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Abstract

In this paper, we develop an info-metric framework for testing hypotheses about structural in-
stability in nonlinear, dynamic models estimated from the information in population moment
conditions. Our methods are designed to distinguish between three states of the world: (i) the
model is structurally stable in the sense that the population moment condition holds at the same
parameter value throughout the sample; (ii) the model parameters change at some point in the
sample but otherwise the model is correctly specified; (iii) the model exhibits more general forms
of instability than a single shift in the parameters. An advantage of the info-metric approach is
that the null hypotheses concerned are formulated in terms of distances between various choices
of probability measures constrained to satisfy (i) and (ii), and the empirical measure of the sam-
ple. Under the alternative hypotheses considered, the model is assumed to exhibit structural
instability at a single point in the sample, referred to as the break point; our analysis allows
for the break point to be either fixed a priori or treated as occuring at some unknown point
within a certain fraction of the sample. We propose various test statistics that can be thought
of as sample analogs of the distances described above, and derive their limiting distributions
under the appropriate null hypothesis. In principle, there are a number of possible measures of
distance that can be used in this context but we focus on the measure associated with Empirical
Likelihood estimation. The limiting distributions of our statistics are non-standard but coincide
with various distributions that arise in the literature on structural instability testing within the
Generalized Method of Moments framework. A small simulation study illustrates the finite sam-

ple performance of our test statistics.

Keywords: Moment condition models, structural instability, parameter variation, Empirical Like-

lihood.



1 Introduction

There has been considerable interest in the development of tests for structural instability in
moment condition models. In the majority of this literature, the null hypothesis is structural
stability in the sense that the population moment condition holds at the same parameter value
throughout the sample, and the alternative involves instability at single point in the sample,
known as the break-point. Depending on the setting, this break-point can be treated as known,
in which case the potential point of instability is specified a priori, or unknown, in which case
the point of potential instability is left unspecified. The earliest contributions to this literature
considered inference procedures within the Generalized Method of Moments (GMM) framework
(Hansen, 1982). For the fixed-break point case, Andrews and Fair (1988) introduced tests for
parameter variation, and Ghysels and Hall (1990) introduced so-called predictive tests that
Ghysels, Guay, and Hall (1997) show test jointly parameter constancy and the overidentifying
restrictions in one sub-sample. For the unknown break-point case, Andrews (1993) proposes
so-called sup-tests for parameter variation, Sowell (1996) considers a general framework for
the construction of tests for parameter variation, and Ghysels, Guay, and Hall (1997) propose
extensions of the predictive test to this setting. Building from these earlier works, Hall and Sen
(1999) show that the hypothesis of structural stability can be decomposed into one of parameter
constancy and another concerning the validity of the overidentifying restrictions in each sub-
sample, and propose tests for each component. They further show this approach has the potential
to discriminate between states of the world in which violation of the null is caused by neglected
parameter variation and those in which violation of the null is caused by more general forms of
misspecification of the moment condition.

While all these tests are valid in their own terms, they are developed within the GMM
framework and the latter has received some criticism in recent years because it has been found
that GMM inference procedures can be unreliable in certain settings of interest.! This criticism
has led to the development of alternative methods for estimation in moment condition models,
leading examples of which are empirical likelihood (EL) (Qin and Lawless, 1994) and exponential
tilting (ET) (Kitamura and Stutzer, 1997). Both EL and ET have a common structure, and

this insight has led to the development of two generic frameworks for the estimation of moment

1For a review of this literature see inter alia Hall (2005)[Ch. 6].



condition models that include EL and ET (and other estimators of interest) as special cases.
The first such framework is the Generalized Empirical Likelihood (GEL) introduced by Smith
(1997). The second framework is the information-theoretic framework of Kitamura and Stutzer
(1997) and its extensions in Golan (2002,2006). It is therefore of interest to develop tests for
structural instability within these more general frameworks.

In a recent paper, Guay and Lamarche (2010) propose analogous tests to those of Hall and
Sen (1999) for the GEL framework, and present a limiting distribution theory for these statistics
under both null and local alternatives. They observe that the GEL statistics have the same first
order asymptotic properties as their GMM counterparts under null and local alternatives. They
report simulation evidence on their tests based on ET, and find the tests to perform comparably
to their GMM counterparts for the most part but one particular GEL test based on the LM
principle is superior.

In this paper, we consider the derivation of the same tests as Guay and Lamarche (2010)
but from an information-theoretic - or equivalently - info-metric perspective. While the same
tests result, we argue that the info-metric approach has considerable advantage in terms of
the specification of the hypotheses and thus interpretation of the outcome of the tests.> This
advantage stems from the info-metric approach being based on the concept of minimizing the
distance between the class of probability distributions restricted to satisfy the moment condition
and the true probability distribution. This allows us to relate the various hypotheses of interest
in structural instability testing to the distance between certain classes of probability distributions
and the true distribution. We believe this is a more fundamental - and also more instructive
- representation of these hypotheses than their expression in terms of identifying restrictions
(parameter variation) and overidentifying restrictions as is done in both the GMM and GEL
frameworks.

In principle, there are a number of possible measures for the distance between probability
distributions that can be used in developing our info-metric tests for structural instability. Here,
we focus on the distance measure associated with Empirical Likelihood estimation and develop
test statistics within the EL framework. We also explore certain other issues relating to structural

instability testing in this context. Like Guay and Lamarche (2010), we assume the data to be

20ur results are based on Li’s (2011) PhD thesis. This work was performed independently of and contempo-

raneously to Guay and Lamarche (2010).



weakly dependent and account for this dependence in estimation using the kernel-smoothing
methods advocated by Smith (2004). However, given the nature of the null and alternative
hypotheses here, there are two possible ways to proceed. One way involves kernel-smoothing
the moment functions first and then splitting the resulting smoothed values into sub-samples
of before-the-break and after-the-break (smoothed) observations. An alternative is to split the
data into two sub-samples of before-the-break and after-the-break, and then kernel-smooth the
moment functions using only observations from within that sub-sample. Guay and Lamarche
(2010) employ the first approach. In this paper, we consider the second approach as well and
demonstrate that both methods yield test statistics that are first order asymptotic equivalent
under both null and local alternatives.

An outline of the paper is as follows. Section 2 presents the info-metric approach to the specifi-
cation of the null and alternative hypotheses of our structural instability. Section 3 demonstrates
that the order of kernel-smoothing and sample splitting does not affect the first order asymptotic
properties of the partial EL - estimators under null and local alternatives. Section 4 presents
the test statistics and discusses the connection between our info-metric methods and various
structural instability tests derived within the GMM framework. Section 5 presents results from
a small simulation study that indicates the finite sample performance of our methods. Section 6

concludes. All proofs are relegated to a mathematical appendix.

2 An info-metric approach to structural stability testing

In this section we propose an information-theoretic (IT) approach to testing for evidence of struc-
tural instability in population moment condition models. However, to motivate our approach, it
is useful to begin by briefly reviewing IT estimation of moment condition models absent of any
concerns regarding structural stability.

Suppose a researcher is interested in estimating the k£ x 1 vector of parameters 3, based on the
information in the ¢ x 1 moment condition E[g(Z, 8,)] = 0 where Z is a d x 1 random vector. It is
assumed that ¢ > k. This model is said to be structurally stable because the moment condition
holds at the same parameter value throughout the sample. Following Kitamura (2006), we can

characterize IT estimation of this model at the population level using the following framework.



Let M denote the set of all probability measures on ¢,

p@) = {PeM: [goar = of,

and

P = UgesP(6),

where B is the parameter space. Note that P is the set of all probability measures that are
compatible with the moment condition, and is referred to as a statistical model in this context.
This model is correctly specified if and only if P contains the true measure p; that is, the data
satisfies the population moment condition at 5 = f3,. A class of IT estimators of 5 can be defined

as

arginfp(5, u), where , = inf D(P
g p(B, 1) pBp) = inf DI [l )

where D(- || -) is a divergence measure between two probability measures® and p(+) is referred to
as the contrast function. Kitamura (2006) shows that if the model is correctly specified then the
minimum of the contrast function is attained at g8 = 3, the true parameter value.

Now consider the problem of testing structural stability. Define Z(r) to be a stochastic
process on 7 € [0, 1]. We focus exclusively on the case where the alternative hypothesis involves

instability at a single point and so we define

Z(r) = ZW forr <nx

= Z(z), forr > =

where 7 € (0,1) and is referred to as the break-fraction. Notice that the break-fraction is
embedded in the definition of Z(Y) but we suppress this for notational brevity. In structural
stability testing, m may be fixed a priori, the so-called “known break-point case”, or it may be
left unrestricted beyond w € II C (0, 1), the so-called “unknown break-point case”. Our methods
can handle both cases, but for purposes of exposition here, it is most convenient to treat 7 as
fixed and then to discuss the extension to the unknown break-point case at the end of the section.

To formalize the null and alternative hypotheses, we need to introduce two sets of probability
measures. First, we define

Py = UgesPo(B)

3This divergence measure must be non-negative and satisfy D(P || Q) = 0 if and only if P = Q.




where
Po(ﬁ) = {(Pl,PQ)GMXMZ /g(ZZ,,B)dPl =0, fOI‘iZLQ},

so that Py is the set of all pairings of probability measures that are compatible with moment
condition holding at the same parameter value in both sub-samples. Notice that this model
specification differs from P by allowing for the measures for Z(!) and Z® to be potentially

different. Second, we define the set

Pl = U(ﬁ1;52)EBX8P1(617ﬂ2)a

where
Pl(ﬁpﬂQ) = {(Pl,PQ)GMXMS /g(Zz,ﬂl)sz = O, fOI‘il,Q},

so that Pq(8,55) is the set of all pairings of probability measures that are compatible with
moment condition holding in both sub-samples but at potentially different parameter values.
Using these definitions, the hypotheses of interest can be expressed in terms of (uq, u5), the

true measures for (Z(1), Z()). The null hypothesis is:

Ho(m) : (p, po) € Po. (1)

Thus under Hy the model is structurally stable in the sense that the population moment condition

holds at the same value in both sub-samples. One potential alternative of interest is:

Ha(m): (p1s o) € PG, (2)

which equates to “not Hy(w)”. While this alternative is of interest in its own right, we show
below that the states of the world under this alternative can be split into two groups, and such a
decomposition can provide useful model building information. The first such group is captured
by the hypothesis:

Hpy(m): (1, p19) € P1\ Po. 3)

Under Hpy (), the moment condition is satisfied in both sub-samples but at different parameter
values. This situation is commonly referred to as “parameter variation” which is reflected in the

“PV?” subscript. The second group is the hypothesis:

Hys(m) o (pg, o) € P (4)



Under Hpss(m), the population moment condition is not satisfied in one or both sub-samples -
even allowing for the possibility of a parameter shift - indicating the model is misspecified in
that the moment condition fails to hold over the entire sample, which is reflected in the “MS”
subscript.

While both Hpy (7) and H s () imply Ho(7) is false, they have very different model building
implications. Hpy () implies that the model is correctly specified once allowance is made for
the change in parameters, whilst H ;g () implies the moment condition does not hold and hence
the model is more fundamentally misspecified. As argued by Hall and Sen (1999), it therefore
seems valuable to develop inference procedures that can distinguish these two cases. Hall and
Sen (1999) achieve this goal within a GMM framework by developing separate tests based on the
stability of the identifying restrictions and the stability of the overidentifying restrictions. Here
we develop IT methods that provide similar model-building information. We believe that the
IT approach is more attractive than the GMM framework of Hall and Sen (1999) and also the
GEL framework of Guay and Lamarche (2010) because it is fundamentally anchored in distances
between the underlying probability measures satisfying the various hypotheses considered.

To motivate the form of our inferential procedures, it is useful to consider population measures
for discriminating between Hy(7), Hpy (7), and Hprs(w). To this end, let p, ([, Bal; [141, o))
denote the contrast function for estimation that allows for a break at the point indexed by ,
and let D ([p1,p2] || [q1,¢2]) denote the measure of divergence between two pairs of measures,
[p1,p2] and [g1, o], with the first of each pair pertaining to Z(*) and the second to Z(?). It then

follows from the properties of the divergence measure that we have the following:

= 0, if Ho(m) true
(1) pﬂ([/B*(ﬂ—)J 5*(7‘—)}7 [:ulv :U’Q])
> 0, if Ho(m) false,

where

B.(m) = arginf p.([8, B8], 11, o))
BeB

for

P (B,1) = Dy ([Pr, Po] || 121, po]);

inf
[P1,P2]€P1(B,8)

. = 0, if Hpy () true
(11) pw([ﬁl,*(ﬂ)7 62,*(71-)]3 [,ulv NZD
> 0, if Hpy () false,



where

[61,*(77)’62,*(77)] = a‘rginf pﬂ([ﬁl?ﬁQ]’[Ml’MQ])?
[B1,8,]€BxB
for
P ([B1, Bal, 115 112]) = inf Dy ([Py, Pa] || [121, pa])-

[P17P2]€P1(61752)

Given these properties, we can decompose D(7) = p,.([B,(7), B, ()], [141, H2]) into two parts:
D(Tf‘) = Dl(ﬂ') + DQ(ﬂ')
where

Di(m) = p([B(7), Bu(m)]s (11, pa]) — Pw(ﬁ1,*(77)762,*(ﬂ)]a (1115 Ha)),

Dy(m) = pﬂ'(ﬁl,*(ﬂ-)vﬁl*(ﬂ-)L[Mlv/’LQ])'

It can be recognized that: if Hy(w) is true then Di(n) = Da(n) = 0; if Hpy () is true then
Di(m) # 0 but Da(m) = 0; if Hprs(m) is true then Dy(m) # 0 and Dy(w) # 0. Therefore, an
examination of D() reveals whether the model is structurally stable, Hy(), or not, Ha (7). On
the other hand, an examination of D; () and Da(w) reveals whether the model is structurally
stable, Hy(m), or exhibits parameter variation, Hpy (), or is structurally unstable due to more
general forms of misspecification, Hysg(m). Therefore, we propose performing inference using
sample analogs of D(7), D1(w) and Do (7).

To present these sample analogs, we need some additional notation. Replace Z(r) by the time
series {Zy; t = 1,2,...,T}. It is assumed that the potential instability occurs at ¢t = [T'r] = T
say, where [-] denotes the integer part in this context. We refer to T} as the break-point. We
divide the sample into two sub-samples: 77 (7) = {1,2,...,T} }, consisting of the observations up
to and including the break-point; and 73(7) = {T1+1,71+2, ... T}, consisting of the observations
after the break.

It is well known that IT methods based on the assumption of independently and identically
distributed data are sub-optimal if the data are weakly dependent.* Various approaches have
been proposed for handling this dependence: we employ the kernel smoothing methods proposed

by Smith (2004).> Within this approach, the original moment function in period ¢, g(Z;, ) =

4See Kitamura (1997) and Kitamura and Stutzer (1997).

5Other possibilities for handling the dependence include blocking methods (see Kitamura, 1997 and Kitamura

and Stutzer, 1997) or the use of parametric models (see Kitamura, 2006).



9+(B) say, is replaced by the kernel smoothed version,

. = j
0= 3 k(2 Ym0, (5)

Jj=t=T
where the superscript s indicates the operation of kernel smoothing and, respectively, At and
E(-) denote the bandwidth and a kernel function, that are discussed in detail in Section 3. To
implement IT estimation using kernel smoothing, we replace the true measures, [u, 5] by the
empirical measures [fi, fi;]. Notice that these measures relate to the stationary distributions
of ZW and Z® 5 Since we allow for the measures to be different, fi, , = Ty " for t € Ty()
and fiy , = T, for T, = T — Ty and s € To(n). Following Kitamura and Stutzer (1997),
we also replace the measures P; by the probability mass functions ]31 = [p11,P12---,01,14],
152 = [p2,17p2,2 s ,pz,Tz]-

In our inference procedures, 3, ,(w) and §,(r) are replaced, respectively, by the partial-
sample IT estimators, Bi(ﬂ‘), and the restricted partial-sample I'T estimator, B r(m), defined as

follows. The (unrestricted) partial-sample IT estimators are,

[B1(m), Ba(m)] = arginf  p. +([By, Bal, [t 2]) (6)
[81,82]€BXB
where
pTr,T([/317ﬂ2L (i1, f1o]) = _inf Dﬂ([ﬁ)l)ﬁﬂ | £ty f12]) (7)
[P1,P2]€P1(B1,82)
and

Pi(B1,82) = 4 (P, Py): pia>0, Y pia=1, Y piegi(B), i=12. (8)

teT; () teT;(m)

On the other hand, the restricted partial-sample IT estimator is,

512(71_) = arg[ﬁﬁ?elfl:ﬁ’xB pﬂ',T([ﬂ?ﬂ]?[ﬂl?ﬂQ])' (9)

We propose performing inference based on scaled versions of the following analogs to D(r),

Dy () and Do(7),

Dr(r) = Diz(n) + Daz(n) (10)
ﬁl,T(W) = pT{',T([BR(ﬂ-)’BR(ﬂ-)]’ iy f1o]) — Pn,T([B1(7T)7BQ(7T)]a 2] (11)
752,T(7T) = Pr T([Bl(ﬂ-)7 BQ(W)L (i1, Hia)) (12)

)

6See Smith (2004)[p.19].



To implement our procedures, it is necessary to choose a measure of divergence. Kitamura
and Stutzer (1997) use the Kullback-Leibler information criterion (KLIC) distance. Golan (2002,
2006) considers the extension of Kitamura and Stutzer’s (1997) methods to more general mea-
sures such as the generalized cross entropy and Cressie-Read (CR) divergence measure (Cressie
and Read, 1984). The framework above can be applied to any of these settings, but for concrete-
ness we focus on the CR divergence measure which is defined as follows in our context:

AT w{() 19

1=1 teT;(n)

D[Py, o] | [y, o))

which is defined for —0o < o < co. Appropriate choices of o lead to certain familiar estima-
tion methods: for example, limaHngra)(-H-) yields the optimand for exponential tilting (ET)
estimator of Kitamura and Stutzer (1997) in each sub-sample, and limaﬂ,ngra)(-H-) yields the
empirical likelihood (EL) estimator of Owen (2001) in each sub-sample. Moreover, Newey and
Smith (2004) and Anatolyev (2005) demonstrate that EL has better second order bias properties
than ET and so in the following sections we develop versions of f)l(w) based on EL estimators.

So far, we have focused on the fixed break-point case. The extension to the unknown break-
point case is as follows. The null hypothesis of structural stability becomes Ho(II) : Ho(w) Vr €
IT C (0,1). The difference between Hy(w) and Hy(II) is that the former specifies precisely the
point at which the structural break is suspected. This difference is reflected in the associated
test statistics, with tests for Ho(m) being designed to have power against a break at 7 and the
tests for Ho(II) being designed to maximize power against a weighted sequence of alternatives
that allows for breaks at all points in II. These test statistics are developed in Section 4. Before
that we turn to another issue that arises in the implementation of our tests. As mentioned
in the introduction, there are two options regarding the sequencing of kernel smoothing and
sample splitting: split the sample then kernel smooth (smooth after sample splitting) or kernel
smooth then split the sample (smooth before sample splitting). The former only smooths over
the moment functions for which ¢ € 7;(), for all = € II, and gives rise to the following smoothed

moment functions

e (ﬁ)gt i t=1,..,[Tn]
t Tr]—1
B Do E& T] (h’ﬁ)gt i t=[Trx]+1,..,T,

whilst the latter approach yields gi%(8) = g (8), given by (5), for t € T;(x), and all 7 € IL.

9:"(B) = (14)



In the following section, we explore the impact of this sequencing on the first order asymptotic

behaviour of the unrestricted and restricted partial-sample IT estimators.

3 Large sample behaviour of partial-sample IT estimators

Based on the full sample, the EL (IT) criterion function would be

T
Qr(5, ) = 7 S n (1+ kN (5)
t=1

where g; (3) is defined at (5) and k = ki /ko with k; = [~ k(w)dw, j = 1,2. Whilst 3 € B C R*,
the auxiliary parameters A € Ar are restricted so that w.p.a.l (with probability approaching
1) kXNgi(B) > —1 for all (ﬁ',)\/)/ € Bx Apr and t = 1,...,T. Specifically, Ar is defined so
that bounds are placed on A that “shrink” with 7', at an appropriate rate. The full-sample EL

estimator is then defined as

B =arg min sup Qr(5, ).
BEB M\cAr ( )

Estimation proceeds in two steps:
1. Q7 (B, ) is maximised over A\, for given 3, yielding

A(B) = arg sup Qr (5, )).

ANEAT

2. The EL estimator, 3, is the minimiser of the profile EL objective function, Qr (5, X(ﬁ)) :

B = argmin Qr (8, M(9))

Consider, now, splitting the sample according to 7;(7), i = 1,2, for all = € II, which yields
the (unrestricted) partial-sample EL estimators Bi(ﬂ), 1 = 1,2, based on the two sub-samples
t € T;(m), i = 1,2, respectively. To analyse these estimators, let us (for the moment) employ the
smoothed moment functions after the sample split. (As noted previously, it will be shown that
the use of g{*(8) or g;(B) makes no difference, asymptotically, to the sampling results obtained
for the partial-sample EL estimators.) Specifically, the (unrestricted) partial-sample EL (PSEL)

estimators are defined by

a 1
B, (m) = arg min sup — In (1+kXNgi*(B)), i=1,2,
[ t
AEB xeAr teT; ()

10



where ¢g7*(3) is given by (14), and, correspondingly,
A 1 ~a
Nm) =arg sup — >0 (14 kNG (B (7)), =12
AEAT T teT
€Ti(m)
To analyse these estimators for all 7 € II C (0,1) define ' = (6/1,,8'2)/ € ® = B x B,

v = (A, )\'2)/ € I'r = Ar x Ar and the following (2¢ x 1) unsmoothed and smoothed moment

functions
t 0
wm) =L@ | PP L0t
0 gt(ﬁQ)
7By 0
9;(0,7) =T 1 () o) + (1 =T p (7)) (15)
0 9:*(B2)

where I, 7 (7) is an indicator variable that takes the value 1 if t < [T'w] and the value 0 otherwise.

Let

T
1
Q5(0,~,m) = T Zln (1+ kv'gi*(0,7))
t=1

then we have éa(w) = (BT(’/TY,B;(’]TY)l where

~Q

0" () = arg min sup Q4 (6,7, ) (16)
0cO ~€elr
with
4%(m) = arg sup Q%(éa(ﬂ),%w). (17)
yel'r

To develop the analysis, we need to impose certain assumptions and we follow the spirit of
Smith (2004). We consider behaviour under the null of no change, and assume the data satisfy

the following condition.

Assumption 1 Data are generated by a sequence of strictly stationary and strong mizing Z-
valued random vectors {Z:}32,, with mizing coefficients, a(j), satisfying Z;’;l j2a(j)-D/v <

o0, for some v > 1, where Z is a Borel subset of R¢.

As noted in the previous section, we handle the dependence in the data implied by Assumption
1 through kernel smoothing. The next assumption addresses the bandwidth, h7, and choice of
kernel, k(.), such that they obey conditions similar to those laid out in Theorem 1(a) of Andrews
(1991). Let
SUPp> [k (®)|], w=>0

Supbgw |k (b)| , w< 0

11



and K (\) 1 [k(z) exp(—tz\)dz, the spectral window generator of the kernel k(.), with
ki = [ k(w)jdw ,j=1,2.

Assumption 2 (i) hy = O(T %S) for some § > 1; (i) k(.) : ® = [—Kmax, Fmax)s Emax < 00,
k(0) # 0, k1 # 0, and k(.) is continuous at 0 and almost everywhere; (iii) [~ k(w)dw < oo;

(iv) |K(x)| > 0 for all z € R.

Assumption 2(i) is a slight adaptation of Smith (2004), as used by Guay and Lamarche
(2010), which simplifies certain aspects of the proofs at no extra cost.

We must also place restrictions on the (unsmoothed) moment function g:(8) = ¢(Z:, ),
and these are specified in the following assumptions. Define the following quantities: gr(5) =
x S 9:(B), QUB) = limp_ o var (\/TgT(ﬂ)), and girr(8) = 5 ZLTq g¢(B). The smoothed
counterparts of gr(5) and girx(8) are 5 (8) = F 331, g;(8) and iy (8) = + LILT 9°(8),

respectively.

Assumption 3 (i) Elsupgep||g:(8)||"] < oo for some n > max {41}, = 1} (i1) Q(B) is finite
and p.d. for all B € B C R, where B is a compact parameter set; (iii) The moment function

g(z,8) C R’ is continuous in z for all B € B, and is continuous at each € B w.p.a.1; (iv)

9(Bo) = 0 and infrer ||g (0, 7)[| > 0 for all 0 # 6o = (B4, By)’ -

The existence of g(8) = F [g;(8)] and ¢(8,7) = (7g(5,)’, (1 — ) g(B,)")" is guaranteed by As-
sumption 3(i), whilst Assumption 3(iv) is a global identification condition. Assumptions 1- 3 en-
sure that an appropriate FCLT applies to both \/Tg[T,r] (Bo), with limp_, o var (\/TQ[TW] (ﬂo)) =
mQp, and \/Tgfi‘fﬂ (Bo), with limp_. var (\/Tg[si‘fw] (50)) = k178, for all 7 € [0,1], where

= Q(By). These assumptions also ensure that a (weak) ULLN applies to gr(5) and to both
gr(0,m) = + Zthl g:(0,7) and gi*(0,7) = 7 Zthl 9:%(0, ), with the latter two also being
uniform over 7 € [0,1].7

The following assumption restricts the bounds on A, ensuring that they shrink to zero more

slowly than the stochastic rate of convergence of A,

Assumption 4 A € Ap = {/\: |Al] < B(T/hQT)_g}, where ﬁ < e < 3, for some finite

B > 0.
"Indeed, Andrews (1993, Proof of Theorem A1) shows that sup,. supg ||gr (0, 7) — §(0, m)|| = op(1).

12



Under the above assumptions, we can establish the consistency of the PSEL estimator as

follows:

Theorem 1 Under Assumptions 1-4: (i) sup,en H@a(ﬂ) - HOH =0p(1), and (i) sup,c [|[F*(7)|| =

op(1).

To establish asymptotic normality, the following assumptions are made regarding the (un-
smoothed) derivative of the moment function G;(8) = d¢:(8)/9’, and it will be useful to define

G(B) = E [G¢(B)], which exists by Assumption 5(i), below.

Assumption 5 (i) Elsupgc ||G:(8)|"("Y] < 0o for some n > max[4v, 2.1; (ii) The moment
function g(z,B) C R is continuously partially differentiable in B in a neighbourhood By of
By € int(B), w.p.a.1; (iii) Go = G(By) has full rank k.

It will also be useful to define the following matrices

0 0

A(rm) =
0 1-m

Q 0
Qo(m) = lim var (\/TQT(HO,W)) | = A(m) ® Qo
Tee 0 (1-m)Q
7T'G0 0
Go(’fr): :A(’]T)®G()
0 (1 —71') GO

-1

and My = Q, /2G0, Py = M, (M(SMO)_1 My. Under Assumptions 1 and 3, Andrews (1993,

Proof of Theorem 1), shows that (7)) = Jy(m), as a process indexed by 7 € II, where

951/2\/T§[Tﬂ] (Bo)

ér(m) = (L ®9Q"*) VTgr(bo,7) =
(2 0 ) e Qal/z{ﬁgT(ﬂo)—\/Tg[Tw](ﬁo)}

and
By(m)
Jo(m) =
Bi(1) — Be(m)
with By(m), m € [0,1], being a vector of £ mutually independent standard Brownian motions on

[0,1]. Furthermore, Assumptions 1, 2 and 3, and arguments similar to Smith (2004, Lemma A3)

13



establish that hrVE (0o, 7) 2> kaQo(r), uniformly in «, where

T
Z a(0,r) .

Theorem 2 Under Assumptions 1-5, every sequence of PSEL estimators defined by (16) and

H \

(17), T > 1,

1

VI (0" —00) = (A © (Mgdo) " M) &r(m) + 0pe(1)

— — (A @ (M) M) Ju(m)

WT/hr)i*(m) = (A7 20 (L= R)) &r(r) + 0pa (1)

— (A (M '® 951/2 (Ip — PO)) Jo(m)

where = denotes weak convergence to a process indexed by w € II, provided I1 has closure in
(0,1), and o,.(1) denotes terms that are o,(1) uniformly in = € 1. Further, 0(-) and 4 (-) are

asymptotically uncorrelated.
Alternatively, the weak convergence results could be stated as

(A(W)@Ik)\/f(éa(ﬂ)—%) — —(12®(M5M0)‘1M3) Jo(r)

(A(m) ® L) VT/hr)i"(r) = (k@ Q" (I - Ry)) Je(r),
(0" (m).m) »

These results ensure that, uniformly in =, hTVﬂ(éa(w), ) L kaQo(n) and A ZT dg1 50
k1Go(T).

The following Theorem establishes that the order of sample splitting and kernel smoothing
makes no difference, asymptotically, to the weak convergence results obtained in Theorems 1 and
2 or, indeed, the results of Section 4. For smoothing before the sample split, define the (2¢ x 1)

smoothed moment function as

9:°(0,m) = Iy, (m) ) + (1= Tp7 (7)) " ; (18)

0 95(52)

where g (8) is defined at (5), with g%, (30) = + X177 g2 (80), 532(6,m) = £ X7, g*(6, m) and
Vi, 7) =7 Zt 195 (0,7) g% (0, 7). This leads to the PSEL estimators

~b
0 = In (14 kv'g;"(0 19
(m) = arg ymin sup 7 Z n (14 kv'g;"(0,7)) (19)

14



and

A0(r) = arg sup — Zln (1 +ky'g Sb(é(ﬂ),w)) . (20)

WEFT
Theorem 3 Under the assumptions of Theorem 2 with 0 (7) and A°(n) defined by (19) and

(20), respectively,

sup H\/T GGE 9b(7r)) H — o,(1)
sup |(VT/hr) (3(m) = 5" @)|| = 0p(1)

mell

The next Theorem details the asymptotic distribution of the restricted PSEL estimators,
whether or not the moment functions are smoothed after of before the sample split defined by
m. These restricted PSEL estimators are constructed as follows. Define the restricted (2¢ x 1)

smoothed moment function as

. 9; (B) 0
GFBm) =Lr@ | " |+ (1L () :
0 9: (B)
where smoothing can occur after or before the sample split and let Q7 (3,7, 7) = % Zle In(1+k~'g3(8,m)),
then
B(r) = arg min sup Qr (B,7,7)
BEB yeTy
1 1 &
= arg min sup — In 1—|—k)\ B)) + sup — In (14 kXNgi(B
BeB xeAr T ; ( )) AEAT t_[TZﬂ-]+1 ( t( ))
and
¥(m) = arg sup — In(1+kyg B,
(m) = arg sup 7 2:( $(B.m)
so that
- 1 &) .
A(m) = arg sup — In(1+kNg T
() g s o §j( J(B(r))
- 1 <& .
Ao(m) = arg sup — Z In (1+k)\/gf(ﬁ(7r))).
AGAT T i

Theorem 4 Under the assumptions of Theorem 2 with B(w) and () equal to either the after

or before sample split PSEL estimators,

VT (Bm) = 8y) = = (MiMo) ™ Mg {95 2V Tgr(8y) } + 0pe(1)

—  —(MjMy) " MyB(1)
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and

(VI/hr)d(m) = (A7 =12ty © 92 (Lo = R) ) €n(m) + 0pn(1)
= 5 (O™ (= R) () @ 1) 2(m) +0,x(1)
— (Am = b e (I = By)) Ju(m)
_ (A(ﬂ)_l ® 951/2) Jo(m) — (Lg ® leﬂpo) B(1)
where a(n) = (1 —7, —m).

4 Testing Structural Stability

In this section, we propose tests based on EL for testing the hypotheses described in Section
2. It turns out to be most convenient to present the tests in the following order: Section 4.1
presents tests for Dy (m) = 0, Section 4.2 presents tests for that Do(7w) = 0, and Section 4.3
presents tests for D(m) = 0. Section 4.4 discusses the various tests and includes details of where
percentiles of the limiting distributions are tabulated in the literature. In the presentation of the
tests, we focus on the unknown break-point case; the fixed break-point case is covered as part of
the discussion in Section 4.4.

Before presenting these statistics, we note, again, that in the light of Lemma 6, in the
Appendix, and Theorem 3, we shall not, henceforth, distinguish between the use of g{*(0,7) or
g:%(0,7) = gi(6,7) smoothed moment functions and shall simply refer, hereafter, to g (6, ),
which could be either as the difference does not influence the first order asymptotic analysis.
Thus, let Qr(0,~,7) = %23:1 In(1+ky'g;j(0, 7)) and g5 (68, 7) = %23:1 g: (0, 7). Further,
define V3(0,7) = % Zthl 95 (0,m)gf (0, ), so that (from Smith (2004, Theorem 2.1)) it can be
shown that

TSrlég HhTij(é(w),w) - ngo(ﬂ')H = o,(1).

4.1 Testing D;(7) =0

To test D;(w) = 0 for a fixed 7, the obvious statistic is the EL-likelihood ratio statistic

LRy(m) = 2 (ko/K}) (T/hr) {Qr (B(m).3(m),7) = Qr (B(m)A(m)7) b (21)
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In view of extant results in the EL literature on testing parametric restrictions,® we also consider

inference based on the EL-Wald statistic for 5; = 35,

-1

Wr(m) = (/KT (Ba(m) — Bym)) {Vi @)} (Bulm) — Batm)) (22)

and the Lagrange Multiplier statistic, based on p(7) the Lagrange Multiplier associated with the

restriction 8; = 5,

LMa(m) = (oK) /hr)p(r) {VEBE)) o)/ (r(1 ) (23
where
viTe) = G5 {V(B)) T GL(5)
) = 5 X WP e =T X aee)
teT;(m) teT;(m)
VEB) = GRB){Vi(B)} Gi(8)

@G = 2% v = 1S gy

Thus, from here on we use Dy 7 () to denote any one of Wy (r), LMy (r) or LRy (r).?
To test Dy (w) = 0 for all m € II € (0, 1), we utilize results from the structural stability testing

literature and consider inference based on the following functionals of 7517T(7r),

SUP et 2517T(7T) = sup ﬁLT(w)
T [ﬁl,T(w)} - 1. Dy 7(m)dN(x) = ave Dy p(r) (24)
log {fn exp {%ﬁlT(w)} dN(ﬂ')} = exp Dy ()

where N(m) defines the prior distribution for the break-point = € II, which we will assume

10

to be uniform.'” The following Theorem shows each of these test statistics are (first order)

asymptotically equivalent, for different choices of f)LT(ﬂ) and common choice of functional 7 [.] .

Theorem 5 Under Assumptions 1-5, we have

sup |D1,r(m) — Sp(m)| = 0p(1),
well

8See Qin and Lawless (1994), Smith (2004).
9This involves a slight abuse of notation compared to Section 2 because the distances here are scaled.
108ee Andrews (1993), Andrews and Ploberger (1994) and Sowell (1996).
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where

Er(m)' (a(m) @ 1) Po (a(m) ® Iy) ()

Sr(m) = (1l —7)
ERNCIUEL Y Belm) “mBO)) gy .

By, (m) — wBg(1) is a vector of Brownian bridges and By () is a vector of k independent standard

Brownian motions, and for each functional (24)

T {’f)LT(w)} = 7 [W(7)].

4.2 Testing Dy(7)
To test Dy(m) = 0, we consider inference based on the appropriate EL-likelihood ratio statistic
LR(m) = 2 (ka/k) (T/hr) Qr (B(m),A(m), 7). (25)

Again, motivated by results in the EL testing literature, we also consider inference based on the

following alternative statistics,

(ka/13) (2 ) G O), 7y {V(0r), )} ga0(m)m) (26)

LMi(m) = (T/he)a(e) { Vi O(), )} 3(m) e (27)

Or(m)

For a fixed m, Op() is the EL counterpart of the GMM overidentifying test statistic; LM () is
a Lagrange Multiplier statistic, based on 4(7); and, LR} () is a Likelihood Ratio type statistic.

Letting Dy 7(7) denote any one of Or(w), LM(r) or LRy (7),'! we use similar ideas to the
previous sub-section to test Da(7) for all 7 € II based on 7 |:,D27T(71'):| . The limiting distribution

of the latter statistic is given in the following theorem.

Theorem 6 Under Assumptions 1-5, we have

sup [ D1 (m) — Si(m)| = 0,(1),

mell

where

Si(m) = &p(m) (A(m) ™' @ (I = Ry)) &p(m)

= Joi(m) (Am) @ Li—i) " Jo—i(m) = Wiy ()

11 Again, this involves a slight abuse of notation compared to Section 2 because the distances here are scaled.
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Bek(m) ‘ .
and Jo_i(m) = , where By_j(m) is a vector of {—k independent standard

Bg,k(l) - Bg,k(ﬂ')
Brownian motions, and for each functional in (24)

T [75271«(%)} =T [ngk(ﬂ')] .

4.3 Testing D(7) =0

Given the discussion in Section 2, testing D(7) = 0 can be achieved by employing statistics which
are functionals of the processes, T)LT(’/T) and ﬁgyT(Tf). Specifically, we consider the combined
process Dp(m) = Dy p(w) + Dar(w) for any of the choices of Dy p(w) and Dy (n) defined in
Sections 4.1 and 4.2 respectively, and the functionals 7 {’bT(TF)} for any 7[.] defined in (24).

Then, we have the following Corollary to Theorems 5 and 6:

Corollary 1 Under Assumptions 1-5, we have

Dr(r) = Sr(m) = Si(m)| = 0,(1),

sup
mell

and for each functional in (24)

T [ﬁT(W)] = 7 [Wi(7) + W/_j(7)] .

4.4 Discussion

Sections 4.1-4.3 present tests of the hypotheses of interest in the unknown break-point case. The
corresponding results for the fixed break-point case follows directly from the proofs of Theorems

5 and 6 and so are presented in the following corollary.

Corollary 2 Under Assumptions 1-5, and if Ho(r) holds for some m € (0,1) then Dy p(r) <,
X3, Doz (n) <, X%(Z—k)’ and Dy () <, X3y, where Dy 1(7), Dag(n) and Drp(n) are defined in
Sections 4.1, 4.2 and 4.3 respectively and x? denotes a chi-squared distribution with v degrees of

freedom.

We now consider the relationship between our statistics and others in the literature. As
noted in the introduction, Guay and Lamarche (2010) derive some of our test statistics from
the perspective of testing the stability of the identifying and overidentifying restrictions, a ter-

minology that derives from Hall and Sen’s (1999) framework for testing structural instability
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in models estimated via GMM. Comparing Guay and Lamarche’s (2010) framework specialized
to EL with our info-metric framework, it can be seen that their tests of the stability of the
identifying restrictions are the same as our tests of Dy (7) = 0, and their tests of the stability of
the overidentifying restrictions are the same as our tests of Da(7) = 0.2 While the same tests
result, the info-metric approach has the advantage that it is based on the concept of minimiz-
ing the distance between the class of probability distributions restricted to satisfy the moment
condition and the true probability distribution. This allows us to relate the various hypotheses
of interest in structural instability testing to the distance between certain classes of probability
distributions and the true distribution. We believe this is a more fundamental - and also more
instructive - representation of these hypotheses than their expression in terms of identifying
restrictions (parameter variation) and overidentifying restrictions as is done in both the GMM
and GEL frameworks.

Guay and Lamarche (2010) observe that their GEL-based tests are first order asymptotically
equivalent to their GMM counterparts under both the null of stability and local alternatives.'?
Given our previous remarks, this equivalence obviously extends to our statistics as well. One
advantage of this equivalence is that the percentiles for the limiting distributions of our statistics
have already been tabulated in the literature. Specifically, percentiles of 7[W} ()] are presented
in Andrews (2003)[Table 1] (for 7[] = sup(-)) and Andrews and Ploberger (1994)[Tables 1
and 2] (for 7[-] = ave(-), exp(-)); the percentiles for 7[IW; . (m)] are presented in Hall and Sen
(1999)[Table 1] and Sen (1997). Percentiles for 7[Wy () + W, (7)]] are reported in Sen (1997).
A second advantage of the equivalence under local alternatives is that Theorem 5 continues to
hold under local alternatives to the moment condition that do not involve parameter variation,
and Theorem 6 continues to hold for local alternatives to the moment condition that involve
parameter variation alone. These properties suggest that the individual applications of tests
based on D; () and Dy r(r) have the potential to reveal when the instability is confined to

parameter variation alone.

12Guay and Lamarche (2010) do not consider the analog to D(m) = 0 in their framework. However, Sen (1997)

does propose and analyze such a test within the GMM framework.
131, (2011) establishes the same result for EL-based test statistics.
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5 Monte Carlo Evidence

In this section, we report results from a simulation study that gives insights into the finite sample
performance of the EL-based tests.
Following Ghysels, Guay, and Hall (1997) and Hall and Sen (1999), we consider the following

data generation process

Ty = B1Ti—1 + Ut + aur_a, us ~ IN(0,1), fort=1,2,...,7/2
Tt = Boi_1 + Ut + QUr_a, us ~IN(0,1), fort=T/24+1,T/2+2,...,T.
We suppose that the researcher estimates an AR(1) model for z;, with AR parameter 3, based

on the moment condition E[g:(8)] = 0 where

a@®=| | (@ ).
Tt—2

We consider three choices of sample size: T' = 200,400, 600. On each replication we calculate
7[Dy ()], 7[Dar(w)] and 7[Dp (7)) for the three versions of 7] defined in (24) and: Dy 7(7) =
Wr(r), LMz (7) or LR1(7); Dar(m) = Op(n), LM (w) or LR (7); Dr(m) = Or(m) +Wr(n),
LMr(7) + LM (1), LRr(7) + LR7G.(7). All these statistics are calculated using II = [g,1 — ¢]
for the following choices of trimming parameter, ¢ = 0.15,0.20, 0.25,0.30, 0.35, 0.40, 0.45.

We consider two versions of each statistic one based on the unsmoothed moment condition
and one based on the smoothed moment condition. We report both because if Hy(w) holds in
this model then g¢;(3) is a martingale difference sequence and so smoothing is actually unnec-
essary. Such examples provide evidence on the potential impact of smoothing on finite sample

performance. In all cases, smoothing is applied before the sample split and performed using

quadratic spectral kernels with,

o () 25 (sin(ﬁﬂx/S)

" 120222\ 6ma/5 _COS(W/E’))

where & = j/hp, hy = 1.3221[&(2)T]"/5 and

-1
p ~2 A4 p ~4
4p.0 o
a(2) =) :waw{z‘”a F }
a=1 (1 - pa) a=1 (1 - pa)

where p,, &i are estimated AR(1) coefficients and error variances based on moment functions

g:(B) (p x 1; a=1,2,...,p), respectively.'* For ease of exposition, we refer to the tests based

14 This choice corresponds to the optimal bandwidth based on an AR(1) approximation to the moment function

with wg = 1; see Andrews (1991)[p.834-5] with wq = 1 in his equation (6.4).
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on the unsmoothed (smoothed) moment conditions as unsmoothed (smoothed) tests.

We consider the size properties of the tests using the following two choices of parameters
for which Hy(w) holds: (84,085, @) = (0.4,0.4,0) and (0.8,0.8,0) - termed DGP1 and DGP2,
respectively. Thus the null hypotheses of all tests considered holds for choices of parameter
values. In all cases, results are based on 1000 replications.

At sample size T' = 200, all of the tests are oversized for at least one choice of €. Therefore,

we omit these results here.!®

Tables 1-3 report the rejection frequencies the tests of Dj(mw),
Dy(m) and D(m) respectively at T' = 400, Tables 4-6 report the the empirical size of the tests
of Dy(m), Do(m) and D(m) respectively at T = 600. In each case the nominal size of the test is
0.05. From Tables 1-3, it can be seen that for T" = 400 the unsmoothed tests exhibit relative
rejection frequencies that approximately equal the nominal sizes for all values of the trimming
parameter, but the smoothed tests are oversized with rejection frequencies approximately equal
to the nominal size only for trimming parameters ¢ > 0.35 or 0.4. From Tables 4-6, it can be seen
that the asymptotic approximation is far better at T = 600 with the smoothed tests exhibiting
rejection frequencies approximately equal to the nominal size for all ¢ > 0.2 or 0.25. Behind
this broad summary, there are some variations in performance of various tests. For example,
the Ave— functional tends to yield statistics whose tail behaviour is better approximated by the

asymptotic theory than either Exp— or the Sup— statistics. In future work, we plan to explore

the power of the tests.

6 Concluding remarks

In this paper, we develop an info-metric framework for testing hypotheses about structural
instability in nonlinear, dynamic models estimated from the information in population moment
conditions. Our methods are designed to distinguish between three states of the world: (i) the
model is structurally stable in the sense that the population moment condition holds at the same
parameter value throughout the sample; (ii) the model parameters change at some point in the
sample but otherwise the model is correctly specified; (iii) the model exhibits more general forms
of instability than a single shift in the parameters. An advantage of the info-metric approach is

that the null hypotheses concerned are formulated in terms of distances between various choices

15These results are available from the authors upon request.
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of probability measures constrained to satisfy (i) and (ii) and the empirical measure of the
sample. Under the alternative hypotheses considered, the model is assumed to exhibit structural
instability at a single point in the sample, referred to as the break-point; our analysis allows
for the break-point to be either fixed a priori or treated as occuring at some unknown point
within a certain fraction of the sample. We propose various test statistics that can be thought
of as sample analogs of the distances described above, and derive their limiting distributions
under the appropriate null hypothesis. In principle, there are a number of possible measures of
distance that can be used in this context but we focus on the measure associated with Empirical
Likelihood estimation. The limiting distributions of our statistics are non-standard but coincide
with various distributions that arise in the literature on structural instability testing within
the Generalized Method of Moments framework. A small simulation study illustrates the finite

sample performance of our test statistics under the null hpothesis.

7 Appendix

Here we collect together some intermediate Lemmas and prove the main Theorems. Following
Andrews (1993), we use the following notation: Xp(7) = 0pr(1) if sup,eq [| X7 (7)|| = 0,(1) and
Xr(m) = Opx(1) if sup, . | X7 (7)]| = Op(1).

The first result is a FCLT and second a generic (weak) ULLN.

Lemma 1 Under Assumptions 1-3(i)(ii)

k0 PTG (Be) = Q0 VT Gira (Bo) + opa(1)

— Bg(ﬂ')
where B(m) is a vector of k mutually independent standard Brownian motions on [0, 1], and

kot (12 ® QO’W) VT3 (0g,7) = ([2 ® ng) VTgr (0o, 7) + 0p(1)

By(m)

(Be(1) — Be(m))

— Jg(ﬂ') =
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Proof of Lemma 1: Firstly, by Andrews (1993), Qal/zﬁg[Tﬂ-] (By) = B(m). Second, and

following Smith (2004, Lemma A2), we can write

[Tw]—1 min[[Tx],[Tr]—j]

1 ] 1
\/Tg[szqn] (Bo) = T Z k <J> T Z g9t (Bo)

j=1—[Tn] hT t=max[1,1—j]
Define Ajpq (7) = {t : t ¢ [max[1,1 — 4], min [T'7], [T7] — j]]}. Then
min([[Tx],[Tw]—j] [Tr)

% Z 9t (Bo) = \Fzgf (Bo) — ujr(m),

t=max[1,1—j]

where ujr(m) = \let]‘lgt( o), for j < 0, and ujp(mw) = fzt (Tr]—j1 9t (By), for j > 0.
Thus, in both cases, up;(7) consists of |j| terms, uniformly in 7, and so u;r(7) = %Op,r( ),
where the O, (1) term is independent of j. This enables us to write
1 [Trw]—1 j 1 [Tr]—1 ‘]‘ ]
VI = > b(E)VImmaeo+{ 2 (L) o)
j=1-[T] j=1-[T7]
T-1

Ly k<th) VTg1s(8y) + ex(m)

j=1-T

= k1VTGra (Bo) + 0pr(1)

where we have used limT_wo Z e 1 T (hT> = k1 (see, for example, Smith (2004, proof of
Lemma Al) and sup,cp [ler(m)|| = o0p(1)). To see the latter, by repeated use of the triangle

inequality we have

—[T'w] [Tr)

J
ler(m)|| < y ‘;Tk(hﬁ + thX[T:]k: hT H\/—X;gt(ﬂo)

hr jzle\/?‘k (hJT)‘ Oprl1)

where the second line follows from

[Tm]-1 7] |- \/T T-1 \/ﬁ .
PG 2 f\<hz>1s;z PG
Since— lek( )—k‘l—l—o 1), T (,S—T)‘and’ j[TW]k( )‘are

o(1), uniformly in 7, whilst sup,cp

(60) = O,(1), and Smith (2004, Lemma C1)
|t

(
can easily be extended to show that My oo 2 T Zt 1T {T}

(hi)‘ = 0, for all » > 0.
T
Therefore, ep(m) = 0pr(1). Thus

k1 AVT g (B0) = Q0 VT gz (Bo) + 0pm(1).
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Similar analysis shows that

T

i 1 o i 1

' 1/2 Z (Bo) = UQ\F Z 9t (Bo) + 0pr(1)
=[Tn =[Tx]+1

= 2 (VT9r(8y) = VTgr(8y)) + ops(1)
so that
kit (B @ Qg %) Vgt (60, m) = (I @ 9 *) VTar(60,m) + 0,(1),
since gr (0o, m) = (Gi7x1(B0)s 97(Bo) — Gira] (BO)’)/, and the result follows. H
Lemma 2 Define m; (8) = m (Z; 8) and m (8) = E [m (Zy; B)], with Z; satisfying Assumption
1 and assume sufficient regularity (Assumptions 8 (i) and (iii)) so that supgeg |[mr (B) —m (B)[| =

op(1), where mr(B) = + thl m(B). Let mi® (B) be the smoothed version of my (8), defined in

an analogous manner to gi*(8) at (14), and (following (15)), define

mi*(0,7) = Iyr(w) i) + (1 =T (7)) ’
0 mi*(B)
1 T
m;’a(avﬁ) = szia(evﬂ)
t=1

with m(0,7) = (rm(B,), (1= ) m(By)'). Then, sup, ey suppee [732(6, ) — kym (6,7 =

op(1).
Proof of Lemma 2: We can write

{F 5 ms(8,)} = kurm(y)

my (0, 7) — kym (0,7) = . y B B
{3 Sl rm mi*(B) } — a1 = m)m(By)

In particular, and by the triangle inequality with mf;ﬂ 8) = T £Tq] mi®(B),

mitx(B) — kirm(B)
H |
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By Andrews (1993, Proof of Lemma A1), sup,cpsupg ||mpra(8) — 7m(B)|| = 0,(1) and since

ZJT 11 T th k ( ) = k1+o0(1), the second term is also o,,(1). Finally, and following the strategy

employed in the proof of the Lemma 1, write

[Tr]—-1 .
1
mir.(B) = o Z k (/j) {mirm (B) — ujr(B,7)}
Tjmimrm N1

where ’U,J'T(ﬁ, ) =T Zlgjllgt( ) fOI'j < 07 and ujT(ﬂaﬂ-) = % ,[57—;7{';"#]_]‘_;’_1 gt (ﬁ)a fOI'j Z 0)

and it is then straightforward to show that

T-1

= sa 1 ] =
supsup | mffg ()~ 3 ok ( LY iz 3)| = op(1),
T [BeEB j=1-T T T
Similarly, it can be shown that sup,. supgzcp H ( 1 —(Tr]41 M (6)) -k (1—m) m(ﬂ)H = 0,(1),

and the result follows. W

The following three Lemmas are used to establish consistency of (7)) and ().
Lemma 3 Under Assumptions 1, 2(i), 3(i) and 4

sup V' g¢" (0, 7)| = 0pr(1).
0€O,yelr,1<t<T

Proof of Lemma 3: By Cauchy-Schwartz,

Vg @,m) < vl (0,7

< A(T/h3)"" max {sup llg: (eaﬂ)|} :
0coe

1<t<T

Now,

max su S0, < max k ;
max sup g5 (Om)]| < max sup th_tZ[Tﬂ (T)gt 5 (9)
t—[Trw]—1

) k( ‘ )gt_m

ma;
1<t<[T7r]+1 geg hT

j=t—
T-1
< max su E
=~ 12627 p ||gt )
_7 1-7

where the last inequality is independent of 7. By Assumption 3(i), E [supgep [lg: (8)]"] < A <
00, implying that maxi<i<7 {supges g (B)II} = op (T'/7). Furthermore, by previous results,

i i 1 T ‘k( )‘ = O(1). Thus, uniformly in 7,

IN

O(L) (T/h3) o, (TV/7)

= 0p(T%) = 0p(1)

sup 1V g (6, 7)|
0€0,yel7,1<t<T
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where « = § —en(d — 1) < 0, because £ > 777(56*1)' n

The above result has the following implications, which will be of use later, as summarised in

the following Lemma.

Lemma 4 Under Assumptions 1-4, there exists a finite constants 0 < A < oo, such that w.p.a.1

and for all 0 € © and v € 'y, and for each w € 11,
hp' QF(60, 7, 7) < 77" (8o, ™) — Aypyr (28)
where vp = ky/hr, k = k1 /ky and
QF(0,7,m) = ky'g5" (0, m) — k*Av/y. (29)

Proof of Lemma 4: By a second order Taylor expansion, and exploiting Lemma 3, we have

that for all # € © and v € 'y, and each 7 € 11
—sa ]‘ [ /a
QT(0,7,7) = ky'g7" (0, m) = 5Ky Vi (0,m)7 + 0,(1) (30)

1 _
where the o0,(1) error is of smaller order than kv'g5* (0, 7) — ikQW’Vj‘l(G, ).

To establish (28), substitute 6y for 6 in (30) to obtain, w.p.a.1,
— a — ~sa 1 [/a
thQT(Hov%W) = thk’Y/TgT (0o, ) — §k27£[hTVT (6o, ™)y

where, here, v = kvy/hy € I'pr. By arguments similar to Smith (2004, Lemma A3) it can be

shown that hrV.2(0o, 7) = kaQo(7) + 0pr (1), We can now write

k2

5 1780 (T)7r + op(| A7)

h%lQ%(607 s 7T) = ’Y/Tg%a (905 7T) -

k
where, again, the error term op(||)\TH2) is negligible relative to v/.g5% (0o, ) — EQFYITQO(TF)FYT'

Thus, from standard eigenvalue theory, we can write that w.p.a.1
h ' Q%(B0, 7, ) < VG5 (00, 7) — Avyyr

for all v € I'p, and for each 7 € II.
More generally, however, V,2(6, ) = O, (1), uniformly in 6, so that by similar reasoning, we can

write
Q%(0,7,m) > kv'g5 (0, ) — K2Ay'y + o, (7))

and (29) follows from this. H
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Lemma 5 Under Assumptions 1-4, there exists a finite constant, A > 0, such that w.p.a.1
-1 a —sa 2 -1
hT sup QT(607’Y’7T) <A HgT (9077T)H = OP‘“’ (T ) .
yel'r
Proof of Lemma 5: As in Smith (2004, Lemma A5), by equation (28) we have, w.p.a.1 and

each m € II,

sup hp' Q4(60,7,7) < Al|g5 (6o, )|
YyEl'T

Since this holds for each 7 € II,

sup sup ' QF (00,7, 7) < A sup g3 (0o, )|
mell yel'r mell
The fact that sup,cp [|g7% (G0, |)? = O, (T71) follows from Lemma 1. B

Proof of Theorem 1: By Lemma 4, equation (29) and Lemma 5, we have, w.p.a.1 and for all

v € I'r and each m € II

hp' Q40" (1), 7, )

< sup h' Q% (0o, v, )
yel'r

A ||§'§"a(90a 7T) ||2 ’

hy (bw m(&(w%7®——k2AW“@

IN

IN

for some finite A > 0. Now define o7 = B (T/h%) ~° >0, with B and ¢ as in Assumption 4

so that d7 = O (T*), a = (5 D < —%, and v = +0rgi(0 (), )

W)H e I'r.

Making this substitution in the above yields

(6 /hr) sup g 0" (7). ) | — Ao0% /B < A sup g3 (09, 7))
mell well
w.p.a.l or,
~sa h —sa 2 h 2
sup [|g5#(8° (), m)|| < A287 + AT sup g3 (09, ™) = Aobr 4 1+ O(1) 2 sup lgi (60, )|
mell 5T'WEH 57'W€
which implies that sup, ¢y Hg;“ H = . This follows because sup < || g5 (fo, )||2 =

O, (T'71), so that
hr h g\ _
5 sup 500, 7I° = i 5 sup i 00, I = 470, ((T) = 0y (") = oy(1).

because 1 — 2¢ > 0 and h%/T — 0. Therefore, since o7 — 0, sup,cq HgT a(ﬂ' H LN

0. But by Lemma 2, we know that sup,cp

3590 (7), ™) — k1g (0" (x H 2, 0. Thus,

28



~Q

suprcr 9(0 (m),m) = 0p(1). Continuity of g(8) and the identification Assumption 3(iv) then
yields sup, e Héa(ﬂ) - 00H =o,(1).

In fact, a further refinement of the above argument (similar in spirit to that of Smith (2004,
Lemma A5) shows that sup,.cp H g3 (0 H = ~1/2)_ from which it can be shown that
hr V2 (éa(w), m) = kaQo(m) + 0pr (1); c.f. Smith (2005)[Theorem 2.1]. Using, this (and arguments
similar to the above) it can be shown that sup, .. [|[§(7)| = Op (hT/\/T) as follows.

Since, by definition, Qi}(éa(ﬂ),’y“(w), ) > Qi}(éa(ﬂ),’y,ﬂ), for all v € I'y, setting v = 0 € ',
and noting that Q%(0,0,7) = 0, for all § € O, we obtain, w.p.a.1,

T

/=sa 1 2~a I157a () ca _
= o { g 0 (7)) — ) V0 ()5 () = 0,0

%Q%@“(w),aa(w),w) < sup,cr,, %Qwo,m < & |[VTa 0.7 = 0,1), wpa.
Thus, since supﬂeHHg%“(@a(ﬂ'),w)H = 0,(T~%?) and supﬂeHHhTVii’(@a(ﬂ),ﬂ)H = 0,(1), it
follows that sup,y [|5%(m)]| = O, (hT /ﬁ). This implies sup, py [|5%(7)]| = 0,(1).

Proof of Theorem 2: Differentiating Q%.(6,v,7) = + Zle In (14 ky'gi*(0, 7)) with respect

to 6 and +, yields the partial-sample first order conditions

050" (m).4"(m).m) 1§~ G0 (m). 13w, 51
90 T;mw () g;*(0" (), ) 3!
0Q4(0" (m),4"(m),m) 1 (0" (), ) B
v B Zl+k7 () gs “(@a(w)ﬂr)_o (32)
where
sa T 89?“(,51) 0 0 0
Gt 0.0 =0Tt | =L@
0 O O 9t (62)
0%,

/

~Q /
Writing (7)) = (@a(ﬁ)’, vh(w) ) and ¢, = (56,5{),0')’, and exploiting Lemma 1, a mean
T

value expansion of (32) yields

0= kklﬁgT(%, )+ D;ﬁ (@*(m), ) \/T(@a(ﬂ) — )

where

i PQ4(0,7,m) | 9*Q4(0,7.m)
p oo T 9oy
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and @”(7) is the usual mean value which may differ from row to row. Now

>’Q4(0,v,m) 9i° (VGi*(0,m))
o700’ B Z 1+ kv gs“ ,Zl (1+ kv 95“(9 7))

’Qg0,v,m) 2 hr o~ g7°(0,m)gp (0, )’
hpo—eib B g2l

90 T = (1+ky'gi®(0,m))°

It follows from Theorem 1, Lemma 3, Lemma 2, as applied to %23:1 vec (G§%(0, 7)), and
SUD,cr1 ||hTV:,‘3(9(7r),7r) — kQQO(W)H = 0,(1), that

0 = kkiVTgi (6o, m) + D (m)VT (3" (1) = ) + 0pr (1)

where

Dg(ﬂ') = [kkleo(ﬂ'), —k}Qk‘QQ()(ﬂ'),} .

4] 0% (m ), 5a (9% (1r),m)’ Y (m Y (m
Similarly, ¥ SSHEGIEE = g S S gé“gé“)(n)mﬁ(whi)) :kleO(W)/ﬁ(vh(T))+

0px(1). Combining these results, we obtain

Go(m)
0= ! + ’ olm) VT (p(7) = @) + 0pr(1).
VTgr (0o, ) Go(m) —Qo(m)

Solving for /T (p™(7) — ), yields

_ (A (1) @ (M M) ™" MO)

VE(3(r) — g0) =
¥ %o (A (71') © Qg 1/2( PO))

Ep(m) + 0pr (1) (33)

and the result follows. H
The following Lemma establishes that Lemmas 1 and 2 also hold for moment functions

smoothed before the sample split.
Lemma 6 Under Assumptions 1, 2 and 3:

1. sup,

VT (00, 7) = k1 VTgr (00,7)| = 0,(1).

2. Let my (8) and m (0, 7) be as defined in Lemma 2, and let m3® (3) be the smoothed version
of my (B), defined in an analogous manner to gi*(B3), with m3? (0, ) defined accordingly.

Then sup,.cp Supgce Hm%’(@, ) — kim (6, H = 0,(1).

Proof of Lemma 6: By Smith (2004, Lemma A2), VT'35°(8,) = k1vVTgr(B,)+0p(1). Then, by

the triangle inequality, it suffices to consider \/Tgfjliﬂ] (8)—k1 \/TQ[TW] (B), since ﬁ Et:[TW]H at(B) =
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VT3 (8) = VT G} (8), where
» Trlot g )
a0 = 3 k(L) : X we
j=1-T t=max[1,1—j]
Now, when j > 0, max[1,1 — j] = 1 and min [T, [T'r] — j] = [T'w] — j. On the other hand when
j <0, max[1,1—j] = 1+ |j| when j > [Tn] — T, whilst max[1,1—j] = 1+ |j| = T when
Jj < [Tw] —T. Thus, we can write

[TW]

(T'7]
X 1
gﬁb’w](ﬁ) = ‘ 7 }5T> {T th _elT ﬁ7 )}
1 j 1 [Tr]
+ Z Ek <hT> T th - e2T 57 )
1
T

j=1-T+[T~]
—T+[T~] 1 ] [
Bl N
DD (hT>

~

]

gt(ﬂ) - 63T(5a77)}

j=1-T t=1
where
1 (Tx]
er(f,m) = = Z 9¢(B)
t=[Tr]+1—j
|1 1 [Tx]+|4]
ear(B,m) = *th Z 9:(B)
t [Tr]+1
|1 1 T
esr(B,m) = *th Z 9¢(B)
t:[Tﬂ]+1
Therefore
» -1 i i1 [Tr] 3 |
Q[TW](@)) Z hy E ngt(ﬁ)_z (B, ™)
j=1-T t=1 j=0
where
1 T-1 j 1 (T']
Aor(B,m) = o Z k(}L)Tth(ﬁ)
T j=(Tx] T t=1
1 [Tr]—-1 j 1 [Tr)
Air(B,m) = o > k(h)T > al®)
T j=o T t=[Tn]+1—j
1 -1 j ¥l 1 [T +|5]
Agr(B,m) = e Z < ) ngt Z 9:(B)
j=1—T+[Tx] =[Tr]+1
1 —T+[T'] j |1 1 T
Asr(B,m) = o Z (h> ngt Z 9:(8) ¢ -
T j=i-r T T, [Tr]+1
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1. sup,

\/Tg[sléw] (Bo) — klﬁg[Tﬂ (60)H -0

We show that sup,, \/TAJT<BO?7T)“ =o0,(1), for j =0,1,2,3.

\/TAOT(ﬁoﬂT)H = 0,(1) : Firstly sup,

(a) sup, th 1 9:(Bo) H = ), by Lemma

1 and the Continuous Mapping Theorem. Second, limz_, o 7 o Zj T ‘k( )‘ =
¢ (ﬁ)\ -0

\/|72t [Tm]+1— jgt(ﬁO)

O(1), implies limy_c sup, 7= Y771

(b) sup, = Op(1), uniformly in j

VT Avr(Bo,m)| = 0,(1)

and 7 so that

sup | 4xz (80, ) < {;TTZ . (;T)\} 0(1) = 0y(1)

since limy_, o0 hl ] 1 r\ = lal ‘ (%)’ =

VT Ay (By, H = 0p(1) : = 3L, gu(Bo) and - ST g1(5g) are both
Op(1), uniformly in j and =, so that

sup [ 421 (30,7 < ZTW ()] postn =a

(c) sup,

as above.

(d) sup, || Asr(Bg, )| = op(1) : \let”lgt( o) = O,(1), uniformly in j and , and
ﬁ Zf:[Tw]-&-l g:(By) = ng(ﬁo) - \Fg[TW] (Bo) is Op(1) uniformly in w. Thus

—T+[Tx] 1 —T+[Tn] j
5171rp||A3T(60,7T)|| < suphT Z \/>’ ( )' )+suphT Z k(hT>’Op(1)

j=1— j=1-T
op(1)

A

since both j_T1+ ;” \ T 4 ’k (hT>‘ = o(1) and SupwﬁZg‘_:Ti[gﬂ]
o(1).

(3] -

Therefore, \/Tngﬂ] (By, ™) = Zj.T:ll_T ﬁk (hT> ik Zt 1 gt(ﬁo) + 0pr(1). The result fol-
lows from the fact that Zj T thk ( ) = ki +o(1).

2. By Smith (2004, Lemma A1), it can be show that supsep |msb(8) — klm(ﬂ)H = o0,(1).

Then, by the triangle inequality, it suffices to show that

T—1 .
1 J\ -
sup sup |[m? — E —k (= | m, = 0,(1),
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where mi (8) = & YIT mi¥(B), since £ 31 gy mi¥(8) = miP(8) — mih, (B). From

Part (1), above it is clear that

T-1 j 1 (T'7] 3
mfgw](ﬁ) = ‘zle Ek (hT) T Z;mt(ﬁ) - jZOAjT(ﬁﬂr)
1o = Z

where the A7 (5, m) are as before but defined in terms of m;(3), rather than g,(8). It is
then straightforward to show that sup, supg [[A;7(3, 7)|| = 0,(1), for j = 0,1,2,3, and the

result follows. B
Proof of Theorem 3: Define Q%(0,v,7) = 7 Zthl In(1+4+ky'gi(0,m)).

1. Consistency: Asin Lemma 3, it is straightforward to show that supgeg »er, 1<t<r | g:® (6, 7)| =
0pr(1). Therefore (30) holds with gf®(0 ) replacing gi*(f,7) everywhere, with the er-
ror being of smaller order than the leading two terms. By arguments similar to Smith
(2004, Lemma A3) it can be shown that hrV2(0g,7) = kaQo(7) + 0pr (1), but in general,

V2(0,7) = Opr(1), uniformly in 6. This yields Lemma 4 but where we can write

h;ng“ (907’77 7T) < 'V/Tg%b(e()v 7T) - A’Y/T’VT (34)
and
Q% (0,v,7m) > ky'g3 (0, ) — K> Ay'y. (35)

From this, Lemma 5 gives

_ L 2 _
sup sup hp' Q% (0o, v, m) < ASUEHQTb(aO:ﬂ')H =0,(T™) (36)
TE

mellvel'r

where the fact that sup,cp ||§%b<90,7TH2 = O, (') follows from Lemmas 6(part 1) and
1. Consistency for éb(ﬂ') then follows the from the arguments of Theorem 1, but using
equations (34)-(36), rather than (28),(29) and Lemma 5, respectively, and Lemma 6. A
similar refinement then establishes sup .y Hg%b(@b(w),ﬂ)H = 0,(T~'/?), from which it
can be shown that hT‘_/:,ll(@b(ﬂ),ﬂ) = koQo(m) + 0pr(1); c.f. Smith (2005, Theorem 2.1).
[ (m]| =

Using, this (and arguments similar to the above) it can be shown that sup, .y

0, (hT/\/T) .

2. Asymptotic Normality: This follows the same arguments as Theorem 2, and using

L1 9950, ) 17 99:(0, )

Lemma 6 which shows that sup, supycg || 7 2_i—1 ~7 kig ) i BT 0.
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We thus obtain, by Lemma 6(part 1),

— (A (r) " @ (M M) ™" M0>

ﬁ(@%ﬂ“ﬂo) = (A(ﬂ') o0 1/2( —P0)>

Er(m) + opr (1)
and the result follows.

Proof of Theorem 4: Consistency of the estimators follows from the general arguments em-
ployed in the proof of Theorem 1, and Theorem 3. Differentiating Q7 (3,7, ) = % ZZ;I In(1+kvy'gi(B,7))

with respect to 5 and v = (Xl, /\’2)/, yields the partial-sample first order conditions

0Qr (B(w)ﬂ(w)m) 1 ( B(r)) A (r) 1 £ (B(m) A (7)
= k= S k— = =0
9B T; 1+ kA () g5 (B(m)) * Tt_%:]ﬂlwh(w)’gf(ﬁ(w))
0Qr (B, 5(m).w) kl% B
Ih T £ 1+ k() g; (B(m))
0Qr (B A7) Z g(Br)
Do - Tt o 1+m2<w>'gs<3<w>> o

Using similar arguments to those employed in the proof of Theorem 2, a mean value expansion
9 (). (). 7)

0 B3y = 0 about (66, 0’)/7 1 = 1,2, yields, exploiting Lemmas 1 and 6,

o
|

kklﬁg[Tﬂ—] (60) + kklﬂ'GO\/T (B(ﬂ') - BO) — k‘2]{727TQO (\/T/hT) 5\1 (71') + Opﬂ-(l)
0 = KkiVTr(8y) — kkaVTgira(Bo) + kki (1 =) GoV'T (B(m) — 6o
K2k (1— 1) Qo (ﬁ/hT) Aa(7) + 0ps(1)

respectively, or
7 (VI/hr) Ma(m) = Q5 VTgira(By) + 705 Gov/T (B(r) = By) + 0pn(1)

(=m) (VI/hr) Ra(m) = 95" (VTgr(80) = VTgizm(o))
+(1=m) Q" GoVT (B(r) — By ) + 0m (1).
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Similarly,

VT (famr) 1 Gy Ay (n)
hr o8 B kf; 1+k’5\1(7r)’gf(~(7r))ﬁ< hr )
1\ G;(B(m))) Aa(m)
T t_[TZﬂH L+ ko(7) g3 (B(m)) ﬁ( hr )

(
)
= kkynGo(n) VT (Xl(”)> + kky (1 — 1) Go(m) VT (AQ(”)) + 0y (1)

= 0

Combining these results, we obtain

0 = 7Go(n)'VT <5\1h(ﬂ-)> + (1 —7) Go(m)'VT <5\2h(7r)> + 0pr (1)
T T

GoQy VT3 (B) + Gy Gov/T (B(x) = o) + 0pe(1)

so that

VT (B(m) = B ) = = (M5Mo) ™" Mo {5 *VTgr (8) } + 0y (1),

and

™ (ﬁ/hT> A1 (m)

9 {90 VT g (80) |

2 2B {05 AV Tr(B0)} + 0pm(D)
0; 2 {Q*W (x/TgT(ﬂo) — VT (8 0))}
9 {5 T

(1—m) (ﬁ/hT) Ja(7)

or

(VT/nr)im) = (A @05 ?) ()

(2@ R0) 95"V Tr(8y) + 0y (1)
(A~ @95 %) er(m) = (12h © 05 V2P ) €(7) + 04 (1)

(A = 12ty © 952 (1 = Po) ) €7(7) + 0pe(1)

1

= D (a( Ya(r) @ Q7?1 PO)) Ep(T) + 0pr (1)

- ﬁ (a(ﬁ) ® 981/2) (Ir — Py) (a(m) @ Ip) &4 () + 0pr (1)

where 15 = (1,1)’, a(n)’ = (1 — 7, — m) and the result follows by Lemma 1. W
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Proof of Theorem 5: Consider, first, Wy (7). Previous results, exploiting v/T-consistency of
f;(7), show that

(k3 /) V2 (O(m)) =~ (MsMo) ™ + 0pm (1)

and, combining this with (33), we obtain

{837k VI @m0} VT (B1(r) ot = — s (VM) M 0 0 ) e (1)
where a(7)’ = (1 — 7, — m),s0 that
ey — ) @@ O L) Polaley 9 1)&r(m) |

(1 —m)
= Sp(m) + 0px(1).

For LMy(7), it can be shown that

(VT h)p(m) = ~C3(B) {VEBE)}Y Vo () + 0pr(1)
= C(B) VTl (B(T)) + opr (D),

say, where 9] (8) = % gq] 9:(B), so that an asymptotically equivalent variant of LM () is

LMa(m) = (ko KT Glom(B)CHB) {VEBE) Y (B Frmy (B
An expansion of \/TQFTW] (B(m)) yields

\/TQ[STW] (B(Tf')) = klﬁg[Tﬂ'] (60) + klﬂGO\/T (B(ﬂ-) - BO) + Opﬂ'(l)

= VT grn(B) — kinGo (MiMo) ™" Mo {25 *VTgr(80) } + 0,m(1).

Furthermore, G5.(3()) = k1Go + 0 (1) and V2(B(7)) = k29 + 0pr (1). so that

{02/ VRGN CHBE)Y VT (Bm) = (MEMo) ™M (a(w) © 1) () + 0n(1)

and it immediately follows that sup ¢ |[CMp(7m) — Sr(m)] = 0,(1).
For LR (), a key expansion is that of v/Tgi(0(r), 7) = % Zle g: (0, ) about 6, yielding

VTgi(0(x),m) = VTgi(bo,7)+ kiGo(m)VT(B(r) — bo) + 0pr (1)

= kVTar(00.m) ~ b (L O R) () + o). (37)

36



where (33) is exploited. Therefore, and again exploiting (33), we have

bt (22 0 V2) VTgi(0(m),m) = (I @ (I = Po)) &r () + 0pn(1) (38)

(A() 1/2) (f/hT) A(m) + ope(1). (39

Now, noting that Q7(6,0,7) = 0 and dQ7(6,0,7)/dy = kgi(6,7), for all § € O, a two term
expansion of Q7 (6 () ,4(r), ) about 4(r) = 0, yields
2 (ko/k) (T/h) Qr (B(m).A(m).7) = 2 (ka/K?) K(VT/hr)A(m) VTG (b() . )
+ (ka/R3) (VT ha () (hT 62@“@?5;7(”)’”)) (VT /hr)3(m)
= T gr(0(m) ™) (A(m) ® )" G (B(m), ) /3 + 0pr (1) (40)

where () is the usual mean value and the third equality uses (39) and Lemma 3, which ensures

0*Qr(A(r),A(m), )
oyo~y!

2 (ka/k3) (T/h) Q@ (B(m), A(m), ) = T g (B(r), 7) (A(m) @ Q)" g(0(r), m)/K3 + 0pe (1),

that hp Ly K2y Qo (7)) = —k2ky (A(7) ® Qp), uniformly in 7. Similarly,

- - - / -
where 0(7) = (6(77)’75(70') . Furthermore, an expansion of v/T'g5(6(r), ) yields

VTG (B(m),m) = VTG00, )~ (A(m)iaty @ O Py) 7(x) + 0pm (1)

= VTgi(B(m),m) + by (I = A(m)iath © 0/*Py) €5(m) + 0pn (1)

where the second equality follows from (37). Notice that, by (38),
BTG5 (0(m), ) (A(m) © Q0) ™" (I = A(m)iath & O *Ry) ()
= k1&p(m) (A(m) ™" = 1ath @ (Ir = Po) Po) () + 0pre (1)
= opr(1)

so that

LRr(r) = Y (I3 — 12hA 1/2 ) (A(m) ® QO)_l (Ig — A(m)iath ® Q(l)/QP()) Er(m) + 0pr(1)
= &op(m) (I — 1ath A(m) @ Py) (A(m) ® 1) ™! (Io — A(m)ia1h @ Po) E(7) + 0pr(1)

= (m) (A(m) ™" = 12y @ Py) &7 () + 0pr(1)
_ (77)’ (a(ma(m)' ® Po) Ex(m) | (1)
m(1—m) ”

| W @) Pl o hem
(1l —m) or

= Sp(m)+ opr(1).
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using (A(r) " = 1a65) (I — A(m)iats) = Ar) ™ — 12t = a(m)a(m) /(1 — ).

As in Sowell (1996) and Hall and Sen (1999), we can always write Py = H'ZH, where E is the
diagonal matrix of eigenvalues of Py and H = [H}, H}]' is a (£ x £) orthonormal matrix, so that
H'H = I, = H{H, + HyH,, with Hi{H{ = I}, and HoH) = I;_;. From the properties of =,

PO = I{{}Arl7 and

Hy (a(m)' @ 1) ép(m) = Hy (Be(m) — ©Be(1)) = By(m) — 7Bx(1)

(Bi(m) — 7By(1))’ (Bi(w) — 7Bx(1))
m(l—m)

from which we conclude that Sy (7) =

By(m) — 7By (1)) (By(r) — mBi(1
T (Bi(m) = 7B ()1) ( é(ﬂ) By ))} by applying the continuous mapping theorem.Hl
m(l—m

Proof of Theorem 6: Since sup <y HhTf/]f (0(x), ) — ngo(ﬂ')H = 0,(1), we immediately have

,and T {'[)LT(’]T)} =

that

Or(m) = (ka/K) (T/hr) G O(m). ) (V30 g3 (0m). )

= T g7(b(m),m) (A(m) © Q)" g2 (0(r), m) /KT + 0pm (1)

>

and

LM5(m) = (/b)) { Vi (0(m), m) } () ks
= T gi(

= Op(n) + opx(1).

>
2
a)
=
2
&
2
N
|
Q)
~N®»
>
2
2
~
oy
Lol V)
_|_
)
3
3
=

By (40) it is immediate that

LRy(x) = T ga(0(r),m) (A(m) @ Qo) g5(0(m), m) /K + 0pr(1)

= Op(m) + o0p:(1).
This demonstrates the asymptotic equivalence of all three statistics. From (38) we also obtain

Or(r) = &p(n) (A(m)™' @ (I — Po)) &p(m) + opr(1)

= S7(m) + 0px(1)
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Following the arguments in the proof of Theorem 6, I — Py = H,H> so that

Sp(m) = &p(n) (A(m) ™' @ (I = Ry)) &p(m)
= &p(m) (A(m) ™' @ HyHy) & ()

Er(m) (12 ® Ha)' (A(m) ™" @ Ip—y,) (I ® Ha) Ep (7).

Since HoHY = Iy, it follows that HoBy(m) = By_(m), a (£ — k)-dimensional vector of inde-

pendent standard Brownian motions and

By_y(m)

Be,k(l) — Bg,k(’]'r)

(.[2 & HQ) fT(ﬂ') = (12 ® Hg) Jg(’/T) =

implying
Si(m) = Jo—iw(m) (A7) @ Ip—i) " Jo—i(m).

Finally, 7 |:ﬁ2)T(7T)i| =T [Jg,k(ﬂ)’ (A(m) @ I_p) " Jg,k(ﬂ)] by applying the continuous map-

ping theorem. W
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0 for T' = 400; ¢ =trimming parameter

Table 1: Testing D;(7)
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Test Variant refers to functionals 7[.] defined in (24) and W, LM, LR, denote EL-Wald, Lagrange

Notes:

Multiplier and EL-likelihood ratio statitstics defined in ( 22), (23) and (21), respectively (Section 4.1).
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0 for T' = 400; ¢ =trimming parameter

Table 2: Testing Da(7)
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Notes: Test Variant refers to functionals 7[.] defined in (24) and statistics O, LM, LR are defined in (26), (27)

and (25), respectively (Section 4.2).
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0 for T' = 400; ¢ =trimming parameter

Table 3: Testing D(m)
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Notes: Test Variant refers to functionals 7[.] defined in (24) and W, LM, LR denote the conbined statitstics

defined in Section 4.3.

42



0 for T' = 600; ¢ =trimming parameter

Table 4: Tests of D1 ()
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Notes: See Table 1 for definitions.
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0 for T' = 600; ¢ =trimming parameter

Table 5: Testing Da(7)
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0 for T' = 600; ¢ =trimming parameter

Table 6: Testing D()
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Notes: See Table 3 for definitions.
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