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Abstract

In this paper, we develop an info-metric framework for testing hypotheses about structural in-

stability in nonlinear, dynamic models estimated from the information in population moment

conditions. Our methods are designed to distinguish between three states of the world: (i) the

model is structurally stable in the sense that the population moment condition holds at the same

parameter value throughout the sample; (ii) the model parameters change at some point in the

sample but otherwise the model is correctly speci�ed; (iii) the model exhibits more general forms

of instability than a single shift in the parameters. An advantage of the info-metric approach is

that the null hypotheses concerned are formulated in terms of distances between various choices

of probability measures constrained to satisfy (i) and (ii), and the empirical measure of the sam-

ple. Under the alternative hypotheses considered, the model is assumed to exhibit structural

instability at a single point in the sample, referred to as the break point; our analysis allows

for the break point to be either �xed a priori or treated as occuring at some unknown point

within a certain fraction of the sample. We propose various test statistics that can be thought

of as sample analogs of the distances described above, and derive their limiting distributions

under the appropriate null hypothesis. In principle, there are a number of possible measures of

distance that can be used in this context but we focus on the measure associated with Empirical

Likelihood estimation. The limiting distributions of our statistics are non-standard but coincide

with various distributions that arise in the literature on structural instability testing within the

Generalized Method of Moments framework. A small simulation study illustrates the �nite sam-

ple performance of our test statistics.

Keywords: Moment condition models, structural instability, parameter variation, Empirical Like-

lihood.



1 Introduction

There has been considerable interest in the development of tests for structural instability in

moment condition models. In the majority of this literature, the null hypothesis is structural

stability in the sense that the population moment condition holds at the same parameter value

throughout the sample, and the alternative involves instability at single point in the sample,

known as the break-point. Depending on the setting, this break-point can be treated as known,

in which case the potential point of instability is speci�ed a priori, or unknown, in which case

the point of potential instability is left unspeci�ed. The earliest contributions to this literature

considered inference procedures within the Generalized Method of Moments (GMM) framework

(Hansen, 1982). For the �xed-break point case, Andrews and Fair (1988) introduced tests for

parameter variation, and Ghysels and Hall (1990) introduced so-called predictive tests that

Ghysels, Guay, and Hall (1997) show test jointly parameter constancy and the overidentifying

restrictions in one sub-sample. For the unknown break-point case, Andrews (1993) proposes

so-called sup-tests for parameter variation, Sowell (1996) considers a general framework for

the construction of tests for parameter variation, and Ghysels, Guay, and Hall (1997) propose

extensions of the predictive test to this setting. Building from these earlier works, Hall and Sen

(1999) show that the hypothesis of structural stability can be decomposed into one of parameter

constancy and another concerning the validity of the overidentifying restrictions in each sub-

sample, and propose tests for each component. They further show this approach has the potential

to discriminate between states of the world in which violation of the null is caused by neglected

parameter variation and those in which violation of the null is caused by more general forms of

misspeci�cation of the moment condition.

While all these tests are valid in their own terms, they are developed within the GMM

framework and the latter has received some criticism in recent years because it has been found

that GMM inference procedures can be unreliable in certain settings of interest.1 This criticism

has led to the development of alternative methods for estimation in moment condition models,

leading examples of which are empirical likelihood (EL) (Qin and Lawless, 1994) and exponential

tilting (ET) (Kitamura and Stutzer, 1997). Both EL and ET have a common structure, and

this insight has led to the development of two generic frameworks for the estimation of moment

1For a review of this literature see inter alia Hall (2005)[Ch. 6].



condition models that include EL and ET (and other estimators of interest) as special cases.

The �rst such framework is the Generalized Empirical Likelihood (GEL) introduced by Smith

(1997). The second framework is the information-theoretic framework of Kitamura and Stutzer

(1997) and its extensions in Golan (2002,2006). It is therefore of interest to develop tests for

structural instability within these more general frameworks.

In a recent paper, Guay and Lamarche (2010) propose analogous tests to those of Hall and

Sen (1999) for the GEL framework, and present a limiting distribution theory for these statistics

under both null and local alternatives. They observe that the GEL statistics have the same �rst

order asymptotic properties as their GMM counterparts under null and local alternatives. They

report simulation evidence on their tests based on ET, and �nd the tests to perform comparably

to their GMM counterparts for the most part but one particular GEL test based on the LM

principle is superior.

In this paper, we consider the derivation of the same tests as Guay and Lamarche (2010)

but from an information-theoretic - or equivalently - info-metric perspective. While the same

tests result, we argue that the info-metric approach has considerable advantage in terms of

the speci�cation of the hypotheses and thus interpretation of the outcome of the tests.2 This

advantage stems from the info-metric approach being based on the concept of minimizing the

distance between the class of probability distributions restricted to satisfy the moment condition

and the true probability distribution. This allows us to relate the various hypotheses of interest

in structural instability testing to the distance between certain classes of probability distributions

and the true distribution. We believe this is a more fundamental - and also more instructive

- representation of these hypotheses than their expression in terms of identifying restrictions

(parameter variation) and overidentifying restrictions as is done in both the GMM and GEL

frameworks.

In principle, there are a number of possible measures for the distance between probability

distributions that can be used in developing our info-metric tests for structural instability. Here,

we focus on the distance measure associated with Empirical Likelihood estimation and develop

test statistics within the EL framework. We also explore certain other issues relating to structural

instability testing in this context. Like Guay and Lamarche (2010), we assume the data to be

2Our results are based on Li�s (2011) PhD thesis. This work was performed independently of and contempo-

raneously to Guay and Lamarche (2010).
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weakly dependent and account for this dependence in estimation using the kernel-smoothing

methods advocated by Smith (2004). However, given the nature of the null and alternative

hypotheses here, there are two possible ways to proceed. One way involves kernel-smoothing

the moment functions �rst and then splitting the resulting smoothed values into sub-samples

of before-the-break and after-the-break (smoothed) observations. An alternative is to split the

data into two sub-samples of before-the-break and after-the-break, and then kernel-smooth the

moment functions using only observations from within that sub-sample. Guay and Lamarche

(2010) employ the �rst approach. In this paper, we consider the second approach as well and

demonstrate that both methods yield test statistics that are �rst order asymptotic equivalent

under both null and local alternatives.

An outline of the paper is as follows. Section 2 presents the info-metric approach to the speci�-

cation of the null and alternative hypotheses of our structural instability. Section 3 demonstrates

that the order of kernel-smoothing and sample splitting does not a¤ect the �rst order asymptotic

properties of the partial EL - estimators under null and local alternatives. Section 4 presents

the test statistics and discusses the connection between our info-metric methods and various

structural instability tests derived within the GMM framework. Section 5 presents results from

a small simulation study that indicates the �nite sample performance of our methods. Section 6

concludes. All proofs are relegated to a mathematical appendix.

2 An info-metric approach to structural stability testing

In this section we propose an information-theoretic (IT) approach to testing for evidence of struc-

tural instability in population moment condition models. However, to motivate our approach, it

is useful to begin by brie�y reviewing IT estimation of moment condition models absent of any

concerns regarding structural stability.

Suppose a researcher is interested in estimating the k�1 vector of parameters �0 based on the

information in the `�1 moment condition E[g(Z; �0)] = 0 where Z is a d�1 random vector. It is

assumed that ` > k. This model is said to be structurally stable because the moment condition

holds at the same parameter value throughout the sample. Following Kitamura (2006), we can

characterize IT estimation of this model at the population level using the following framework.
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Let M denote the set of all probability measures on <d,

P(�) =

�
P 2M :

Z
g(z; �)dP = 0

�
;

and

P = [�2BP(�);

where B is the parameter space. Note that P is the set of all probability measures that are

compatible with the moment condition, and is referred to as a statistical model in this context.

This model is correctly speci�ed if and only if P contains the true measure �; that is, the data

satis�es the population moment condition at � = �0. A class of IT estimators of � can be de�ned

as

arg inf
�2B

�(�; �); where �(�; �) = inf
P2P(�)

D(P k�)

where D(� k �) is a divergence measure between two probability measures3 and �(�) is referred to

as the contrast function. Kitamura (2006) shows that if the model is correctly speci�ed then the

minimum of the contrast function is attained at � = �0, the true parameter value.

Now consider the problem of testing structural stability. De�ne Z(r) to be a stochastic

process on r 2 [0; 1]. We focus exclusively on the case where the alternative hypothesis involves

instability at a single point and so we de�ne

Z(r) = Z(1); for r � �

= Z(2); for r > �

where � 2 (0; 1) and is referred to as the break-fraction. Notice that the break-fraction is

embedded in the de�nition of Z(i) but we suppress this for notational brevity. In structural

stability testing, � may be �xed a priori, the so-called �known break-point case�, or it may be

left unrestricted beyond � 2 � � (0; 1), the so-called �unknown break-point case�. Our methods

can handle both cases, but for purposes of exposition here, it is most convenient to treat � as

�xed and then to discuss the extension to the unknown break-point case at the end of the section.

To formalize the null and alternative hypotheses, we need to introduce two sets of probability

measures. First, we de�ne

P0 = [�2BP0(�)
3This divergence measure must be non-negative and satisfy D(P k Q) = 0 if and only if P = Q.
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where

P0(�) =

�
(P1; P2) 2M�M :

Z
g(zi; �)dPi = 0; for i = 1; 2

�
;

so that P0 is the set of all pairings of probability measures that are compatible with moment

condition holding at the same parameter value in both sub-samples. Notice that this model

speci�cation di¤ers from P by allowing for the measures for Z(1) and Z(2) to be potentially

di¤erent. Second, we de�ne the set

P1 = [(�1;�2)2B�BP1(�1; �2);

where

P1(�1; �2) =

�
(P1; P2) 2M�M :

Z
g(zi; �i)dPi = 0; for i = 1; 2

�
;

so that P1(�1; �2) is the set of all pairings of probability measures that are compatible with

moment condition holding in both sub-samples but at potentially di¤erent parameter values.

Using these de�nitions, the hypotheses of interest can be expressed in terms of (�1; �2), the

true measures for (Z(1); Z(2)). The null hypothesis is:

H0(�) : (�1; �2) 2 P0: (1)

Thus underH0 the model is structurally stable in the sense that the population moment condition

holds at the same value in both sub-samples. One potential alternative of interest is:

HA(�) : (�1; �2) 2 Pc0; (2)

which equates to �not H0(�)�. While this alternative is of interest in its own right, we show

below that the states of the world under this alternative can be split into two groups, and such a

decomposition can provide useful model building information. The �rst such group is captured

by the hypothesis:

HPV (�) : (�1; �2) 2 P1 nP0: (3)

Under HPV (�), the moment condition is satis�ed in both sub-samples but at di¤erent parameter

values. This situation is commonly referred to as �parameter variation�which is re�ected in the

�PV�subscript. The second group is the hypothesis:

HMS(�) : (�1; �2) 2 Pc1: (4)
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Under HMS(�), the population moment condition is not satis�ed in one or both sub-samples -

even allowing for the possibility of a parameter shift - indicating the model is misspeci�ed in

that the moment condition fails to hold over the entire sample, which is re�ected in the �MS�

subscript.

While bothHPV (�) andHMS(�) implyH0(�) is false, they have very di¤erent model building

implications. HPV (�) implies that the model is correctly speci�ed once allowance is made for

the change in parameters, whilst HMS(�) implies the moment condition does not hold and hence

the model is more fundamentally misspeci�ed. As argued by Hall and Sen (1999), it therefore

seems valuable to develop inference procedures that can distinguish these two cases. Hall and

Sen (1999) achieve this goal within a GMM framework by developing separate tests based on the

stability of the identifying restrictions and the stability of the overidentifying restrictions. Here

we develop IT methods that provide similar model-building information. We believe that the

IT approach is more attractive than the GMM framework of Hall and Sen (1999) and also the

GEL framework of Guay and Lamarche (2010) because it is fundamentally anchored in distances

between the underlying probability measures satisfying the various hypotheses considered.

To motivate the form of our inferential procedures, it is useful to consider population measures

for discriminating between H0(�), HPV (�), and HMS(�). To this end, let ��([�1; �2]; [�1; �2])

denote the contrast function for estimation that allows for a break at the point indexed by �,

and let D�([p1; p2] k [q1; q2]) denote the measure of divergence between two pairs of measures,

[p1; p2] and [q1; q2], with the �rst of each pair pertaining to Z(1) and the second to Z(2). It then

follows from the properties of the divergence measure that we have the following:

(i) ��([��(�); ��(�)]; [�1; �2])

8><>: = 0; if H0(�) true

> 0; if H0(�) false,

where

��(�) = arg inf
�2B

��([�; �]; [�1; �2])

for

��(�; �) = inf
[P1;P2]2P1(�;�)

D�([P1; P2] k [�1; �2]);

(ii) ��([�1;�(�); �2;�(�)]; [�1; �2])

8><>: = 0; if HPV (�) true

> 0; if HPV (�) false,
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where

[�1;�(�); �2;�(�)] = arg inf
[�1;�2]2B�B

��([�1; �2]; [�1; �2]);

for

��([�1; �2]; [�1; �2]) = inf
[P1;P2]2P1(�1;�2)

D�([P1; P2] k [�1; �2]):

Given these properties, we can decompose D(�) = ��([��(�); ��(�)]; [�1; �2]) into two parts:

D(�) = D1(�) + D2(�)

where

D1(�) = ��([��(�); ��(�)]; [�1; �2]) � ��(�1;�(�); �2;�(�)]; [�1; �2]);

D2(�) = ��(�1;�(�); �2;�(�)]; [�1; �2]):

It can be recognized that: if H0(�) is true then D1(�) = D2(�) = 0; if HPV (�) is true then

D1(�) 6= 0 but D2(�) = 0; if HMS(�) is true then D1(�) 6= 0 and D2(�) 6= 0. Therefore, an

examination of D(�) reveals whether the model is structurally stable, H0(�), or not, HA(�). On

the other hand, an examination of D1(�) and D2(�) reveals whether the model is structurally

stable, H0(�), or exhibits parameter variation, HPV (�), or is structurally unstable due to more

general forms of misspeci�cation, HMS(�). Therefore, we propose performing inference using

sample analogs of D(�), D1(�) and D2(�).

To present these sample analogs, we need some additional notation. Replace Z(r) by the time

series fZt; t = 1; 2; : : : ; Tg. It is assumed that the potential instability occurs at t = [T�] = T1

say, where [�] denotes the integer part in this context. We refer to T1 as the break-point. We

divide the sample into two sub-samples: T1(�) = f1; 2; : : : ; T1g, consisting of the observations up

to and including the break-point; and T2(�) = fT1+1; T1+2; : : : Tg, consisting of the observations

after the break.

It is well known that IT methods based on the assumption of independently and identically

distributed data are sub-optimal if the data are weakly dependent.4 Various approaches have

been proposed for handling this dependence: we employ the kernel smoothing methods proposed

by Smith (2004).5 Within this approach, the original moment function in period t, g(Zt; �) =

4See Kitamura (1997) and Kitamura and Stutzer (1997).
5Other possibilities for handling the dependence include blocking methods (see Kitamura, 1997 and Kitamura

and Stutzer, 1997) or the use of parametric models (see Kitamura, 2006).
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gt(�) say, is replaced by the kernel smoothed version,

gst (�) =
1

hT

t�1X
j=t�T

k

�
j

hT

�
gt�j(�); (5)

where the superscript s indicates the operation of kernel smoothing and, respectively, hT and

k(�) denote the bandwidth and a kernel function, that are discussed in detail in Section 3. To

implement IT estimation using kernel smoothing, we replace the true measures, [�1; �2] by the

empirical measures [�̂1; �̂2]. Notice that these measures relate to the stationary distributions

of Z(1) and Z(2).6 Since we allow for the measures to be di¤erent, �̂1;t = T�11 for t 2 T1(�)

and �̂2;s = T�12 for T2 = T � T1 and s 2 T2(�). Following Kitamura and Stutzer (1997),

we also replace the measures Pi by the probability mass functions P̂1 = [p1;1; p1;2 : : : ; p1;T1 ],

P̂2 = [p2;1; p2;2 : : : ; p2;T2 ].

In our inference procedures, �i;�(�) and ��(�) are replaced, respectively, by the partial-

sample IT estimators, �̂i(�), and the restricted partial-sample IT estimator, �̂R(�), de�ned as

follows. The (unrestricted) partial-sample IT estimators are,

[�̂1(�); �̂2(�)] = arg inf
[�1;�2]2B�B

��;T ([�1; �2]; [�̂1; �̂2]) (6)

where

��;T ([�1; �2]; [�̂1; �̂2]) = inf
[P̂1;P̂2]2P̂1(�1;�2)

D�([P̂1; P̂2] k [�̂1; �̂2]) (7)

and

P̂1(�1; �2) =

8<: (P̂1; P̂2) : pi;t > 0; X
t2Ti(�)

pi;t = 1;
X

t2Ti(�)

pi;tg
s
t (�i); i = 1; 2

9=; : (8)

On the other hand, the restricted partial-sample IT estimator is,

�̂R(�) = arg inf
[�;�]2B�B

��;T ([�; �]; [�̂1; �̂2]): (9)

We propose performing inference based on scaled versions of the following analogs to D(�),

D1(�) and D2(�),

D̂T (�) = D̂1;T (�) + D̂2;T (�) (10)

D̂1;T (�) = ��;T ([�̂R(�); �̂R(�)]; [�̂1; �̂2]) � ��;T ([�̂1(�); �̂2(�)]; [�̂1; �̂2]) (11)

D̂2;T (�) = ��;T ([�̂1(�); �̂2(�)]; [�̂1; �̂2]) (12)

6See Smith (2004)[p.19].
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To implement our procedures, it is necessary to choose a measure of divergence. Kitamura

and Stutzer (1997) use the Kullback-Leibler information criterion (KLIC) distance. Golan (2002,

2006) considers the extension of Kitamura and Stutzer�s (1997) methods to more general mea-

sures such as the generalized cross entropy and Cressie-Read (CR) divergence measure (Cressie

and Read, 1984). The framework above can be applied to any of these settings, but for concrete-

ness we focus on the CR divergence measure which is de�ned as follows in our context:

D(�)
� ([P̂1; P̂2] k [�̂1; �̂2]) =

�

1 + �

8<:
2X
i=1

X
t2Ti(�)

pi;t

��
pi;t
�̂i;t

��
� 1

�9=; (13)

which is de�ned for �1 < � < 1. Appropriate choices of � lead to certain familiar estima-

tion methods: for example, lim�!0D
(�)
� (�k�) yields the optimand for exponential tilting (ET)

estimator of Kitamura and Stutzer (1997) in each sub-sample, and lim�!�1D
(�)
� (�k�) yields the

empirical likelihood (EL) estimator of Owen (2001) in each sub-sample. Moreover, Newey and

Smith (2004) and Anatolyev (2005) demonstrate that EL has better second order bias properties

than ET and so in the following sections we develop versions of D̂i(�) based on EL estimators.

So far, we have focused on the �xed break-point case. The extension to the unknown break-

point case is as follows. The null hypothesis of structural stability becomes H0(�) : H0(�) 8� 2

� � (0; 1). The di¤erence between H0(�) and H0(�) is that the former speci�es precisely the

point at which the structural break is suspected. This di¤erence is re�ected in the associated

test statistics, with tests for H0(�) being designed to have power against a break at � and the

tests for H0(�) being designed to maximize power against a weighted sequence of alternatives

that allows for breaks at all points in �. These test statistics are developed in Section 4. Before

that we turn to another issue that arises in the implementation of our tests. As mentioned

in the introduction, there are two options regarding the sequencing of kernel smoothing and

sample splitting: split the sample then kernel smooth (smooth after sample splitting) or kernel

smooth then split the sample (smooth before sample splitting). The former only smooths over

the moment functions for which t 2 Ti(�), for all � 2 �, and gives rise to the following smoothed

moment functions

gsat (�) =

8><>:
1
hT

Pt�1
j=t�[T�] k

�
j
hT

�
gt�j(�); t = 1; :::; [T�]

1
hT

Pt�[T�]�1
j=t�T k

�
j
hT

�
gt�j(�); t = [T�] + 1; :::; T;

(14)

whilst the latter approach yields gsbt (�) � gst (�), given by (5), for t 2 Ti(�), and all � 2 �:

9



In the following section, we explore the impact of this sequencing on the �rst order asymptotic

behaviour of the unrestricted and restricted partial-sample IT estimators.

3 Large sample behaviour of partial-sample IT estimators

Based on the full sample, the EL (IT) criterion function would be

QT (�; �) =
1

T

TX
t=1

ln
�
1 + k�0gst (�)

�
where gst (�) is de�ned at (5) and k = k1=k2 with kj =

R1
�1 k(!)

jd!, j = 1; 2. Whilst � 2 B � <k,

the auxiliary parameters � 2 �T are restricted so that w.p.a.1 (with probability approaching

1) k�0gst (�) > �1 for all
�
�0; �0

�0 2 B � �T and t = 1; :::; T . Speci�cally, �T is de�ned so

that bounds are placed on � that �shrink�with T , at an appropriate rate. The full-sample EL

estimator is then de�ned as

~� � arg min
�2B

sup
�2�T

QT (�; �):

Estimation proceeds in two steps:

1. QT (�; �) is maximised over �, for given �, yielding

~� (�) = arg sup
�2�T

QT (�; �) :

2. The EL estimator, ~�, is the minimiser of the pro�le EL objective function, QT
�
�; ~�(�)

�
:

~� = argmin
�2B

QT

�
�; ~�(�)

�
:

Consider, now, splitting the sample according to Ti(�), i = 1; 2, for all � 2 �, which yields

the (unrestricted) partial-sample EL estimators �̂i(�), i = 1; 2, based on the two sub-samples

t 2 Ti(�), i = 1; 2, respectively. To analyse these estimators, let us (for the moment) employ the

smoothed moment functions after the sample split. (As noted previously, it will be shown that

the use of gsat (�) or g
s
t (�) makes no di¤erence, asymptotically, to the sampling results obtained

for the partial-sample EL estimators.) Speci�cally, the (unrestricted) partial-sample EL (PSEL)

estimators are de�ned by

�̂
a

i (�) = arg min
�2B

sup
�2�T

1

T

X
t2Ti(�)

ln
�
1 + k�0gsat (�)

�
; i = 1; 2;
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where gsat (�) is given by (14), and, correspondingly,

�̂
a

i (�) = arg sup
�2�T

1

T

X
t2Ti(�)

ln
�
1 + k�0gsat (�̂

a

i (�))
�
; i = 1; 2:

To analyse these estimators for all � 2 � � (0; 1) de�ne �0 =
�
�01; �

0
2

�0 2 � = B � B,

0 =
�
�01; �

0
2

�0 2 �T = �T � �T and the following (2`� 1) unsmoothed and smoothed moment
functions

gt(�; �) = It;T (�)

0B@ gt(�1)

0

1CA+ (1� It;T (�))
0B@ 0

gt(�2)

1CA
gsat (�; �) = It;T (�)

0B@ gsat (�1)

0

1CA+ (1� It;T (�))
0B@ 0

gsat (�2)

1CA (15)

where It;T (�) is an indicator variable that takes the value 1 if t � [T�] and the value 0 otherwise.

Let

QaT (�; ; �) =
1

T

TX
t=1

ln (1 + k0gsat (�; �))

then we have �̂
a
(�) =

�
�̂
a

1(�)
0; �̂

a

2(�)
0
�0
where

�̂
a
(�) = arg min

�2�
sup
2�T

QaT (�; ; �) (16)

with

̂a(�) = arg sup
2�T

QaT (�̂
a
(�); ; �): (17)

To develop the analysis, we need to impose certain assumptions and we follow the spirit of

Smith (2004). We consider behaviour under the null of no change, and assume the data satisfy

the following condition.

Assumption 1 Data are generated by a sequence of strictly stationary and strong mixing Z-

valued random vectors fZtg1t=1, with mixing coe¢ cients, �(j), satisfying
P1

j=1 j
2�(j)(��1)=� <

1, for some � > 1, where Z is a Borel subset of <d:

As noted in the previous section, we handle the dependence in the data implied by Assumption

1 through kernel smoothing. The next assumption addresses the bandwidth, hT , and choice of

kernel, k(:), such that they obey conditions similar to those laid out in Theorem 1(a) of Andrews

(1991). Let

�k (!) =

8><>: supb�! jk (b)j ; ! � 0

supb�! jk (b)j ; ! < 0
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and K(�) = (2�)�1
R
k(x) exp(��x�)dx, the spectral window generator of the kernel k(:), with

kj =
R1
�1 k(!)

jd! , j = 1; 2:

Assumption 2 (i) hT = O(T
1
2� ) for some � > 1; (ii) k(:) : < ! [�kmax; kmax], kmax < 1,

k(0) 6= 0, k1 6= 0, and k(:) is continuous at 0 and almost everywhere; (iii)
R1
�1

�k(!)d! < 1;

(iv) jK(x)j � 0 for all x 2 <:

Assumption 2(i) is a slight adaptation of Smith (2004), as used by Guay and Lamarche

(2010), which simpli�es certain aspects of the proofs at no extra cost.

We must also place restrictions on the (unsmoothed) moment function gt(�) = g(Zt; �),

and these are speci�ed in the following assumptions. De�ne the following quantities: �gT (�) =

1
T

PT
t=1 gt(�), 
(�) = limT!1 var

�p
T �gT (�)

�
, and �g[T�](�) =

1
T

P[T�]
t=1 gt(�). The smoothed

counterparts of �gT (�) and �g[T�](�) are �gsaT (�) =
1
T

PT
t=1 g

sa
t (�) and �g

sa
[T�](�) =

1
T

P[T�]
t=1 g

sa
t (�);

respectively.

Assumption 3 (i) E[sup�2B jjgt(�)jj�] < 1 for some � > max
h
4�; 2�

��1

i
; (ii) 
(�) is �nite

and p.d. for all � 2 B � <k, where B is a compact parameter set; (iii) The moment function

g(z; �) � <` is continuous in z for all � 2 B, and is continuous at each � 2 B w.p.a.1; (iv)

g(�0) = 0 and inf�2� kg (�; �)k > 0 for all � 6= �0 =
�
�00; �

0
0

�0
:

The existence of g(�) � E [gt(�)] and g(�; �) � (�g(�1)0; (1� �) g(�2)0)
0 is guaranteed by As-

sumption 3(i), whilst Assumption 3(iv) is a global identi�cation condition. Assumptions 1- 3 en-

sure that an appropriate FCLT applies to both
p
T �g[T�](�0), with limT!1 var

�p
T �g[T�](�0)

�
=

�
0, and
p
T �gsa[T�](�0), with limT!1 var

�p
T �gsa[T�](�0)

�
= k1�
0, for all � 2 [0; 1], where


0 = 
(�0). These assumptions also ensure that a (weak) ULLN applies to �gT (�) and to both

�gT (�; �) � 1
T

PT
t=1 gt(�; �) and �g

sa
T (�; �) � 1

T

PT
t=1 g

sa
t (�; �), with the latter two also being

uniform over � 2 [0; 1] :7

The following assumption restricts the bounds on �, ensuring that they shrink to zero more

slowly than the stochastic rate of convergence of ~�;

Assumption 4 � 2 �T =
n
� : k�k � B

�
T=h2T

��"o
, where �

�(��1) < " < 1
2 , for some �nite

B > 0:

7 Indeed, Andrews (1993, Proof of Theorem A1) shows that sup� sup� k�gT (�; �)� �g(�; �)k = op(1):

12



Under the above assumptions, we can establish the consistency of the PSEL estimator as

follows:

Theorem 1 Under Assumptions 1-4: (i) sup�2�
�̂a(�)� �0 = op(1), and (ii) sup�2� k̂a(�)k =

op(1):

To establish asymptotic normality, the following assumptions are made regarding the (un-

smoothed) derivative of the moment function Gt(�) = @gt(�)=@�
0, and it will be useful to de�ne

G(�) = E [Gt(�)], which exists by Assumption 5(i), below.

Assumption 5 (i) E[sup�2B jjGt(�)jj�=(��1)] <1 for some � > max[4v; 2�
��1 ]; (ii) The moment

function g(z; �) � <` is continuously partially di¤erentiable in � in a neighbourhood B0 of

�0 2 int(B), w.p.a.1; (iii) G0 � G(�0) has full rank k.

It will also be useful to de�ne the following matrices

A(�) =

264 � 0

0 1� �

375


0(�) = lim
T!1

var
�p
T �gT (�0; �)

�
=

264 �
0 0

0 (1� �) 
0

375 = A(�)
 
0

G0(�) =

264 �G0 0

0 (1� �)G0

375 = A(�)
G0
and M0 = 


�1=2
0 G0, P0 = M0 (M

0
0M0)

�1
M0. Under Assumptions 1 and 3, Andrews (1993,

Proof of Theorem 1), shows that �T (�) =) J`(�), as a process indexed by � 2 �, where

�T (�) =
�
I2 
 
�1=20

�p
T �gT (�0; �) =

264 

�1=2
0

p
T �g[T�](�0)



�1=2
0

np
T �gT (�0)�

p
T �g[T�](�0)

o
375

and

J`(�) =

264 B`(�)

B`(1)�B`(�)

375
with B`(�), � 2 [0; 1], being a vector of ` mutually independent standard Brownian motions on

[0; 1]. Furthermore, Assumptions 1, 2 and 3, and arguments similar to Smith (2004, Lemma A3)
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establish that hT �V aT (�0; �)
p! k2
0(�), uniformly in �, where

�V aT (�; �) =
1

T

TX
t=1

gsat (�; �) g
sa
t (�; �)

0
:

Theorem 2 Under Assumptions 1-5, every sequence of PSEL estimators de�ned by (16) and

(17), T � 1,

p
T
�
�̂
a
(�)� �0

�
= �

�
A (�)

�1 
 (M 0
0M0)

�1
M 0
0

�
�T (�) + op�(1)

=) �
�
A (�)

�1 
 (M 0
0M0)

�1
M 0
0

�
J`(�)

(
p
T=hT )̂

a(�) =
�
A (�)

�1 
 
�1=20 (I` � P0)
�
�T (�) + op�(1)

=)
�
A (�)

�1 
 
�1=20 (I` � P0)
�
J`(�)

where =) denotes weak convergence to a process indexed by � 2 �, provided � has closure in

(0; 1), and op�(1) denotes terms that are op(1) uniformly in � 2 �. Further, �̂(�) and ̂ (�) are

asymptotically uncorrelated.

Alternatively, the weak convergence results could be stated as

(A(�)
 Ik)
p
T
�
�̂
a
(�)� �0

�
=) �

�
I2 
 (M 0

0M0)
�1
M 0
0

�
J`(�)

(A(�)
 I`) (
p
T=hT )̂

a(�) =)
�
I2 
 
�1=20 (I` � P0)

�
J`(�):

These results ensure that, uniformly in �, hT �V aT (�̂
a
(�); �)

p! k2
0(�) and 1
T

PT
t=1

@gsat (�̂
a
(�); �)

@�0
p!

k1G0(�):

The following Theorem establishes that the order of sample splitting and kernel smoothing

makes no di¤erence, asymptotically, to the weak convergence results obtained in Theorems 1 and

2 or, indeed, the results of Section 4. For smoothing before the sample split, de�ne the (2`� 1)

smoothed moment function as

gsbt (�; �) = It;T (�)

0B@ gst (�1)

0

1CA+ (1� It;T (�))
0B@ 0

gst (�2)

1CA ; (18)

where gst (�) is de�ned at (5), with �g
sb
[T�](�0) =

1
T

P[T�]
t=1 g

s
t (�0), �g

sb
T (�; �) =

1
T

PT
t=1 g

sb
t (�; �) and

�V bT (�; �) =
1
T

PT
t=1 g

sb
t (�; �) g

sb
t (�; �)

0
: This leads to the PSEL estimators

�̂
b
(�) = arg min

�2�
sup
2�T

1

T

TX
t=1

ln
�
1 + k0gsbt (�; �)

�
(19)
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and

̂b(�) = arg sup
2�T

1

T

TX
t=1

ln
�
1 + k0gsbt (�̂(�); �)

�
: (20)

Theorem 3 Under the assumptions of Theorem 2 with �̂
b
(�) and ̂b(�) de�ned by (19) and

(20), respectively,

sup
�2�

pT ��̂a(�)� �̂b(�)� = op(1)

sup
�2�

(pT=hT )�̂a(�)� ̂b(�)� = op(1)

The next Theorem details the asymptotic distribution of the restricted PSEL estimators,

whether or not the moment functions are smoothed after of before the sample split de�ned by

�. These restricted PSEL estimators are constructed as follows. De�ne the restricted (2`� 1)

smoothed moment function as

_gst (�; �) = It;T (�)

0B@ gst (�)

0

1CA+ (1� It;T (�))
0B@ 0

gst (�)

1CA ;
where smoothing can occur after or before the sample split and let _QT (�; ; �) = 1

T

PT
t=1 ln (1 + k

0 _gst (�; �)),

then

~�(�) = arg min
�2B

sup
2�T

_QT (�; ; �)

= arg min
�2B

8<: sup
�2�T

1

T

[T�]X
t=1

ln
�
1 + k�0gst (�)

�
+ sup
�2�T

1

T

TX
t=[T�]+1

ln
�
1 + k�0gst (�)

�9=;
and

~(�) = arg sup
2�T

1

T

TX
t=1

ln
�
1 + k0 _gst (

~�; �)
�

so that

~�1(�) = arg sup
�2�T

1

T

[T�]X
t=1

ln
�
1 + k�0gst (

~�(�))
�

~�2(�) = arg sup
�2�T

1

T

TX
t=[T�]+1

ln
�
1 + k�0gst (

~�(�))
�
:

Theorem 4 Under the assumptions of Theorem 2 with ~�(�) and ~(�) equal to either the after

or before sample split PSEL estimators,

p
T
�
~�(�)� �0

�
= � (M 0

0M0)
�1
M 0
0

n


�1=2
0

p
T �gT (�0)

o
+ op�(1)

=) � (M 0
0M0)

�1
M 0
0B`(1)
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and

�p
T=hT

�
~(�) =

�
A(�)�1 � �2�02 
 


�1=2
0 (I` � P0)

�
�T (�) + op�(1)

=
1

�(1� �)

�
a(�)
 
�1=20

�
(I` � P0) (a(�)0 
 I`) �T (�) + op�(1)

=)
�
A(�)�1 � �2�02 
 


�1=2
0 (I` � P0)

�
J`(�)

=
�
A(�)�1 
 
�1=20

�
J`(�)�

�
�2 
 
�1=20 P0

�
B`(1)

where a(�)0 = (1� �; � �).

4 Testing Structural Stability

In this section, we propose tests based on EL for testing the hypotheses described in Section

2. It turns out to be most convenient to present the tests in the following order: Section 4.1

presents tests for D1(�) = 0, Section 4.2 presents tests for that D2(�) = 0, and Section 4.3

presents tests for D(�) = 0. Section 4.4 discusses the various tests and includes details of where

percentiles of the limiting distributions are tabulated in the literature. In the presentation of the

tests, we focus on the unknown break-point case; the �xed break-point case is covered as part of

the discussion in Section 4.4.

Before presenting these statistics, we note, again, that in the light of Lemma 6, in the

Appendix, and Theorem 3, we shall not, henceforth, distinguish between the use of gsat (�; �) or

gsbt (�; �) � gst (�; �) smoothed moment functions and shall simply refer, hereafter, to g
s
t (�; �),

which could be either as the di¤erence does not in�uence the �rst order asymptotic analysis.

Thus, let QT (�; ; �) = 1
T

PT
t=1 ln (1 + k

0gst (�; �)) and �g
s
T (�; �) =

1
T

PT
t=1 g

s
t (�; �). Further,

de�ne �V sT (�; �) =
1
T

PT
t=1 g

s
t (�; �)g

s
t (�; �)

0, so that (from Smith (2004, Theorem 2.1)) it can be

shown that

sup
�2�

hT �V sT (�̂(�); �)� k2
0(�) = op(1):
4.1 Testing D1(�) = 0

To test D1(�) = 0 for a �xed �, the obvious statistic is the EL-likelihood ratio statistic

LRT (�) = 2
�
k2=k

2
1

�
(T=hT )

n
_QT

�
~�(�); ~(�); �

�
�QT

�
�̂(�); ̂(�); �

�o
: (21)
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In view of extant results in the EL literature on testing parametric restrictions,8 we also consider

inference based on the EL-Wald statistic for �1 = �2,

WT (�) = (k2=k
2
1)T

�
�̂1(�)� �̂2(�)

�0 n
VWT (�̂(�))

o�1 �
�̂1(�)� �̂2(�)

�
(22)

and the Lagrange Multiplier statistic, based on ~�(�) the Lagrange Multiplier associated with the

restriction �1 = �2,

LMT (�) = (k2=k
2
1)(T=hT )~�(�)

0
n
V �T (

~�(�))
o�1

~�(�)= (�(1� �)) (23)

where

VWT (�) =

2X
i=1

�GsTi(�i)
0 � �V sTi(�i)	�1 �GsTi(�i)

�GsTi(�) =
1

T

X
t2Ti(�)

@gst (�)

@�0
; �V sTi(�) =

hT
T

X
t2Ti(�)

gst (�)g
s
t (�)

0

V �T (�) = �GsT (�)
0 � �V sT (�)	�1 �GsT (�)

�GsT (�) =
1

T

TX
t=1

@gst (�)

@�0
; �V sT (�) =

hT
T

TX
t=1

gst (�)g
s
t (�)

0:

Thus, from here on we use D̂1;T (�) to denote any one of WT (�), LMT (�) or LRT (�).9

To test D1(�) = 0 for all � 2 � 2 (0; 1), we utilize results from the structural stability testing

literature and consider inference based on the following functionals of D̂1;T (�),

�
h
D̂1;T (�)

i
=

8>>>><>>>>:
sup�2� D̂1;T (�) � sup D̂1;T (�)R
�
D̂1;T (�)dN(�) � ave D̂1;T (�)

log
nR

�
exp

n
1
2 D̂1;T (�)

o
dN(�)

o
� exp D̂1;T (�)

(24)

where N(�) de�nes the prior distribution for the break-point � 2 �, which we will assume

to be uniform.10 The following Theorem shows each of these test statistics are (�rst order)

asymptotically equivalent, for di¤erent choices of D̂1;T (�) and common choice of functional � [:] :

Theorem 5 Under Assumptions 1-5, we have

sup
�2�

���D̂1;T (�)� ST (�)��� = op(1);
8See Qin and Lawless (1994), Smith (2004).
9This involves a slight abuse of notation compared to Section 2 because the distances here are scaled.
10See Andrews (1993), Andrews and Ploberger (1994) and Sowell (1996).

17



where

ST (�) =
�T (�)

0 (a(�)
 I`)0 P0 (a(�)
 I`) �T (�)
�(1� �)

=) (Bk(�)� �Bk(1))0 (Bk(�)� �Bk(1))
�(1� �) �Wk(�);

Bk(�)��Bk(1) is a vector of Brownian bridges and Bk(�) is a vector of k independent standard

Brownian motions, and for each functional (24)

�
h
D̂1;T (�)

i
=) � [Wk(�)] :

4.2 Testing D2(�)

To test D2(�) = 0, we consider inference based on the appropriate EL-likelihood ratio statistic

LR�
T (�) = 2

�
k2=k

2
1

�
(T=hT )QT

�
�̂(�); ̂(�); �

�
: (25)

Again, motivated by results in the EL testing literature, we also consider inference based on the

following alternative statistics,

OT (�) = (k2=k
2
1) (T=hT ) �g

s
T (�̂(�); �)

0
n
�V sT (�̂(�); �)

o�1
�gsT (�̂(�); �)

0 (26)

LM�
T (�) = (T=hT )̂(�)

0
n
�V sT (�̂(�); �)

o
̂(�)=k2: (27)

For a �xed �, OT (�) is the EL counterpart of the GMM overidentifying test statistic; LM�
T (�) is

a Lagrange Multiplier statistic, based on ̂(�); and, LR�
T (�) is a Likelihood Ratio type statistic.

Letting D̂2;T (�) denote any one of OT (�), LM�
T (�) or LR�

T (�),
11 we use similar ideas to the

previous sub-section to test D2(�) for all � 2 � based on �
h
D̂2;T (�)

i
. The limiting distribution

of the latter statistic is given in the following theorem.

Theorem 6 Under Assumptions 1-5, we have

sup
�2�

���D̂2;T (�)� S�T (�)��� = op(1);
where

S�T (�) = �T (�)
0 �A(�)�1 
 (I` � P0)� �T (�)

=) J`�k(�)
0 (A(�)
 I`�k)�1 J`�k(�) �W �

`�k(�)

11Again, this involves a slight abuse of notation compared to Section 2 because the distances here are scaled.
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and J`�k(�) =

264 B`�k(�)

B`�k(1)�B`�k(�)

375, where B`�k(�) is a vector of `�k independent standard
Brownian motions, and for each functional in (24)

�
h
D̂2;T (�)

i
=) �

�
W �
`�k(�)

�
:

4.3 Testing D(�) = 0

Given the discussion in Section 2, testing D(�) = 0 can be achieved by employing statistics which

are functionals of the processes, D̂1;T (�) and D̂2;T (�). Speci�cally, we consider the combined

process D̂T (�) = D̂1;T (�) + D̂2;T (�) for any of the choices of D̂1;T (�) and D̂2;T (�) de�ned in

Sections 4.1 and 4.2 respectively, and the functionals �
h
D̂T (�)

i
for any � [:] de�ned in (24).

Then, we have the following Corollary to Theorems 5 and 6:

Corollary 1 Under Assumptions 1-5, we have

sup
�2�

���D̂T (�)� ST (�)� S�T (�)��� = op(1);
and for each functional in (24)

�
h
D̂T (�)

i
=) �

�
Wk(�) +W

�
`�k(�)

�
:

4.4 Discussion

Sections 4.1-4.3 present tests of the hypotheses of interest in the unknown break-point case. The

corresponding results for the �xed break-point case follows directly from the proofs of Theorems

5 and 6 and so are presented in the following corollary.

Corollary 2 Under Assumptions 1-5, and if H0(�) holds for some � 2 (0; 1) then D̂1;T (�)
d!

�2k, D̂2;T (�)
d! �22(`�k), and D̂T (�)

d! �22`�k, where D̂1;T (�), D̂2;T (�) and D̂T (�) are de�ned in

Sections 4.1, 4.2 and 4.3 respectively and �2� denotes a chi-squared distribution with � degrees of

freedom.

We now consider the relationship between our statistics and others in the literature. As

noted in the introduction, Guay and Lamarche (2010) derive some of our test statistics from

the perspective of testing the stability of the identifying and overidentifying restrictions, a ter-

minology that derives from Hall and Sen�s (1999) framework for testing structural instability
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in models estimated via GMM. Comparing Guay and Lamarche�s (2010) framework specialized

to EL with our info-metric framework, it can be seen that their tests of the stability of the

identifying restrictions are the same as our tests of D1(�) = 0, and their tests of the stability of

the overidentifying restrictions are the same as our tests of D2(�) = 0.12 While the same tests

result, the info-metric approach has the advantage that it is based on the concept of minimiz-

ing the distance between the class of probability distributions restricted to satisfy the moment

condition and the true probability distribution. This allows us to relate the various hypotheses

of interest in structural instability testing to the distance between certain classes of probability

distributions and the true distribution. We believe this is a more fundamental - and also more

instructive - representation of these hypotheses than their expression in terms of identifying

restrictions (parameter variation) and overidentifying restrictions as is done in both the GMM

and GEL frameworks.

Guay and Lamarche (2010) observe that their GEL-based tests are �rst order asymptotically

equivalent to their GMM counterparts under both the null of stability and local alternatives.13

Given our previous remarks, this equivalence obviously extends to our statistics as well. One

advantage of this equivalence is that the percentiles for the limiting distributions of our statistics

have already been tabulated in the literature. Speci�cally, percentiles of � [Wk(�)] are presented

in Andrews (2003)[Table 1] (for � [�] = sup(�)) and Andrews and Ploberger (1994)[Tables 1

and 2] (for � [�] = ave(�), exp(�)); the percentiles for � [W �
`�k(�)] are presented in Hall and Sen

(1999)[Table 1] and Sen (1997). Percentiles for � [Wk(�)+W
�
`�k(�)]] are reported in Sen (1997).

A second advantage of the equivalence under local alternatives is that Theorem 5 continues to

hold under local alternatives to the moment condition that do not involve parameter variation,

and Theorem 6 continues to hold for local alternatives to the moment condition that involve

parameter variation alone. These properties suggest that the individual applications of tests

based on D̂1;T (�) and D̂2;T (�) have the potential to reveal when the instability is con�ned to

parameter variation alone.

12Guay and Lamarche (2010) do not consider the analog to D(�) = 0 in their framework. However, Sen (1997)

does propose and analyze such a test within the GMM framework.
13Li (2011) establishes the same result for EL-based test statistics.
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5 Monte Carlo Evidence

In this section, we report results from a simulation study that gives insights into the �nite sample

performance of the EL-based tests.

Following Ghysels, Guay, and Hall (1997) and Hall and Sen (1999), we consider the following

data generation process

xt = �1xt�1 + ut + �ut�2; ut � IN (0; 1) ; for t = 1; 2; : : : ; T=2

xt = �2xt�1 + ut + �ut�2; ut � IN (0; 1) ; for t = T=2 + 1; T=2 + 2; : : : ; T .

We suppose that the researcher estimates an AR(1) model for xt, with AR parameter �, based

on the moment condition E[gt(�)] = 0 where

gt(�) =

264 xt�1

xt�2

375 (xt � �xt�1) :
We consider three choices of sample size: T = 200; 400; 600. On each replication we calculate

� [D̂1;T (�)], � [D̂2;T (�)] and � [D̂T (�)] for the three versions of � [�] de�ned in (24) and: D̂1;T (�) =

WT (�), LMT (�) or LRT (�); D̂2;T (�) = OT (�), LM�
T (�) or LR�

T (�); D̂T (�) = OT (�)+WT (�),

LMT (�) + LM�
T (�), LRT (�) + LR�

T (�). All these statistics are calculated using � = ["; 1� "]

for the following choices of trimming parameter, " = 0:15; 0:20; 0:25; 0:30; 0:35; 0:40; 0:45.

We consider two versions of each statistic one based on the unsmoothed moment condition

and one based on the smoothed moment condition. We report both because if H0(�) holds in

this model then gt(�) is a martingale di¤erence sequence and so smoothing is actually unnec-

essary. Such examples provide evidence on the potential impact of smoothing on �nite sample

performance. In all cases, smoothing is applied before the sample split and performed using

quadratic spectral kernels with,

kT (x) =
25

12�2x2

�
sin(6�x=5)

6�x=5
� cos(6�x=5)

�
where x = j=hT , ĥT = 1:3221[�̂(2)T ]1=5 and

�̂(2) =

pX
a=1

wa
4�̂2a�̂

4
a

(1� �̂a)8

(
pX
a=1

wa
�̂4a

(1� �̂a)4

)�1
where �̂a, �̂

2
a are estimated AR(1) coe¢ cients and error variances based on moment functions

gt(�̂) (p � 1; a = 1; 2; : : : ; p), respectively.14 For ease of exposition, we refer to the tests based
14This choice corresponds to the optimal bandwidth based on an AR(1) approximation to the moment function

with wa = 1; see Andrews (1991)[p.834-5] with wa = 1 in his equation (6.4).
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on the unsmoothed (smoothed) moment conditions as unsmoothed (smoothed) tests.

We consider the size properties of the tests using the following two choices of parameters

for which H0(�) holds: (�1; �2; �) = (0:4; 0:4; 0) and (0:8; 0:8; 0) - termed DGP1 and DGP2,

respectively. Thus the null hypotheses of all tests considered holds for choices of parameter

values. In all cases, results are based on 1000 replications.

At sample size T = 200, all of the tests are oversized for at least one choice of �. Therefore,

we omit these results here.15 Tables 1-3 report the rejection frequencies the tests of D1(�),

D2(�) and D(�) respectively at T = 400, Tables 4-6 report the the empirical size of the tests

of D1(�), D2(�) and D(�) respectively at T = 600. In each case the nominal size of the test is

0:05. From Tables 1-3, it can be seen that for T = 400 the unsmoothed tests exhibit relative

rejection frequencies that approximately equal the nominal sizes for all values of the trimming

parameter, but the smoothed tests are oversized with rejection frequencies approximately equal

to the nominal size only for trimming parameters " � 0:35 or 0:4. From Tables 4-6, it can be seen

that the asymptotic approximation is far better at T = 600 with the smoothed tests exhibiting

rejection frequencies approximately equal to the nominal size for all " � 0:2 or 0:25. Behind

this broad summary, there are some variations in performance of various tests. For example,

the Ave� functional tends to yield statistics whose tail behaviour is better approximated by the

asymptotic theory than either Exp� or the Sup� statistics. In future work, we plan to explore

the power of the tests.

6 Concluding remarks

In this paper, we develop an info-metric framework for testing hypotheses about structural

instability in nonlinear, dynamic models estimated from the information in population moment

conditions. Our methods are designed to distinguish between three states of the world: (i) the

model is structurally stable in the sense that the population moment condition holds at the same

parameter value throughout the sample; (ii) the model parameters change at some point in the

sample but otherwise the model is correctly speci�ed; (iii) the model exhibits more general forms

of instability than a single shift in the parameters. An advantage of the info-metric approach is

that the null hypotheses concerned are formulated in terms of distances between various choices

15These results are available from the authors upon request.
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of probability measures constrained to satisfy (i) and (ii) and the empirical measure of the

sample. Under the alternative hypotheses considered, the model is assumed to exhibit structural

instability at a single point in the sample, referred to as the break-point; our analysis allows

for the break-point to be either �xed a priori or treated as occuring at some unknown point

within a certain fraction of the sample. We propose various test statistics that can be thought

of as sample analogs of the distances described above, and derive their limiting distributions

under the appropriate null hypothesis. In principle, there are a number of possible measures of

distance that can be used in this context but we focus on the measure associated with Empirical

Likelihood estimation. The limiting distributions of our statistics are non-standard but coincide

with various distributions that arise in the literature on structural instability testing within

the Generalized Method of Moments framework. A small simulation study illustrates the �nite

sample performance of our test statistics under the null hpothesis.

7 Appendix

Here we collect together some intermediate Lemmas and prove the main Theorems. Following

Andrews (1993), we use the following notation: XT (�) = op�(1) if sup�2� kXT (�)k = op(1) and

XT (�) = Op�(1) if sup�2� kXT (�)k = Op(1).

The �rst result is a FCLT and second a generic (weak) ULLN.

Lemma 1 Under Assumptions 1-3(i)(ii)

k�11 

�1=2
0

p
T �gsa[T�](�0) = 


�1=2
0

p
T �g[T�](�0) + op�(1)

=) B`(�)

where B(�) is a vector of k mutually independent standard Brownian motions on [0; 1], and

k�11

�
I2 
 
�1=20

�p
T �gsaT (�0; �) =

�
I2 
 
�1=20

�p
T �gT (�0; �) + op(1)

=) J`(�) =

264 B`(�)

(B`(1)�B`(�))

375 :
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Proof of Lemma 1: Firstly, by Andrews (1993), 
�1=20

p
T �g[T�](�0) =) B(�). Second, and

following Smith (2004, Lemma A2), we can write

p
T �gsa[T�](�0) =

1

hT

[T�]�1X
j=1�[T�]

k

�
j

hT

�8<: 1p
T

min[[T�];[T�]�j]X
t=max[1;1�j]

gt (�0)

9=; :
De�ne A[T�] (j) = ft : t =2 [max [1; 1� j] ;min [[T�] ; [T�]� j]]g. Then

1p
T

min[[T�];[T�]�j]X
t=max[1;1�j]

gt (�0) =
1p
T

[T�]X
t=1

gt (�0)� ujT (�);

where ujT (�) = 1p
T

Pjjj
t=1 gt (�0), for j < 0, and ujT (�) = 1p

T

P[T�]
t=[T�]�j+1 gt (�0), for j � 0.

Thus, in both cases, uTj(�) consists of jjj terms, uniformly in �, and so ujT (�) =
q

jjj
T Op�(1),

where the Op�(1) term is independent of j. This enables us to write

p
T �gsa[T�](�0) =

1

hT

[T�]�1X
j=1�[T�]

k

�
j

hT

�p
T �g[T�](�0) +

8<: 1

hT

[T�]�1X
j=1�[T�]

r
jjj
T
k

�
j

hT

�9=;Op�(1)
=

1

hT

T�1X
j=1�T

k

�
j

hT

�p
T �g[T�](�0) + eT (�)

= k1
p
T �g[T�](�0) + op�(1)

where we have used limT!1
1
hT

PT�1
j=1�T k

�
j
hT

�
= k1 (see, for example, Smith (2004, proof of

Lemma A1) and sup�2� keT (�)k = op(1)). To see the latter, by repeated use of the triangle

inequality we have

keT (�)k �

8<:
������ 1hT

�[T�]X
j=1�T

k

�
j

hT

�������+
������ 1hT

T�1X
j=[T�]

k

�
j

hT

�������
9=;
 1p

T

[T�]X
t=1

gt (�0)


+

8<: 1

hT

T�1X
j=1�T

r
jjj
T

����k� j

hT

�����
9=;Op�(1)

where the second line follows from������ 1hT
[T�]�1X
j=1�[T�]

r
jjj
T
k

�
j

hT

������� � 1

hT

[T�]�1X
j=1�[T�]

r
jjj
T

����k� j

hT

����� � 1

hT

T�1X
j=1�T

r
jjj
T

����k� j

hT

����� :
Since, 1

hT

PT�1
j=1�T k

�
j
hT

�
= k1 + o(1), both

��� 1hT P�[T�]
j=1�T k

�
j
hT

���� and ��� 1hT PT�1
j=[T�] k

�
j
hT

���� are
o(1), uniformly in �, whilst sup�2�

pT �g[T�](�0) = Op(1), and Smith (2004, Lemma C1)

can easily be extended to show that limT!1
1
hT

PT�1
t=1�T

n
jtj
T

or ���k � t
hT

���� = 0, for all r > 0.

Therefore, eT (�) = op�(1). Thus

k�11 

�1=2
0

p
T �gsa[T�](�0) = 


�1=2
0

p
T �g[T�](�0) + op�(1):
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Similar analysis shows that

k�11 

�1=2
0

1p
T

TX
t=[T�]+1

gsat (�0) = 

�1=2
0

1p
T

TX
t=[T�]+1

gt (�0) + op�(1)

= 

�1=2
0

�p
T �gT (�0)�

p
T �g[T�](�0)

�
+ op�(1)

so that

k�11

�
I2 
 
�1=20

�p
T �gsaT (�0; �) =

�
I2 
 
�1=20

�p
T �gT (�0; �) + op(1);

since �gT (�0; �) =
�
�g[T�](�0)

0; �gT (�0)
0 � �g[T�](�0)0

�0
, and the result follows. �

Lemma 2 De�ne mt (�) = m (Zt;�) and m (�) = E [m (Zt;�)], with Zt satisfying Assumption

1 and assume su¢ cient regularity (Assumptions 3 (i) and (iii)) so that sup�2B k �mT (�)�m (�)k =

op(1), where �mT (�) =
1
T

PT
t=1mt(�). Let msa

t (�) be the smoothed version of mt (�), de�ned in

an analogous manner to gsat (�) at (14), and (following (15)), de�ne

msa
t (�; �) = It;T (�)

0B@ msa
t (�1)

0

1CA+ (1� It;T (�))
0B@ 0

msa
t (�2)

1CA
�msa
T (�; �) =

1

T

TX
t=1

msa
t (�; �)

with m(�; �) = (�m(�1)
0; (1� �)m(�2)0)

0. Then, sup�2� sup�2� k �msa
T (�; �)� k1m (�; �)k =

op(1).

Proof of Lemma 2: We can write

�msa
T (�; �)� k1m (�; �) =

0B@
n
1
T

P[T�]
t=1 m

sa
t (�1)

o
� k1�m(�1)n

1
T

PT
t=[T�]+1m

sa
t (�2)

o
� k1(1� �)m(�2)

1CA
In particular, and by the triangle inequality with �msa

[T�](�) =
1
T

P[T�]
t=1 m

sa
t (�); �msa

[T�](�)� k1�m(�)
 �

 �msa
[T�](�)� k1 �m[T�](�)

+ k1  �m[T�](�)� �m(�)


�

 �msa
[T�](�)�

T�1X
j=1�T

1

hT
k

�
j

hT

�
�m[T�](�)


+

������
T�1X
j=1�T

1

hT
k

�
j

hT

�
� k1

������  �m[T�](�)


+k1
 �m[T�](�)� �m(�)

 :
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By Andrews (1993, Proof of Lemma A1), sup�2� sup�
 �m[T�](�)� �m(�)

 = op(1) and sincePT�1
j=1�T

1
hT
k
�
j
hT

�
= k1+o(1), the second term is also op�(1). Finally, and following the strategy

employed in the proof of the Lemma 1, write

�msa
[T�](�) =

1

hT

[T�]�1X
j=1�[T�]

k

�
j

hT

��
�m[T�](�)� ujT (�; �)

	
where ujT (�; �) = 1

T

Pjjj
t=1 gt (�), for j < 0, and ujT (�; �) = 1

T

P[T�]
t=[T�]�j+1 gt (�), for j � 0,

and it is then straightforward to show that

sup
�
sup
�2B

 �msa
[T�](�)�

T�1X
j=1�T

1

hT
k

�
j

hT

�
�m[T�](�)

 = op(1):
Similarly, it can be shown that sup� sup�2B

� 1T PT
t=[T�]+1m

sa
t (�)

�
� k1 (1� �)m(�)

 = op(1),
and the result follows. �

The following three Lemmas are used to establish consistency of �̂(�) and ̂(�):

Lemma 3 Under Assumptions 1, 2(i), 3(i) and 4

sup
�2�;2�T ;1�t�T

j0gsat (�; �)j = op�(1):

Proof of Lemma 3: By Cauchy-Schwartz,

j0gsat (�; �)j � kk kgsat (�; �)k

� �
�
T=h2T

��"
max
1�t�T

�
sup
�2�

kgsat (�; �)k
�
:

Now,

max
1�t�T

sup
�2�

kgsat (�; �)k � max
1�t�[T�]

sup
�2B

 1hT
t�1X

j=t�[T�]

k

�
j

hT

�
gt�j (�)


+ max
1�t�[T�]+1

sup
�2B

 1hT
t�[T�]�1X
j=t�T

k

�
j

hT

�
gt�j(�)


� max

1�t�T
sup
�2B

kgt (�)k

8<: 2

hT

T�1X
j=1�T

����k� j

hT

�����
9=; ;

where the last inequality is independent of �. By Assumption 3(i), E
�
sup�2B kgt (�)k

�� � � <
1, implying that max1�t�T

�
sup�2B kgt (�)k

	
= op

�
T 1=�

�
. Furthermore, by previous results,

1
hT

PT�1
j=1�T

���k � j
hT

���� = O(1). Thus, uniformly in �,
sup

�2�;2�T ;1�t�T
j0gsat (�; �)j � O(1)

�
T=h2T

��"
op

�
T 1=�

�
= op (T

�) = op(1)
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where � = � � "�(� � 1) < 0, because " > �
�(��1) . �

The above result has the following implications, which will be of use later, as summarised in

the following Lemma.

Lemma 4 Under Assumptions 1-4, there exists a �nite constants 0 < � <1, such that w:p:a:1

and for all � 2 � and  2 �T , and for each � 2 �;

h�1T QaT (�0; ; �) � 0T �gsaT (�0; �)��0T T (28)

where T = k=hT , k = k1=k2 and

QaT (�; ; �) � k0�gsaT (�; �)� k2�0: (29)

Proof of Lemma 4: By a second order Taylor expansion, and exploiting Lemma 3, we have

that for all � 2 � and  2 �T , and each � 2 �

QaT (�; ; �) = k
0�gsaT (�; �)�

1

2
k20 �V aT (�; �) + op(1) (30)

where the op(1) error is of smaller order than k0�gsaT (�; �)�
1

2
k20 �V aT (�; �):

To establish (28), substitute �0 for � in (30) to obtain, w:p:a:1;

h�1T QaT (�0; ; �) = h
�1
T k0T �g

sa
T (�0; �)�

1

2
k20ThT

�V aT (�0; �)T

where, here, T = k=hT 2 �T . By arguments similar to Smith (2004, Lemma A3) it can be

shown that hT �V aT (�0; �) � k2
0(�) + op�(1), we can now write

h�1T QaT (�0; ; �) = 
0
T �g

sa
T (�0; �)�

k2
2
0T
0(�)T + op(k�T k

2
)

where, again, the error term op(k�T k2) is negligible relative to 0T �gsaT (�0; �) �
k2
2
0T
0(�)T .

Thus, from standard eigenvalue theory, we can write that w:p:a:1

h�1T QaT (�0; ; �) � 0T �gsaT (�0; �)��0T T

for all  2 �T , and for each � 2 �:

More generally, however, �V aT (�; �) = Op�(1), uniformly in �, so that by similar reasoning, we can

write

QaT (�; ; �) � k0�gsaT (�; �)� k2�0 + op(kk
2
)

and (29) follows from this. �
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Lemma 5 Under Assumptions 1-4, there exists a �nite constant, � > 0, such that w:p:a:1

h�1T sup
2�T

QaT (�0; ; �) � � k�gsaT (�0; �)k
2
= Op�

�
T�1

�
:

Proof of Lemma 5: As in Smith (2004, Lemma A5), by equation (28) we have, w:p:a:1 and

each � 2 �,

sup
2�T

h�1T QaT (�0; ; �) � � k�gsaT (�0; �)k
2

Since this holds for each � 2 �;

sup
�2�

sup
2�T

h�1T QaT (�0; ; �) � � sup
�2�

k�gsaT (�0; �)k
2
:

The fact that sup�2� k�gsaT (�0; �k
2
= Op

�
T�1

�
follows from Lemma 1. �

Proof of Theorem 1: By Lemma 4, equation (29) and Lemma 5, we have, w:p:a:1 and for all

 2 �T and each � 2 �

h�1T

�
k0�gsaT (�̂

a
(�); �)� k2�0

�
� h�1T QaT (�̂

a
(�); ; �)

� sup
2�T

h�1T QaT (�0; ; �)

� � k�gsaT (�0; �)k
2
;

for some �nite � > 0. Now de�ne �T = B
�
T=h2T

��"
> 0, with B and " as in Assumption 4

so that �T = O (T�), � = � "(��1)
� < � 1

� , and  =
1
k �T �g

sa
T (�̂

a
(�); �)=

�gsaT (�̂a(�); �) 2 �T .
Making this substitution in the above yields

(�T =hT ) sup
�2�

�gsaT (�̂a(�); �)��2�2T =hT � � sup
�2�

k�gsaT (�0; �)k
2

w:p:a:1 or,

sup
�2�

�gsaT (�̂a(�); �) � �2�T +�hT�T sup�2�
k�gsaT (�0; �)k

2
= �2�T

�
1 +O(1)

hT

�2T
sup
�2�

k�gsaT (�0; �)k
2

�
which implies that sup�2�

�gsaT (�̂a(�); �) = Op (�T ). This follows because sup�2� k�gsaT (�0; �)k2 =
Op
�
T�1

�
, so that

hT

�2T
sup
�2�

k�gsaT (�0; �k
2
= h�1T

h2T
�2T

sup
�2�

k�gsaT (�0; �)k
2
= h�1T Op

 �
h2T
T

�1�2"!
= op

�
h�1T

�
= op(1);

because 1 � 2" > 0 and h2T =T ! 0. Therefore, since �T ! 0, sup�2�
�gsaT (�̂a(�); �) p�!

0. But by Lemma 2, we know that sup�2�
�gsaT (�̂a(�); �)� k1g(�̂a(�); �) p�! 0. Thus,
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sup�2� g(�̂
a
(�); �) = op(1). Continuity of g(�) and the identi�cation Assumption 3(iv) then

yields sup�2�
�̂a(�)� �0 = op(1):

In fact, a further re�nement of the above argument (similar in spirit to that of Smith (2004,

Lemma A5) shows that sup�2�
�gsaT (�̂a(�); �) = Op(T�1=2), from which it can be shown that

hT �V
a
T (�̂

a
(�); �) = k2
0(�)+op�(1); c.f. Smith (2005)[Theorem 2.1]. Using, this (and arguments

similar to the above) it can be shown that sup�2� k̂a(�)k = Op
�
hT =

p
T
�
as follows.

Since, by de�nition, QaT (�̂
a
(�); ̂a(�); �) � QaT (�̂

a
(�); ; �), for all  2 �T , setting  = 0 2 �T ,

and noting that QaT (�; 0; �) � 0, for all � 2 �, we obtain, w:p:a:1,

0 � T

hT
QaT (�̂

a
(�); ̂a(�); �) =

T

hT

�
k̂a(�)0�gsaT (�̂

a
(�); �)� 1

2
k2̂a(�)0 �V aT (�̂

a
(�); �)̂a(�)

�
= Op(1)

since
T

hT
QaT (�̂

a
(�); ̂a(�); �) � sup2�T

T

hT
QaT (�0; ; �) � �

pT �gsaT (�0; �)2 = Op(1), w:p:a:1.
Thus, since sup�2�

�gsaT (�̂a(�); �) = Op(T
�1=2) and sup�2�

hT �V aT (�̂a(�); �) = Op(1), it

follows that sup�2� k̂a(�)k = Op
�
hT =

p
T
�
. This implies sup�2� k̂a(�)k = op(1):

Proof of Theorem 2: Di¤erentiating QaT (�; ; �) =
1
T

PT
t=1 ln (1 + k

0gsat (�; �)) with respect

to � and , yields the partial-sample �rst order conditions

@QaT (�̂
a
(�); ̂a(�); �)

@�
= k

1

T

TX
t=1

Gsat (�̂
a
(�); �)0̂a(�)

1 + k̂a(�)0gsat (�̂
a
(�); �)

= 0 (31)

@QaT (�̂
a
(�); ̂a(�); �)

@
= k

1

T

TX
t=1

gsat (�̂
a
(�); �)

1 + k̂a(�)0gsat (�̂
a
(�); �)

= 0 (32)

where

Gsat (�; �) =
@gsat (�; �)

@�0
= It;T (�)

0B@ @gsat (�1)
@�01

0

0 0

1CA+ (1� It;T (�))
0B@ 0 0

0
@gsat (�2)
@�02

1CA :
Writing '̂a(�) =

�
�̂
a
(�)0;

̂a(�)

hT

0�0
and '0 =

�
�00; �

0
0; 0

0�0, and exploiting Lemma 1, a mean
value expansion of (32) yields

0 = kk1
p
T �gT (�0; �) + �D'

T (�'
a(�); �)

p
T ('̂a(�)� '0)

where

�D'
T ('; �) =

1

T

TX
t=1

�
@2QaT (�; ; �)

@@�0
; hT

@2QaT (�; ; �)

@@0

�
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and �'a(�) is the usual mean value which may di¤er from row to row. Now

@2QaT (�; ; �)

@@�0
= k

1

T

TX
t=1

Gsat (�; �)

1 + k0gsat (�; �)
� k2 1

T

TX
t=1

gsat (�; �) (
0Gsat (�; �))

(1 + k0gsat (�; �))
2

hT
@2QaT (�; ; �)

@@0
= �k2hT

T

TX
t=1

gsat (�; �)g
sa
t (�; �)

0

(1 + k0gsat (�; �))
2 :

It follows from Theorem 1, Lemma 3, Lemma 2, as applied to 1
T

PT
t=1 vec (G

sa
t (�; �)), and

sup�2�
hT �V aT (��(�); �)� k2
0(�) = op(1), that

0 = kk1
p
T �gsaT (�0; �) +D

'
0 (�)

p
T ('̂a(�)� '0) + op�(1)

where

D'
0 (�) =

�
kk1G0(�); �k2k2
0(�);

�
:

Similarly,
p
T

hT

@Qa
T (�̂

a
(�);̂a(�);�)
@� = k 1T

PT
t=1

Gsa
t (�̂

a
(�);�)0

1+k̂a(�)0gsat (�̂
a
(�);�)

p
T
�
̂a(�)
hT

�
= kk1G0(�)

0pT
�
̂a(�)
hT

�
+

op�(1). Combining these results, we obtain

0 =

0B@ 0
p
T �gT (�0; �)

1CA+
264 0 G0(�)

0

G0(�) �
0(�)

375pT ('̂a(�)� '0) + op�(1):
Solving for

p
T ('̂a(�)� '0), yields

p
T ('̂a(�)� '0) =

0B@ �
�
A (�)

�1 
 (M 0
0M0)

�1
M0

�
�
A (�)

�1 
 
�1=20 (I` � P0)
�
1CA �T (�) + op�(1) (33)

and the result follows. �

The following Lemma establishes that Lemmas 1 and 2 also hold for moment functions

smoothed before the sample split.

Lemma 6 Under Assumptions 1, 2 and 3:

1. sup�
pT �gsbT (�0; �)� k1pT �gT (�0; �) = op(1):

2. Let mt (�) and m (�; �) be as de�ned in Lemma 2, and let msb
t (�) be the smoothed version

of mt (�), de�ned in an analogous manner to gsbt (�), with �m
sb
T (�; �) de�ned accordingly.

Then sup�2� sup�2�
 �msb

T (�; �)� k1m (�; �)
 = op(1):

Proof of Lemma 6: By Smith (2004, Lemma A2),
p
T �gsbT (�0) = k1

p
T �gT (�0)+op(1). Then, by

the triangle inequality, it su¢ ces to consider
p
T �gsb[T�](�)�k1

p
T �g[T�](�), since

1p
T

PT
t=[T�]+1 g

sb
t (�) =
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p
T �gsbT (�)�

p
T �gsb[T�](�), where

�gsb[T�](�) =

[T�]�1X
j=1�T

1

hT
k

�
j

hT

�
1

T

min[T;[T�]�j]X
t=max[1;1�j]

gt(�):

Now, when j � 0, max [1; 1� j] = 1 and min [T; [T�]� j] = [T�]� j. On the other hand when

j < 0, max [1; 1� j] = 1 + jjj when j > [T�] � T , whilst max [1; 1� j] = 1 + jjj = T when

j � [T�]� T . Thus, we can write

�gsb[T�](�) =

[T�]�1X
j=0

1

hT
k

�
j

hT

�8<: 1T
[T�]X
t=1

gt(�)� e1T (�; �)

9=;
+

�1X
j=1�T+[T�]

1

hT
k

�
j

hT

�8<: 1T
[T�]X
t=1

gt(�)� e2T (�; �)

9=;
+

�T+[T�]X
j=1�T

1

hT
k

�
j

hT

�8<: 1T
[T�]X
t=1

gt(�)� e3T (�; �)

9=;
where

e1T (�; �) =
1

T

[T�]X
t=[T�]+1�j

gt(�)

e2T (�; �) =
1

T

jjjX
t=1

gt(�)�
1

T

[T�]+jjjX
t=[T�]+1

gt(�)

e3T (�; �) =
1

T

jjjX
t=1

gt(�)�
1

T

TX
t=[T�]+1

gt(�)

Therefore

�gsb[T�](�) =
T�1X
j=1�T

1

hT
k

�
j

hT

�
1

T

[T�]X
t=1

gt(�)�
3X
j=0

AjT (�; �)

where

A0T (�; �) =
1

hT

T�1X
j=[T�]

k

�
j

hT

�
1

T

[T�]X
t=1

gt(�)

A1T (�; �) =
1

hT

[T�]�1X
j=0

k

�
j

hT

�
1

T

[T�]X
t=[T�]+1�j

gt(�)

A2T (�; �) =
1

hT

�1X
j=1�T+[T�]

k

�
j

hT

�8<: 1T
jjjX
t=1

gt(�)�
1

T

[T�]+jjjX
t=[T�]+1

gt(�)

9=;
A3T (�; �) =

1

hT

�T+[T�]X
j=1�T

k

�
j

hT

�8<: 1T
jjjX
t=1

gt(�)�
1

T

TX
t=[T�]+1

gt(�)

9=; :
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1. sup�
pT �gsb[T�](�0)� k1pT �g[T�](�0) p! 0:

We show that sup�
pTAjT (�0; �) = op(1), for j = 0; 1; 2; 3:

(a) sup�
pTA0T (�0; �) = op(1) : Firstly sup�  1p

T

P[T�]
t=1 gt(�0)

 = Op(1), by Lemma
1 and the Continuous Mapping Theorem. Second, limT!1

1
hT

PT�1
j=1�T

���k � j
hT

���� =
O(1), implies limT!1 sup�

1
hT

PT�1
j=[T�]

���k � j
hT

���� = 0:
(b) sup�

pTA1T (�0; �) = op(1) :

 1p
jjj

P[T�]
t=[T�]+1�j gt(�0)

 = Op(1), uniformly in j

and � so that

sup
�
kA1T (�0; �)k �

8<: 1

hT

T�1X
j=0

r
jjj
T

����k� j

hT

�����
9=;Op(1) = op(1)

since limT!1
1
hT

PT�1
j=1�T

q
jjj
T

���k � j
hT

���� = 0:
(c) sup�

pTA2T (�0; �) = op(1) : 1p
jjj

Pjjj
t=1 gt(�0) and

1p
jjj

P[T�]+jjj
t=[T�]+1 gt(�0) are both

Op(1), uniformly in j and �, so that

sup
�
kA2T (�0; �)k �

8<: 1

hT

�1X
j=1�T

r
jjj
T

����k� j

hT

�����
9=;Op(1) = op(1)

as above.

(d) sup� kA3T (�0; �)k = op(1) :
1p
jjj

Pjjj
t=1 gt(�0) = Op(1), uniformly in j and �, and

1p
T

PT
t=[T�]+1 gt(�0) =

p
T �gT (�0)�

p
T �g[T�](�0) is Op(1) uniformly in �. Thus

sup
�
kA3T (�0; �)k � sup

�

1

hT

�T+[T�]X
j=1�T

r
jjj
T

����k� j

hT

�����Op(1) + sup
�

1

hT

�T+[T�]X
j=1�T

����k� j

hT

�����Op(1)
= op(1)

since both 1
hT

P�T+[T�]
j=1�T

q
jjj
T

���k � j
hT

���� = o(1) and sup�
1
hT

P�T+[T�]
j=1�T

���k � j
hT

���� =
o(1):

Therefore,
p
T �gs[T�](�0; �) =

PT�1
j=1�T

1
hT
k
�
j
hT

�
1p
T

P[T�]
t=1 gt(�0) + op�(1). The result fol-

lows from the fact that
PT�1

j=1�T
1
hT
k
�
j
hT

�
= k1 + o(1):

2. By Smith (2004, Lemma A1), it can be show that sup�2B
 �msb

T (�)� k1m(�)
 = op(1):

Then, by the triangle inequality, it su¢ ces to show that

sup
�
sup
�2B

 �msb
[T�](�)�

T�1X
j=1�T

1

hT
k

�
j

hT

�
�m[T�](�)

 = op(1);
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where �msb
[T�](�) =

1
T

P[T�]
t=1 m

sb
t (�); since

1
T

PT
t=[T�]+1m

sb
t (�) = �msb

T (�)� �msb
[T�](�): From

Part (1), above it is clear that

�msb
[T�](�) =

T�1X
j=1�T

1

hT
k

�
j

hT

�
1

T

[T�]X
t=1

mt(�)�
3X
j=0

AjT (�; �)

where the AjT (�; �) are as before but de�ned in terms of mt(�), rather than gt(�). It is

then straightforward to show that sup� sup� kAjT (�; �)k = op(1), for j = 0; 1; 2; 3, and the

result follows. �

Proof of Theorem 3: De�ne QbT (�; ; �) =
1
T

PT
t=1 ln (1 + k

0gst (�; �)) :

1. Consistency: As in Lemma 3, it is straightforward to show that sup�2�;2�T ;1�t�T
��0gsbt (�; �)�� =

op�(1). Therefore (30) holds with gsbt (� �) replacing g
sa
t (�; �) everywhere, with the er-

ror being of smaller order than the leading two terms. By arguments similar to Smith

(2004, Lemma A3) it can be shown that hT �V bT (�0; �) = k2
0(�) + op�(1); but in general,

�V bT (�; �) = Op�(1), uniformly in �. This yields Lemma 4 but where we can write

h�1T QbT (�0; ; �) � 0T �gsbT (�0; �)��0T T (34)

and

QbT (�; ; �) � k0�gsbT (�; �)� k2�0: (35)

From this, Lemma 5 gives

sup
�2�

sup
2�T

h�1T QbT (�0; ; �) � � sup
�2�

�gsbT (�0; �)2 = Op(T�1) (36)

where the fact that sup�2�
�gsbT (�0; �2 = Op

�
T�1

�
follows from Lemmas 6(part 1) and

1. Consistency for �̂
b
(�) then follows the from the arguments of Theorem 1, but using

equations (34)-(36), rather than (28),(29) and Lemma 5, respectively, and Lemma 6. A

similar re�nement then establishes sup�2�
�gsbT (�̂b(�); �) = Op(T

�1=2), from which it

can be shown that hT �V bT (�̂
b
(�); �) = k2
0(�) + op�(1); c.f. Smith (2005, Theorem 2.1).

Using, this (and arguments similar to the above) it can be shown that sup�2�
̂b(�) =

Op

�
hT =

p
T
�
:

2. Asymptotic Normality: This follows the same arguments as Theorem 2, and using

Lemma 6 which shows that sup� sup�2�

 1T PT
t=1

@gsbt (�; �)

@�0
� k1 1T

PT
t=1

@gt(�; �)

@�0

 p! 0.
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We thus obtain, by Lemma 6(part 1),

p
T
�
'̂b(�)� '0

�
=

0B@ �
�
A (�)

�1 
 (M 0
0M0)

�1
M0

�
�
A (�)

�1 
 
�1=20 (I` � P0)
�
1CA �T (�) + op�(1)

and the result follows.

Proof of Theorem 4: Consistency of the estimators follows from the general arguments em-

ployed in the proof of Theorem 1, and Theorem 3. Di¤erentiating _QT (�; ; �) = 1
T

PT
t=1 ln (1 + k

0 _gst (�; �))

with respect to � and  =
�
�01; �

0
2

�0
, yields the partial-sample �rst order conditions

@ _QT

�
~�(�); ~(�); �

�
@�

= k
1

T

[T�]X
t=1

Gst (
~�(�))0~�1(�)

1 + k~�1(�)0gst (
~�(�))

+ k
1

T

TX
t=[T�]+1

Gst (
~�(�))0~�2(�)

1 + k~�2(�)0gst (
~�(�))

= 0

@ _QT

�
~�(�); ~(�); �

�
@�1

= k
1

T

[T�]X
t=1

gst (
~�(�))

1 + k~�1(�)0gst (
~�(�))

= 0

@ _QT

�
~�(�); ~(�); �

�
@�2

= k
1

T

TX
t=[T�]+1

gst (
~�(�))

1 + k~�2(�)0gst (
~�(�))

= 0:

Using similar arguments to those employed in the proof of Theorem 2, a mean value expansion

of
@ _QT

�
~�(�); ~(�); �

�
@�i

= 0 about
�
�00; 0

0�0, i = 1; 2, yields, exploiting Lemmas 1 and 6,
0 = kk1

p
T �g[T�](�0) + kk1�G0

p
T
�
~�(�)� �0

�
� k2k2�
0

�p
T=hT

�
~�1(�) + op�(1)

0 = kk1
p
T �gT (�0)� kk1

p
T �g[T�](�0) + kk1 (1� �)G0

p
T
�
~�(�)� �0

�
�k2k2 (1� �) 
0

�p
T=hT

�
~�2(�) + op�(1)

respectively, or

�
�p
T=hT

�
~�1(�) = 
�10

p
T �g[T�](�0) + �


�1
0 G0

p
T
�
~�(�)� �0

�
+ op�(1)

(1� �)
�p
T=hT

�
~�2(�) = 
�10

�p
T �gT (�0)�

p
T �g[T�](�0)

�
+(1� �) 
�10 G0

p
T
�
~�(�)� �0

�
+ op�(1):
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Similarly,

p
T

hT

@ _QT

�
~�(�); ~(�); �

�
@�

= k
1

T

[T�]X
t=1

Gst (
~�(�))0

1 + k~�1(�)0gst (
~�(�))

p
T

 
~�1(�)

hT

!

+k
1

T

TX
t=[T�]+1

Gst (
~�(�))0)

1 + k~�2(�)0gst (
~�(�))

p
T

 
~�2(�)

hT

!

= kk1�G0(�)
0pT

 
~�1(�)

hT

!
+ kk1 (1� �)G0(�)0

p
T

 
~�2(�)

hT

!
+ op�(1)

= 0

Combining these results, we obtain

0 = �G0(�)
0pT

 
~�1(�)

hT

!
+ (1� �)G0(�)0

p
T

 
~�2(�)

hT

!
+ op�(1)

= G00

�1
0

p
T �gsT (�0) +G

0
0


�1
0 G0

p
T
�
~�(�)� �0

�
+ op�(1)

so that
p
T
�
~�(�)� �0

�
= � (M 0

0M0)
�1
M0

n


�1=2
0

p
T �gT (�0)

o
+ op�(1);

and

�
�p
T=hT

�
~�1(�) = 


�1=2
0

n


�1=2
0

p
T �g[T�](�0)

o
��
�1=20 P0

n


�1=2
0

p
T �gT (�0)

o
+ op�(1)

(1� �)
�p
T=hT

�
~�2(�) = 


�1=2
0

n


�1=2
0

�p
T �gT (�0)�

p
T �g[T�](�0)

�o
� (1� �) 
�1=20 P0

n


�1=2
0

p
T �gT (�0)

o
+ op�(1)

or

�p
T=hT

�
~(�) =

�
A(�)�1 
 
�1=20

�
�T (�)

�
�
�2 
 
�1=20 P0

�


�1=2
0

p
T �gT (�0) + op�(1)

=
�
A(�)�1 
 
�1=20

�
�T (�)�

�
�2�

0
2 
 


�1=2
0 P0

�
�T (�) + op�(1)

=
�
A(�)�1 � �2�02 
 


�1=2
0 (I` � P0)

�
�T (�) + op�(1)

=
1

�(1� �)

�
a(�)a(�)0 
 
�1=20 (I` � P0)

�
�T (�) + op�(1)

=
1

�(1� �)

�
a(�)
 
�1=20

�
(I` � P0) (a(�)0 
 I`) �T (�) + op�(1)

where �2 = (1; 1)
0, a(�)0 = (1� �; � �) and the result follows by Lemma 1. �
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Proof of Theorem 5: Consider, �rst, WT (�). Previous results, exploiting
p
T -consistency of

�̂i(�), show that �
k21=k2

�
VWT (�̂(�)) =

1

�(1� �) (M
0
0M0)

�1
+ op�(1)

and, combining this with (33), we obtain

�
n�
k21=k2

�
VWT (�̂(�))

o�1=2p
T
�
�̂1(�

�
��̂2(�)) =

1p
�(1� �)

(M 0
0M0)

�1=2
M 0
0 (a(�)

0 
 I`) �T (�)+op�(1)

where a(�)0 = (1� �; � �) ;so that

WT (�) =
�T (�)

0 (a(�)
 I`)0 P0 (a(�)0 
 I`) �T (�)
�(1� �) + op�(1)

= ST (�) + op�(1):

For LMT (�), it can be shown that

(
p
T=hT )~�(�) = � �GsT (~�(�))0

n
�V sT (

~�(�))
o�1p

T �gs[T�](
~�(�)) + op�(1)

= �CsT (
~�(�))0

p
T �gs[T�](

~�(�)) + op�(1);

say, where �gs[T�](�) =
1
T

P[T�]
t=1 g

s
t (�), so that an asymptotically equivalent variant of LMT (�) is

LMT (�) = (k2=k
2
1)T �g

s
[T�](

~�(�)) �CsT (
~�(�))

n
V �T (

~�(�))
o�1

�CsT (
~�(�))0�gs[T�](

~�(�)):

An expansion of
p
T �gs[T�](

~�(�)) yields

p
T �gs[T�](

~�(�)) = k1
p
T �g[T�](�0) + k1�G0

p
T
�
~�(�)� �0

�
+ op�(1)

= k1
p
T �g[T�](�0)� k1�G0 (M 0

0M0)
�1
M0

n


�1=2
0

p
T �gT (�0)

o
+ op�(1):

Furthermore, �GsT (~�(�)) = k1G0 + op�(1) and �V
s
T (
~�(�)) = k2
0 + op�(1). so thatn�

k21=k2
�
V �T (

~�(�))
o�1=2

�CsT (
~�(�))0

p
T �gs[T�](

~�(�)) = (M 0
0M0)

�1=2M 0
0 (a(�)

0 
 I`) �T (�) + op�(1)

and it immediately follows that sup�2� jLMT (�)� ST (�)j = op(1):

For LRT (�), a key expansion is that of
p
T �gsT (�̂(�); �) =

1p
T

PT
t=1 g

s
t (�; �) about �0, yielding

p
T �gsT (�̂(�); �) =

p
T �gsT (�0 ; �) + k1G0(�)

p
T (�̂(�)� �0) + op�(1)

= k1
p
T �gT (�0 ; �)� k1

�
I2 
 
1=20 P0

�
�T (�) + op�(1); (37)
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where (33) is exploited. Therefore, and again exploiting (33), we have

k�11

�
I2 
 
�1=20

�p
T �gsT (�̂(�); �) = (I2 
 (I` � P0)) �T (�) + op�(1) (38)

=
�
A(�)
 
1=20

��p
T=hT

�
̂(�) + op�(1): (39)

Now, noting that QT (�; 0; �) � 0 and @QT (�; 0; �)=@ = k�gsT (� ; �), for all � 2 �, a two term

expansion of QT (�̂ (�) ; ̂(�); �) about ̂(�) = 0, yields

2
�
k2=k

2
1

�
(T=hT )QT

�
�̂(�); ̂(�); �

�
= 2

�
k2=k

2
1

�
k(
p
T=hT )̂(�)

0pT �gsT (�̂(�) ; �)

+
�
k2=k

2
1

�
(
p
T=hT )̂(�)

0

 
hT
@2QT (�̂(�); �(�); �)

@@0

!
(
p
T=hT )̂(�)

= T �gsT (�̂(�) ; �)
0 (A(�)
 
0)�1 �gsT (�̂(�); �)=k21 + op�(1) (40)

where �(�) is the usual mean value and the third equality uses (39) and Lemma 3, which ensures

that hT
@2QT (�̂(�); ̂(�); �)

@@0
p! �k2k2
0(�) = �k2k2 (A(�)
 
0), uniformly in �. Similarly,

2
�
k2=k

2
1

�
(T=hT ) _QT

�
~�(�); ~(�); �

�
= T �gsT (

~�(�); �)0 (A(�)
 
0)�1 �gsT (~�(�); �)=k21 + op�(1);

where ~�(�) =
�
~�(�)0; ~�(�)0

�0
. Furthermore, an expansion of

p
T �gsT (

~�(�); �) yields

p
T �gsT (

~�(�); �) =
p
T �gsT (�0; �)� k1

�
A(�)�2�

0
2 
 


1=2
0 P0

�
�T (�) + op�(1)

=
p
T �gsT (�̂(�); �) + k1

�
I2 �A(�)�2�02 
 


1=2
0 P0

�
�T (�) + op�(1)

where the second equality follows from (37). Notice that, by (38),

k1
p
T �gsT (�̂(�); �)

0 (A(�)
 
0)�1
�
I2 �A(�)�2�02 
 


1=2
0 P0

�
�T (�)

= k1�T (�)
�
A(�)�1 � �2�02 
 (I` � P0)P0

�
�T (�) + op�(1)

= op�(1)

so that

LRT (�) = �T (�)
0
�
I2 � �2�02A(�)
 


1=2
0 P0

�
(A(�)
 
0)�1

�
I2 �A(�)�2�02 
 


1=2
0 P0

�
�T (�) + op�(1)

= �T (�)
0 (I2 � �2�02A(�)
 P0) (A(�)
 I`)

�1
(I2 �A(�)�2�02 
 P0) �T (�) + op�(1)

= �T (�)
0 �A(�)�1 � �2�02 
 P0� �T (�) + op�(1)

=
�T (�)

0 (a(�)a(�)0 
 P0) �T (�)
�(1� �) + op�(1)

=
�T (�)

0 (a(�)
 I`)0 P0 (a(�)0 
 I`) �T (�)
�(1� �) + op�(1)

= ST (�) + op�(1):
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using
�
A(�)�1 � �2�02

�
(I2 �A(�)�2�02) = A(�)�1 � �2�02 = a(�)a(�)0=�(1� �):

As in Sowell (1996) and Hall and Sen (1999), we can always write P0 = H 0�H, where � is the

diagonal matrix of eigenvalues of P0 and H = [H 0
1;H

0
2]
0 is a (`� `) orthonormal matrix, so that

H 0H = I` = H 0
1H1 + H

0
2H2, with H1H

0
1 = Ik and H2H 0

2 = I`�k. From the properties of �,

P0 = H
0
1H1, and

H1 (a(�)
0 
 I`) �T (�) =) H1 (B`(�)� �B`(1)) = Bk(�)� �Bk(1)

from which we conclude that ST (�) =)
(Bk(�)� �Bk(1))0 (Bk(�)� �Bk(1))

�(1� �) ; and �
h
D̂1;T (�)

i
=)

�

�
(Bk(�)� �Bk(1))0 (Bk(�)� �Bk(1))

�(1� �)

�
by applying the continuous mapping theorem.�

Proof of Theorem 6: Since sup�2�
hT �V sT (�̂(�); �)� k2
0(�) = op(1), we immediately have

that

OT (�) = (k2=k
2
1) (T=hT ) �g

s
T (�̂(�); �)

0
n
�V sT (�̂(�); �)

o�1
�gsT (�̂(�); �)

0

= T �gsT (�̂(�); �)
0 (A(�)
 
0)�1 �gsT (�̂(�); �)=k21 + op�(1)

and

LM�
T (�) = (T=hT )̂(�)

0
n
�V sT (�̂(�); �)

o
̂(�)=k2

= T �gsT (�̂(�); �)
0 (A(�)
 
0)�1 �gsT (�̂(�); �)=k21 + op�(1)

= OT (�) + op�(1):

By (40) it is immediate that

LR�
T (�) = T �gsT (�̂(�) ; �)

0 (A(�)
 
0)�1 �gsT (�̂(�); �)=k21 + op�(1)

= OT (�) + op�(1):

This demonstrates the asymptotic equivalence of all three statistics. From (38) we also obtain

OT (�) = �T (�)
0 �A(�)�1 
 (I` � P0)� �T (�) + op�(1)

= S�T (�) + op�(1)
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Following the arguments in the proof of Theorem 6, I � P0 = H 0
2H2 so that

S�T (�) = �T (�)
0 �A(�)�1 
 (I` � P0)� �T (�)

= �T (�)
0 �A(�)�1 
H 0

2H2
�
�T (�)

= �T (�)
0 (I2 
H2)0

�
A(�)�1 
 I`�k

�
(I2 
H2) �T (�):

Since H2H 0
2 = I`�k, it follows that H2B`(�) = B`�k(�), a (`� k)-dimensional vector of inde-

pendent standard Brownian motions and

(I2 
H2) �T (�) =) (I2 
H2) J`(�) =

264 B`�k(�)

B`�k(1)�B`�k(�)

375
implying

S�T (�) =) J`�k(�)
0 (A(�)
 I`�k)�1 J`�k(�):

Finally, �
h
D̂2;T (�)

i
=) �

h
J`�k(�)

0 (A(�)
 I`�k)�1 J`�k(�)
i
by applying the continuous map-

ping theorem. �
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Table 1: Testing D1(�) = 0 for T = 400; " =trimming parameter

Test unsmoothed smoothed

DGP " Variant W LM LR W LM LR

Ave 5.0 5.6 5.2 6.6 8.7 7.0
1 0.15 Exp 7.3 7.4 5.5 9.9 14.4 9.3

Sup 7.9 8.4 5.7 12.2 17.2 11.0

Ave 5.2 5.4 5.3 6.4 7.2 6.1
1 0.20 Exp 7.6 6.8 6.1 8.7 10.9 8.3

Sup 7.7 6.7 5.2 9.8 12.1 8.2

Ave 5.2 5.3 5.0 5.6 6.2 5.6
1 0.25 Exp 6.5 5.8 5.7 8.1 8.3 7.1

Sup 7.4 6.6 5.0 8.4 8.7 6.4

Ave 5.4 4.9 4.8 5.6 5.9 5.7
1 0.30 Exp 5.9 5.3 5.0 7.2 6.9 6.4

Sup 6.4 5.4 5.3 7.2 6.6 6.0

Ave 4.9 4.7 4.8 5.4 5.3 4.8
1 0.35 Exp 5.3 4.9 4.9 6.9 6.0 6.0

Sup 6.2 4.9 5.0 6.5 5.9 5.7

Ave 5.2 5.0 4.9 5.5 4.9 4.9
1 0.40 Exp 5.3 4.9 5.1 6.2 5.6 5.6

Sup 5.6 4.3 4.6 5.9 5.1 5.1

Ave 5.6 5.0 5.1 5.9 5.3 5.2
1 0.45 Exp 5.9 5.0 5.2 5.9 5.4 5.4

Sup 6.1 5.0 4.8 5.4 4.6 5.0

Ave 3.9 4.0 4.3 5.9 9.1 7.4
2 0.15 Exp 5.2 4.7 5.5 9.0 15.5 11.7

Sup 6.7 6.9 6.3 10.7 18.0 11.7

Ave 3.7 3.7 4.4 6.2 6.8 6.6
2 0.20 Exp 5.8 4.7 5.5 8.2 11.0 9.5

Sup 6.2 5.3 5.8 8.8 12.4 8.2

Ave 3.9 3.7 4.3 5.7 6.2 6.5
2 0.25 Exp 5.2 3.4 5.3 7.2 8.3 7.6

Sup 6.5 4.1 5.6 8.3 8.5 7.2

Ave 4.4 3.5 4.0 6.4 5.4 6.5
2 0.30 Exp 4.9 3.6 4.6 7.2 7.3 6.8

Sup 6.1 3.3 5.1 7.1 7.0 6.4

Ave 4.4 3.5 4.0 5.7 5.0 5.4
2 0.35 Exp 4.9 3.8 4.5 6.8 5.7 6.1

Sup 6.3 3.7 5.3 6.1 5.4 5.4

Ave 4.0 3.4 4.0 5.4 5.0 5.1
2 0.40 Exp 4.1 3.4 4.3 6.3 5.6 5.8

Sup 5.4 3.4 4.4 5.6 4.5 5.0

Ave 4.2 3.3 4.0 5.9 4.9 5.3
2 0.45 Exp 4.3 3.3 4.0 6.2 4.8 5.7

Sup 4.7 3.1 3.7 5.6 3.7 4.5

Notes: Test Variant refers to functionals � [:] de�ned in (24) and W , LM , LR, denote EL-Wald, Lagrange

Multiplier and EL-likelihood ratio statitstics de�ned in ( 22), (23) and (21), respectively (Section 4.1).
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Table 2: Testing D2(�) = 0 for T = 400; " =trimming parameter

Test unsmoothed smoothed

DGP " Variant O LM LR O LM LR

Ave 4.7 4.7 5.5 7.2 7.5 7.4
1 0.15 Exp 5.9 5.9 5.8 10.9 11.1 10.2

Sup 5.5 5.5 5.4 11.6 11.7 11.2

Ave 4.7 4.7 5.5 7.0 7.2 7.5
1 0.20 Exp 5.1 5.1 5.1 9.0 9.0 9.1

Sup 5.1 5.1 5.4 8.7 8.7 8.8

Ave 5.2 5.2 5.7 7.2 7.4 7.4
1 0.25 Exp 4.9 4.9 5.1 8.7 8.7 9.1

Sup 5.2 5.2 5.5 7.3 7.3 8.1

Ave 5.2 5.2 5.4 6.9 7.1 7.1
1 0.30 Exp 4.9 4.9 4.9 7.6 7.7 8.3

Sup 4.8 4.8 4.8 7.2 7.2 7.7

Ave 5.3 5.3 5.6 6.8 6.9 7.3
1 0.35 Exp 4.9 4.9 5.2 7.2 7.2 7.6

Sup 4.7 4.7 5.3 6.5 6.5 7.3

Ave 5.3 5.3 6.0 6.8 6.8 7.2
1 0.40 Exp 5.4 5.4 5.8 7.0 7.0 7.5

Sup 5.1 5.1 5.3 6.7 6.7 7.0

Ave 5.3 5.3 5.8 6.7 6.7 6.6
1 0.45 Exp 5.2 5.2 5.6 6.4 6.4 6.8

Sup 5.5 5.5 5.7 6.2 6.2 6.3

Ave 6.0 6.0 6.2 6.6 6.6 6.5
2 0.15 Exp 6.5 6.5 6.7 9.3 9.5 8.4

Sup 6.5 6.5 6.7 10.0 10.2 9.8

Ave 6.1 6.1 6.5 6.1 6.1 6.5
2 0.20 Exp 6.6 6.6 6.5 7.7 7.8 7.6

Sup 6.2 6.2 6.3 8.0 8.1 8.4

Ave 6.5 6.5 6.8 5.9 5.9 6.6
2 0.25 Exp 6.1 6.1 6.3 6.8 6.8 7.1

Sup 5.7 5.7 6.0 6.8 6.8 7.1

Ave 6.2 6.2 6.6 5.8 5.8 6.0
2 0.30 Exp 5.9 5.9 6.2 6.2 6.2 6.3

Sup 5.2 5.2 5.8 6.5 6.5 6.7

Ave 6.2 6.2 6.9 6.0 6.0 6.0
2 0.35 Exp 5.7 5.7 6.3 6.2 6.2 6.3

Sup 5.3 5.3 5.5 5.9 5.9 5.7

Ave 6.5 6.5 7.2 5.5 5.5 5.7
2 0.40 Exp 6.1 6.1 7.0 5.6 5.6 6.0

Sup 4.9 4.9 5.2 5.2 5.2 5.8

Ave 6.9 6.9 7.2 5.6 5.6 6.0
2 0.45 Exp 6.1 6.1 6.9 5.8 5.8 6.0

Sup 5.4 5.4 5.7 4.7 4.7 5.2

Notes: Test Variant refers to functionals � [:] de�ned in (24) and statistics O, LM , LR are de�ned in (26), (27)

and (25), respectively (Section 4.2).

41



Table 3: Testing D(�) = 0 for T = 400; " =trimming parameter

Test unsmoothed smoothed

DGP " Variant W LM LR W LM LR

Ave 4.3 4.8 4.6 8.4 10.6 9.5
1 0.15 Exp 6.5 6.2 5.7 14.0 17.4 13.3

Sup 7.3 7.1 6.1 15.1 18.4 14.2

Ave 4.1 4.3 4.5 8.3 8.7 9.0
1 0.20 Exp 6.1 5.3 5.7 10.9 12.7 11.3

Sup 7.2 6.1 5.2 11.5 13.8 11.0

Ave 4.2 4.4 4.4 7.7 8.4 8.4
1 0.25 Exp 5.5 4.9 5.2 9.9 10.7 10.4

Sup 6.2 4.9 4.6 9.5 10.6 9.3

Ave 4.3 4.2 4.9 7.9 8.3 8.5
1 0.30 Exp 5.4 5.2 5.3 8.9 9.3 9.3

Sup 5.3 3.9 4.4 8.1 8.0 7.4

Ave 4.6 4.4 4.8 7.9 7.5 7.6
1 0.35 Exp 5.3 5.0 5.2 8.1 8.1 8.7

Sup 5.0 3.9 4.1 7.7 6.6 7.1

Ave 4.7 4.4 4.7 7.4 6.9 7.1
1 0.40 Exp 5.2 4.7 5.1 8.0 7.1 7.5

Sup 4.9 4.4 4.5 7.0 6.2 6.8

Ave 5.1 4.8 5.1 7.3 7.2 7.1
1 0.45 Exp 5.4 4.9 5.5 7.5 7.4 7.1

Sup 5.5 5.0 5.7 6.4 5.8 6.2

Ave 5.5 5.5 6.4 7.5 8.8 7.9
2 0.15 Exp 6.6 7.1 7.2 12.4 17.3 13.7

Sup 7.1 7.7 7.2 13.7 19.6 15.3

Ave 5.4 5.6 6.0 6.9 7.8 7.5
2 0.20 Exp 6.3 6.2 6.6 10.4 12.5 10.6

Sup 6.5 6.2 6.2 11.0 13.0 11.1

Ave 5.9 5.7 6.0 7.0 6.5 6.6
2 0.25 Exp 5.5 5.2 5.9 9.8 9.4 8.7

Sup 5.9 4.8 5.9 9.9 9.9 9.4

Ave 6.2 6.0 6.4 6.8 6.5 6.9
2 0.30 Exp 5.4 4.7 5.9 8.6 7.4 8.3

Sup 5.3 4.3 4.7 8.4 7.7 8.4

Ave 5.8 5.2 6.2 6.5 5.9 6.7
2 0.35 Exp 5.2 4.7 5.6 7.5 6.2 7.6

Sup 4.9 4.2 4.6 7.0 6.3 6.9

Ave 5.3 4.7 5.6 6.0 5.9 6.3
2 0.40 Exp 5.3 4.2 5.6 6.5 6.1 6.8

Sup 5.0 3.6 4.6 6.2 5.6 6.1

Ave 5.4 4.5 5.5 6.0 5.6 5.9
2 0.45 Exp 5.8 4.6 5.8 6.2 5.4 6.2

Sup 5.1 3.4 4.8 5.5 4.8 5.6

Notes: Test Variant refers to functionals � [:] de�ned in (24) and W , LM , LR denote the conbined statitstics

de�ned in Section 4.3.
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Table 4: Tests of D1(�) = 0 for T = 600; " =trimming parameter

Test unsmoothed smoothed

DGP " Variant W LM LR W LM LR

Ave 3.8 4.7 4.6 5.3 7.5 6.4
1 0.15 Exp 5.3 5.4 5.6 7.3 10.7 7.7

Sup 6.0 6.6 6.0 7.8 12.3 7.1

Ave 3.7 4.7 4.8 5.6 6.5 5.9
1 0.20 Exp 5.3 5.7 5.6 6.8 8.5 7.4

Sup 5.6 4.9 5.1 7.2 9.3 7.1

Ave 4.3 4.9 4.5 5.6 5.7 5.8
1 0.25 Exp 4.8 5.2 5.1 6.8 7.3 6.9

Sup 5.2 4.4 4.9 6.6 6.9 5.9

Ave 4.2 3.9 4.0 5.7 5.2 5.6
1 0.30 Exp 4.6 4.2 4.5 6.4 5.9 6.2

Sup 5.0 4.2 4.3 6.1 5.4 5.7

Ave 4.5 4.0 4.4 5.3 5.0 5.2
1 0.35 Exp 5.0 4.1 4.2 5.5 4.8 5.1

Sup 4.6 3.8 4.0 5.6 4.3 4.5

Ave 4.6 4.4 4.5 5.6 5.0 5.2
1 0.40 Exp 4.5 3.9 4.3 5.8 5.0 5.3

Sup 4.9 3.8 3.9 5.3 4.6 4.8

Ave 4.1 3.9 3.9 5.6 4.8 4.7
1 0.45 Exp 4.1 3.9 4.0 5.8 4.7 4.8

Sup 4.3 4.1 4.1 5.7 4.9 5.1

Ave 4.1 4.3 4.5 4.5 5.9 5.7
2 0.15 Exp 4.6 4.7 5.0 6.5 8.9 6.8

Sup 5.1 5.2 5.9 7.7 10.0 6.9

Ave 4.2 3.8 4.2 4.5 5.3 5.3
2 0.20 Exp 4.7 4.3 4.9 5.9 6.5 5.9

Sup 5.0 5.1 5.0 6.6 6.6 5.2

Ave 3.8 3.3 4.1 4.6 4.9 4.9
2 0.25 Exp 4.5 3.2 4.7 5.7 5.4 5.6

Sup 5.0 3.5 4.5 6.1 5.3 5.1

Ave 3.6 3.9 4.1 4.5 4.8 4.7
2 0.30 Exp 4.2 3.1 4.1 5.0 5.1 5.4

Sup 5.2 3.1 4.1 5.6 4.5 4.9

Ave 3.6 3.4 4.0 5.0 4.6 4.8
2 0.35 Exp 3.9 3.1 3.3 4.8 4.5 4.7

Sup 4.8 3.6 4.2 4.9 4.4 4.5

Ave 3.9 3.5 4.0 5.2 4.5 4.9
2 0.40 Exp 4.0 3.5 3.9 5.6 4.8 4.9

Sup 4.6 3.8 4.3 5.0 4.2 4.2

Ave 4.2 3.6 4.2 4.9 4.9 4.6
2 0.45 Exp 4.1 3.4 3.9 4.5 4.5 4.5

Sup 4.6 3.6 4.1 4.1 4.5 4.2

Notes: See Table 1 for de�nitions.
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Table 5: Testing D2(�) = 0 for T = 600; " =trimming parameter

Test unsmoothed smoothed

DGP " Variant O LM LR O LM LR

Ave 4.7 4.7 4.7 4.7 4.7 5.1
1 0.15 Exp 4.8 4.8 4.9 6.5 6.6 6.9

Sup 5.4 5.4 5.4 6.7 6.7 6.7

Ave 4.4 4.4 4.6 4.6 4.6 4.8
1 0.20 Exp 4.5 4.5 4.6 5.3 5.3 5.6

Sup 4.6 4.6 5.1 5.1 5.1 5.3

Ave 4.7 4.7 4.8 4.6 4.6 5.2
1 0.25 Exp 4.4 4.4 4.4 5.1 5.1 5.6

Sup 4.4 4.4 4.4 4.5 4.5 4.8

Ave 4.5 4.5 4.6 4.8 4.8 5.1
1 0.30 Exp 4.3 4.3 4.6 4.6 4.6 5.2

Sup 3.7 3.7 3.9 4.0 4.0 4.9

Ave 4.3 4.3 4.4 4.7 4.7. 5.4
1 0.35 Exp 4.3 4.3 4.3 4.8 4.8 5.2

Sup 3.7 3.7 3.8 3.9 3.9 5.0

Ave 4.0 4.0 4.1 4.4 4.4 4.9
1 0.40 Exp 4.5 4.5 4.7 4.7 4.7 5.8

Sup 3.8 3.8 4.0 4.0 4.0 4.8

Ave 4.2 4.2 4.4 4.3 4.3 5.0
1 0.45 Exp 4.1 4.1 4.4 4.7 4.7 5.2

Sup 3.7 3.7 3.9 3.7 3.7 4.1

Ave 4.4 4.4 4.5 5.0 5.0 5.2
2 0.15 Exp 4.5 4.5 5.3 6.3 6.4 6.7

Sup 5.0 5.0 5.2 6.4 6.5 6.8

Ave 4.6 4.6 4.5 4.7 4.7 5.2
2 0.20 Exp 3.9 3.9 4.7 5.3 5.3 5.8

Sup 4.4 4.4 4.6 5.1 5.1 5.6

Ave 4.8 4.8 5.0 4.7 4.7 5.2
2 0.25 Exp 4.7 4.7 5.0 5.1 5.1 5.6

Sup 3.9 3.9 4.4 4.5 4.5 5.6

Ave 5.2 5.2 5.2 4.8 4.8 5.2
2 0.30 Exp 5.0 5.0 5.3 5.0 5.0 5.5

Sup 4.1 4.1 4.5 4.4 4.4 5.4

Ave 5.2 5.2 5.3 4.9 4.9 5.3
2 0.35 Exp 5.0 5.0 5.3 5.0 5.0 5.2

Sup 4.5 4.5 4.9 4.2 4.2 5.6

Ave 5.1 5.1 5.3 4.9 4.9 5.1
2 0.40 Exp 5.1 5.1 5.2 5.1 5.1 5.3

Sup 4.9 4.9 4.9 4.5 4.5 5.5

Ave 4.7 4.7 4.7 4.5 4.5 5.2
2 0.45 Exp 4.8 4.8 5.1 4.7 4.7 5.2

Sup 4.2 4.2 4.5 4.7 4.7 4.8

Notes: See Table 2 for de�nitions.
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Table 6: Testing D(�) = 0 for T = 600; " =trimming parameter

Test unsmoothed smoothed

DGP " Variant W LM LR W LM LR

Ave 4.0 4.0 4.5 5.4 5.6 5.6
1 0.15 Exp 5.6 5.9 5.5 8.1 10.4 7.7

Sup 5.9 6.7 5.8 8.7 10.4 8.6

Ave 4.3 4.4 4.9 5.1 5.5 5.4
1 0.20 Exp 5.4 5.2 5.1 7.2 8.1 6.8

Sup 5.5 5.5 5.2 7.1 8.2 7.0

Ave 4.2 4.4 4.5 5.4 5.3 5.6
1 0.25 Exp 4.5 4.6 4.5 6.3 6.9 6.2

Sup 5.1 4.4 4.6 6.5 7.1 6.3

Ave 4.0 4.2 4.7 5.5 5.4 5.8
1 0.30 Exp 4.6 4.5 4.8 6.1 5.8 6.0

Sup 4.7 3.4 3.5 5.5 5.7 5.4

Ave 3.9 4.0 4.4 5.7 5.3 5.7
1 0.35 Exp 4.4 4.2 4.5 5.9 5.6 5.9

Sup 4.4 3.4 3.7 5.3 4.4 5.0

Ave 3.8 3.7 3.9 5.2 5.1 5.3
1 0.40 Exp 4.2 4.0 3.9 5.5 5.2 5.9

Sup 4.0 3.5 3.8 4.9 4.4 4.9

Ave 4.1 3.8 3.9 5.8 5.8 5.9
1 0.45 Exp 4.2 3.9 4.1 5.7 5.4 6.3

Sup 4.4 4.0 4.2 5.0 4.2 4.9

Ave 3.9 4.2 4.5 5.3 5.7 5.6
2 0.15 Exp 4.8 4.6 4.5 7.2 9.1 7.7

Sup 5.5 5.0 5.5 8.7 10.6 9.5

Ave 3.5 4.0 4.2 5.0 5.4 5.3
2 0.20 Exp 4.1 4.1 4.5 6.4 6.7 6.3

Sup 5.0 4.6 4.6 6.9 7.4 7.3

Ave 3.5 3.8 4.3 4.7 4.5 5.2
2 0.25 Exp 4.0 3.5 3.6 6.1 6.0 6.4

Sup 4.2 3.8 4.0 6.3 6.0 6.1

Ave 4.2 4.2 4.4 5.0 4.8 5.1
2 0.30 Exp 4.4 3.7 3.8 5.8 5.8 6.1

Sup 4.3 3.4 3.9 6.1 4.7 5.3

Ave 3.7 3.8 4.2 4.6 4.5 5.0
2 0.35 Exp 4.1 3.4 3.6 5.1 5.1 5.4

Sup 4.5 3.5 3.5 4.7 4.2 4.5

Ave 3.9 3.6 4.0 4.9 4.9 5.1
2 0.40 Exp 3.7 3.3 3.9 4.9 4.8 5.0

Sup 3.8 3.0 3.6 4.4 4.1 4.3

Ave 4.2 4.2 4.1 4.9 4.8 5.0
2 0.45 Exp 4.3 4.0 4.2 5.1 4.9 4.7

Sup 4.0 3.5 4.2 4.2 3.8 4.0

Notes: See Table 3 for de�nitions.
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