
 

 

Economics 
Discussion Paper Series 
EDP-1204 

 
 
 
 
 

 
 
 

Loss Aversion in Contests 

Richard Cornes 

Roger Hartley 

January 2012 

Economics

School of Social Sciences 

The University of Manchester 
Manchester M13 9PL 



Loss Aversion in Contests

Richard Cornes
Research School of Economics
Australian National University

ACT 0200
Australia

Roger Hartley
School of Social Sciences
University of Manchester

Oxford Road
Manchester
M13 9PL
UK

January 9, 2012

Abstract

We study pure strategy Nash equilibria of rent-seeking contests in
which contestants value gains less than losses of similar magnitude. We
demonstrate that, if the degree of loss aversion is su¢ ciently great, there
may be multiple equilibria, even for the simplest contest success functions
and discuss condition which ensure uniqueness. We investigate compar-
ative statics when these conditions are satis�ed. For symmetric contests,
we establish that there is a unique symmetric equilibrium, derive an ex-
plicit expression for this equilibrium and show that, in the presence of
other equilibria, the symmetric equilibrium may display perverse com-
parative statics. We use these results in a comparison of contests with
divisible and indivisible prizes and conclude by drawing lessons for the
design of experimental contests.
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1 Introduction1

In this article, we examine the impact of loss aversion on equilibria in contests.
The risky prospect faced by an individual in a rent-seeking contest with indi-
visible rent has two outcomes: a gain (rent net of outlay on rent seeking) for
the winner and a loss equal to the outlay for a losers. It is well established
experimentally that individuals�responses to such a prospect may exhibit loss
aversion: a loss from some reference level �gures larger than a gain of similar
magnitude. Furthermore, this e¤ect is maintained even when such gains and
losses are small. This is in contrast to risk aversion, where Rabin [18] and
Thaler [23] have argued that concave utility functions have di¢ culty in recon-
ciling individual�s responses to lotteries entailing small changes in wealth with
those where the change is large. Further discussions of loss aversion can be
found in [10], [20], [25] and [26]. If subjects import such behavior into the lab-
oratory, comparison of the results of experiments in which these subjects take
part in experiments, with the predictions of models that assume loss-neutrality
may be misleading.
In this article, we examine the impact of loss aversion on equilibria in con-

tests, focussing on incompletely discriminating contests as introduced by Tullock
[24] to model the strategic aspects of rent seeking. This model and many of
the theoretical and experimental studies that followed assumed that contestants
seek to maximize their expected wealth. (Useful surveys are provided by Nitzan
[17] and in Konrad [12].) One feature of many of these analyses is that, when
the probability of winning is proportional to expenditure, cost functions are
linear and the number of contestants is large, close to 100% of the value of the
rent will be dissipated in the form of resources used up in the competition for
that rent. Many authors felt this �explained too much� (c.f. Riley [19] and
Lockhard and Tullock [14]) and some limited empirical support for this view
was provided by Sobel and Garrett [22] and by Hazlett and Michaels [8].
Motivated in part by such concerns authors turned to modi�cations to the

basic model that reduced the extent of rent seeking and a number of them
(for example, [9], [11] and [3]) have focussed on risk aversion as such a factor.
However, whilst important for large rents, this e¤ect may be weak for small
rents, at least if utility functions are smooth. For example, in [5], we derived a
formula for the proportion of rent dissipated in a contest with many risk-averse
contestants. Provided utility functions are continuously di¤erentiable at current
wealth, this proportion approaches unity as the size of the rent approaches zero.
This raises the possibility that the e¤ects of risk aversion may not be signi�cant
when the prize is small as is typical in experiments.
In contrast to the empirical results, a consistent theme in the experimen-

tal literature [15], [2], [1] is that aggregate expenditures exceed those in the
Nash equilibrium and can even exceed the size of the rent in the long run, al-
though Shogren and Baik [21] o¤er evidence that such results may be sensitive

1RH would like to thank participants at the Young Researchers�Workshop in Contests and
Tournaments, Magdeburg, 2009 and particularly the discussant Magnus Ho¤mann for many
helpful comments which led to signi�cant improvements in the paper.
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to the design of the experiment. The equilibria studied in these experiments
are typically derived under the assumption that contestants choose expendi-
tures to maximize expected wealth. A notable early exception is Millner and
Pratt [16] who found that expenditure in contests played by more risk averse
subjects was signi�cantly lower than those where the contestants were less risk
averse. However, since risk attitudes were assessed using binary lotteries, these
results might also be explained by loss aversion. Indeed one of the main results
of our analysis is that loss aversion reduces aggregate lobbying and, with the
type of contest success function widely used in experiments (including Millner
and Pratt), reduces aggregate expenditure. We note, however, a less palatable
result: loss aversion may lead to multiple equilibria and the possibility of co-
ordination failure. Aggregate expenditure in such a miscoordinated strategy
pro�le may even exceed the rent.
Loss averse individuals display status quo bias and to apply such a behav-

ioral assumption requires speci�cation of the reference level. Initially, we make
the simplest assumption: ex post wealth is referenced to current wealth and a
change in wealth above the reference level is worth � < 1 times an equal change
below. Otherwise, our model is a conventional incompletely discriminating con-
test. We suppose that the contest success function takes a standard Tullock
form, although we do not always insist on its being symmetric and that the rent
is indivisible (although we also discuss a divisible rent in the �nal two sections).
One way to interpret such a function is to suppose that each contestant is en-
dowed with a constant elasticity production function transforming expenditure
into lobbying e¤ort and that the probability of winning the indivisible prize
is proportional to that lobbying e¤ort. Thus contestant i is characterized by
two parameters: a production elasticity ri and coe¢ cient of loss aversion �i.
Provided both are members of the interval (0; 1] for all i, the contest has an
equilibrium in pure strategies. This result is non-trivial; discontinuity at the
origin prevents direct application of general existence results. Instead, we use
the method of share correspondences, building on the methods described in [4]
and [5]. One bene�t of this approach is that it also allows us to study unique-
ness and comparative statics. We �nd that loss aversion has two main e¤ects
on contest equilibria. The �rst is that loss averse contestants compete less
aggressively than loss neutral contestants. Secondly, in contrast to a contest
with loss neutral contestants, equilibria may not be unique.
Multiple equilibria can occur if ri is large enough and �i small enough.

Indeed, we show that there is a critical value for the loss aversion parameter,
dependent on ri such that, if �i exceeds this value for all i the contest has a
unique equilibrium and does not display perverse comparative statics. Notably,
if ri = 1, the critical value is 1=2, a rather typical observed value of �i and we
show that, if contestants are more loss averse than this, there will be multiple
equilibria if the contest is large enough. Conversely, if ri � 1=2, the equilibrium
is unique no matter how averse contestants are to loss, showing that it is possible
to design the contest to avoid multiple equilibria.
These results also allow us to conclude that aggregate lobbying (and aggre-

gate expenditure if all ri = 1) in any equilibrium is lower than in the unique
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equilibrium of a contest with the same contest success function but loss-neutral
contestants. We can draw a similar conclusion for the unique symmetric equi-
librium of a symmetric contest. Indeed, we derive an explicit formula for
aggregate expenditure in such an equilibrium and show that, if there are many
contestants, the reduction in aggregate expenditure is approximately equal to
the common coe¢ cient of loss aversion. These results allow us to draw com-
parisons between a conventional contest with an indivisible prize in which the
contest success function determines the probability of winning the prize and a
second contest with a divisible prize which is divided according to shares deter-
mined by the contest success function and conclude that equilibrium lobbying
will be greater when the prize is divisible.
In Section 2, we de�ne share correspondences and derive some of their key

properties. In particular, we show that this correspondence is always the inverse
of a function and discuss when this function is monotonic, implying that the
share correspondence is actually a function. We apply these results in Section
3 to establish existence of an equilibrium and to derive conditions under which
this equilibrium is unique. The results of Section 2 also permit us to study
comparative statics with respect to entry as well as changes in the degree of loss
aversion. In Section 4, we obtain an expression for the symmetric equilibrium
strategy of a symmetric contest and discuss several implications of this formula,
including the possibility that, if the contest has alternative, asymmetric equi-
libria, aggregate expenditure may fall as the number of contestants increases.
Section 5 compares divisible and indivisible prizes and suggests a simple ex-
perimental test of the e¤ect of loss aversion on equilibria. In the concluding
section, we discuss some implications of these results for the design and analysis
of experiments.

2 Share correspondences and their properties

For any strategy pro�le, each contestant in a rent-seeking contest faces an un-
certain prospect with two outcomes. A simple and common way to capture loss
aversion in such a context is to suppose that a gain in wealth is evaluated at �
times the same loss in wealth, where 0 < � < 1. This can be applied to a stan-
dard Tullock rentseeking model with n contestants in which contestant i chooses
a level of expenditure xi to devote to contesting an exogenously �xed and indi-
visible rent R. We study the classic Tullock form of contest success function in
which the probability that contestant i wins is given by xrii =

Pn
j=1 x

rj
j , where

ri � 1 captures the returns to scale of the rent-seeking technology available to
that contestant. The contestants are therefore engaged in a simultaneous-move
game in which the payo¤of contestant i for strategy pro�le x = (x1; : : : ; xn) 6= 0
is

�i (x) =
xriiPn
j=1 x

rj
j

min f�i (R� xi) ; R� xig �
"
1� xriiPn

j=1 x
rj
j

#
xi,
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recalling that the reference level of wealth is zero for each contestant. Note
that we have allowed the parameter � to vary amongst contestants, but we
still impose the conditions 0 < �i � 1. If x = 0, we shall assume2 that
�i = 0. Note that any xi exceeding R is strictly dominated (by xi = 0) so
min f�i (R� xi) ; R� xig can simply be replaced by �i (R� xi) without chang-
ing the set of Nash equilibria.
In this and the next two sections, we investigate pure strategy Nash equilibria

of this game, focussing on existence and uniqueness. As in [4] and [5], our ap-
proach circumvents the di¢ culties of handling multi-dimensional self-mappings
by using share correspondences and, in this section, we start by introducing
these correspondences and deriving their key properties.
It proves convenient to work with the transformed variables: yi = xri in

terms of which the payo¤ function (??) can be re-written:

e�i (yi; Y ) = �iRyi
Y

� yuii +
(1� �i) yui+1i

Y
, (1)

where ui = 1=ri and Y =
Pn

j=1 yj . We can view xri as a production func-
tion transforming expenditure into lobbying e¤ort and so we will refer to X =Pn

j=1 xj as aggregate expenditure and Y as aggregate lobbying :
For any contestant i and any Y > 0, our approach �rst determines necessary

and su¢ cient conditions on byi 2 [0; Y ] such that there is an equilibrium in
which contestant i spends byi and Pn

j=1 byj = Y . We then let Si (Y ) denote the
corresponding set of byi=Y :
Si (Y ) =

8<:byiY : 9 equilibrium pro�le (by1; : : : ; byn) such that Y = nX
j=1

byj
9=; .

We refer to Si as the share correspondence of contestant i.
The importance of share correspondences arises from the (easily veri�ed)

fact that by is an equilibrium of the contest if and only if

byjbY 2 Sj
�bY � for j = 1; : : : ; n. (2)

This means that bY is an equilibrium value of Y if and only if 1 2Pn
j=1 Sj

�bY �
(the aggregate share correspondence), using conventional set addition. Note
that contestants have no best response if all rivals are inactive, so at least two
contestants must be active in equilibrium. Consequently there cannot be an
equilibrium with Y = 0 and, if Y > 0, then 1 =2 Si (Y ).
The next proposition, proved in the appendix, uses the �rst-order conditions

to characterize share correspondences.

2Other assumptions such as �i = 1=n are possible, but a discontinuity at the origin is
unavoidable and our results are unchanged.
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Proposition 2.1 For i = 1; : : : ; n, we have 0 2 Si (Y ) if and only if ri = 1
and Y � �iR. Furthermore, � 2 Si (Y ) \ (0; 1) if and only if Y = 'i (�), where
'i : (0; 1) �! R++ satis�es 'i (�) = [�iR=Di (�)]

ri and

Di (�) = ui�
ui�1 � (1� �i)�ui +

�iui�
ui

1� � . (3)

The preceding proposition says that, excluding zero shares, the share corre-
spondence Si of contestant i is the inverse of a continuous, positive real-valued
function 'i de�ned on (0; 1). We refer to 'i as the inverse share function and
list several, largely qualitative, properties of this function in the next proposi-
tion. The proof may be found in the appendix.

Proposition 2.2 For i = 1; : : : ; n, the inverse share function 'i : (0; 1) �!
R++ is continuous and has the following properties.

1. If ri = 1, then 'i (�) �! �iR as � �! 0.

2. If ri < 1, then 'i (�) �!1 as � �! 0.

3. For all ri � 1, 'i (�) �! 0 as � �! 1.

Furthermore, there exists a function � : (0; 1] �! R+ with the following
properties: (a) � (1) = 1=2, (b) � (r) is non decreasing in r for 1=2 � r � 1, (c)
� (r) = 0 if r � 1=2. This determines the shape of 'i as follows.

4. If �i � � (ri), then '0i (�) < 0 for all � 2 (0; 1).

5. If ri = 1 and �i < 1=2, then 'i has a unique local and global maximum in
(0; 1).

6. If ri < 1 and �i < � (ri), then as � increases from 0 to 1, 'i (�) decreases
to a local minimum and then increases to a local maximum in (0; 1).

If Si (Y ) is a singleton fsi (Y )g for all Y > 0, we refer to si as the share
function of contestant i and note that bY is an equilibrium value of Y if and

only if
Pn

j=1 sj

�bY � = 1. The following corollary notes a key property of share
functions which follows directly from Part 4 of the proposition.

Corollary 2.3 If �i � � (ri), contestant i has a share function si which is
strictly decreasing where positive.

This corollary will prove useful for establishing uniqueness of equilibrium.
However, there are values of �i and ri for which the share correspondence is not
a function.
Proposition 2.2 is illustrated in Figures 1�4. In each �gure, we �rst graph D

in panel (a), and then display ' in panel (b), using the formula (�R=D)r. The
share correspondence is obtained by re�ecting ' in the 450 line (and, if r = 1,
adding that portion of the Y -axis to the right of Y = �R). This is shown in
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panel (c). Figures 1 and 3 illustrate cases in which � < � (r). In Figure 1, we
have r = 1 and, in Figure 3, r < 1. Figures 2 and 4 illustrate � > � (r), with
r = 1 in Figure 2 and r < 1 in Figure 4. In these two �gures, there is a share
function and it is easy to check that the �gures exhibit the property stated in
Corollary 2.3.

3 Existence, uniqueness and comparative statics
of equilibria

3.1 Existence

The discontinuity in payo¤s at the origin prevents direct application of standard
theorems for existence of pure strategy equilibria, such as those of Glicksberg
[7] or Dasgupta and Maskin [6] (in the latter case because payo¤s are not semi-
continuous). However, the propositions of the previous section can be used to
establish not only existence but, with additional restrictions on the parameters,
uniqueness of an equilibrium. Examination of the forms of share correspon-
dence in Figures 1�4 shows that all members the aggregate share correspondence
exceed 1 for small enough Y and are less than 1 for large enough Y . When
this correspondence is a function, the existence of a value of Y for which the
aggregate share function equals 1 (and therefore an equilibrium exists) follows
from the intermediate value theorem, since the function is easily seen to be con-
tinuous. Furthermore, the fact that it is decreasing means the equilibrium is
unique.
When the correspondence is not singleton-valued, we can use the fact that

demonstrating existence of a Nash equilibrium is equivalent to showing that

there is a positive bY and shares in each Si
�bY � summing to 1. When all ri < 1

(so the share correspondences does not contain 0), this requirement can be re-
expressed in terms of the inverse share functions as showing the existence ofbY > 0 and b�i � 0 for all i satisfying

'i (b�i) = bY for i = 1; : : : ; n and
nX
j=1

b�j = 1. (4)

In the appendix, we prove that (4) always has a solution and then extend this
result to allow for ri = 1.

Theorem 3.1 If 0 < ri; �i � 1 for i = 1; : : : ; n, the contest has a Nash equilib-
rium.

3.2 Uniqueness

This equilibrium need not be unique. This is particularly clear in the case of
a symmetric contest in which all ri = 1 and all �i < 1=2. For, Proposition 2.2
implies that, for all large enough integers m, there is a Y m(� �R) such that
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both 0 and 1=m are members of Si (Y m). This is clearly seen3 in Figure 1.
It follows that, if the number of contestants is n > m, there are asymmetric
equilibria in which m contestants choose yi = Y m=m and the remainder choose
yi = 0 in addition to the symmetrical equilibrium in which all contestants choose
yi = Y n=n. For example, if n = 3 and � = 0:2, the symmetric equilibrium is
(0:08R; 0:08R; 0:08R). An alternative Nash equilibrium is (0:125R; 0:125R; 0)
since we can check that the requirement ' (1=2) = 0:25R > �R is satis�ed. This
is illustrated in Figure 5.

Corollary 3.2 A symmetric contest in which ri = 1 and �i < 1=2 for i =
1; : : : ; n exhibits multiple equilibria for all large enough n.

This result sheds an interesting light on equilibria of contests with risk-
averse contestants. Suppose contestant i is loss-neutral, but risk averse with
von Neumann-Morganstern utility function ui which has positive, decreasing
marginal utility u0i and let

�i = inf
x2(0;R)

u0i (R� x)
u0i (�x)

.

In [5], we showed that, if all �i � 1=2, the contest has a unique equilibrium. It
follows from Corollary 3.2 that this bound is best possible. For, if � < 1=2, the
contest in which ui (x) = x for x < 0 and ui (x) = �x for x > 0 for all i and all
ri = 1 is identical to a contest with risk-neutral, but loss-averse contestants in
which � = �. The corollary then implies that the contest does not have a unique
equilibrium. Of course, the proposed utility function is not di¤erentiable, but
this can be �xed by smoothing the utility function close enough to the origin to
have no e¤ect on the equilibrium.
The fact that the contest in Corollary 3.2 has multiple equilibria for all large

enough n is, in part, a peculiarity of assuming all ri = 1. Indeed, if all ri < 1,
the equilibrium is unique whether or not �i < � (ri) provided there are enough
contestants. (This does not preclude multiple equilibria for smaller n.) We
can see this by observing from the graphs of share correspondences in Figures
3 and 4, or by using Proposition 2.2 that that there will be a Y such that (i)
S
�
Y
�
= f�g, (ii) S (Y ) is singleton-valued and strictly decreasing for Y � Y

and (iii) S (Y ) > � for Y < Y , where we have dropped the subscript. Indeed,
we can take Y to be any value of Y exceeding the value of ' at its local maximum
if ' is non-monotonic (see Figure 3) or any positive value of Y if ' is decreasing
(see Figure 4). We may conclude that the equilibrium with eY = ' (1=n) must
be unique if n > 1=�. For it follows from (i), (ii) and (iii) that eY � Y and
therefore any member of

Pn
j=1 Sj (Y ) exceeds 1 for Y < eY and is less than 1

for Y < eY .
Corollary 3.3 A contest in which r1 = � � � = rn = r < 1 has a unique equilib-
rium for all large enough n.

3 In addition, Si (Y ) also contains a value of � > 1=m.
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Even if it is not symmetric, a contest will have a unique equilibrium if the
share correspondence of every contestant is singleton-valued, since it follows
from Corollary 2.3 that the corresponding share functions are strictly decreasing
and this property is inherited by the aggegate share function

Pn
j=1 sj . It

follows that there can only be one value of Y for which
Pn

j=1 sj (Y ) = 1 and
this precludes multiple equilibria. Using the condition in Corollary 2.3 gives
the following theorem.

Theorem 3.4 If �i � � (ri) for i = 1; : : : ; n, the contest has a unique equilib-
rium.

We state explicitly as corollaries two special cases which follow from proper-
ties of � set out in Proposition 2.2. The �rst such property is that � (1) = 1=2.

Corollary 3.5 If ri = 1 and �i � 1=2 for i = 1; : : : ; n, the contest has a unique
equilibrium.

Corollaries 3.2 and 3.5 show that the critical value of � distinguishing be-
tween unique and multiple equilibria for the simple lottery contest success func-
tion is 1=2. It is an interesting coincidence that Tversky and Kahneman [25]
suggest that a value of � of about 1=2 is consistent with the much of the experi-
mental and empirical evidence, at least for small or moderate changes in wealth
(though much smaller values may also be observed, for example when health
risks are involved ).
The second corollary follows from the fact that � (r) = 0 if r � 1=2.

Corollary 3.6 If ri � 1=2 for i = 1; : : : ; n, the contest has a unique equilib-
rium.

3.3 Comparative statics

When every contestant has a share function, we can also deduce results in
comparative statics. Since we have discussed this extensively in [4] and [5], and
the methods and results for the present model are very similar, we omit most of
the details. We also con�ne attention to the e¤ects of adding contestants and
changing loss-aversion parameters.
The key observation is that, since share functions are strictly decreasing

where positive, the same is true of the aggregate share function S. Since the
equilibrium value of Y satis�es S (Y ) = 1, it follows that any change to the con-
test which decreases the aggregate share function also decreases equilibrium Y .
For example, if an active contestant leaves the contest equilibrium Y decreases.
Note that aggregate expenditure X =

Pn
j=1 xj is not directly related to Y , so

we cannot sign changes in X (except in the case ri = 1 for all i when X = Y ).
However, the facts that a contestant�s share function is just their probability of
winning and this function is decreasing, means that the remaining contestants
are more likely to win in the smaller contest. It can also be shown [5] thate�i (si (Y ) ; Y ) decreases with Y , which means that the remaining contestants
are better o¤.
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Corollary 3.7 If an active contestant leaves a contest which satis�es the hy-
potheses of Theorem 3.4 and has at least three players, aggregate lobbying de-
creases in equilibrium. The probability of winning and the payo¤ of the remain-
ing active contestants rise.

Another interesting change is a reduction in loss aversion. Note that (3)
implies

Di (�)

�i
=
(ui � �)

�i
�ui�1 + terms independent of �i.

Since ui � 1, we see that Di=�i is decreasing with �i. From Proposition 2.1,
we deduce an increase in �i increases 'i and moves the graph of the share
correspondence Si to the right.
Now consider two contests C and C0 with the number of contestants and the

same ri in both contests and suppose that �
0
i � �i for all i with at least one

inequality strict. Let S0i denote the share correspondence of contestant i in C0.
Suppose further that all contestants in C0 have a share function, which we write
s0i for contestant i. Since this is strictly decreasing where positive and lies to
the right of Si, it must also lie above it. It follows that, if (by1; : : : ; byn) is an
equilibrium pro�le of C and bY =

Pn
j=1 byj , then byi=bY 2 Si

�bY � and therefore
s0i

�bY � � byi=bY for all i. Since at least one of these inequalities must be strict,

we can sum over i to deduce that
Pn

j=1 s
0
j

�bY � > 1, which implies that bY 0, the
unique equilibrium value of aggregate lobbying in C0 satis�es bY 0 > bY . If, in
addition, there is a contestant i such that �0j = �j for all j 6= i, the fact that share
functions are decreasing where positive implies that the probability of contestant
j 6= i winning (and its payo¤) falls. Since the sum of the probabilities of winning
remains constant, this means that contestant i is more likely to win in C0.

Corollary 3.8 If �0i � � (ri) for i = 1; : : : ; n, equilibrium aggregate lobbying in
C0 exceeds aggregate lobbying at any equilibrium of C. If the degree of aversion
to loss is unchanged for all but one contestant, the probability of that contestant
winning increases and the winning probabilities and payo¤s of the remaining
contestants fall (strictly if they were initially active).

If rj = 1 for all j, then Y =
Pn

j=1 xj . For this widely studied contest success
function, we may deduce that aggregate expenditure increases. In particular,
aggregate expenditure for loss averse contestants is less than that for otherwise
identical but loss neutral contestants.
It is important to note that Corollaries 3.7 and 3.8 require all contestants

to have share functions. Although this condition also implies uniqueness of
equilibrium, uniqueness is not itself su¢ cient to ensure the �intuitive�compar-
ative statics properties stated in the corollaries. A counterexample can be
constructed by supposing that all but one contestant (say i = 1) has a share
function and that S1 is multi-valued (as in Figures 1 and 3). This means that
the aggregate share function is also multivalued. In particular, it is the in-
verse of a function (say �) and therefore contains unity at a unique value of Y .
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This means that the contest has a unique equilibrium at eY = �(1). However,
it is possible that this equilibrium exhibits perverse comparative statics. For
example, � may be decreasing in a neighbourhood of unity, which means that
a su¢ ciently small decrease in the aggregate share correspondence will lead to
an increase in the value of Y at which the new aggregate share correspondence
includes the value 1. For example, a small increase in loss aversion of contes-
tant i 6= 1, or equivalently a small decrease in �i, can lead to an increase in the
equilibrium value of Y . This means that contestants other than 1 and i are
less likely to win the contest and their payo¤s fall. Note that the probability
that contestant 1 wins will rise, so we can no longer determine whether contes-
tant i is more or less likely to win as a result of the change. Similarly, if an
active contestant leaves the contest, equilibrium Y increases and the remaining
contestants other than 1 are less likely to win the contest and are worse o¤,
provided the level of expenditure of the entrant is su¢ ciently small.

4 Symmetric contests

In this section, we focus on symmetric contests in which ri = r and �i = � for
i = 1; : : : ; n and we will drop the subscript i throughout. Symmetric contests
always have a symmetric equilibrium; furthermore, this will be unique. To see
this note that that yi = by for all i is a symmetric equilibrium if and only if

1

n
2 S (nby) .

This can be re-written as by = ' (1=n) =n, where ' is the inverse share function
and shows that there is a unique symmetric equilibrium.
Transforming by = ' (1=n) =n back to the original strategic variables, writingbxn (�) for the expenditure of each contestant and using Proposition 2.2 gives

bxn (�) = �' (1=n)
n

�u
=

�R

nD (1=n)
:

Using the formula (3) for D gives an expression for the symmetric equilibrium.

Theorem 4.1 If 0 < r � 1, there is a unique symmetric Nash equilibrium in
which the expenditure of each contestant is

bxn (�) = �rR (n� 1)
n2 � (1� �) (n+ rn� r) .

We can make a number of observations on this theorem.

1. Comparative statics of the symmetric equilibrium with respect to changes
in loss aversion are as expected: increasing aversion to loss reduces equi-
librium expenditure. This is readily seen by re-writing bxn (�) in the form

bxn (�) = rR (n� 1)
n+ rn� r

�
1� (n� 1) (n� r)

n2 � (1� �) (n+ rn� r)

�
.
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which shows that, as � falls, so does bxn (�). In particular, loss averse
contestants devote less e¤ort to rent-seeking than loss neutral (� = 1)
contestants facing the same contest success function. It is illuminating
to compare this with the results on comparative statics of loss aversion
in Section 3. There we showed that aggregate lobbying in asymmetric
contests increases as contestants become less averse to loss but needed to
impose the additional restriction �i � � (ri) for all i. To derive a similar
conclusion for aggregate expenditure required the additional restriction
that all ri = 1.

2. As n �! 1, so nbxn (�) �! �rR. Equilibrium expenditure devoted to
rent seeking in a large contest is reduced by a factor equal to the loss
aversion ratio. In the frequently studied case where r = 1, loss neutral
contestants would exhaust the whole value of the rent whereas, if loss
averse, only a proportion � would be spent. For a �typical�value [25] of
�, this would halve aggregate expenditure.

3. The symmetric equilibrium may display counter-intuitive comparative sta-
tics with respect to the number of contestants. For example, if r = 1 and
� < 1

2 , aggregate expenditure on rent-seeking: nbxn (�) is decreasing in n
for all large enough n. This can be seen by direct study of the expression
for bxn (�) in the theorem or, perhaps more insightfully, from the fact that
nbxn (�) = ' (1=n) and that ' (�) is strictly increasing for all small enough
positive �, as shown in Figure 1. Note that this also implies that the limit
in the previous observation is approached from above. Consequently, the
maximum (over n) rent dissipation will occur for a �nite value of n.

The possibility that ' is strictly increasing over part of its domain is not
restricted to r = 1. This is illustrated in Figure 3 and it follows that
aggregate expenditure may decrease with n even if r < 1, though, unlike
the case r = 1, this can only happen for a restricted range of n. Indeed,
it follows from Corollary 3.3 that if n is large enough, there is a unique
equilibrium.

4. Whether entry leads to a rise or fall in aggregate expenditure it unambigu-
ously makes incumbents worse o¤ in the symmetric equilibrium. When
� � � (r), this is a special case of Corollary 3.7, but remains valid even if
this inequality does not hold. Indeed, if we let b�n denote the equilibrium
payo¤ with n (� 1) contestants, we �nd after some manipulation that

b�n+1 � b�n = � (1 + r) �2 + (2n� 1) � + (1� r)n (n� 1)
E (n)E (n+ 1)

R,

where
E (n) = (n� 1) (n� r) + �n+ �r (n� 1) .

Since E (n) is positive for n � 1, we conclude that b�n is strictly decreasing
in n.
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We note that b�m is also the payo¤of an active contestant in an asymmetric
equilibrium in which n � m inactive contestants choose xi = 0 and the
rest choose the same strategy. Since b�m > b�n, contestants prefer to be
active players in such an asymmetric equilibrium to playing the symmetric
equilibrium, when the latter is not unique.

5. In some instances � for example, if a loss averse manager is given a
positive revenue target � it may be appropriate to analyze a reference
level, a, di¤erent from zero. If we maintain the same loss aversion ratio,
�, the payo¤ can be written

�i =
xriPn
j=1 x

r
j

� (R� � xi)�
"
1� xriPn

j=1 x
r
j

#
xi � a,

where R� = R � a + a=�, provided winnings net of expenditure exceed a
and expenditures exceed �a. Hence, if 0 < a + x� < R�, where x� is
given by the formula for bxn (�) in the theorem but with R replaced by R�,
the pro�le xi = x� is a Nash equilibrium. It follows that, if 0 � a < R�,
aggregate equilibrium expenditure approaches r [�R+ (1� �) a] as n �!
1: a positive reference level may o¤set some of the reduction arising from
loss aversion.

The intuition behind the theorem and subsequent observations rests on the
fact that winning the rent increases wealth and therefore loss aversion decreases
its value by a factor of � < 1. However, loss aversion also e¤ectively decreases
the cost of expenditure on rent-seeking in the case (and only in the case) of
a win. Hence, the aggregate expenditure is decreased relative to the case
of risk neutrality but by a factor less than �. Furthermore, if � increases,
the increase in e¤ective value of the rent leads to an increase in expenditure.
Observation 1 shows that the partial o¤set due to the e¤ective reduction in
the cost of successful rent-seeking does not reverse this conclusion. When
there are many contestants, the expenditure of each contestant is su¢ ciently
small relative to the rent that it can be ignored, in which case the reduction in
aggregate expenditure is equal to � (cf. Observation 2).
These observations allow us to discuss several extensions of these results, for

example to the case where the technological coe¢ cient r (but not the degree
of loss aversion) di¤ers between the contestants, although we do not undertake
a formal analysis. Even in this asymmetric case, the e¤ective reduction in
the value of winning means the aggregate lobbying will be reduced (by a factor
between � and 1).
Returning to the symmetric case, another generalization is to contest suc-

cess functions of the form f (xi) =
Pn

j=1 f (xj), where f is a concave function
satisfying f (0) = 0. In [?], we showed that in the absence of loss aversion,
if the elasticity xf 0 (x) =f (x) has a limit � as x �! 0, aggregate expenditure
approaches �R as n �!1. The intuition is that Tullock�s contest success func-
tion with r = � is a good approximation for the small individual expenditures
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found in symmetric equilibria when n is large. For the reasons set out above,
loss aversion will again reduce limiting aggregate expenditure by the factor � if
the contest is large and less than this if the o¤setting e¤ect of reduced winner�s
expenditure is signi�cant.
When production of lobbying is subject to increasing returns (r > 1), there

is no symmetric equilibrium in pure strategies; mixed strategies are necessary.
Even in this case, the e¤ective reduction of the value of the prize will reduce
the expected aggregate expenditure by a factor of � or less.

5 Divisible and indivisible rents

The standard contest in which all players are risk and loss neutral is open to an
alternative interpretation in which the rent is regarded as divisible and the con-
test success function determines shares of the rent. Speci�cally, if the strategy
pro�le is (x1; : : : ; xn), the share received by contestant i is pi = xri =

Pn
j=1 x

r
j . In

the absence of loss and risk aversion, the two games - the one with an indivisible
rent, the other with a divisible rent - are strategically equivalent. In particular,
both yield the same relationship between the proportion of rent dissipated in
equilibrium and the number of contestants. Under loss aversion, however, the
two games have distinct equilibria.
The analysis of a contest in which a divisible rent of R is shared in proportion

to xri is straightforward. With no entry fees, contestant i�s payo¤ function is

�Di = min f� (piR� xi) ; (piR� xi)g .
In equilibrium, payo¤s can never be negative, so �Di = � (piR� xi) and the
Nash equilibrium will be the same as in a loss-neutral contest with the same
contest success function. Equilibria of such a game can be found by applying
the results in preceding sections with � = 1 and this makes it easy to compare
equilibria in the divisible and indivisible cases.
Consider, for example, a contest with an indivisible rent in which �i � � (ri)

for all i, so that the equilibrium is unique. Then application of Corollary 3.8
shows that increasing �i to 1 also increases the equilibrium value of Y . We note
that 1 � � (ri) for all i and all ri, which means that the hypothesis of Corollary
3.8 are satis�ed.

Corollary 5.1 Aggregate lobbying is higher in the unique equilibrium when the
rent is divisible than in any equilibrium when the rent is divisible. If ri = 1 for
all i, the same inequality holds for aggregate expenditure.

The �nal assertion is a consequence of the fact that, if ri = 1 for all i,
aggregate lobbying is equal to aggregate expenditure. We can also compare
aggregate expenditure if we con�ne attention to symmetric equilibria of sym-
metric contests, for then we can use the expression for the equilibrium strategybxn (�) in Theorem 4.1. In Observation 1, we showed that bxn (�) is increasing in
� and therefore bxn (�) < bxn (1). Since bxn (1) is the unique equilibrium strategy
when the rent is divisible, we have the following result.
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Corollary 5.2 The ratio of the aggregate expenditures in the symmetric equi-
librium when the rent is indivisible to that when the rent is divisible exceeds
unity. This ratio approaches 1=� as n �!1.

The �nal assertion is a restatement of the limit bxn (1) =bxn (�) �! ��1 as
n �!1, which follows directly from the formula in Theorem 4.1.
For larger rents, nonlinear value functions for positive arguments may be

appropriate to re�ect risk aversion. For divisible rents and increasing value
functions, this makes no di¤erence to pure strategy equilibrium. However, if
the rent is indivisible and there are many contestants, individual expenditures
will be small so their value will be an approximately linear function of their
magnitudes (assuming that the only kink in the value function is at the origin)
whereas the value of winning will be reduced below �R. Hence, even in this
case, equilibrium expenditure will be smaller for an indivisible rent as compared
to a divisible rent. Indeed, even for loss-neutral but risk averse contestants
equilibrium expenditure is reduced. However, if contestants are risk averse
and have a smooth utility function over wealth, for small rents, to �rst order,
contestants�behavior will be risk neutral [18] and the di¤erence between divisible
and indivisible rents may be too small to be detectable in an experimental
setting. By contrast, loss aversion implies that the utility function cannot be
accurately approximated by a linear function. Experiments should therefore
be capable of detecting a di¤erence between the contests even for small rents.

6 Conclusion

We have examined the possibility that loss aversion can lead to signi�cant mod-
i�cations of the set of equilibria of a Tullock contest. Since we expect them to
persist even when the prize is small, these modi�cations may have implications
for both the design of experimental contests and the interpretation of results.
When either contestants are not too loss averse or production elasticities are

su¢ ciently small, the equilibrium is unique and exhibits �non-perverse� com-
parative statics (Theorem 3.4 and Corollaries 3.7 and 3.8), although even in this
case, loss aversion will reduce aggregate lobbying (Corollary 3.8). When the
contest is symmetric aggregate expenditure will fall and, if there are many play-
ers, this reduction will be proportional to the common loss aversion parameter,
� (Theorem 4.1).
However, if production elasticities are large and contestants are more averse

to loss, the contest may have multiple equilibria. When the contest is sym-
metric, this may be accompanied by perverse comparative statics (Theorem 4.1
and subsequent observations). When the aversion to loss of contestants is not
known, the possibility that �i < � (ri) for some i needs to be considered. For
example, if ri = 1 for all i and contestants�risk aversion parameters are drawn
randomly from a distribution with mean value close to 1=2 and wide enough
support, multiple equilibria are likely. Indeed, as the number of contestants
becomes large, the probability that the equilibrium is unique approaches zero.
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Furthermore, the existence of alternative equilibria raises the possibility of co-
ordination failure. For example, if all contestants play the active strategy in
an asymmetric equilibrium in which some contestants are inactive, aggregate
expenditure will exceed the equilibrium value and may even exceed the value of
the rent. What is more, as the number of contestants grows, total expenditure
in such a miscoordinated strategy pro�le is unbounded.
In the laboratory, a typical �nding is that �... subjects spend signi�cantly

more than the Nash equilibrium ...�[1]. This equilibrium is calculated assuming
loss neutrality. Taking account of loss aversion in experiments is complicated
by uncertainty in how subjects set their reference levels, particularly when they
are asked to participate in a sequence of contests. However, if we take it to be
current wealth when each contest is played, our results point in two directions:
loss aversion reduces expenditure in equilibrium, but can also make coordination
on an equilibrium harder to achieve. We note that, if loss aversion parameters
are continuously distributed amongst subjects with a median value around 1=2
and ri = 1 for all i, as in most reported experiments, the probability that at
least one subject has a multi-valued share correspondence, with the attendant
possibility of coordination failure, is positive and approaches one as the number
of contestants becomes large.
These observations suggest that some thought may usefully be given to the

choice of contest success function in experimental design, at least when con-
testants�attitudes to loss are uncontrolled. It follows from Theorem 3.4 and
Proposition 2.2 that, if the degree of contestants�loss aversion is unknown, lower
production elasticities reduce the risk of multiple equilibria. Indeed, if ri � 1=2,
for all i the equilibrium is unique no matter how averse to loss contestants are
(Corollary 3.6). For large contests, Corollary 3.3 implies that simply choosing
production elasticities less than one is enough to ensure uniqueness. An alter-
native and perhaps more readily implementable way of ensuring uniqueness for
any pro�le of production elasticities is simply to make the prize divisible and in-
terpret the contest success function as determining shares of that prize. Indeed,
in the spirit of the comparison discussed in Section 5, it would be instructive to
try both designs and compare the outcomes.
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7 Appendix

Proof of Proposition 2.1. For ease of exposition, we drop the subscript i
throughout the proof. The de�nition of the share correspondence means thatby=Y 2 S (Y ) if and only if by maximizes  (y) over y � 0, where

 (y; by) = e� (y; Y � by + y) .
We see from the formula for e� in equation 1 that  is continuously di¤erentiable
and satis�es  (0; by) = 0 >  (y; by) if y > Rr (in which case, expenditure exceeds
the rent). Since  i is continuous in y, it must have at least one maximizer in
the interval [0; Rr]. Furthermore,  (y) is quasiconcave. This follows from the
expression for the �rst and second derivatives:

 0 (y; by) = �
(Y � by)R
(Y � by + y)2 � uyu�1 + (1� �)� (y; by) ,

where primes indicate derivatives with respect to y and

�(y; by) = uyu

Y � by + y + (Y � by) yu
(Y � by + y)2 ,

and

 00 (y; by) = �2� (Y � by)R
(Y � by + y)3 � u (u� 1) yu�2 + (1� �)�0.

If  0 (y) = 0, we �nd, after some manipulation that

 00 (y; byi) = �2 uyu�1

Y � by + y � u (u� 1) yu�2 + (1� �) u (u+ 1) yu�1Y � by + y .

Using � > 0, we obtain

 00 (y; byi) < u (u� 1)
�

yu�1

Y � by + y � yu�2
�
< 0

since by < Y , which con�rms (strict) quasiconcavity.
It follows that 0 2 S (Y ) if and only if  0 (0; 0) � 0. When r < 1, we have

u > 1 and  0 (0; 0) = �R=Y > 0, so we cannot have 0 2 S (Y ) in this case.
When r = 1, we have  0 (0; 0) = �R=Y � 1, which implies 0 2 S (Y ) if and only
if Y � �R.
Furthermore, � 2 (0; 1) satis�es � 2 S (Y ) if and only if  0 (�Y ;�Y ) = 0.

Since
�(�Y ;�Y ) = u�uY u�1 + (1� �)�uY u�1,

we have

 0 (�Y ;�Y ) = �
(1� �)R

Y
� u�u�1Y u�1 + (1� �)� (�Y ;�Y )

=
�R (1� �)

Y
� (1� �)D (�)Y u�1.
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Hence,  0 (�Y ;�Y ) = 0 if and only if �R = D (�)Y u, or Y = [�R=D (�)]r.

Proof. Proposition 2.1 asserts that the inverse share function is given by
'i (�) = [�iR=Di (�)]

ri , whereDi is given in (3). Hence, '0i (�) = �riD0
i (�) [�iR]

ri [Di (�)]
�ri�1,

which implies that the sign of the slope of 'i is the opposite of that of Di and
that turning points of 'i occur at the same values of � as those of Di. Con-
sequently, the numbered assertions in the proposition follow from the following
properties of Di: (i) if ui = 1, then Di (�) �! 1 as � �! 0, (ii) if ui > 1,
then Di (�) �! 0 as � �! 0, (iii) Di (�) �! 1 as � �! 0, (iv) there is a
� : (0; 1] �! (0; 1] such that D0

i (�) > 0 for all � 2 (0; 1) if and only if � � � (ri),
(v) if ui = 1 and � < � (ri), Di has a unique minimum in (0; 1), (vi) if ui > 1
and � < � (ri), Di increases to a local maximum and then decreases to a local
minimum in (0; 1). Properties (i), (ii) and (iii) are obvious from (3). For ease
of exposition in proving the remaining parts, we drop the subscript i.
When u = r = 1, (3) simpli�es to

D (�) = (1� �) (1� �) + �

1� � ,

which has a unique minimum in � < 1 at

� = 1�
r

�

1� � .

This minimum is positive if and only if � < 1=2 and D0 (�) > 0 for 0 < � < 1
if � � 1=2. This establishes Property (iv) in the special case r = 1 with
�i (1) = 1=2 as well as Property (v).
If u > 1, a little manipulation shows that

D0 (�) =
u�u�2

(1� �)2
Q (�; �) ,

where

Q (�; �; u) = �2 (1� �) (u+ 1� �)
+ (u� 1) (1� �) + (�u+ � + �u)�.

Since Q (0; �; u) = u � 1 > 0 and Q (1; �; u) = � > 0, the cubic (in �) equation
Q (�; �; u) = 0 has at most two roots in (0; 1). If �u + � + �u > 0, then
Q (�; �; u) > 0 for all � 2 (0; 1), which shows that Q has no roots for all � close
enough to 1. Furthermore, if � 2 (0; 1) satis�es Q (�; �; u) = 0 and �0 < �, then

Q
�
�; �0; u

�
�Q (�; �; u) =

�
�3 + (u+ 1)� (1� �)

� �
�0 � �

�
< 0.

Since Q
�
�; �0; u

�
is a continuous function of �, it must have (two) roots in (0; 1).

A straightforward continuity argument allows us to conclude that the set of � for
which Q (�; �; u) has no roots is closed and therefore takes the form

�
� (r) ; 1

�
.

For any � 2
�
� (r) ; 1

�
, D is strictly increasing for all � 2 (0; 1), which establishes
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Property (iv) when r < 1. If � < 0 satis�es � < � (r), D has two turning points;
taken together with Properties (ii) and (iii), this proves Property (vi).
It remains to justify the properties of � in the last sentence of the Proposition.

We have shown above that D has positive slope if and only if � � 1=2, which
establishes assertion (a) in the proposition. To complete the proof, it is helpful
to rewrite the expression for Q as follows:

Q (�; �; u) = uq (�; �; u) + �2 (1� �) (1� �)� (1� �) + ��, (5)

where
q (�; �; u) = (1� �)2 + �� (1� �) > 0. (6)

For any � satisfying 0 < � < � (r), there must be � 2 (0; 1) such thatQ (�; �; u) =
0, where u = 1=r. If r0 > r, then u0 < u and (5) and (5) imply that so
Q (�; �; u0) < 0, which means that Q has two roots in (0; 1) and therefore
� (r0) > �. It follows that � (r0) � � (r), proving (b). When r � 1=2 and
therefore u � 2, we have uq (�; �) � 2q (�; �), which shows, after some re-
arrangement, that

Q (�; �; u) � (1� �)3 + 3�� (1� �) + ��3 > 0.

Hence, D is strictly increasing in (0; 1) for any � � 0, which sets � (r) at 0,
proving (c).

Proof of Theorem 3.1. We start by showing that (4) has a solution
when ri < 1 for all i and commence with an extension of the domain of 'i to
� 2 (0; 1] by setting 'i (1) = 0. Proposition 2.2 implies that 'i is continuous
on the extended domain. Since ri < 1 implies ui > 1, we have 'i (�) �! 1
as � �! 0 (Proposition 2.2). It follows that there is a YL > 0 such that, if
� 2 (0; 1) satis�es 'i (�) � YL, then � < 1= (n+ 1).
For any � 2 (0; 1], de�ne �i (�) = min f'i (�) ; YLg. If we further de�ne

�i (0; �i) = YL, the conclusion of the preceding paragraph and the de�nition of
'i imply that �i (�) is continuous for � 2 [0; 1]. Let � denote the simplexn
(�1; : : : ; �n�1) : �1; : : : ; �n�1 � 0;

Pn�1
j=1 �j = 1

o
and, for i = 1; : : : ; n� 1, de-

�ne �i : �� [0; YL] �! R by

�i (�1; : : : ; �n�1; Y ) = �i (�i)� Y

and �n : �� [0; YL] �! R by

�n (�1; : : : ; �n�1; Y ) = �n

0@1� n�1X
j=1

�j

1A� Y .
We claim that no zero

�b�1; : : : ; b�n�1; bY � of � = (�1; : : : ; �n) can lie on the
boundary of its domain. To see this, �rst note that bY < YL, for � (�1; : : : ; �n�1; YL) =
0 would lead to �j < 1= (n+ 1) for j = 1; : : : ; n�1 and 1�

Pn�1
j=1 �j < 1= (n+ 1),
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but these inqualities are inconsistent. This also means that we cannot haveb�j = 0 for some j = 1; : : : ; n� 1, for this would imply bY = �j (0) = YL. Simi-

larly,
Pn�1

j=1 b�j = 1 would imply bY = �n (0) = YL. Finally, bY = 0 is ruled out

because this would mean �n (b�n) = 1, where b�n = 1�Pn�1
j=1 b�j , and Proposition

2.2 would imply b�n = 0, contradicting b�j > 0 for j = 1; : : : ; n� 1.
It follows from bY < YL that bY = �i (b�i) = 'i (b�i), so (b�1; : : : ; b�n; ) and bY

satisfy (4). This means we can demonstrate existence of a Nash equilibrium
by showing that � has at least one zero and we will do this using topological
degree theory.
Note that � depends on � = (�1; : : : ; �n) and in this and the next paragraphs

we make the dependence explicit by writing it as � (�1; : : : ; �n�1; Y ;�). Note
that the Jacobian of � with respect to (�1; : : : ; �n�1; Y ) is

J =

0BBB@
'01 � � � 0 �1
...

. . .
...

...
0 � � � '0n�1 �1
�'0n � � � �'0n �1

1CCCA
and this has determinant

detJ = �
nX
j=1

Y
k 6=j

'0k.

If �j = 1, it follows from Proposition 2.2 that '0j < 0. If this holds for all j,
the sign of detJ is (�1)n. In particular, the degree of � (�; e) is non-zero, where
e = (1; : : : ; 1).
Now, for t 2 [0; 1], let � (t) = t�+(1� t) e and note that � (�1; : : : ; �n�1; Y ;� (t))

is a continuous function of (�1; : : : ; �n�1; Y; t) : Homotopy equivalence (see Lloyd
[13] for example) implies that the degree of � (�1; : : : ; �n�1; Y ;� (t)) is invariant
to the value of t since � has no zeroes on the boundary of the domain �� [0; YL].
It follows that � (�1; : : : ; �n�1; Y ;�) has non-zero degree and hence has at least
one zero.
To extend this conclusion to the case where some or all ri take the value 1,

consider a sequence (rm1 ; : : : ; r
m
n ) which satis�es 0 < rmj < 1 for all j = 1; : : : ; n

and m = 1; 2; : : : and rmj �! rj as m �! 1. We have shown that there
is an equilibrium (eym1 ; : : : ; eymn ) for each m. Such an equilibrium must satisfy
0 � eymj � Ruj for all j (strategies failing the upper inequality are strictly
dominated for contestant j) and compactness implies that (eym1 ; : : : ; eymn ) must
have a subsequence convergent to (ey1; : : : ; eyn), say. Using the fact that the
payo¤ e�j is continuous in yj and rj for all j, a simple limiting argument allows
us to conclude that (ey1; : : : ; eyn) satis�es the equilibrium condition for parameter
set (r1; : : : ; rn), completing the existence proof.
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