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Abstract

This paper considers competition in supply functions in a homogeneous goods mar-
ket. It demonstrates that when firms are few, production costs rise steeply and are
largely sunk, a restriction of the players’strategy sets equivalent to Cournot competi-
tion constitutes an instance of the von Neumann-Morgenstern Stable Set. Specifically,
any player who believes others will compete à la Cournot (but is ignorant of their exact
quantity choices) finds a strategy admissible if and only if it is within her restricted
strategy set. In fact, under capacity constraints Cournot may constitute the unique
set-valued solution satisfying these conditions. It also follows that Cournot then fullfills
the ‘preparation’requirement of Voorneveld [2004] and has the three defining charac-
teristics of the Self-Admissible Set by Brandenburger, Friedenberg, and Keisler [2008].

KEYWORDS: Cournot competition, von Neumann-Morgenstern Stable Set, supply
function competition

1 Introduction

A common argument against the Cournot model of oligopolistic competition is that it is
‘right for the wrong reasons’, in the sense that it leads to plausible comparative statics re-
sults, but does so, unrealistically, without allowing the firms to make any pricing decisions.1

This was often contrasted with the alternative price competition framework proposed by
Bertrand. In the words of Shapiro [1989], ‘A common view is that pricing competition more
accurately reflects actual behavior, but the predictions of Cournot’s theory are closer to
matching the evidence’. Indeed, the existence (Novshek [1985]) and uniqueness (Friedman

∗Department of Economics, The University of Manchester, michal.krol@manchester.ac.uk
1The phrase ‘right for the wrong reasons’was first used by W. Fellner in Competition Among The Few

(1949) with regards to the Cournot tatonement process, and the firms’myopic conjectures turning out
to be correct in equilibrium. However, the same phrase captures the essence of the critique, initiated by
Bertrand, of excluding the price as a strategic variable.
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[1977]) of Cournot equilibria hold under fairly general conditions, and there is consider-
able evidence for the resulting testable implications of the model, such as relatively high
price-cost margins that, in addition, are decreasing in the number of firms and demand
elasticity.2 This is in contrast with survey-based studies, which indicate that decision mak-
ers generally consider the price, rather than the quantity of output, to be the key strategic
variable (see Aiginger [1999]).

Existing literature attempts to resolve the above diffi culty in a way accurately summed
up by Vives [1989]:

The fact that the Cournot model does not explain the way prices are set, the
implicit assumption that output is auctioned effi ciently, is certainly a drawback
in descriptive terms but [...] price setting models may boil down to Cournot
outcomes. The quantity setting model can then be viewed as a reduced form
of a more complex and realistic multistage game.

In other words, although firms do not directly compete in quantities alone, their seem-
ingly more complex strategic interaction may implicitly comply with the simplified Cournot
framework. This is often demonstrated by imposing a dynamic structure on the original
static problem, e.g. by introducing an initial stage of the game at which the firms commit
to a certain mode of competition (price or quantity), as in Singh and Vives [1984]. A
similar approach was taken by Kreps and Scheinkman [1983], who considered capacity pre-
committment at stage one, followed by competition in prices. They found that the Cournot
equilibrium outcome is also the unique subgame-perfect equilibrium (SPNE) outcome of
the two-stage game, in the sense that firms choose the Cournot equilibrium quantities
as their capacities at stage one, and then name prices equal to the demand price of the
aggregate capacity / output. However, the result relies on mixed strategy play in some
subgames, as well as a particular (‘effi cient’) rationing rule, applied when the lower-priced
firm is unable to satisfy the entire demand due to the self-imposed capacity constraint (see
Davidson and Deneckere [1986]). Although both diffi culties are resolved in Moreno and
Ubeda [2006], where firms set reservation, rather than exact prices, other problems remain.
First, for a continuum of stage one capacity choices, the subsequent price equilibria still
exhibit total sales below the aggregate capacity. Thus, the two-stage game is incompatible
with Cournot off the equilibrium path, or, using the terminology of Tirole [1988], does not
have a ‘Cournot reduced form’. In addition, the scope of these results in support of Cournot
is limited to those real-world situations that match the dynamic structure superimposed
on the original, static problem, specifically the availability of capacity pre-committments
prior to competition in prices.

2 I will not attempt to review the vast literature of relevance in this respect, but see e.g. studies in
empirical Industrial Organization by Aiginger [1996], Brander and Zhang [1990], Domowitz et al. [1987],
Genesove and Mullin [1998], Haskel and Martin [1994], and those in experimental Game Theory by Feinberg
and Husted [1993], Raab and Schipper [2009], Morrison and Kamarei [1990].
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An interesting alternative to the above dynamic treatment is to consider static models
with rich strategy sets, encompassing both Cournot and Bertrand strategies. In particular,
Klemperer and Meyer [1986] considers a simple union of quantity and price strategies, while
Klemperer and Meyer [1989] allows for more general ‘supply-functions’, where each firm
simultaneously commits to a price-contingent supply schedule, specifying the quantity of
output it would be willing to provide at every possible selling price. Typically, this results
in a large range of potential equilibrium outcomes - see e.g. Grossman [1981]. However,
Klemperer and Meyer show that the number of equilibria is dramatically reduced in the
presence of demand uncertainty. Furthermore, it turns out that when firms are few and
production costs steeply rising, the surviving equilibria exhibit supply functions that are
steep, i.e. close to the ‘vertical’Cournot-like committment to a given quantity regardless
of the price.

Another way of reducing the number of supply function equilibria, alternative to in-
troducing demand uncertainty, has been to impose the equilibrium refinement condition of
coalition-proofness (Bernheim et al. [1987]). It turns out that when the number of firms is
suffi ciently large (Delgado and Moreno [2004]), and their capacities are not too asymmetric
(Delgado [2006]), the Cournot outcome is the only coalition-proof equilibrium.

Most importantly, though, all of the studies discussed above, both dynamic and static,
have one common feature. They provide support for the Cournot outcome, by showing
that it may follow as an equilibrium of more general games which involve pricing decisions.
However, this only strengthens the proposition that Cournot is ‘right’, while not refuting
the claim that this is so ‘for the wrong reasons’. In contrast, the present paper aims to
provide motivation for the entire Cournot game (not just its equilibrium outcome), as
a ‘convention’within supply function competition. More specifically, the purpose is to
show that, under certain conditions, a restriction of the players’strategy sets equivalent to
competition à la Cournot could constitute a (set-valued) solution to the supply function
competition game.

To this end, I use a recent re-interpretation of one of game theory’s earliest solution
concepts, namely the von Neumann - Morgenstern (vN-M) Stable Set, generalized by Luo
[2001, 2009] to allow for dominance relations that are conditional on the set of available
alternatives. The specific conditional dominance relation defined here on the set of all
strategy profiles (for the purpose of the non-cooperative oligopoly problem) is based on
the notion of admissibility (see e.g. Samuelson [1992]). In particular, a restriction of the
players’strategy sets is said to be ‘stable’when a strategy is admissible with respect to
this restriction if and only if it does not violate it. The purpose of this specification is to
capture the idea that, for Cournot to constitute a stable convention, firms should be willing
to adhere to it so long as they believe that it is universally accepted, whatever the exact
conventional actions of the other firms (i.e. their chosen quantities of output) might be.
Hence the use of weak dominance / admissibility - to allow for the fact that players take
all of the others’conventional strategies into account (see Kohlberg and Mertens [1986],
and further discussion in Section 2.4 of the paper).
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It turns out that for Cournot to be stable in the above manner, it is necessary and
suffi cient that three conditions hold. The first two of those, that the number of firms is
not too big and production costs steeply rising, are in line with the results of Klemperer
and Meyer, possibly due to ignorance about the counterparts’quantity choices playing a
role similar to demand uncertainty in their model. The last condition is that production
costs are suffi ciently ‘sunk’. This means that building the capacity to support one’s supply
schedule comes at a cost that is, to an extent, impossible to recover even when the capacity
is not subsequently utilized in full due to the market-clearing price falling short of the one
required (as per the chosen supply schedule).
If, in addition to those requirements, the capacity that firms can build is subject to con-
straints that fall within a certain range, then every stable convention within supply function
competition is equivalent to a stable convention within quantity competition à la Cournot.
In fact, when the firms’Cournot best-response functions are suffi ciently steep, the only
such convention amounts to the entire Cournot game.

Intuitively, competition à la Cournot means the firms’chosen outputs are always en-
tirely sold. This avoids the ineffi ciency of wasting resources on the production of unsold
output (or building the required capacity) - a fact of particular appeal when the sunk costs
are large. Similarly, the Cournot model, in contrast with Bertrand, has been traditionally
motivated by the presence of steeply rising costs or capacity constraints (Shapiro [1989]).
What this paper hopes to accomplish is to provide such commonly held views and intuitions
with a strictly formal justification.

While the structure of the problem at hand does not permit the use of alternative
solution concepts, the present solution exhibits a number of desirable properties embedded
in other set-valued frameworks. In particular, it satisfies the ‘preparation’ requirement
of Voorneveld [2004] - that each player’s restricted strategy set contains at least one best
reply to whatever belief she may hold consistent with the restrictions imposed on the
strategy sets of others. In addition, under the derived stability conditions, Cournot has
the three defining properties of a (finite) Self-Admissible Set by Brandenburger et al. [2008],
a recently developed concept which has already attracted considerable interest of game-
theorists, but so far has been applied mostly to relatively simple canonical games (see
Brandenburger and Friedenberg [2010]).

The underlying supply function framework is enjoying renewed attention of researchers
as an apt description of competition in markets ranging from wholesale electricity to airline
tickets, while the ‘dual’model of demand schedule competition has several financial appli-
cations (see Vives [2011] for an overview). In fact, the current study relaxes the common
requirement that supply functions are continuous. Together with allowing for sunk costs,
this makes the model applicable to an even wider range of problems, including online auc-
tions (see Section 2.3). In all those situations, the entire Cournot game (rather than just
its equilibrium outcome) can constitute a stable solution of a model which does include
pricing decisions, thereby making Cournot right ‘for the right reasons’.
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2 The Model

2.1 Industry

There are n ≥ 2 identical firms operating in a market for a homogeneous good with an
inverse demand schedule P (·) that is twice continuously differentiable, strictly decreasing
and known to all firms with certainty. In addition, the demand satisfies the Hahn [1962]
condition, i.e.:

P ′ (Q) +QP ′′ (Q) < 0, for all Q ≥ 0 (1)

In the context of the Cournot competition game, (1) is equivalent to the firms’individual
marginal revenues being decreasing in the rivals’ aggregate output. For the production
technology specified below, this ensures that the firms’reaction functions are continuous
and downward sloping, so that a Cournot equilibrium exists (see Novshek [1985]). A
suffi cient condition for (1) to hold is P ′′ (Q) ≤ 0, i.e. that the demand is concave.

The firms’production technology is represented by a twice continuously differentiable
non-decreasing convex cost function C.
Let qc > 0 be the firms’production capacity, and assume that C satisfies:

C ′ (0) ∈ [P ((n− 1) qm) , P (0)) , qm = arg max
q∈[0,qc]

{qP (q)− C (q)} (2)

This makes the monopoly-optimal output qm positive, since P (0) > C ′ (0). The other part
of (2) stipulates that C ′ (0) ≥ P ((n− 1) qm), which is, in turn, necessary and suffi cient for
all q ∈ [0, qm] to be rationalizable in the Cournot game. This is because, due to decreasing
Cournot best-replies, any quantity in excess of qm (the best response to zero output by
rivals), but no greater than qc, is strictly dominated. However, zero is in turn each player’s
best-response to all (n− 1) counterparts acting as monopolists, since the Cournot marginal
revenue at zero output is then P ((n− 1) qm) ≤ C ′ (0) . This ensures that any q ∈ (0, qm) is
in turn a best-response to some level of the competitors’aggregate output between 0 and
(n− 1) qm.
All in all, this means that Cournot players would restrict attention to quantities q ∈ [0, qm],
and we will take this to be the strategy set in the Cournot game corresponding to the
industry just described.

2.2 Strategies and Payoffs

Each firm i ∈ N = {1, 2, ..., n} sets a non-decreasing, right-continuous supply schedule
si : [0, P (0)] → [0, qc] simultaneously with the counterparts, specifying the quantity of
output it offers to provide at every given price. Note that, in contrast with the majority
of existing literature, the supply schedule need not be continuously differentiable3. Before

3Attempts at relaxing this restriction typically come at a cost of other simplifying assumptions, see e.g.
the ‘piecewise-linear’specification in Baldick et al. [2004].
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discussing the additional applications of the model that this permits, it should be noted
how the process of market clearing is affected by the change. To this end, for any supply
function profile s = {si (·)}i∈N , a market price p and a subset of players A ⊆ N , define the
following ‘aggregate supply’functions:

SA (s, p) =
∑

i∈A
si (p) , S

−
A (s, p) =

{
limp′→p− SA (s, p′) for p ∈ (0, P (0)]

0 for p = 0

Note that for p > 0 the existence of the left-sided limit involved in the above is guaranteed
by the monotonicity of each si (·) , and hence the aggregate supply schedule of any subset
of players as well. The market-clearing price p∗ (s) then satisfies:

D (p∗) ∈
[
S−N (s, p∗) , SN (s, p∗)

]
, D (·) = P−1 (·) (3)

When the aggregate supply SN (s, ·) is continuous at p∗, (3) is equivalent to the usual
requirement for the market-clearing price to equalize demand and supply. However, with
any of the individual supply schedules discontinuous, it can be that SN (s, ·) exhibits a
jump at p∗ that takes it above the demand curve without ever crossing it, in which case p∗

is the market-clearing price.
Due to the monotonicity of SN (s, ·) and D (·), a price p∗ ∈ [0, P (0)] satisfying (3)

always exists, and is also unique. To see why, consider an alternative price p > p∗, so
that S−N (s, p) ≥ SN (s, p∗) and D (p) < D (p∗) . Consequently, it cannot be the case that
D (p∗) ≤ SN (s, p∗) and D (p) ≥ S−N (s, p), so p and p∗ cannot both satisfy (3).

As there is a possibility of excess supply at the market-clearing price p∗, some firms
may not be able to sell as much as si (p∗) . Let xi (s) ≤ si (p∗) denote the quantity of output
that firm i is actually able to sell at market clearing.

On the one hand, xi (s) must at least equal the left-sided limit of si (·) at p∗, because
it could not be the case that some output is sold at the market-clearing price, while some
remains unsold despite being available for sale below that price. In addition, xi (s) must
not be smaller then the minimum residual demand D (p∗)− SN\{i} (s, p∗), i.e. what is left
after all the other players sell their entire outputs.

On the other hand, it may not be the case that xi (s) exceeds the maximum residual
demand D (p∗)− S−N\{i} (s, p∗) , i.e. what remains once each of the counterparts only sells
the left-sided limit of her supply at p∗. Thus, xi (s) lies within the following interval:[

max
{
S−{i} (s, p∗) , D (p∗)− SN\{i} (s, p∗)

}
,min

{
si (p

∗) , D (p∗)− S−N\{i} (s, p∗)
}]

(4)

Observe that when all supply schedules are continuous at p∗, we have:

S−{i} (s, p∗) = si (p
∗) = D (p∗)− SN\{i} (s, p∗) = D (p∗)− S−N\{i} (s, p∗)

so that xi (s) = si (p
∗) .
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When the supply schedule of at most one firm (i) is discontinuous at p∗, it follows from
(3) that:

D (p∗)− SN\{i} (s, p∗) = D (p∗)− S−N\{i} (s, p∗) ∈
[
S−{i} (s, p∗) , si (p

∗)
]

which implies that xi (s) = D (p∗)− SN\{i} (s, p∗), i.e. firm i only gets what remains after
all counterparts have sold their enire outputs.

Finally, suppose the supply schedule of more than one firm is discontinuous at p∗, leading
to excess supply at p∗. Let N0 denote the set of those firms. Then (4) is a proper interval
for all i ∈ N0 (while xi (s) = si (p

∗) for all i ∈ N\N0). The exact value of xi (s) for i ∈ N0
is then determined by a sharing rule, specifying how the D (p∗)− SN\N0 (s, p∗) part of the
demand is to be distributed among the firms in N0. Since the results of this paper turn
out to hold for any such sharing rule, it is left unspecified throughout the remainder of the
text.

With the firms’sales xi (s) determined, the resulting profits are:

πi (s) = p∗ (s)xi (s)− [(1− γ)C (xi (s)) + γC (si (P (0)))] , γ ∈ [0, 1] (5)

The way the costs are incorporated in (5) is meant to reflect the idea that firms need to
build capacity to support their commitment to the chosen supply schedule, and that the
cost of doing so is at least partly sunk, i.e. independent of their eventual sales. For instance,
suppose there are two firms, the first of which offers to supply up to ten units of output
(given a suffi ciently high price), while the second one only offers to provide up to six units.
Since the first firm needs to build more capacity in order to make its commitment viable,
its costs could be higher even when the eventual market price is such that both firms only
sell six units of output (i.e. only the second firm utilizes its full capacity). This would be
the case whenever part of the cost of having built the excess capacity of four units is sunk
and impossible to recover once the extra capacity is known to be redundant.

The degree to which costs are sunk in this manner is represented by the parameter
γ ∈ [0, 1] in the profit formula (5). When γ = 0, costs are given by C (xi (s)) , i.e. are
entirely ‘sales-dependent’. In contrast, when γ = 1, costs equal C (si (P (0))), i.e. are
completely ‘sunk’at the point of submitting a supply schedule. More specifically, in the
latter scenario costs depend only on the maximum quantity si (P (0)) that firm i is willing
to provide (recall si is defined for p ∈ [0, P (0)] and is non-decreasing). It is as if in order
to commit to providing a certain quantity of output (at some price) the firm first had to
produce it, where the associated cost cannot be recovered if some of the output remains
unsold. As γ decreases, so does the fraction of the cost that becomes lost in this manner
for any unsold output.
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2.3 Example: Online Auctions

Consider a homogeneous good market where every buyer seeks to purchase one unit of
the good, so long as the required price does not exceed her individual valuation. Suppose
these valuations give rise to an aggregate demand function as specified in Section 2.14, and
that the good is sold via an online auction platform, e.g. eBay. Each seller operating in
this market is at liberty to set up an arbitrary number of auctions with possibly different
reservation prices, and will generally be inclined to do so simultaneously with the competi-
tors. This is because auctions typically have a fixed duration (usually one week), and it is
considered optimal for an auction to end during the peak-time of buyer activity (typically
Sunday evening). In fact, this pattern is promoted by auction sites, which often reduce
seller fees for auctions starting / finishing at those times (e.g. the weekend ‘no-insertion
fees’promotion by eBay). Hence, competing auctions are usually launched at roughly the
same time.

The majority of existing literature, empirical and theoretical alike, treats online auctions
as independent of one another, in the sense that there is no strategic interaction between
sellers, each acting as a monopolist in their own market (see a comprehensive review by
Bajari and Hortacsu [2004]). Of the few studies that challenge this assumption in what
is known as ‘competing auctions theory’, Peters and Severinov [2006] describe a (weak)
perfect Bayesian equilibrium where buyers always bid with the minimum increment on the
auction with the lowest ‘standing’bid (which may entail switching between auctions), as
opposed to bidding one’s true valuation straight away in any single auction, which does
not constitute an equilibrium in this setting. Indeed, this tendency in buyers’behaviour is
supported by the empirical analysis of Anwar et al. [2006], as is the fact that final selling
prices in competing auctions (those simultaneously offering close substitutes) tend to be
uniform. In fact, assuming bidders do behave in this way also makes the sellers’strategic
interaction consistent with the model described in Section 2.2.

To see why, observe first that by setting up an arbitrary number of auctions with
possibly different reserves, each seller effectively submits a supply schedule, contingent on
the final (uniform) selling price in the sellers’common market. For instance, suppose a
seller sets up two auctions (each for a single unit of the good), with reservation prices of 1
and 2 respectively. The corresponding supply schedule si (p) assigns zero to all p ∈ [0, 1) ,
1 to p ∈ [1, 2) and 2 to all values of p not smaller than 2. It is easy to see that any
choice of auctions / reserves results in a supply schedule that is non-decreasing and right-
continuous.5

Suppose further there is a second seller who sets up two auctions, both with a reservation

4 In accordance with common practice, we take a non-discrete P (·) to be a good approximation of the
demand of a large (finite) number of potential buyers, though a small-number toy example is used in what
follows for illustrative purposes.

5Technically, in this case each seller’s strategy set comprises only those non-decreasing, right-continuous
supply schedules which are also step functions. All results derived in the paper would continue to hold
under this restriction.
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price of 3, and that there are exactly three buyers with valuations not smaller than this
value (i.e. D (3) = 3). Thus, buyers will first start outbidding one another in the auction
of the first seller with reserve equal to 1, until the standing bid reaches 2. At this point,
rather than go above this value, one of the outbidded buyers will place a bid equal to the
reserve of 2 in the first seller’s other auction. However, since there will remain at least
one outbidded buyer with valution not smaller than 3, this buyer will want to bid higher
in one of the two ‘active’auctions. This will continue until the standing bids in both of
these two auctions are equal to 3, at which point there will be exactly one outbidded buyer
with valution not smaller than 3. This buyer will then meet the reserve of 3 in one of the
auctions of the second seller, and the bidding will end. Thus, the first seller succeeds in
selling both units of the good she put up for sale, while the counterpart only sells one out
of two. All trade occurs at a uniform price of 3.

Let us see how the same outcome follows directly as an application of the formulae in
Section 2.2. First, observe that p∗ = 3 satisfies condition (3), as we then have D (p∗) = 3,
S−N (s, p∗) = 2 and SN (s, p∗) = 4. Note that any p < 3 implies SN (s, p) ≤ 2 < D (p) ≥ 3,
while any p > 3 leads to S−N (s, p) = 4 > D (p) ≤ 3, i.e. p∗ = 3 is the unique price satisfying
(3). We then have:

S−{1} (s, p∗) = S−N\{2} (s, p∗) = 2, S−{2} (s, p∗) = S−N\{1} (s, p∗) = 0

s1 (p∗) = SN\{2} (s, p∗) = s2 (p∗) = SN\{1} (s, p∗) = 2

so that, based on (4) , the quantities sold by the two sellers are determined as follows:

x1 (s) ∈ [max {2, 3− 2} ,min {2, 3− 0}] ≡ {2}
x2 (s) ∈ [max {0, 3− 2} ,min {2, 3− 2}] ≡ {1}

Note, however, that should the first seller increase the reserve in either of their two auctions
to 3, then buyers would outbid one another in the other (lowest-priced) auction until the
standing bid reaches 3, at which point the two outbidded buyers would each bid the reserve
of 3 in one of the remaining three auctions. As these auctions belong to different sellers,
each of them now ends up selling at least one of the total three units of output being
traded. Formally, we have xi (s) ∈ [1, 2] for i = 1, 2, subject to x1 (s) +x2 (s) = D (p∗) = 3,
where the exact sales are then determined by the (unspecified) sharing rule.

Finally, suppose there is a fixed fee of 0.5 that sellers need to pay in order to set up
each auction, while the (constant) unit cost of producing the good is 1.5. The profits of
firm i are then given by:

πi (s) = p∗ (s)xi (s)− [1.5× xi (s) + 0.5× (no. of auctions)]

which coincides with (5) for γ = 1/4. In other words, the total unit cost of output is
1.5 + 0.5 = 2, a quarter of which is ‘sunk’, as the auction fees cannot be recovered if the
reserve is not met and the item remains unsold.
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In fact, the proportion of costs that are sunk could be even greater if the goods need
to be produced ‘upfront’, i.e. prior to setting up the auction. This could be e.g. because
the production process takes plenty of time, and so must be scheduled in advance to allow
prompt delivery of the item in the event of it getting sold. Once an item that has already
been produced fails to sell, some of its production cost may be impossible to recover. This
could be, for example, because it is a perishable good that becomes worth less with time
and hence must then be sold at a discounted price or even discarded. Even when that is
not the case, delaying the sale until a subsequent auction causes an irreversible decrease
of the present discounted value of the potential revenue, which constitutes a form of sunk
costs and can be captured by the parameter γ.

2.4 Solution Concept

Let S = ×i∈NSi denote the set of strategy profiles, comprising strategies defined in Section
2.2 (in this case S1 = S2 = ... = Sn). We will refer to any product set S′ = ×i∈NS′i ⊆ S
as a convention, where S′−i = ×j 6=iS′j , and any strategy si ∈ S′i will be called conventional
(as opposed to unconventional strategies si ∈ Si\S′i).

Definition 2.1 A strategy si ∈ Si is admissible with respect to a convention S′ when
there exists no strategy s′i ∈ S′i that weakly dominates si with respect to S′−i, i.e. one that
satisfies:

∀s′−i ∈ S′−i : πi
(
s′i, s

′
−i
)
≥ πi

(
si, s

′
−i
)

where the inequality is strict for some s′−i ∈ S′−i. Otherwise, si is inadmissible w.r.t. S′.

I will now define the solution concept used in the present paper, then illustrate it with
an example, discuss its properties and formally relate it to the generalized vN-M Stable
Set by Luo [2001, 2009].

Definition 2.2 A convention S′ is stable when a strategy is conventional if and only if it
is admissible with respect to S′.

To begin with, observe that Definition 2.2 comprises two requirements:

1. That every conventional strategy is admissible with respect to S′, i.e. that it is
not weakly dominated by another conventional strategy w.r.t. the set S′−i of other
players’conventional strategy profiles. This will be referred to as the internal stability
requirement.

2. That every strategy that is not conventional is not admissible w.r.t. S′, i.e. that it
is weakly dominated by some conventional strategy. This will be referred to as the
external stability requirement.
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These two conditions taken together also mean that no s′i ∈ S′i is weakly dominated
w.r.t. S′−i by a si ∈ Si\S′i. If such a si did exist, then the conventional strategy which
weakly dominates si by virtue of the external stability requirement would weakly dominate
s′i w.r.t. S

′
−i, in violation of internal stability.

Example 2.1 Consider the following two-player normal-form game:

D E F

A 0, 6 2,5 1,6
B 4, 2 0, 4 3, 0
C 1, 1 1,5 4,3

Initially, no strategies can be eliminated as (weakly) dominated, but once we eliminate B,
D becomes weakly dominated by F , and if we eliminate D, then B is strictly dominated
by C. Hence, the convention {A,C} × {E,F} satisfies external stability. Since neither of
the conventional strategies is then weakly dominated by another, internal stability is also
satisfied, so that the convention {A,C} × {E,F} is stable.

Definition 2.2 attempts to capture a key feature of the classic characterization of social
conventions (as laid down by David Hume and, later, David Lewis), namely the fact that
for a convention to be stable / sustainable, it must be in everyone’s best interest to adhere
to it so long as they believe others to do the same (see Rescorla [2011] for an overview of
the related literature). However, the present notion extends this to allow for the fact that
conventions need not determine agents’activities exactly, but may allow for flexibility of
behaviour within the limits of convention. Such an approach is related to the more recent
concept of ‘constitutive conventions’by Marmor [2009], which are said to ‘constitute’a
social practice by defining the rules of how to engage in it correctly. For instance, chess
players are only allowed to make certain moves as a matter of convention, but are still free
to shape the course of the game so long as they play by the rules. This kind of flexibility
within the convention is crucial for the present study, as it strives to provide motivation for
quantity competition in general, rather than some specific quantity choices, as a convention
within supply function competition.

The question is then whether it is indeed in everyone’s interest not to violate a con-
vention that is stable in the sense of Definition 2.2. This should be the case so long as all
players believe that their counterparts will adhere to it, i.e. that they will choose some
conventional strategies, whatever these might be. For instance, consider a population of
individuals, each of whom chooses how much of her time to devote to work, and how much
of the resulting income to declare for tax purposes. Suppose it is a convention to declare
one’s income truthfully and hence pay the full tax amount due, and observe that this still
leaves people free to choose how much they wish to work. However, in reality we would not
expect an individual’s decision to obey the convention to be based on estimating how much
income every other person in the economy is going to earn / declare. Instead, people would
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choose to pay their taxes simply because they believe this is what (almost?) everybody
else does, whatever their exact income might be.

The way this reasoning is embedded in Definition 2.2 may be illustrated by revisiting
Example 2.1. Suppose the column player expects the counterpart to choose one of the
conventional strategies {A,C}, but is ignorant of their respective likelihoods. It would not
then be in the column player’s interest to violate the convention by opting for strategy
D, as to do so would be worse than playing the conventional strategy F , just as a risky
prospect that yields 6 or 1 with unknown probabilities is worse than one that gives 3 in
the event where the other gives 1. Thus, by requiring that all unconventional strategies
are also inadmissible (as per the external stability condition), Definition 2.2 ensures that
it is in everyone’s interest to obey the convention, so long as others are expected to play
conventional strategies, but nothing more is known about their exact actions. What the
internal stability condition does is, in turn, to make such expectations consistent with
the avoidance of inadmissible strategies, by requiring these to be absent from any stable
convention. Combined with external stability, this ensures that a player who takes all of the
others’conventional strategies (and none of their unconventional ones) into account, will be
subject to similar expectations from the counterparts, who in their turn will take all of the
player’s conventional strategies (and none of her unconventional ones) into consideration.
These mutual expectations turn out to be correct, in the spirit of Nash. Indeed, we have:

Remark 2.1 A strict Nash Equilibrium in pure strategies is equivalent to a singleton stable
convention.

In addition to that, the internal / external stability terms, as explained above, suggest
that a direct parallel can be drawn between the present concept and one of the earliest and
most profound formalizations of ‘standards of behaviour’. This is detailed below.

Relationship to vN-M Stable Set

Definition 2.2 can be linked to the vN-M stable set concept, by expressing it using the
general systems framework proposed by Luo [2001]. To see this, consider a general system:(

S,
{
�A
}
A⊆S

)
(6)

where �A is a conditional dominance relation on S defined as follows:
Take s1, s2 ∈ S, where sj = {sji}i∈N , and let A−i ≡ {s−i ∈ S−i | ∃si ∈ Si : (si, s−i) ∈ A}.
We then have s1 �A s2 if and only if for some i ∈ N it is true that:

∀a−i ∈ A−i : πi
(
s1i ,a−i

)
≥ πi

(
s2i ,a−i

)
where the inequality is strict for some a−i ∈ A−i.
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The general stable set S′ ⊆ S of the general system (6) is then defined (for an arbitrary
conditional dominance relation) as the vN-M stable set of an abstract game (S,�S′), i.e.
one in which the unconditional dominance relation coincides with �S′ . That is to say, S′
must satisfy:

1. [vN-M internal stability] @s, s′ ∈ S′ : s �S′ s′

2. [vN-M external stability] ∀s ∈ S\S′ ∃s′ ∈ S′ : s′ �S′ s

For the particular conditional dominance relation
{
�A
}
A⊆S specified above, we then have:

Proposition 2.1 Any stable convention S′ is a vN-M stable set of an abstract game
(S,�S′), and any general vN-M stable set S′ of a general system (S,

{
�A
}
A⊆S) is a stable

convention.

Proof. See the Appendix.

3 Results

We now proceed to derive the conditions for a restriction of the players’ strategy sets
equivalent to Cournot competition to constitute a stable convention. To this end, it is
first necessary to explain what is meant by ‘Cournot-equivalent’in the context of supply
function competition.

In principle, what is needed is that every supply schedule within the convention corre-
sponds to some quantity of output in Cournot, in the sense that the outcome of any profile
of supply schedules will coincide with that of their corresponding outputs under Cournot
competition, in terms of the quantities sold, selling prices and profits made by each player.
In addition, as detailed in Section 2.1, the Cournot strategy set of each player is [0, qm],
where qm is the monopoly-optimal output. Thus, it is required that for every q ∈ [0, qm]
there exists some conventional supply schedule such that q is its corresponding Cournot
strategy. More formally:

Definition 3.1 A convention S′ is Cournot-Equivalent when there exists a collection
of surjective functions {ϕi : S′i → [0, qm]}i∈N such that for any supply function profile
s = {si (·)}i∈N ∈ S′ and every player i ∈ N we have xi (s) = ϕi (si (·)) and:

πi (s) = ϕi (si (·))P (
∑
j∈N ϕj (sj (·)))− C (ϕi (si (·)))

We may now state the main result of the paper.
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Proposition 3.1 There is at most one Cournot-Equivalent convention S′ that is also sta-
ble in the sense of Definition 2.2. This convention is characterized by:

∀i ∈ N : S′i = {si (·) ∈ Si : si (P (si (P (0)) + (n− 1) qm)) = si (P (0)) ≤ qm} (7)

A necessary and suffi cient condition for S′ to be stable is:

P (nqm) + qmP ′ (nqm) ≥ (1− γ)C ′ (qm) (8)

Proof. See the Appendix.

In words, choosing a supply schedule si within the stable Cournot-Equivalent convention
S′ is no different from selecting a quantity q ∈ [0, qm] in Cournot, where q is equal to the
maximum output that could be supplied under si. That is to say, the surjective function
ϕi (·) of Definition 3.1 satisfies ϕi (si (·)) = si (P (0)) for all si (·) ∈ S′i. The maximum
output si (P (0)) of every player i ∈ N is sold entirely at the corresponding demand price,
precisely as in Cournot. This is because, according to (7), every player is willing to provide
up to si (P (0)) even when everybody else supplies the monopoly-optimal output, making
the market-clearing price as low as P (si (P (0)) + (n− 1) qm). In short, when the players’
supply schedules are ‘competitive’, in the sense that they commit themselves to selling
their maximum quantities even at relatively low prices, then these quantities become the
effective strategic variables.

It now becomes easier to understand condition (8), which is necessary and suffi cient for
the above convention to be stable in the sense of Definition 2.2. The condition states that
the marginal revenue of a Cournot player when everyone (including the player) produces
the monopoly-optimal output is no smaller than a fraction (1− γ) of the player’s marginal
cost. In fact, under assumption (1), the left-hand side of (8) is decreasing in both the
output of the player in question and that of her competitors. Together with C ′′ (·) ≥ 0,
this implies that the inequality holds, more generally, for everyone producing no more than
qm, and becomes strict when one or more players produce strictly less than qm (see proof
of Proposition 3.1). This can be given the following interpretation.
Suppose player i decides to commit to supplying up to a certain (maximum) quantity of
output si (P (0)) ≤ qm, and expects others to choose supply schedules that are suffi ciently
‘competitive’to fully sell their associated maximum quantities, whatever these might be.
Thus, player i is effectively a monopolist faced with the (residual) demand that remains
after the aggregate (maximum) quantity of other players Q−i =

∑
j∈N\{i} sj (P (0)) has

beed sold (Q−i ∈ [0, (n− 1) qm]). By choosing her exact supply schedule, player i effectively
determines the quantity qi that she will sell at the corresponding demand price P (qi +Q−i).
Hence, the player’s decision problem is the same as in Cournot, but for two exceptions.
First, qi must not exceed si (P (0)), and second, a fraction γ of production cost is sunk, i.e.
depends on si (P (0)), but not qi. It is as if a Cournot player only had to pay a fraction
(1− γ) of the cost of her output, provided it does not exceed si (P (0)). Condition (8) then
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states that the corresponding marginal profit is positive for qi < si (P (0)), i.e. the player
would always want to produce up to si (P (0)), regardless of the exact value of Q−i. This
means it is best for the player to make her supply schedule as competitive as those of the
competitors, so as to sell the maximum quantity si (P (0)) for any Q−i ∈ [0, (n− 1) qm]. In
other words, it is in the interest of every player to compete à la Cournot, so long as others
are believed to do so.

It is clear that condition (8) is more easily satisfied when γ is larger, i.e. production
costs are, to a greater extent, sunk. This is intuitive, since the main feature and appeal
of Cournot competition is that the players’outputs always get sold in their entirety. The
reason why this is particularly important when costs are largely sunk, is that it is then not
worth witholding some of the output from sale in order to maintain high prices, because
the cost of this unsold output will, in large part, be impossible to recover. Thus, even
in case of low (residual) demand it is better to sell maximum output at whatever price it
takes to do so, which is precisely what Cournot competition guarantees.

As for the impact of the number of firms, it follows from the above discussion that,
since an increase in n increases the others’aggregate monopoly-optimal output, the left-
hand side of inequality (8) is decreasing in n. Hence, when the number of players is large,
it is more diffi cult for Cournot to meet the stability requirements of Definition 2.2, which
may be interpreted as follows. When facing a large number of competitors, players need
to consider the possibility of a large aggregate supply driving the price down to a level at
which any revenue lost due to witholding some of the output from sale is smaller than the
proportion of the associated cost that may be recovered when the produce remains unsold.
Thus, it may then be beneficial to select an unconventional supply schedule that offers a
way of insuring against low prices, by stipulating that less than si (P (0)) is to be offered for
sale in the event of the others’aggregate output bringing the market-clearing price down
to a certain level. Such unconventional strategies may hence become admissible, violating
the external stability requirement.

A similar reasoning may be applied to consider the effect of changes in the production
technology. When the marginal costs C ′ (·) rise more steeply and / or are larger to begin
with, the monopoly-optimal output qm is smaller, so that the lower-bound on Cournot
prices increases, and there is less reason to insure against low prices by means of an un-
conventional supply schedule.
To link this more directly to condition (8), suppose that (contrary to assumption) n = 1,
and that we have γ = 0 and qm < qc. In such a case, the fact that qm is monopoly-optimal
means (8) must be satisfied as an equality. Thus, the change in costs just decribed would
result in an increase of C ′ (qm), accompanied by an equal increase of the left-hand side
of (8), representing the marginal revenue at qm. However, for n ≥ 2 there would be an
additional effect of the (maximum) aggregate supply of the competitors (n− 1) qm going
down. This, as already noted, would further increase the marginal revenue, so its overall
change would be larger than that of the right-hand side of (8). Clearly, the positive effect
of the change in costs on the stability of Cournot extends to γ ∈ (0, 1], which only dampens
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the increase of C ′ (qm) on the right-hand side of (8) . In fact, we have seen that a larger γ
makes stability more likely.

These results are similar to those of Klemperer and Meyer [1989], established under
demand uncertainty. They found that when the number of firms is small and the (increas-
ing) marginal cost curves are steep relative to demand, the equilibrium supply functions
are steep, i.e. resemble our Cournot-Equivalent supply functions that are vertical above a
relatively low price-threshold. Interestingly, Klemperer and Meyer rely on demand uncer-
tainty for their results, which means that equilibrium strategies must perform well under
different levels of consumer demand. In comparison, the current results are obtained under
uncertainty about the actions of the competitors. Hence, each strategy in a stable Cournot-
Equivalent convention must perform well against different levels of the competitors’aggre-
gate output, causing variations in (residual) demand similar to demand uncertainty.

We illustrate this discussion with an example of linear demand and constant unit costs.

Example 3.1 Suppose that n > 2, qc → ∞ (no capacity constraints), P (Q) = α − βQ
and C (q) = cq, where α > c > 0 and β > 0. The assumptions of Section 2.1 are satisfied
and it follows that qm = (α− c) /2β. Consequently, condition (8) simplifies to:

c/α ≥ (n− 1) / (n− 1 + 2γ)

In other words, Cournot competition is a stable convention when the unit cost of produc-
tion is suffi ciently large relative to consumer demand, where the required cost threshold is
increasing in the number of players and decreasing in the degree to which costs are sunk.

It has been demonstrated that, under condition (8), (7) is the unique Cournot-Equivalent
stable convention. However, the question that remains open is whether there are then any
stable conventions that are not Cournot-Equivalent. Alternatively, can anything be said
about the set of all existing stable conventions? It turns out that an affi rmative answer to
the last question can be given when a stronger variant of condition (8) holds.

Proposition 3.2 Let qbr (Q) = arg max
q∈[0,qm]

qP (q +Q)− C (q), and suppose we have:

P (nqc) + qcP ′ (nqc) ≥ (1− γ)C ′ (qc) (9)

A convention S′ is then stable only if for some ql, qh ∈ [0, qm] , ql < qh, Qh = (n − 1)qh

and Ql = (n− 1)ql, the following three conditions hold:

(1) : ∀i ∈ N : S′i = {si (·) ∈ Si : si(P (si (P (0)) +Qh)) = si (P (0)) ∈ [ql, qh]}
(2) : ql = qbr(Q

h) and qh = qbr(Q
l)

(3) : 2[P (ql +Qh)− C ′(qh)] ≤ −qhP ′(ql +Qh)

Proof. See the Appendix.
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Let us examine the three conditions of Proposition 3.2 in turn. The first one is similar
to (7), i.e. the way the stable Cournot-Equivalent convention is specified in Proposition
3.1. That is to say, any stable convention comprises those supply schedules that will sell
their maximum quantities regardless of the conventional strategies selected by others. As
explained before, any such convention is therefore equivalent to the firms each choosing a
Cournot quantity from within a specified range, where the difference from Proposition 3.1
is that this range [ql, qh] may be a proper subset of [0, qm].

Condition (2) further restricts the values that ql and qh can take. Specifically, the
minimum quantity ql must be the Cournot best-response to the highest possible aggregate
output Qh of the competitors. Conversely, qh must be the best-response to minimum total
output Ql of the counterparts. This means that any q ∈

(
ql, qh

)
in turn satisfies qbr (Q) = q

for some Q ∈
(
Ql, Qh

)
, and that any q < ql, as well as any q > qh, are outperformed by ql

and qh respectively when others produce Q ∈
[
Ql, Qh

]
. Thus, every stable convention of

the strategic supply function game must be equivalent to a stable convention in Cournot,
in the sense that every q /∈ [ql, qh] is weakly dominated in Cournot by some q ∈ [ql, qh],
whereas no q ∈ [ql, qh] weakly dominates another quantity within the same range.

Nevertheless, for the convention to be stable not only in Cournot, but also within
supply function competition, it must satisfy an additional condition (3), which is, roughly
speaking, that the convention is not ‘too small’, in the sense of ql and qh being close
together. To see this, we can write condition (3) as:

P (ql +Qh) + qhP ′(ql +Qh)− C ′(qh) ≤ qhP ′(ql +Qh)/2 (10)

and observe that, when ql becomes close to qh, the left-hand side of (10) is close to the
marginal profit of a Cournot player producing ql when everyone else produces qh, which
equals zero by virtue of ql = qbr(Q

h), and is therefore larger than the negative term on
the right-hand side. The reason why this scenario needs to be ruled out is that marginal
profits are then just slightly below zero even when everyone produces qh, which means
it might be profitable to sell more than qh so long as this is done not by decreasing the
market-clearing price, but rather by means of capturing some of the competitors’demand
at existing prices. Thus, the purpose of condition (3) is to make it unprofitable to offer
in excess of qh via an unconventional supply schedule that is suffi ciently competitive to
‘price-undercut’the competitors’conventional ones, preventing them from utilizing their
full capacities.

Finally, it is worth noting the role of the production capacity constraint, determined by
the parameter qc, in narrowing down the set of all stable conventions in the above manner.
Condition (9) is obtained by substituting qc for qm in condition (8) of Proposition 3.1.
Thus, it follows from the discussion of the latter that (9) becomes more diffi cult to satisfy
when qc increases, which is interesting in the light of the common view (e.g. Maggi [1996],
Shapiro [1989]) that Cournot is an apt description of oligopolistic competition when firms
are faced with capacity constraints. In fact, when qm = qc, i.e. qc is suffi ciently low to
make the constraint binding under monopoly, conditions (8) and (9) coincide. In such a
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case, either there is no stable Cournot-Equivalent convention, or not only one does exist,
but also every stable convention within supply function competition is equivalent to some
stable restriction of the Cournot game. However, it should be noted that qc may not be
too low either, as this would contradict the assumption that C ′ (0) ≥ P ((n− 1) qm) for
qm = qc.

The next proposition shows that, subject to firms’ reaction functions satisfying an
additional requirement, conditions (1) − (3) of Proposition 3.2 are suffi cient to further
restrict the set of stable conventions to a single one - the Cournot-Equivalent convention
of Proposition 3.1.

Proposition 3.3 Suppose that condition (9) of Proposition 3.2 holds, and that we have:∣∣q′br (Q)
∣∣ > 1/ (n− 1) for all Q ∈

(
(n− 1) qmin, (n− 1) qmax

)
(11)

where qmax = D (C ′ (0)) / (n− 1) and qmin is the largest q that solves qbr ((n− 1) q) = qmax

The Cournot-Equivalent convention of Proposition 3.1 is then the unique stable convention.

Proof. See the Appendix.

As qmax satisfies P ((n− 1) qmax) = C ′(0), it represents the smallest quantity that,
when produced by each of a player’s (n− 1) counterparts, induces the player to produce
nothing. Similarly, qmin is the largest quantity that, when produced by others, makes it
optimal for the player to produce qmax. Hence, Q ∈

(
(n− 1) qmin, (n− 1) qmax

)
implies

q = qbr (Q) must be an interior solution, i.e. we must have P (q +Q)+ qP ′(q+Q) = C ′(q).
Using implicit function theorem then yields:∣∣q′br (Q)

∣∣ =
P ′ (q +Q) + qP ′′(q +Q)

2P ′ (q +Q) + qP ′′(q +Q)− C ′′(q) (12)

The numerator of the above fraction represents the change in marginal revenue brought
about by a marginal increase of the competitors’aggregate output, which we know to be
negative under the present assumptions. The denominator, in turn, comprises the (nega-
tive) change in marginal revenue resulting from a marginal increase of a firm’s individual
output, net of the associated (non-negative) change of its marginal cost. Consequently,
condition (11) is easier satisfied when the marginal cost function C ′ (·) is less steep. In
fact, it is clear that when marginal costs are constant and demand is concave, (12) is
smallest when qP ′′(q +Q) = 0, in which case |q′br (Q)| = 1/2.

Corollary 3.1 For constant marginal costs and concave demand, condition (11) of Propo-
sition 3.3 reduces to n > 3.

We may illustrate these considerations by revisiting the previous example of constant mar-
ginal costs and linear demand.
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Example 3.2 Consider the model in Example 3.1, except that qc is now finite. Condition
(9) of Proposition 3.2 then becomes qc ≤ qch = [α− (1− γ) c] / [β (n+ 1)], and we have
qm ≤ qc ⇔ qc ≥ qcm = (α− c) /2β. But when qc < qcm, i.e. the production capacity
constraint is binding under monopoly, we also need qc ≥ qcl = (α− c)/ [β (n− 1)] in order
to satisfy the assumption C ′ (0) ≥ P (qm).

It follows that for γ > 2(α − c)/ [c (n− 1)] we have qch > qcl . In other words, when γ, n
and c are large relative to α, then for a range of values of qc every stable convention must
satisfy the requirements of Proposition 3.2. If, in addition, n > 3, then the only stable
convention is the Cournot-Equivalent one described in Proposition 3.1.

Other Solution Concepts

It would be useful to formally assess the robustness of these conclusions to using some
of the existing set-valued solution concepts instead of the notion of stability defined for
the purpose of the present paper. Unfortunately, these concepts are typically defined
under specific assumptions regarding the nature of the player’s strategy sets, that are not
satisfied by infinite sets of supply functions. Nevertheless, an informal discussion situating
the present findings within two recent frameworks may be of interest.

The first of those is the Preparation Set by Voorneveld [2004], defined as a product set of
non-empty, compact subsets of the players’compact Hausdorff topological strategy spaces
that satisfies the ‘preparation’requirement. This, in the words of the author, is ‘a standard
rationality condition, stating that [...] each player’s set of recommended strategies must
contain at least one best reply to whatever belief he may have that is consistent with the
recommendations to the other players’. It is not diffi cult to see that any stable convention
would satisfy this requirement, whatever (probabilistic) belief a player may hold regarding
the conventional strategies to be chosen by others. If the payoffof any given unconventional
strategy is at least matched by that of some conventional one, for any conventional strategy
profile of other players, then the same should apply to the respective (expected) payoffs
of these two strategies for any (probabilistic) belief regarding the conventional strategies
to be chosen by others. Consequently, the unconventional strategy in question cannot be
the unique best reply to the player’s belief, as at least one must lie within the convention.
However, the converse is not true, i.e. not every convention satisfying the preparation
requirement is stable. For instance, suppose the payoff of the row-player associated with
strategy-profile {C,E} in Example 2.1 is equal to −1 instead of 1. Then strategy B can no
longer lie outside the convention, as it is no longer (weakly) dominated by C w.r.t. {E,F}.
Hence, {A,C}× {E,F} is no longer stable, though it still satisfies preparation, because A
is better than B when E is believed to be more likely than F , whereas C in no worse than
B in the opposite case.

The other solution concept is the Self-Admissible Set (SAS) by Brandenburger et al.
[2008], which would have been an obvious alternative to the present stability notion due
to its use of admissibility, if not for the fact that it is only defined for finite strategy sets
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(although the authors mention the extension to infinite games as a possible direction of
future work). Importantly, the framework allows for mixed strategies, so that the notion
of admissibility specified in Definition 2.1 would have to be modified accordingly. In par-
ticular, a strategy si would be said to be mixed-strategy admissible w.r.t. S′ when there
is no mixed-strategy with support in S′i that weakly dominates si w.r.t. S

′
−i. Clearly, any

strategy that is not (pure-strategy) admissible must not be mixed-strategy admissible, so
that any externally stable convention would maintain this property if the alternative defi-
nition of admissibility was used. In addition, as previously mentioned, any given Cournot
quantity q ∈ [0, qm] is a strict best-response to some level Q ∈ [0, (n− 1)qm] of the com-
petitors’aggregate output, making it mixed-strategy admissible in Cournot. By the same
token, for the Cournot-Equivalent convention S′ of Proposition 3.1, every s′i (·) ∈ S′i such
that s′i (P (0)) = q is mixed-strategy admissible w.r.t. S′. Hence, S′ continues to be stable
under the alternative definition of admissibility.
In addition, this means that for any s′i (·) ∈ S′i there exists no mixed-strategy that plays
some si (·) ∈ Si\S′i with positive probability and results in an expected payoff no smaller
than that of s′i (·) for any s′−i ∈ S′−i. This is because instead of every such si (·), the
mixed-strategy in question could play the conventional strategy which weakly dominates
si (·) w.r.t. S′−i. The resulting improved mixed-strategy could still not match the payoff of
s′i (·) w.r.t. S′−i due to s′i (P (0)) outperforming any other quantity q ∈ [0, qm] in Cournot
for some Q ∈ [0, (n− 1)qm]. At a stroke, this ensures that all three defining characteristics
of a (finite) Self-Admissible Set are met by S′. That is to say, no s′i (·) ∈ S′i is weakly
dominated by a mixed strategy with support in Si, whether w.r.t. S′−i or S−i; and no
pure strategy in support of a mixed strategy that matches the payoff of s′i (·) w.r.t. S−i is
excluded from S′i. However, it should be noted that one can give examples of conventions
in finite games that satisfy the current stability requirements, but not those of a SAS, or
vice-versa, i.e. the two do not generically coincide.

Overall, while for technical reasons it is diffi cult to evaluate the paper’s predictions
under different set-valued solution concepts, the present solution possesses a number of
features that are considered desirable in some of the most prominent game-theoretic frame-
works.

4 Concluding Remarks

The paper addressed the long-standing controversy associated with the Cournot model of
oligopolistic competition, namely the fact that it is ‘right for the wrong reasons’, in the
sense that its plausible predictions follow from an unrealistic model set-up, ignoring the fact
that players make pricing, as well as quantity decisions. However, as opposed to existing
literature, the paper did not strive to offer further support to the Cournot outcome - as an
equilibrium of a more complex price-quantity game. Instead, it was demonstrated that the
entire Cournot game can constitute a set-valued solution of the strategic supply function
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model. The circumstances in which this was shown to occur, often associated with Cournot
on an intuitive level, were now given a strictly formal justification.

The specific set-valued solution used to obtain the results is one of the oldest formal-
izations of ‘standards of behaviour’: the von Neumann - Morgenstern Stable Set, in its
recently generalized form, and for a dominance relation set to incorporate the admissibility
requirement well-established in non-cooperative game theory. In particular, a convention
restricting the players’strategy sets is said to be stable when all conventional strategies
(but no unconventional ones) are admissible with respect to the conventional strategies of
others. In fact, this means the present solution exhibits a number of desirable properties
embedded in other solution concepts, such as ‘preparation’in the sense of Voorneveld [2004]
and all characteristics of a (finite) Self Admissible Set by Brandenburger et al. [2008].

It follows that a convention equivalent to Cournot can be stable when costs are suffi -
ciently ‘sunk’, in the sense that building the capacity to support a chosen supply schedule
requires expenditure that cannot be wholly recovered even when the capacity is not sub-
sequently utilized in full due to an insuffi cient market price. Furthermore, stability of
Cournot is facilitated when marginal costs are initially high and rise steeply, and when the
number of firms is low, which is in line with the classic results of Klemperer and Meyer.
If, in addition to those requirements, the capacity that firms can build is adequately con-
strained, then every stable convention within supply function competition is equivalent to
some stable convention within Cournot. In fact, when the firms’Cournot best-response
functions are suffi ciently steep, the only such convention amounts to the entire Cournot
game.

What drives the results is the fact that when costs are large and mostly sunk, it becomes
vital to utilize full capacity at whatever price it takes to do so, which in any event cannot
be too low with the number of rival firms, and hence the potential aggregate output,
relatively small. Hence, players then adopt an ‘Everything must go!’ approach, setting
supply schedules suffi ciently price-competitive to sell their maximum quantities regardless
of the exact conventional strategies selected by the counterparts. These quantities thus
become the effective strategic variables, and the complex strategic interaction at hand
simplifies to Cournot competition as a matter of convention.

The results could have important implications for the modelling of those industries
where the apparent complexity of firms’decision problem makes Cournot seem inadequate,
while allowing players the flexibility of a supply schedule renders equilibrium analysis in-
tractable. For instance, we have seen how recent findings of competing auctions theory
make the present model, with its sunk costs and possibly discontinuous supply schedules,
applicable to the analysis of on-line auctions. Thus, Cournot may, in turn, constitute a
framework that is viable here, where the role of the mythical ‘Cournot auctioneer’is now
played by independent auction bidders and sellers following an established convention. If
the predictions of Cournot are found empirically correct for those types of goods where the
derived stability conditions hold, one can at last reasonably maintain that this is so ‘for
the right reasons’.
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Appendix: Proofs

Proof of Proposition 2.1. We will first prove that any stable convention is a vN-M
stable set of the corresponding abstract game, and then establish that any general vN-M
stable set of the specified general system is a stable convention.

(1) Suppose that S′ = ×i∈NS′i is a stable convention, and take any s ∈ S\S′. This must
contain a strategy si ∈ Si\S′i, which is, by Definition 2.2, weakly-dominated w.r.t. S′−i by
some s′i ∈ S′i. For any s′′ = {s′′j }j∈N ∈ S′ such that s′′i = s′i we then have s

′′ �S′ s. Now
take any s, s′ ∈ S′ and observe that we cannot have s′ = {s′j}j∈N �S

′
s ={sj}j∈N , since

this would imply that for some i ∈ N the strategy si ∈ S′i is weakly dominated w.r.t. S′−i
by s′i ∈ S′i, which in turn would contradict the internal stability requirement of Definition
2.2. Thus, S′ is a vN-M stable set of (S,�S′).
(2) Suppose that S′ is a general vN-M stable set of (S,

{
�A
}
A⊆S) and observe that it

must then be in Cartesian product form, i.e.: S′ ≡ ×i∈NS′i. Otherwise, we could choose a
strategy profile s ∈ S\S′ consisting of strategies that are each part of some strategy profile
in S′. By virtue of vN-M external stability, there would then exist a s′ ∈ S′ such that
s′ �S′ s, i.e. for some i the strategy si ∈ S′i would be weakly dominated by s′i ∈ S′i, which
would contradict vN-M internal stability.
Suppose then that there exists a s1i ∈ S′i that weakly dominates some s2i ∈ S′i w.r.t. S′−i.
We could then take a pair of strategy profiles s ={sj}j∈N , s′ = {s′j}j∈N , both in S′, such
that si = s1i and s

′
i = s2i , which would imply s �S

′
s′, in violation of the vN-M internal

stability of S′. Hence, S′ must be internally stable in the sense of Definition 2.2.
Finally, suppose there exists some s0i ∈ Si\S′i that is admissible w.r.t. S′ (i.e. S′ is not
externally stable in the sense of Definition 2.2), and take a s ={sj}j∈N ∈ S\S′ such that
si = s0i and s−i ∈ S′−i. To satisfy vN-M external stability, we would need s′′ �S′ s for some
s′′ = {s′′j }j∈N ∈ S′. Since si = s0i is admissible w.r.t. S

′, this would imply that s′′ �S′ s′
for some s′ ∈ S′ which is identical to s, except that s′i 6= s0i , s

′
i ∈ S′i. However, this would

contradict the vN-M internal stability of S′. Consequently, S′ must be both internally and
externally stable in the sense of Definition 2.2.

Proof of Proposition 3.1. Suppose S′ is a Cournot-Equivalent Convention. As dis-
cussed in Section 2.1, it then follows from condition (1) that every strategy s′i ∈ S′i, being
equivalent to some q ∈ [0, qm], is a best-response to some aggregate output of the counter-
parts, i.e. to some s′−i ∈ S′−i. Thus, s′i cannot be weakly dominated by a si ∈ S′i, i.e. it is
admissible w.r.t. S′. Consequently, the internal stability requirement is satisfied.

We will now show that condition (8) is necessary for S′ to be externally stable. To this end,
consider two conventional strategy profiles sm and s0, such that sm = {smi (·)}i∈N ∈ S′

is equivalent to monopoly outputs by all players, i.e. ϕi (s
m
i (·)) = qm for all i ∈ N, and

s0 =
{
s0i (·)

}
i∈N ∈ S

′ satisfies ∀i ∈ N : ϕi
(
s0i (·)

)
= 0. Thus, it must be that for all i ∈ N
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we have s0i (P (0)) = 0, so that the fact that s0i (·) is non-decreasing implies s0i (p) = 0 for all
p < P (0). In addition, ∀i ∈ N : smi (P (nqm)) ≥ qm, or else sm could not result in everyone
selling qm at the corresponding demand price. Lastly, it cannot be that smi (P (nqm)) > qm

for some i ∈ N , or else player i would sell more than qm if others opted for s0−i, contra-
dicting the fact that a strategy profile comprising smi (·) and s0−i is conventional, and hence
Cournot-Equivalent. Thus, it must be that smi (P (nqm)) = qm for all i, and a similar
reasoning establishes smi (P ((n− 1) qm)) = qm, because smi (P ((n− 1) qm)) > qm would
result in player i selling more than qm when one of the competitors selects s0j (·) and others
choose smj (·) . From the fact that smi (·) is non-decreasing, we then have smi (p) = qm for
all p ∈ (P (nqm) , P ((n− 1) qm)) .
Now suppose a particular player i ∈ N sets a supply schedule ŝi (·) that commits her to
offer a quantity qm if the price is at least equal to p̂, where p̂ ∈ (P (nqm) , P ((n− 1) qm)),
and otherwise to offer nothing.
When other players select supply schedules s0−i, player i succeeds in selling q

m at a price
of P (qm) . In the Cournot game, strategy qm gives a strictly higher profit than any q < qm

when others produce nothing. Thus, any conventional strategy si (·) that is no worse than
ŝi (·) when others play s0−i must entail ϕi (si (·)) = qm.
In contrast, let ŝm denote a strategy profile which entails player i setting ŝi (·) and oth-
ers choosing sm−i. We have S

−
N (̂sm, p̂) = (n− 1) qm and SN (̂sm, p̂) = nqm, and since

p̂ ∈ (P (nqm) , P ((n− 1) qm)) implies D (p̂) ∈ ((n− 1) qm, nqm) , p̂ satisfies the market-
clearing condition (3) , i.e. p∗ (̂sm) = p̂. Since the supply schedule of i (but not those of
other players) is discontinuous at p̂, we have:

xi (̂s
m) = D (p̂)− SN\{i} (̂sm, p̂) = D (p̂)− (n− 1) qm ∈ (0, qm)

Thus, ŝi (·) results in player i selling qm when others play s0−i, and less than q
m when

others play sm−i, which means ŝi (·) is not conventional, i.e. ŝi (·) ∈ Si\S′i. For S′ to be
externally stable, ŝi (·) would have to be weakly dominated by some si (·) ∈ S′i w.r.t. S′−i.
However, any si (·) that could achieve this must at least match the profit resulting from
ŝi (·) when others play s0−i. As demonstrated above, this means it must be such that
ϕi (si (·)) = qm, which in turn means that when others play sm−i, si (·) gives a profit equal
to πi (sm) = qmP (nqm)− C (qm). This needs to be no smaller than:

πi (̂s
m) = p̂xi (̂s

m)− [(1− γ)C (xi (̂s
m)) + γC (qm)]

for all p̂ ∈ (P (nqm) , P ((n− 1) qm)) . Equivalently, fix a q̂i ∈ (0, qm) , so that for xi (̂sm) to
equal q̂i, we must have:

D (p̂)− (n− 1) qm = q̂i ⇔ p̂ = P (q̂i + (n− 1) qm)

Consequently, for S′ to be externally stable, it is necessary that for all q̂i ∈ (0, qm) , πi (s
m)

is no smaller than:

πi (̂s
m (q̂i)) = P (q̂i + (n− 1) qm) q̂i − [(1− γ)C (q̂i) + γC (qm)]
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Differentiating w.r.t. q̂i yields

∂πi (̂s
m (q̂i)) /∂q̂i = P (q̂i + (n− 1) qm) + P ′ (q̂i + (n− 1) qm) q̂i − (1− γ)C ′ (q̂i)

Thus, for q̂i suffi ciently close to qm, πi (̂sm (q̂i)) can become arbitrarily close to πi (sm) ,
and ∂πi (̂sm (q̂i)) /∂q̂i can become arbitrarily close to:

P (nqm) + P ′ (nqm) qm − (1− γ)C ′ (qm) (13)

Condition (8) states that (13) is non-negative, so if (8) was violated, ∂πi (̂sm (q̂i)) /∂q̂i
would be negative, and πi (̂sm (q̂i)) larger than πi (sm) , for q̂i suffi ciently close to qm. This
means condition (8) is indeed necessary for the external stability of S′.
Furthermore, observe that (8) cannot be satisfied for γ = 0, as it then states that P (nqm)+
P ′ (nqm) qm ≥ C ′ (qm) . This in turn contradicts the assumption that C ′ (0) ≥ P ((n− 1) qm),
since C ′ (0) ≤ C ′ (qm) , P (nqm) < P ((n− 1) qm) and P ′ (nqm) < 0. Furthermore, Defi-
nition 3.1 states that for any s = {si (·)}i∈N ∈ S′ and for all i ∈ N , xi (s) = ϕi (si (·)),
which implies p∗ (s) = P (

∑
j∈N ϕj(sj (·))). Hence, to ensure that the profit specification

(5) coincides with Cournot for γ ∈ (0, 1], it is necessary that ϕi (si (·)) = si (P (0)) for all
s ∈ S′ and i ∈ N . Consequently, the only Cournot-Equivalent convention that satisfies the
necessary conditions for stability is characterized by:

∀i ∈ N : S′i = {si (·) ∈ Si : si (P (si (P (0)) + (n− 1) qm)) = si (P (0)) ≤ qm} (14)

In other words, a supply schedule is conventional if and only if its maximum quantity
is sold even when everybody else sells the monopoly-optimal output. Note that in such
case si (P (si (P (0)) + (n− 1) qm)) < si (P (0)) would not allow player i to sell as much
as si (P (0)) , contradicting ϕi (si (·)) = si (P (0)) , whereas si (P (si (P (0)) + (n− 1) qm))
cannot exceed si (P (0)) due to si (·) being non-decreasing.
We will now show that condition (8) is suffi cient to ensure that the particular Cournot-
Equivalent convention S′, as characterized by (14), is externally stable.
To begin with, take any si (·) ∈ Si\S′i such that si (P (0)) ≤ qm. We will demonstrate
that si (·) is weakly dominated w.r.t. S′−i by a s′i (·) ∈ S′i such that si (P (0)) = s′i (P (0)) .
To this end, let q̄i = si (P (0)) and, for a particular s′−i = {s′j (·)}j∈N\{i} ∈ S′−i, let
Q−i =

∑
j∈N\{i} s

′
j (P (0)) . In addition, let s′ ∈ S′ denote the strategy profile comprising

s′i (·) and s′−i, and let ŝ ∈ S\S′ denote the strategy profile comprising si (·) and s′−i. We
then have:

πi
(
s′
)

= q̄iP (q̄i +Q−i)− C (q̄i)

As for πi (̂s) , there are two possibilities.
First, that s′−i is such that si (P (q̄i +Q−i)) = q̄i. This means p∗ (̂s) = P (q̄i +Q−i) , at
which price player i is commited to supply up to q̄i, and others are commited to supply up
to Q−i, since:

∀j ∈ N\{i} : P (q̄i +Q−i) ≥ P (s′j (P (0)) + (n− 1) qm)
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where the price at the RHS of the inequality is the one at which any conventional supply
schedule s′j (·) attains its maximum, in accordance with (14). Thus, for each j ∈ N\{i} we
have s′j (p (̂s)) = s′j (P (0)) , which implies SN (̂s,p (̂s)) = D (p (̂s)) and πi (̂s) = πi (s

′).
Another possibility is that s′−i is such that si (P (q̄i +Q−i)) < q̄i. This must be the case for
some s′−i, or a suffi ciently large Q−i ∈ [0, (n− 1) qm] , since otherwise si (·) would satisfy
(14) . We have p (̂s) ≥ P (q̄i +Q−i) , so the argument used above for p∗ (̂s) = P (q̄i +Q−i)
establishes that SN\{i} (̂s, p) = Q−i for any p ≥ P (q̄i +Q−i) . This implies∑

j∈N\{i} xj (̂s) = Q−i

so that player i is effectively a monopolist with (residual) demand D(p)−Q−i, i.e. choosing
si (·) is equivalent to setting a quantity qi ≤ q̄i, where the resulting profit equals:

π̂i (qi, Q−i) = qiP (qi +Q−i)− [(1− γ)C (qi) + γC (q̄i)] (15)

Differentiating this w.r.t. qi yields:

∂π̂i (qi, Q−i) /∂qi = P (qi +Q−i) + qiP
′ (qi +Q−i)− (1− γ)C ′ (qi) (16)

Condition (8) states that (16) is non-negative for qi = qm and Q−i = (n− 1) qm. In
addition, we have:

∂2π̂i (qi, Q−i) /∂qi∂Q−i = P ′ (qi +Q−i) + qiP
′′ (qi +Q−i) < 0 (17)

If P ′′ (qi +Q−i) ≤ 0, (17) is clearly satisfied due to P (·) being strictly decreasing. If
P ′′ (qi +Q−i) > 0, then (17) is implied by assumption (1), since:

(qi +Q−i)P
′′ (qi +Q−i) ≥ qiP ′′ (qi +Q−i)

Furthermore:

∂2π̂i (qi, Q−i) /∂q
2
i = 2P ′ (qi +Q−i) + qiP

′′ (qi +Q−i)− (1− γ)C ′′ (qi) < 0 (18)

due to the fact that C ′′ (qi) ≥ 0 by assumption and P ′ (qi +Q−i) < 0. Together (17) and
(18) imply that for qi < q̄i, we have:

∂π̂i (qi, Q−i) /∂qi > P (nqm) + qmP ′ (nqm)− (1− γ)C ′ (qm) ≥ 0

Consequently, for all qi < q̄i:

πi
(
s′
)

= q̄iP (q̄i +Q−i)− C (q̄i) > π̂i (qi, Q−i)

i.e. s′i (·) gives a higher payoff than si (·) w.r.t. all s′−i such that si (P (q̄i +Q−i)) < q̄i.
Overall, this means s′i (·) weakly dominates si (·) w.r.t. S′−i, i.e. si (·) is inadmissible w.r.t.
S′, in accordance with external stability of S′.
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Finally, we will show that, when qm < qc (the firms’capacity), any si (·) ∈ Si\S′i such that
si (P (0)) > qm is weakly dominated w.r.t. S′−i by a s

′
i (·) ∈ S′i such that s′i (P (0)) = qm.

The previous denotation of q̄i, s′−i, s
′, ŝ and Q−i is retained. We now have:

πi
(
s′
)

= qmP (qm +Q−i)− C (qm)

As for πi (̂s) , there are, once again, two possibilities.
First, that s′−i is such that

∑
j∈N\{i} xj (̂s) = Q−i, in which case player i is in effect

a monopolist with (residual) demand D(p) − Q−i, choosing a quantity qi by means of its
supply schedule (where qi may now exceed qm) and earning profits (15). When qi < qm < q̄i,
the previous argument establishes that ∂π̂i (qi, Q−i) /∂qi > 0, so that πi (s′) > π̂i (qi, Q−i).
When qi ∈ [qm, q̄i] , we have

πi
(
s′
)
≥ qiP (qi +Q−i)− C (qi)

qiP (qi +Q−i)− C (qi) ≥ π̂i (qi, Q−i)

where the first inequality is strict for qi ∈ (qm, q̄i] (by virtue of qm being monopoly-
optimal), and the second one is strict for qi ∈ [qm, q̄i). Thus, for all qi ∈ [qm, q̄i] , we have
πi (s

′) > π̂i (qi, Q−i) .
But suppose s′−i is such that

∑
j∈N\{i} xj (̂s) < Q−i. This means for some j ∈ N\{i} we

must have s′j (p∗ (̂s)) < s′j (P (0)) , so it follows from (14), that:

p∗ (̂s) < max
j∈N\{i}

P (s′j (P (0)) + (n− 1) qm)

In addition, from the fact that s′j (P (0)) ≤ qm for all j ∈ N\{i}, we have:

max
j∈N\{i}

P (s′j (P (0)) + (n− 1) qm) ≤ P (qm +
∑
j∈N\{i} s

′
j (P (0))) = p∗

(
s′
)

Finally, since C ′ (0) ≥ P ((n− 1) qm) and C ′′ (·) ≤ 0 by assumption, it follows that, for all
q ∈ [qm, q̄i] , C

′ (q) > p∗ (̂s) . Combined with the fact that p∗ (̂s) < p∗ (s′), as established
above, this means πi (s′) > πi (̂s). The reason for this is that, compared with s′i (·) , si (·)
results in selling a larger quantity of output at a lower price, where the new price is below
the marginal cost level for all additional output being sold.
Thus, any si (·) ∈ Si\S′i such that si (P (0)) > qm is inadmissible w.r.t. S′, which completes
the proof.
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Proof of Proposition 3.2. Suppose S′ is a stable convention and let:

qli = min
si(·)∈S′i

si (P (0)) , qhi = max
si(·)∈S′i

si (P (0)) , Qh−i =
∑
j∈N/{i} q

h
j , Q

l
−i =

∑
j∈N/{i} q

l
j

We will first show that it is necessary that for some collection of pairs
{(
qli, q

h
i

)}
i∈N , S

′

satisfies the following three conditions for every i ∈ N :

S′i =
{
si (·) ∈ Si : si

(
P (si (P (0)) +Qh−i)

)
= si (P (0)) ∈ [qli, q

h
i ] ⊆ [0, qm]

}
(C1)

qli = qbr(Q
h
−i) and q

h
i = qbr(Q

l
−i) (C2)

∀j ∈ N/{i} : 2
[
P (qli +Qh−i)− C ′(qhj )

]
≤ −qhj P ′(qli +Qh−i) (C3)

Once this is achieved, we will show that it must also be that ∀i ∈ N : qli = ql and qhi = qh,
where ql < qh, which amounts to Proposition 3.2.
To begin with, consider a supply schedule si (·) ∈ Si such that for some s′−i ∈ S′−i we
have xi (̂s) < si (P (0)), where ŝ denotes the strategy profile comprising si (·) and s′−i. Let
qi = xi (̂s), Q−i =

∑
j∈N\{i} xj (̂s) and q̄i = si (P (0)) , so that the profit of player i equals:

π̂i (qi, Q−i) = qiP (qi +Q−i)− [(1− γ)C (qi) + γC (q̄i)]

In analogy with the proof of Proposition 3.1, for qi < q̄i ≤ qc we have:

∂π̂i (qi, Q−i) /∂qi = P (qi +Q−i) + qiP
′ (qi +Q−i)− (1− γ)C ′ (qi) >

> P (nqc) + qmP ′ (nqc)− (1− γ)C ′ (qc) ≥ 0

which is because assumptions (1) and C ′′ (qi) ≥ 0 imply:

∂2π̂i (qi, Q−i) /∂qi∂Q−i = P ′ (qi +Q−i) + qiP
′′ (qi +Q−i) < 0

∂2π̂i (qi, Q−i) /∂q
2
i = 2P ′ (qi +Q−i) + qiP

′′ (qi +Q−i)− (1− γ)C ′′ (qi) < 0

Observe that condition (9) and P ′ (·) < 0 imply that P (nqc) ≥ 0 and that a strategy s′i (·)
such that s′i (0) = si (P (0)) would succeed in selling q̄i > qi. Let s′ ∈ S denote the strategy
profile comprising s′i (·) and s′−i. Clearly, for all p ≥ 0 we have S−N (s′, p) ≥ S−N (̂s, p) and
SN (s′, p) ≥ SN (̂s, p) , so that p∗ (s′) ≤ P (qi +Q−i) = p∗ (̂s) . If p∗ (s′) = P (qi +Q−i),
other players sell qi + Q−i − q̄i < Q−i. If p∗ (s′) < P (qi +Q−i) , then it follows from (4)
that:

Q−i ≥ S−N\{i} (̂s, p∗ (̂s)) ≥ SN\{i}
(
ŝ, p∗

(
s′
))
≥
∑
j∈N\{i} xj

(
s′
)

Thus, switching from strategy si (·) to s′i (·) has the same effect as increasing qi and making
Q−i no larger than before in profit specification π̂i (qi, Q−i) . Since ∂π̂i (qi, Q−i) /∂qi > 0
for qi < q̄i ≤ qc, and P ′ (·) < 0 implies ∂π̂i (qi, Q−i) /∂Q−i = qiP

′ (qi +Q−i) < 0, it follows
that πi (̂s) < πi (s

′) for any s′−i such that xi (̂s) < si (P (0)).
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But consider a s′−i ∈ S′−i such that xi (̂s) = si (P (0)). Clearly, if p∗ (̂s) = p∗ (s′), then
πi (̂s) = πi (s

′) (since xi (s′) = si (P (0))). But suppose p∗ (̂s) > p∗ (s′). This would require
that:

SN
(
s′, p∗

(
s′
))

= si (P (0)) + SN\{i}
(
s′, p∗

(
s′
))
≥ D

(
p∗
(
s′
))
> D (p∗ (̂s))

Since SN\{i} (s′, p∗ (s′)) ≤ S−N\{i} (s′, p∗ (̂s)) = S−N\{i} (̂s, p∗ (̂s)), we must then have:∑
j∈N\{i} xj (̂s) ≥ SN\{i}

(
s′, p∗

(
s′
))
> D (p∗ (̂s))− si (P (0))

As this would contradict xi (̂s) = si (P (0)), p∗ (̂s) > p∗ (s′) is impossible.
All in all, this means that any supply schedule si (·) ∈ Si such that for some s′−i ∈ S′−i
we have xi (̂s) < si (P (0)) is weakly dominated w.r.t. S′−i by any s

′
i (·) ∈ Si such that

s′i (0) = si (P (0)) . Any such si (·) is therefore inadmissible w.r.t. S′−i, so from the fact that
S′ is stable it must be that si (·) ∈ Si\S′i. In other words, it is necessary for the stability
of S′ that for every i ∈ N we have:

∀si (·) ∈ S′i : si

(
P (si (P (0)) +

∑
j∈N/{i} q

h
j )
)

= si (P (0)) ∈
[
qli, q

h
i

]
(19)

where qlj = minsj(·)∈S′j sj (P (0)) , qhj = maxsj(·)∈S′j sj (P (0)) . That is to say, any stable
convention is Cournot-Equivalent (in the sense of Definition 3.1), except that players may
need to choose their quantities of output out of sets different from [0, qm].
Next, let Ql−i =

∑
j∈N/{i} q

l
j , Q

h
−i =

∑
j∈N/{i} q

h
j , and observe that we cannot have qbr(Q

h
−i)

strictly smaller than qli for any i ∈ N . If this was the case, then we could take a strategy
s′i (·) ∈ Si\S′i such that:

s′i

(
P (s′i (P (0)) +Qh−i)

)
= s′i (P (0)) = qbr(Q

h
−i) (20)

For any s′−i = {s′j (·)}j∈N\{i} ∈ S′−i such that Q−i =
∑
j∈N/{i} s

′
j (P (0)) = Qh−i, s

′
i (·)

would then give a profit:

π̂i

(
qbr(Q

h
−i), Q

h
−i

)
= qbr(Q

h
−i)P

(
qbr(Q

h
−i) +Qh−i

)
− C(qbr(Q

h
−i)) (21)

whereas any si (·) ∈ S′i, i.e. one satisfying (19) , would yield:

π̂i

(
si (P (0)) , Qh−i

)
= si (P (0))P

(
si (P (0)) +Qh−i

)
− C(si (P (0))) (22)

Since si (P (0)) ≥ qli > qbr(Q
h
−i), and qbr(Q

h
−i) = arg maxq π̂i

(
q,Qh−i

)
, we have (21) > (22),

i.e. s′i (·) ∈ Si\S′i could not be weakly dominated w.r.t. S′−i by any si (·) ∈ S′i, violating
the external stability of S′.
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Similarly, we cannot have qbr(Qh−i) > qli, as in such case we could take two strategies:
si (·) ∈ S′i such that si (P (0)) = qli, and s

′
i (·) ∈ Si satisfying:

s′i

(
P (s′i (P (0)) +Qh−i)

)
= s′i (P (0)) = qbr(Q

h
−i)

The payoff resulting from si (·) given s′−i = {s′j (·)}j∈N\{i} ∈ S′−i is then:

π̂i

(
qli, Q−i

)
= qliP

(
qli +Q−i

)
− C(qli) (23)

where, as before, Q−i =
∑
j∈N/{i} s

′
j (P (0)) . In contrast, when player i selects s′i (·) , she

sells qbr(Qh−i) for any s
′
−i, whereas other players sell at most Q−i. Thus, the profit of player

i resulting from s′i (·) is no smaller than:

π̂i

(
qbr(Q

h
−i), Q−i

)
= qbr(Q

h
−i)P

(
qbr(Q

h
−i) +Q−i

)
− C(qbr(Q

h
−i)) (24)

For Q−i = Qh−i we have (24) > (23), since qbr(Qh−i) = arg maxq π̂i
(
q,Qh−i

)
. In addition,

it has been established that ∂2π̂i (qi, Q−i) /∂qi∂Q−i < 0, so that (24) > (23) must follow
for Q−i < Qh−i as well, i.e. for every s

′
−i ∈ S′−i. Consequently, qbr(Qh−i) > qli would imply

that s′i (·) weakly dominates si (·) ∈ S′i w.r.t. S′−i, making the latter inadmissible and
contradicting the stability of S′.
All in all, this means we must have qbr(Qh−i) = qli for every i ∈ N in order for S′ to be
stable, and, by an analogous argument, we must also have qbr(Ql−i) = qhi . In other words,
condition (C2) is necessary for the stability of S′.
We now show that the converse of (19) is necessary as well, i.e. that si (·) ∈ S′i is satisfied
for any si (·) ∈ Si such that:

si

(
P (si (P (0)) +

∑
j∈N/{i} q

h
j )
)

= si (P (0)) ∈
[
qli, q

h
i

]
(25)

Consider then a si (·) ∈ Si\S′i that satisfies (25), so that for any s′−i = {s′j (·)}j∈N\{i} ∈ S′−i
the resulting payoff is π̂i (qi, Q−i) , where qi = si (P (0)). Since qbr(Qh−i) = qli, qbr(Q

l
−i) = qhi ,

we have qi ∈
[
qbr(Q

h
−i), qbr(Q

l
−i)
]
and Q−i ∈

[
Ql−i, Q

h
−i
]
. The fact that qbr(·) is continuous

then implies that there must be a Q∗−i ∈
[
Ql−i, Q

h
−i
]
such that qi = qbr(Q

∗
−i). Thus,

given a s′−i ∈ S′−i such that Q−i = Q∗−i, si (·) gives a strictly higher profit than any
s′i (·) ∈ S′i such that s′i (P (0)) 6= qi and exactly the same profit as any s′i (·) ∈ S′i such that
s′i (P (0)) = qi. Consequently, si (·) ∈ Si\S′i cannot be weakly dominated w.r.t. S′−i by a
s′i (·) ∈ S′i, violating the external stability of S′. This means condition (C1) is necessary
for the stability of S′.
Suppose now that conditions (C1) and (C2) hold, but condition (C3) is violated, i.e. that
for some i, j ∈ N, i 6= j we have:

2
[
P (qli +Qh−i)− C ′(qhj )

]
> −qhj P ′(qli +Qh−i) (26)
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Given that, consider a strategy sj (·) ∈ Sj\S′j of player j such that sj (0) = q+j ≥ qhj , as
well as two strategy profiles: s−j = {sk (·)}k∈N\{j} ∈ S′−j and s′−j = {s′k (·)}k∈N\{j} ∈ S′−j
such that:∑

k∈N\{j} sk (P (0)) = Ql−j and
∑
k∈N\{j} s

′
k (P (0)) = qli − qhi +Qh−j

In addition, suppose that s′i (p) = 0 for p < P
(
qli +Qh−i

)
and s′i (p) = qli otherwise, which

is consistent with s′i (·) ∈ S′i. Since qbr(Ql−j) = qhj , we have:

∂π̂j(q,Q
l
−j)/∂q ≷ 0⇔ q ≶ qhj (27)

Let q−j (q+j ) denote a function that to every q+j ≥ qhj assigns the unique q
−
j that satisfies

q−j ≤ qhj and: ∫ q+j

q−j

[
∂π̂j(q,Q

l
−j)/∂q

]
dq = 0⇔ π̂j(q

−
j , Q

l
−j) = π̂j(q

+
j , Q

l
−j)

When other players play s−j and player j chooses sj (·) ∈ Sj\S′j , the latter will earn at
least π̂j(q+j , Q

l
−j), so that any ŝj (·) ∈ S′j that could weakly dominate sj (·) w.r.t. S′−j must

satisfy ŝj (P (0)) ∈ [q−j (q+j ), qhj ], or else we would have π̂j(ŝj (P (0)) , Ql−j) < π̂j(q
+
j , Q

l
−j),

i.e. sj (·) would outperform ŝj (·) given s−j .
Suppose then others play s′−j , in which case player j must still be able to sell q

+
j , but others

will not be able to sell as much as qli − qhi + Qh−j , since this would require a price p0 that
satisfies:

p0 = P (q+j + qli − qhi +Qh−j) < P (qhj + qli − qhi +Qh−j) = P (qli +Qh−i)⇒ s′i (p0) = 0

Thus, when q+j − qhj ≤ qli, we have:

S−N

(
s,P (qli +Qh−i)

)
= q+j − q

h
i +Qh−j , SN

(
s,P (qli +Qh−i)

)
= q+j + qli − qhi +Qh−j

where s ∈S\S′ is the strategy profile comprising sj (·) and s′−j (note that for qli = 0 the
reasoning below can be reproduced by using a s′i (·) such that s′i (P (0)) is marginally above
0). It follows that:

D
(
P (qli +Qh−i)

)
= qli +Qh−i ≥ S−N

(
s,P (qli +Qh−i)

)
= q+j − q

h
i +Qh−j ⇔ q+j − q

h
j ≤ qli

D
(
P (qli +Qh−i)

)
= qli +Qh−i ≤ SN

(
s,P (qli +Qh−i)

)
= q+j + qli − qhi +Qh−j ⇔ qhj ≤ q+j

so that p∗ (s) = P (qli +Qh−i), and we have:

πj (s) = q+j P (qli +Qh−i)− C(q+j )
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But suppose player j chooses instead the strategy ŝj (·) ∈ S′j , where it must be that
ŝj (P (0)) ∈ [q−j (q+j ), qhj ] as explained above, and let ŝ ∈S′ denote the resulting strategy
profile. We have:

πj (̂s) = ŝj (P (0))P (ŝj (P (0)) + qli − qhi +Qh−j)− C(ŝj (P (0)))

Since qhj = qbr(Q
l
−j), for Q

l
−j = qli − qhi + Qh−j the maximum of πj (̂s) is attained where

ŝj (P (0)) = qhj , in which case πj (̂s) = πj (s) for q+j = qhj . We then have ∂πj (s) /∂q+j =

P (qli+Qh−i)−C ′(q+j ), which is positive for q+j suffi ciently close to q
h
j whenever (26) is true.

For Ql−j < qli − qhi +Qh−j , the fact that ∂π̂j(q,Q)/∂q∂Q < 0 implies that:

∂π̂j(q, q
l
i − qhi +Qh−j)/∂q < ∂π̂j(q,Q

l
−j)/∂q

Thus, for q+j , and hence q
−
j (q+j ), suffi ciently close to qhj it holds that ∂π̂j(q

−
j , Q

l
−j)/∂q

−
j < 0,

i.e. πj (̂s) is maximized where ŝj (P (0)) = q−j (q+j ). We then have:

πj (s)−πj (̂s) = q+j P (qli+Q
h
−i)−C(q+j )−

[
q−j (q+j )P (q−j (q+j ) + qli − qhi +Qh−j)− C(q−j (q+j ))

]
This is equal to 0 for q+j = qhj , while differentiating w.r.t. q

+
j yields:

P (qli +Qh−i)− C ′(q+j )− q−′j (q+j )P (q−j (q+j ) + qli − qhi +Qh−j)−
− q−j (q+j )P ′(q−j (q+j ) + qli − qhi +Qh−j)q

−′
j (q+j ) + C ′(q−j (q+j ))q−′j (q+j )

And evaluating this at q+j = qhj gives:

P (qli +Qh−i)− C ′(qhj ) + P (qhj + qli − qhi +Qh−j) + qhj P
′(qhj + qli − qhi +Qh−j)− C ′(qhj ) =

= P (qli +Qh−i)− C ′(qhj ) + P (qli +Qh−i) + qhj P
′(qli +Qh−i)− C ′(qhj ) =

= 2
[
P (qli +Qh−i)− C ′(qhj )

]
+ qhj P

′(qli +Qh−i)

where we have used the facts that q−j (qhj ) = qhj and that q
−′
j (qhj ) = −1 due to ∂π̂j(q,Q)/∂q

being continuous and ∂π̂j(q,Ql−j)/∂q ≷ 0 ⇔ q ≶ qhj . Observe that (26) states that the

derivative 2
[
P (qli +Qh−i)− C ′(qhj )

]
+ qhj P

′(qli +Qh−i) is positive.

Thus, under condition (26), a marginal increase of q+j above q
h
j results in πj (s)−πj (̂s) > 0,

which makes it impossible for the strategy sj (·) ∈ Sj\S′j to be weakly dominated by some
ŝj (·) ∈ S′j w.r.t. S′−j , thereby contradicting the fact that S′ is stable. Condition (C3) is
therefore necessary for stability to hold.

We now show that it is impossible to have qli = qhi for some i ∈ N . This would necessitate
either Ql−i = Qh−i, or Q

l
−i < Qh−i and qbr(Q

l
−i) = qli = qhi = 0. In the former case, we would
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then need to have qlj = qhj for all j ∈ N . In the latter case, we need P (Ql−i) ≤ C ′(0),
which would contradict the fact that for any j ∈ N\{i} such that qhj > 0 it must be
that P (qhj + Ql−j) + qhj P

′(qhj + Ql−j) ≥ C ′(qhj ), qhj + Ql−j > Ql−i. The only way to avoid
contradiction would be that qlj = qhj = 0 for all j ∈ N, but then condition (C2) would
reduce to qbr(0) = 0, violating the assumption C ′(0) < P (0), or qm > 0. Thus, to have
qli = qhi for some i ∈ N , we must have qlj = qhj > 0 for all j ∈ N . This would imply:

∀j ∈ N : P (Q) + qjP
′(Q) = C ′(qj), where qj = qlj = qhj , Q =

∑
j∈N qj

which would in turn require q1 = q2 = ... = qn to hold. But this means for any i, j ∈ N we
have:

P (qli +Qh−i)− C ′(qhj ) = −qhj P ′(qli +Qh−i) > 0

contradicting condition (C3).

Finally, we show that S′ must be symmetric, i.e.:

∀i ∈ N :
{
qli, q

h
i

}
=
{
ql, qh

}
where ql, qh ∈ [0, qm]

Suppose the contrary, i.e. (without loss of generality) that for some i, j ∈ N we have
qli < qlj . Observe this happens if and only if q

h
i < qhj , since otherwise we would have

Qh−i ≤ Qh−j , contradicting q
l
i = qbr

(
Qh−i

)
< qlj = qbr(Q

h
−j) due to qbr (·) being a decreasing

function. Consider first the case of qli = 0, so that in order to have qli = 0 = qbr
(
Qh−i

)
, we

need P
(
Qh−i

)
≤ C ′(0), and for qlj = qbr(Q

h
−j) > 0 we require:

P (qlj +Qh−j) + qljP
′(qlj +Qh−j) = C ′(qlj)

In order for both of these requirements to hold, it must be that:

qlj +Qh−j < Qh−i ⇔ qlj + qhi < qhj

However, to have qhj = qbr(Q
l
−j) > 0 and qhi = qbr(Q

l
−i) > 0, we need, respectively:

P (qhj +Ql−j) + qhj P
′(qhj +Ql−j) = C ′(qhj )

P (qhi +Ql−i) + qhi P
′(qhi +Ql−i) = C ′(qhi )

Since qhi < qhj , this requires that q
h
j +Ql−j < qhi +Ql−i ⇔ qhj +qli = qhj < qhi +qlj , contradicting

qlj +Qh−j < Qh−i.
Similarly, in case of qli > 0, in order to have qlj = qbr(Q

h
−j) > 0 and qli = qbr(Q

h
−i) > 0, we

need, respectively:

P (qlj +Qh−j) + qljP
′(qlj +Qh−j) = C ′(qlj)

P (qli +Qh−i) + qliP
′(qli +Qh−i) = C ′(qli)
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Since qli < qlj , this requires q
l
j +Qh−j < qli +Qh−i ⇔ qlj + qhi < qli + qhj , which contradicts the

opposite inequality, necessary (as established above) to have qhi < qhj , q
h
j = qbr(Q

l
−j) > 0

and qhi = qbr(Q
l
−i) > 0. Thus, S′ must be symmetric, which completes the proof.

Proof of Proposition 3.3. We have qmax = D (C ′ (0)) / (n− 1) , so that qbr (Q) = 0
if and only if Q ≥ (n− 1) qmax. By assumption, qm ≥ qmax, and we must also have
0 ≤ qmin < qmax due to qbr (·) being decreasing.
Any stable convention S′ must satisfy condition (2) of Proposition 3.2,which can only
happen if for some ql, qh we have:

0 ≤ ql = qbr

(
(n− 1) qh

)
< qh = qbr

(
(n− 1) ql

)
≤ qm

Observe first that we have ql = 0 if and only if qh = qm, since qbr ((n− 1) qm) = 0 and
qbr ((n− 1) 0) = qm. Furthermore, any convention that satisfies condition (1) of Proposi-
tion 3.2 given

{
ql, qh

}
= {0, qm} is equivalent to the Cournot-Equivalent convention (7)

of Proposition 3.1. We will demonstrate that under condition (11) no other convention
satisfies the requirements of Proposition 3.2, specifically, that there exist no ql, qh such
that we have:

0 < ql = qbr

(
(n− 1) qh

)
< qh = qbr

(
(n− 1) ql

)
< qm (28)

Suppose the contrary, i.e. that such ql, qh do exist, and observe that it must then be that
qh < qmax (or else we could not have ql = qbr((n− 1) qh) > 0) and ql > qmin (or else
we could not have qh = qbr((n− 1) ql) < qmax). Consequently,

{
ql, qh

}
must lay at the

intersection of two functions: qh1 (ql) = qbr
(
(n− 1) ql

)
and qh2 (ql), which assigns to every

ql ∈
(
qmin, qmax

)
the value of qh that solves ql = qbr

(
(n− 1) qh

)
. Using implicit function

theorem, we have:(
qh1 (ql)− qh2 (ql)

)′
= (n− 1) q′br((n− 1) ql)− 1/

[
(n− 1) q′br((n− 1) qh)

]
Since n ≥ 2 and q′br ((n− 1) y) < 0 for y ∈

(
qmin, qmax

)
, it follows that:(

qh1 (ql)− qh2 (ql)
)′
< 0⇔ q′br((n− 1) ql)q′br((n− 1) qh) > 1/[(n− 1)2] (29)

As ql, qh ∈
(
qmin, qmax

)
, (29) is implied by condition (11) stated in Proposition 3.3. Hence,

qh1 (ql) and qh2 (ql) intersect at most once for ql ∈ (qmin, qmax).
But consider a solution {ql, qh} to:

qbr

(
(n− 1) ql

)
= ql = qh

Since qbr ((n− 1) qmax) = 0, qbr
(
(n− 1) qmin

)
= qmax, the solution {ql, qh} must satisfy

ql = qh ∈
(
qmin, qmax

)
, as well as ql = qbr

(
(n− 1) qh

)
, i.e. it must constitute the unique in-

tersection of qh1 (ql) and qh2 (ql), as detailed above. However, ql = qh means that requirement
(28) does not hold, i.e. no

{
ql, qh

}
to satisfy (28) may exist given (11) .
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