t ,M
2
t }. For

m ≥Mt,

V mt (gm(t))− V mt (fm(t))

=
∑
E∈Πm

t

[min
ω∈E

ut(ω, g
m
t (ω))]πmt (E)−

∑
E∈Πm

t

[min
ω∈E

ut(ω, f
m
t (ω))]πmt (E)

=
1

πt(Fm)
[
∑
E∈Πt

[min
ω∈E

ut(ω, gt(ω))]πt(E)−
∑
E/∈Πm

t

[min
ω∈E

ut(ω, gt(ω))]πt(E)

−
∑
E∈Πt

[min
ω∈E

ut(ω, ft(ω))]πt(E) +
∑
E/∈Πm

t

[min
ω∈E

ut(ω, ft(ω))]πt(E)]

>
1

πt(Fm)
[
∑
E∈Πt

[min
ω∈E

ut(ω, gt(ω))]πmt (E)−
∑
E∈Πt

[min
ω∈E

ut(ω, ft(ω))]πmt (E)−Kπt(FCm)]
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>
1

πt(Fm)
[Vt(g(t))− Vt(f(t))]− εt

2

>
1

m
.

Therefore, gm(t) ∈ φm(t).

Define Em = {t ∈ T : gk(t) ∈ φk(t) for all k ≥ m}, then Em ⊆ Em+1 and ∪∞m=0Em = T .

For m ≥ 1, define

hm(t) =

gm(t), t ∈ Em
em(t), t /∈ Em

,

then hm(t) ∈ φm(t) for all t ∈ T .

Because hm,e(t)→ g(t) µ-a.s. and pm,0 → p, so pm · (hm(t)− em(t)) = pm,0 · (hm,e(t)−
e(t))→ p · (gt − et) µ-a.s. We have

pm ·
∫
T

(hm(t)− em(t)) dµ =

∫
T

pm · (hm(t)− em(t)) dµ→
∫
T

p · (g(t)− e(t)) dµ

= p ·
∫
T

(g(t)− e(t)) dµ = p · (b−
∫
T

e(t) dµ),

The first equality holds since pm, hm and em can be regarded as finite dimensional mappings,

the convergence is due to the Lebesgue dominated convergence theorem, the second equality

is due to the Fubini theorem. Thus there exists some M > 0 such that for any m > M ,

pm ·
(∫
T
hm(t) dµ−

∫
T
em(t) dµ

)
< 0, a contradiction.

Proof of Theorem 3.

One direction is obvious, we only need to prove that the MC allocation is also an MEE

allocation.

Suppose that f is an MC allocation, by Lemma 3, for sufficiently large m ∈ N, fm is a
1
m -MC allocation in the truncated economy Emc , then the set

∫
T
φm(t) dµ is nonempty and

convex by Lyapunov’s theorem.

Define L++ to be the function from Ωm to Rl++, we claim that
[∫
T
emt dµ− L++

]
∩∫

T
φm dµ = ∅. Otherwise, there exists z ∈ L++ and an integrable function gm(t) ∈ φm(t)

for µ-a.e. t ∈ T , such that ∫
T

emt dµ− z =

∫
T

gm(t) dµ.

Define S =
{
t ∈ T : gm(t) ∈ P

1
m
t (fmt )

}
, then gm(t) = emt for µ-a.e. t ∈ T \ S and

∫
S

emt dµ− z =

∫
S

gm(t) dµ.

Since z 6= 0, we have µ(S) > 0. Define hm(t) = gm(t) + 1
µ(S)z, then

∫
S
emt dµ =

∫
S
hm(t) dµ

and hm(t) ∈ φm(t) for µ-a.e. t ∈ S because of the monotonicity of the preference. This is

a contradiction.

By the separation theorem there is a nonzero linear functional ψ, such that ψ(a) ≥
ψ(
∫
T
emt dµ) − ψ(z) for every a ∈

∫
T
φmt dµ and z ∈ L++. Since z is arbitrary, ψ(a) ≥

ψ(
∫
T
emt dµ) for every a ∈

∫
T
φmt dµ; since

∫
T
emt dµ ∈

∫
T
φmt dµ, ψ(z) ≥ 0 for every z ∈ L++.

There exists a pm 6= 0 such that ψ(a) = pm · a. Since ψ(z) ≥ 0 for every z ∈ L++, pm ≥ 0.
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Then pm · a ≥ pm ·
∫
T
emt dµ for every a ∈

∫
T
φmt dµ. Since pm,0 ∈ 4 for every m and 4 is

compact, ∃p ∈ 4 which is a convergent point of {pm,0}m∈N. By Lemma 4, p ·b ≥ p ·
∫
T
et dµ

for every b ∈
∫
T
φ(t) dµ.

Following the standard arguments in Hildenbrand (1974), we can show that (f, p) is an

MEE.

8.4.2 Proof of Subsection 4.4

Proof of Theorem 4.

Suppose that f is maximin blocked by the coalition A via g′, then
∫
A
g′(t, ω) dµ =∫

A
e(t, ω) dµ for every ω ∈ Ω and Vt(g

′
t) > Vt(ft) for every t ∈ A. Define Ai = A ∩ Ti, for

each ω ∈ Ω, let gi(ω) = 1
µ(Ai)

∫
Ai
g′t(ω) dµ; suppose g is defined as g(t, ·) = gi when t ∈ Ai.

Then
∫
A
g(t, ω) dµ =

∫
A
e(t, ω) dµ and Vi(gt) > Vi(ft) for every t ∈ Ai by the concavity of

Vi(·).
Because of the uniform continuity of Vi(·), gm,0t converges to gt as m → ∞; thus there

exists some M > 0 such that for every m ≥ M , Vt(g
m,0
t ) > Vt(ft) for every t ∈ Ai with

µ(Ai) > 0, and
∫
A
gm,0t (ω) dµ =

∫
A
et(ω) dµ for every ω ∈ Fm.

Fix m ≥ M , consider the finite dimensional atomless vector measure restricted to A,

for S ⊆ A,

η(S) =

(∫
S

(gmt (·)− emt (·)) dµ, µ(S)

)
.

Applying Lyapunov’s theorem to η, we obtain that for any α ∈ (0, 1), there exists a coalition

B ⊆ A, with µ(B) = αµ(A) and
∫
B

(gmt (ω)− emt (ω)) dµ = α
∫
A

(gmt (ω)− emt (ω)) dµ = 0 for

every ω ∈ Fm. Let

ht(ω) =

gmt (ω), if ω ∈ Fm;

1
µ(B)

∫
B
et(ω) dµ, if ω /∈ Fm;

Then if ω ∈ Fm, then
∫
B
ht(ω) dµ =

∫
B
gmt (ω) dµ =

∫
B
et(ω) dµ; if ω /∈ Fm, then

∫
B
ht(ω) dµ =∫

B

(
1

µ(B)

∫
B
et(ω) dµ

)
dµ =

∫
B
et(ω) dµ. Bi = B ∩ Ti, for every i with µ(Bi) > 0,

Vt(ht) ≥ Vt(gm,0t ) > Vt(ft) for t ∈ Bi, the coalition B maximin blocks f via h.

If µ(A) = 1, we are done; otherwise µ(T \A) > 0. Since Vi(·) is continuous on the set of

feasible allocations for every i ∈ I, we can choose g such that 1
µ(A)

∫
A

(e(t, ω)− g(t, ω)) dµ =

z(ω)� 0 for every ω ∈ Ω and Vt(gt) > Vt(ft) for every t ∈ Ai.
Given α > 0, consider the allocation gα(t, ω) = αg(t, ω) + (1− α)f(t, ω). By concavity

of Vt(·), Vt(gα(t)) > Vt(f(t)) for every t ∈ A. By the uniform continuity of Vi(·), there

exists some M1 > 0 such that for every m ≥M1, Vt(g
m,e
α (t)) > Vt(ft) for every t ∈ A.

Consider gt(ω) = ft(ω) + αµ(A)
µ(L\A)z(ω), then Vt(gt) > Vt(ft) by monotonicity. By the

uniform continuity, there exists some M2 > 0 such that for m ≥ M2, Vt(g
m,e
t ) > Vt(ft) for

every t.

Fix M > max{M1,M2}, consider the finite dimensional vector measure ν restricted to

T \A, for C ⊆ T \A,

ν(C) =

(
µ(C),

∫
C

(eMt (·)− fMt (·)) dµ

)
.
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Applying Lyapunov’s theorem to ν, for α > 0, there exists a coalition B ⊆ T \A, such that

1. µ(B) = (1− α)µ(T \A);

2.
∫
B

(eMt (·)− fMt (·)) dµ = (1− α)
∫
T\A(eMt (·)− fMt (·)) dµ.

Consider the coalition S = A∪B, then µ(S) = µ(A)+(1−α)µ(T \A). Define the allocation

y from S × Ω to Rl+ as follow:

yt(ω) =


gα(t, ω), if ω ∈ ΩM and t ∈ A;

ft(ω) + αµ(A)
µ(B) z(ω), if ω ∈ ΩM and t ∈ B;

1
µ(S)

∫
S
et(ω) dµ, if ω /∈ ΩM .

If t ∈ A, Vt(yt) = Vt(g
M,e
α (t)) > Vt(ft). If t ∈ B, since ft(ω) + αµ(A)

µ(B) z(ω) ≥ ft(ω) +
αµ(A)
µ(T\A)z(ω) = gt(ω), Vt(yt) ≥ Vt(gM,e

t ) > Vt(ft). We only need to check that y is feasible.

If ω ∈ ΩM ,∫
S

y(t, ω) dµ

=

∫
A

gα(t, ω) dµ+

∫
B

(
f(t, ω) +

αµ(A)

µ(B)
z(ω)

)
dµ

=

∫
A

(αg(t, ω) + (1− α)f(t, ω)) dµ+

∫
B

f(t, ω) dµ+ αµ(A)z(ω)

= α

∫
A

e(t, ω) dµ+

∫
A

(1− α)f(t, ω) dµ+

∫
B

e(t, ω) dµ− (1− α)

∫
T\A

(e(t, ω)− f(t, ω)) dµ

= α

∫
A

e(t, ω) dµ+

∫
B

e(t, ω) dµ+ (1− α)

∫
A

e(t, ω) dµ

=

∫
S

e(t, ω) dµ;

If ω /∈ ΩM , ∫
S

y(t, ω) dµ

=

∫
S

(
1

µ(S)

∫
S

e(t, ω) dµ

)
dµ

=

∫
S

e(t, ω) dµ.

Therefore, the coalition S maximin blocks the allocation f via y, and the proof is complete.

8.5 Proof of Section 6

Proof of Theorem 7.

Suppose {xi}i∈I is an maximin efficient allocation and not MCIC, then there exist a
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coalition C and two states a and b such that: vi(a, yi) > vi(a, xi) for all i ∈ C, where

yi(ω) =

ei(a) + xi(b)− ei(b) if ω = a,

xi(ω) otherwise.

Extending the allocation y for all agents by letting

yi(ω) =

ei(a) + xi(b)− ei(b) if ω = a,

xi(ω) otherwise.

for all i ∈ I.

First we check that {yi}i∈I is feasible.

(i) If ω 6= a, yi(ω) = xi(ω) for all i ∈ I, so
∑
i∈I yi(ω) =

∑
i∈I xi(ω) =

∑
i∈I ei(ω);

(ii) If ω = a,
∑
i∈I yi(a) =

∑
i∈I ei(a) +

∑
i∈I xi(b) −

∑
i∈I ei(b) =

∑
i∈I ei(a), since∑

i∈I ei(b) =
∑
i∈I xi(b).

Second, we show that all the agents in C are better off and all other agents are at least

the same if taking the allocation y instead of x.

For i ∈ C and Ei ∈ Πi, if a /∈ Ei, then for any ω ∈ Ei, vi(ω, yi) = vi(ω, xi), because

yi(ω) = xi(ω) for all ω ∈ Ei; if a ∈ Ei, then for any ω ∈ Ei, vi(ω, yi) > vi(ω, xi) because

of our assumption; therefore Vi(yi) =
∑
Ei∈Πi

vi(Ei, yi)πi(Ei) >
∑
Ei∈Πi

vi(Ei, xi)πi(Ei) =

Vi(xi) for all i ∈ C.

For i /∈ C and Ei ∈ Πi, if a /∈ Ei, vi(Ei, yi) = vi(Ei, xi), because yi(ω) = xi(ω) for all

ω ∈ Ei; if a ∈ Ei, then b ∈ Ei and ei(a) = ei(b), hence ui(a, yi(a)) = ui(a, ei(a) + xi(b) −
ei(b)) = ui(a, xi(b)) = ui(b, yi(b)).

vi(Ei, yi) = min

(
ui(a, yi(a)), min

ω 6=a,ω∈Ei

ui(ω, yi(ω))

)
= min

(
ui(b, yi(b)), min

ω 6=a,ω∈Ei

ui(ω, yi(ω))

)
= min
ω 6=a,ω∈Ei

ui(ω, xi(ω))

≥ min
ω∈Ei

ui(ω, xi(ω))

= vi(Ei, xi).

Then Vi(yi) =
∑
Ei∈Πi

vi(Ei, yi)πi(Ei) ≥
∑
Ei∈Πi

vi(Ei, xi)πi(Ei) = Vi(xi) for all i /∈ C.

Since εyi → yi as ε→ 1 in (Rl+)∞ and Vi is continuous, there exists ε ∈ (0, 1) such that

Vi(εyi) > Vi(xi) for all i ∈ C.

For all ω ∈ Ω, define

zi(ω) =

εyi(ω) if i ∈ C;

yi(ω) + 1−ε
‖I−C‖

∑
i∈C yi(ω) if i /∈ C.

Then Vi(zi) = Vi(εyi) > Vi(xi) for all i ∈ C. Moreover, since ui(ω, ·) is strongly monotone,
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Vi(zi) = Vi(yi + 1−ε
‖I−C‖

∑
i∈C yi) > Vi(yi) ≥ Vi(xi) for all i /∈ C.

Then we check the feasibility of z, for every ω ∈ Ω,∑
i∈I

zi(ω) =
∑
i∈C

εyi(ω) +
∑
i/∈C

yi(ω) + (1− ε)
∑
i∈C

yi(ω)

=
∑
i∈I

yi(ω) =
∑
i∈I

ei(ω).

Thus {xi}i∈I is not maximin efficient, a contradiction.
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