MANCHESTER 1824

Economics

Discussion Paper Series EDP-1124

A Heteroskedasticity-Robust F-Test Statistic for Individual Effects

Chris D. Orme
Takashi Yamagata

October 2011

Economics
School of Social Sciences
The University of Manchester
Manchester M13 9PL

A Heteroskedasticity-Robust F-Test Statistic for Individual Effects

Chris D. Orme ${ }^{a, *}$ and Takashi Yamagata ${ }^{b}$
${ }^{a}$ Economics, University of Manchester
${ }^{b}$ Department of Economics and Related Studies, University of York

September 23, 2011

Abstract

We derive the asymptotic distribution of the standard F-test statistic for fixed effects, in static linear panel data models, under both non-normality and heteroskedasticity of the error terms, when the cross-sections dimension is large but the time series dimension is fixed. It is shown that a simple linear transformation of the F-test statistic yields asymptotically valid inferences and under local fixed (or correlated) individual effects, this heteroskedasticityrobust F-test enjoys higher asymptotic power than a suitably robustified Random Effects test. Wild bootstrap versions of these tests are considered which, in a Monte Carlo study, provide more reliable inference in finite samples.

1 Introduction

In an earlier paper, Orme and Yamagata (2006) added to the already large literature on the analysis of variance testing, by establishing that, in a static linear panel data model, the standard F-test for individual effects remains asymptotically valid (large N, fixed T) under non-normality of the error term. Moreover, their (local) asymptotic analysis, supported by Monte Carlo evidence, showed that under (pure) local random effects both the F-test and Random Effects test (RE-test) will have similar power whilst under local fixed effects, or random effects which are correlated with the regressors, the $R E$-test procedure will have lower asymptotic power than the F-test procedure.

The key result in the above paper (Proposition 1, p.409) is, essentially, the asymptotic equivalence of the appropriately centred F-test statistic and the numerator (test indicator) in the RE-test statistic, under homoskedastic, but not necessarily normally distributed, errors. However, it is straightforward to verify (Proposition 1 in Section 3.2 below) that this asymptotic equivalence continues to hold under

[^0]general heteroskedasticity of the errors. ${ }^{1}$ The analysis which produces this result also shows that although under quite general, but neglected, heteroskedasticity, the standard (homoskedastic-based) F and $R E$ tests may be asymptotically under, or over, sized, predictions can be made in certain cases. For example, and in addition to the maintained assumption of independent cross-sections, when the linear model error terms are also serially independent, then: (i) if the (unconditional) error variance is constant within a cross section of data, but not across cross-sections, both tests will be asymptotically oversized; (ii) on the other hand, if the (unconditional) error variance is constant across cross-sections, but not through time, both tests will be asymptotically undersized; (iii) furthermore, in the singular case of independently and identically distributed (i.i.d.) data, over both the cross-section and time dimensions, then even if the errors are conditionally heteroskedastic, the standard F and $R E$ tests remain asymptotically valid. The assumptions in this paper explicitly allow for independently but not identically distributed data and, therefore, unconditional heteroskedasticity in the errors.

Given the result of Proposition 1, below, Wooldridge's (2010, p.299) heteroskedasticrobust $R E$-test suggests the appropriate transformation required of the standard F-test statistic in order to recover its asymptotically validity under general heteroskedasticity of unknown form. This transformation, or correction, involves simple functions of the pooled model's residuals (i.e., the restricted residuals), of which there are a number of asymptotically valid choices. Following the literature on heteroskedasticity robust inference, restricted residuals are employed as advocated, for example, by Davidson and MacKinnon (1985) and Godfrey and Orme (2004), who report reliable sampling performance of tests of linear restrictions in the linear model when employing restricted residuals in the construction of heteroskedasticity robust standard errors. ${ }^{2}$

Importantly, though, the F and $R E$ heteroskedastic-robust tests, so constructed, retain the qualitative properties that were reported by Orme and Yamagata (2006). Specifically: (i) under (pure) local random effects, both tests have the same asymptotic power; and, (ii) under local fixed effects, or random effects which are correlated with the regressors, the $R E$-test procedure will have lower asymptotic power than the F-test procedure.

The plan of this paper is as follows. In order to make the current paper selfcontained, Section 2 reproduces Orme and Yamagata (2006, Section 2) and introduces the notation and standard test statistics as discussed widely in standard texts; for example Baltagi (2008). Assumptions are introduced in Section 3, justifying the ensuing asymptotic analysis in Section 3.2 which characterises the asymptotic behaviour of the F-test statistic, including its relationship with the $R E$-test statistic under the null and local alternatives. All proofs of the main results are relegated to the Appendix. Section 4 illustrates the main findings by reporting the results of a small Monte Carlo study. This also includes an evaluation of a wild bootstrap

[^1]procedure scheme, based on Mammen (1993) and Davidson and Flachaire (2008), which might be employed in order to provide closer agreement between the desired nominal and the empirical significance level of the proposed test procedures. Section 5 concludes.

2 The Notation, Model and Test Statistics

We consider the following static linear panel data model

$$
\begin{equation*}
\mathbf{y}_{i}=\alpha_{i} \boldsymbol{\iota}_{T}+\mathbf{X}_{i} \boldsymbol{\beta}_{1}+\mathbf{u}_{i}, \quad i=1, \ldots, N \tag{1}
\end{equation*}
$$

where $\mathbf{y}_{i}=\left(y_{i 1}, \ldots, y_{i T}\right)^{\prime}, \mathbf{u}_{i}=\left(u_{i 1}, \ldots, u_{i T}\right)^{\prime}, \iota_{T}$ is a $(T \times 1)$ vector of ones, and $\mathbf{X}_{i}=\left(\mathbf{x}_{i 1}, \ldots, \mathbf{x}_{i T}\right)^{\prime}$ a $(T \times K)$ matrix. The innovations, $u_{i t}$, have zero mean and uniformly bounded variances and the α_{i} are the individual effects. By stacking the N equations of (1), the model for all individuals becomes

$$
\begin{equation*}
\mathbf{y}=\mathbf{D} \boldsymbol{\alpha}+\mathbf{X} \boldsymbol{\beta}_{1}+\mathbf{u} \tag{2}
\end{equation*}
$$

where $\mathbf{y}=\left(\mathbf{y}_{1}^{\prime}, \ldots, \mathbf{y}_{N}^{\prime}\right)^{\prime}$ and $\mathbf{u}=\left(\mathbf{u}_{1}^{\prime}, \ldots, \mathbf{u}_{N}^{\prime}\right)^{\prime}$ are both $(N T \times 1)$ vectors, $\boldsymbol{\alpha}=$ $\left(\alpha_{1}, \ldots, \alpha_{N}\right)^{\prime}$ is a $(N \times 1)$ vector, $\mathbf{D}=\left[\mathbf{I}_{N} \otimes \boldsymbol{\iota}_{T}\right]$ is a $(N T \times N)$ matrix, $\mathbf{X}=$ $\left(\mathbf{X}_{1}^{\prime}, \ldots, \mathbf{X}_{N}^{\prime}\right)^{\prime}$ is a $(N T \times K)$ matrix, and $[\mathbf{D}, \mathbf{X}]$ has full column rank. Thus, for the purposes of the current exposition, $\mathbf{x}_{i t}=\left(x_{i t 1}, \ldots, x_{i t K}\right)^{\prime},(K \times 1)$, contains no time invariant regressors, in particular a constant term corresponding to an overall intercept. In the context of fixed effects this allows estimation of $\boldsymbol{\beta}_{1}$, as follows.

In general, define the projection matrices, $\mathbf{P}_{\mathbf{B}}=\mathbf{B}\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-1} \mathbf{B}^{\prime}$ and $\mathbf{M}_{\mathbf{B}}=\mathbf{I}_{N T}-$ $\mathbf{P}_{\mathbf{B}}$, for any $(N T \times S)$ matrix \mathbf{B} of full column rank, with $\tilde{\mathbf{B}}=\mathbf{M}_{\mathbf{D}} \mathbf{B}$ being the residual matrix from a multivariate least squares regression of \mathbf{B} on \mathbf{D} which is, of course, the within transformation. Then the fixed effects (least squares dummy variable) estimator of $\boldsymbol{\beta}_{1}$ in (2) is given by

$$
\begin{equation*}
\tilde{\boldsymbol{\beta}}_{1}=\left(\mathbf{X}^{\prime} \mathbf{M}_{\mathbf{D}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{D}} \mathbf{y}=\left(\tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{y}} \tag{3}
\end{equation*}
$$

The null model of no individual effects is the pooled regression model of

$$
\begin{align*}
\mathbf{y} & =\beta_{0} \boldsymbol{\iota}_{N T}+\mathbf{X} \boldsymbol{\beta}_{1}+\mathbf{u} \tag{4}\\
& =\mathbf{Z} \boldsymbol{\beta}+\mathbf{u}
\end{align*}
$$

where $\mathbf{Z}=\left[\boldsymbol{\iota}_{N T}, \mathbf{X}\right]=\left(\mathbf{Z}_{1}^{\prime}, \ldots, \mathbf{Z}_{N}^{\prime}\right)^{\prime}$, where \mathbf{Z}_{i} has rows $\mathbf{z}_{i t}^{\prime}=\left(1, x_{i t 1}, \ldots, x_{i t K}\right)=$ $\left\{z_{i t j}\right\}, j=1, \ldots, K+1$. The (pooled) regression of \mathbf{y} on \mathbf{Z} delivers the Ordinary Least Squares (OLS) estimator $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{0}, \hat{\boldsymbol{\beta}}_{1}^{\prime}\right)^{\prime}=\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}$.

The standard F-test for fixed effects requires estimation of both (2), treating the α_{i} as unknown parameters, and (4) whilst the standard $R E$-test only requires estimation of (4). In order to provide a framework in which to investigate the limiting behaviour of the F-test and $R E$-test statistics, under both fixed and random effects, the individual effects are assumed to have the form $\boldsymbol{\alpha}=\beta_{0} \iota_{N}+\boldsymbol{\delta}, \boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{N}\right)^{\prime}$. Fixed effects correspond to the $\alpha_{i}, i=1, \ldots, N$, being fixed unknown parameters (or, equivalently, $\delta_{1} \equiv 0$ with β_{0} and $\delta_{i}, i=2, \ldots, N$, being the fixed unknown
parameters). The case of random effects is accommodated when the $\delta_{i}, i=1, \ldots, N$ are random variables. Equations (1) and (2) will be employed to characterise the data generation process, with the restrictions of $H_{0}: \boldsymbol{\delta}=\delta_{1} \boldsymbol{\iota}_{N}$ providing the null model of no individual effects (notice that $\boldsymbol{\delta}=\mathbf{0}$ belongs to this set of restrictions). Specifically, when considering the alternative of fixed effects, the $(N-1)$ restrictions placed on (2) are $H_{0}: \mathbf{H} \boldsymbol{\alpha}=\mathbf{0}$, where $\mathbf{H}=\left[\boldsymbol{\iota}_{N-1},-\mathbf{I}_{N-1}\right]$, whilst for random effects the null is $H_{0}: \operatorname{var}\left(\delta_{i}\right)=0$.

The standard F and $R E$ test statistics are defined as follows:

F-test Statistic

This is constructed as

$$
\begin{equation*}
F_{N}=\frac{\left(R S S_{R}-R S S_{U}\right) /(N-1)}{R S S_{U} /(N(T-1)-K)} \tag{5}
\end{equation*}
$$

where $R S S_{R}=\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}}$ is the restricted sum of squares (from the pooled regression (4)) with $\hat{\mathbf{u}}=\mathbf{M}_{\mathbf{z} \mathbf{y}}$, and $R S S_{U}=\tilde{\mathbf{u}}^{\prime} \tilde{\mathbf{u}}$ is the unrestricted sum of squares (from the fixed effects regression (2)) with $\tilde{\mathbf{u}}=\mathbf{M}_{\tilde{\mathbf{x}}} \tilde{\mathbf{y}}$, the residual vector from regressing $\tilde{\mathbf{y}}$ on $\tilde{\mathbf{X}}$. If normality, homoskedasticity and strong exogeneity were imposed such that, conditional on $\mathbf{X}, \mathbf{u}_{i} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{T}\right), i=1, \ldots, N$, then a standard F-test would be exact. In the case of non-normal, but homoskedastic, errors Orme and Yamagata (2006) demonstrated that a standard F-test would be asymptotically valid.

RE-test Statistic

The usual $R E$-test statistic is ${ }^{3}$

$$
\begin{equation*}
R_{N}=\sqrt{\frac{N T}{2(T-1)}}\left[\frac{\hat{\mathbf{u}}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \hat{\mathbf{u}}}{\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}}}\right]=\sqrt{\frac{1}{2 N T(T-1)}}\left[\frac{\hat{\mathbf{u}}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \hat{\mathbf{u}}}{\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}} / N T}\right] \tag{6}
\end{equation*}
$$

where $\mathbf{A}=\mathbf{A}^{\prime}=\boldsymbol{\iota}_{T} \boldsymbol{\iota}_{T}^{\prime}-\mathbf{I}_{T}$, so that

$$
\mathbf{u}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \mathbf{u}=\sum_{i=1}^{N} \mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}=\sum_{i} \sum_{t} \sum_{s \neq t} u_{i t} u_{i s}
$$

R_{N} has a limit standard normal distribution, as $N \rightarrow \infty$, under H_{0} and homoskedasticity but not necessarily normality of the errors.

3 Asymptotic Properties of F_{N}

In this section we describe the properties of F_{N}, under both local fixed and random effects, by (i) deriving its asymptotic distribution, and (ii) establishing its asymptotic relationship with R_{N}. In the subsequent analysis asymptotic theory is employed in which $N \rightarrow \infty$ and T is fixed. To facilitate this, the next sections details the assumptions that are made, which are of the sort found in, for example, White (2001, p.120):

[^2]
3.1 Assumptions

A1:

(i) $\left\{\mathbf{X}_{i}, \mathbf{u}_{i}\right\}_{i=1}^{N}$ is an independent sequence of $(K+1),(T \times 1)$ vectors;
(ii) $E\left(u_{i t} \mid \mathbf{X}_{i}\right)=0$, for all i and t;
(iii) $E\left(u_{i t} u_{i s} \mid \mathbf{X}_{i}\right)=0$ for all i and $t \neq s$.

A2:

(i) $E\left(\left|z_{i s j} u_{i t}\right|^{2+\eta}\right) \leq \Delta<\infty$ for some $\eta>0$, all $s, t=1, \ldots, T, j=1, \ldots, K+1$, and all $i=1, \ldots, N$;
(ii) $E\left(\left|z_{i t j}\right|^{4+\eta}\right) \leq \Delta<\infty$ for some $\eta>0$, all $t=1, \ldots, T, j=1, \ldots, K+1$, and all $i=1, \ldots, N ;$
(iii) $E\left(\mathbf{Z}^{\prime} \mathbf{Z} / N\right)$ is uniformly positive definite;
(iv) $E\left(\tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}} / N\right)$ is uniformly positive definite;
(v) $\mathbf{V}_{N}=N^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} E\left(u_{i t}^{2} \mathbf{z}_{i t} \mathbf{z}_{i t}^{\prime}\right)$ is uniformly positive definite;
(vi) $\tilde{\mathbf{V}}_{N}=N^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} E\left(u_{i t}^{2} \tilde{\mathbf{x}}_{i t} \tilde{\mathbf{x}}_{i t}^{\prime}\right)$ is uniformly positive definite.

Assumption A1 imposes independent sampling of cross-section units and a strong exogeneity assumption on \mathbf{X}_{i}, implying that $E\left(\tilde{\mathbf{X}}_{i}^{\prime} \mathbf{u}_{i}\right)=\mathbf{0}$ and thus ruling out (for example) lagged dependent variables. It also constrains the $u_{i t}$ to be conditionally serially uncorrelated, and thus serially uncorrelated but not necessarily serially independent. Together with Assumption A2, which allows for heteroskedastic disturbances, we obtain consistency and asymptotic normality of both the pooled and fixed effects least squares regression estimators ($\hat{\boldsymbol{\beta}}$ and $\tilde{\boldsymbol{\beta}}_{1}$, respectively), and also consistency of the corresponding heteroskedasticity-robust covariance matrix estimators. ${ }^{4}$ These results follow for the fixed effects estimator because Assumption A2(i) and (ii) also imply that $E\left[\left|\tilde{x}_{i s j} u_{i t}\right|^{2+\eta}\right]$ and $E\left[\left|\tilde{x}_{i t j} \tilde{x}_{i s l}\right|^{2+\eta}\right]$ are both uniformly bounded. Thus, in particular, $\frac{1}{\sqrt{N}} \mathbf{Z}^{\prime} \mathbf{u}, \frac{1}{\sqrt{N}} \tilde{\mathbf{X}}^{\prime} \mathbf{u}, \frac{1}{N} \mathbf{Z}^{\prime} \mathbf{Z}$ and $\frac{1}{N} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}$ are all $O_{p}(1)$, with $\mathbf{V}_{N}^{-1 / 2} \frac{1}{\sqrt{N}} \mathbf{Z}^{\prime} \mathbf{u} \xrightarrow{d} N\left(\mathbf{0}, \mathbf{I}_{K+1}\right)$ and $\tilde{\mathbf{V}}_{N}^{-1 / 2} \frac{1}{\sqrt{N}} \tilde{\mathbf{X}}^{\prime} \mathbf{u} \xrightarrow{d} N\left(\mathbf{0}, \mathbf{I}_{K}\right)$, as $N \rightarrow \infty$, T fixed. If Assumption A1 (ii) is weakened to $E\left(\mathbf{X}_{i}^{\prime} \mathbf{u}_{i}\right)=\mathbf{0}$, or even $E\left(\mathbf{x}_{i t} u_{i t}\right)=\mathbf{0}$ (zero contemporaneous correlation), $\tilde{\boldsymbol{\beta}}_{1}$ is not guaranteed to be consistent and, when it is inconsistent, the F-test is asymptotically invalid anyway, even under normality; for example, in the presence of lagged dependent variables - see the discussion in Wooldridge (2010, Sections 10.5 and 11.6). Note that, although the assumptions constrain $\left\{u_{i t}\right\}$ to be serially uncorrelated, they allow for rather arbitrary heteroskedasticity, across individuals and/or through time, and do not demand, for

[^3]example, that $\left\{u_{i t}^{2}\right\}$ also be serially uncorrelated. ${ }^{5}$ Assumptions A1(iii) and A2(v) imply that $\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} E\left(u_{i t}^{2}\right)=\frac{1}{N} \sum_{i=1}^{N} E\left(\sum_{t=1}^{T} u_{i t}\right)^{2}$ is uniformly positive.

For the purposes of this paper, in addition, we assume the following:

A3:

(i) $E\left|u_{i t}\right|^{4+\eta} \leq \Delta<\infty$ for some $\eta>0$, all $t=1, \ldots, T$, and all $i=1, \ldots, N$;
(ii) $\operatorname{var}\left(N^{-1 / 2} \mathbf{u}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \mathbf{u}\right)=N^{-1} \sum_{i=1}^{N} E\left(\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}\right)^{2}$ is uniformly positive.

A4:
(i) $\alpha_{i}=\beta_{0}+\frac{\delta_{i}}{N^{1 / 4}}, i=1, \ldots, N$;
(ii) the δ_{i} are independent, satisfying $E\left[u_{i t} \delta_{i}\right]=0$ and $E\left|\delta_{i}\right|^{4+\eta} \leq \Delta<\infty$, for all $i=1, \ldots, N$.
(iii) $N^{-1} \sum_{i=1}^{N} E\left[\delta_{i}^{2}\right]$ is uniformly positive, where $\boldsymbol{\delta}^{\prime}=\left(\delta_{1}, \ldots, \delta_{N}\right)$.

Assumption A3 justifies the limit distribution obtained in Proposition 1 below, and as a consequence also that of R_{N}. In fact, Assumption A3(i) and Assumption A2(ii) actually imply Assumption A2(i), using the Cauchy-Schwartz inequality. Assumption A4 characterises the alternative data generation process and permits the investigation of asymptotic power, under local individual effects, by restricting the test criteria under consideration to be $O_{p}(1)$ with well defined limit distributions. Together with Assumptions A3(i) and A2(ii), Assumption A4(ii) implies $E\left|u_{i t} \delta_{i}\right|^{2+\eta} \leq \Delta<\infty$ and $E\left|z_{i t j} \delta_{i}\right|^{2+\eta} \leq \Delta<\infty$, for some $\eta>0$, and all $i=1, \ldots, N, t=1, \ldots, T, j=1, \ldots, K+1$. As well as fixed effects (with the δ_{i} being non-stochastic) it also accommodates local heteroskedastic random effects, but which are uncorrelated with \mathbf{u}_{i}. If the δ_{i} are also distributed independently of \mathbf{X}_{i}, then we have "pure" random effects whilst if the δ_{i} are correlated with \mathbf{X}_{i} then we have "correlated" random effects. (As pointed out by Wooldridge (2010, p.287), in microeconometric applications of panel data models with individual effects, the term fixed effect is generally used to mean correlated random effects, rather than α_{i} being strictly non-stochastic.)

3.2 The Asymptotic Distribution of F_{N}

The results concerning the limiting behaviour of both the F-test and RE-test are driven by the following Lemma, which also substantiates the asymptotic validity of Wooldridge's (2010, p.299) heteroskedasticity-robust test for unobserved effects; see Section 3.2.2.

[^4]
Lemma 1 Define

$$
H_{N}=\frac{\mathbf{u}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \mathbf{u}}{\sqrt{N T(T-1)}}=\frac{1}{\sqrt{N T(T-1)}} \sum_{i=1}^{N} \mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}
$$

and

$$
\kappa_{N}=\operatorname{var}\left(H_{N}\right)=\frac{1}{N T(T-1)} \sum_{i=1}^{N} E\left\{\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}\right\}^{2}
$$

Then under Assumptions A1(i),(iii) and A3,

$$
\kappa_{N}^{-1 / 2} H_{N} \xrightarrow{d} N(0,1),
$$

for fixed T, as $N \rightarrow \infty$.
Armed with this, the asymptotic distribution of F_{N}, under non-normality and heteroskedasticity, is given by following proposition:
Proposition 1 Define $\bar{\sigma}_{N}^{2}=\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=1}^{T} E\left(u_{i t}^{2}\right)$.
(i) Under model (2) and Assumptions A1 to $A 4, \sqrt{N}\left(F_{N}-1\right)=O_{p}(1)$, with

$$
\bar{\sigma}_{N}^{2} \sqrt{N}\left(F_{N}-1\right)=\sqrt{\frac{T}{T-1}} H_{N}+\lambda_{N}+o_{p}(1)
$$

where H_{N} is given in Lemma 1 and $\lambda_{N}=O(1)$ is defined by

$$
\begin{aligned}
\lambda_{N} & =E\left[\boldsymbol{\zeta}_{1}^{\prime} \boldsymbol{\zeta}_{1} / N\right]=\mu_{N}-\boldsymbol{\rho}_{N}^{\prime} \boldsymbol{\Sigma}_{N}^{-1} \boldsymbol{\rho}_{N} \geq 0, \\
\boldsymbol{\zeta}_{1} & =\mathbf{D} \boldsymbol{\delta}-\mathbf{Z} \boldsymbol{\Sigma}_{N}^{-1} \boldsymbol{\rho}_{N}, \\
\boldsymbol{\Sigma}_{N}=E\left[\mathbf{Z}^{\prime} \mathbf{Z} / N\right], \boldsymbol{\rho}_{N} & =E\left[\mathbf{Z}^{\prime} \mathbf{D} \boldsymbol{\delta} / N\right], \mu_{N}=E\left[\boldsymbol{\delta}^{\prime} \mathbf{D}^{\prime} \mathbf{D} \boldsymbol{\delta} / N\right] .
\end{aligned}
$$

(ii) Furthermore, if $\omega_{N}=\frac{\bar{\sigma}_{N}^{2}}{\sqrt{\kappa_{N} / 2}}$, where κ_{N} is defined in Lemma 1, then

$$
\omega_{N} \sqrt{N}\left(F_{N}-1\right)-\frac{\lambda_{N}}{\sqrt{\kappa_{N} / 2}} \xrightarrow{d} N\left(0, \frac{2 T}{T-1}\right) .
$$

Given our assumptions, note that both ω_{N} and λ_{N} are $O(1)$ satisfying

$$
\frac{\frac{1}{N T} \sum_{i=1}^{N} \mathbf{u}_{i}^{\prime} \mathbf{u}_{i}}{\sqrt{\frac{1}{2 N T(T-1)} \sum_{i=1}^{N}\left\{\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}\right\}^{2}}}-\omega_{N} \xrightarrow{p} 0
$$

and

$$
\frac{\boldsymbol{\delta}^{\prime} \mathbf{D}^{\prime} \mathbf{M}_{\mathbf{Z}} \mathbf{D} \boldsymbol{\delta}}{N}-\lambda_{N} \xrightarrow{p} 0
$$

respectively, with ω_{N} is uniformly positive by Assumption, although neither ω_{N} or λ_{N} need necessarily converge. The special case of no individual effects, with $\boldsymbol{\delta}=\delta_{1} \boldsymbol{\iota}_{N}$, yields $\lambda_{N} \equiv 0$, as it should (this includes the case of $\boldsymbol{\delta}=\mathbf{0}$).

As exploited by Orme and Yamagata (2006), it is easy to show that if ξ_{N} has an F distribution with $n_{1}=N-1$ and $n_{2}=N(T-1)-K$ degrees of freedom, then $\xi_{N}^{*}=$ $\sqrt{\frac{N(T-1)}{2 T}}\left(\xi_{N}-1\right) \sim N(0,1)$, or approximately for large $N, \xi_{N} \stackrel{A}{\sim} N\left(1, \frac{2 T}{N(T-1)}\right)$. Therefore, by Proposition 1, we can employ the following approximation, under the null,

$$
\begin{equation*}
F_{\omega} \equiv \hat{\omega}_{N}\left\{F_{N}-1\right\}+1 \stackrel{A}{\sim} F\left(n_{1}, n_{2}\right), \tag{7}
\end{equation*}
$$

for any choice of $\hat{\omega}_{N}$ satisfying $\hat{\omega}_{N}-\omega_{N} \xrightarrow{p} 0$, implying that F_{ω} can be used in an asymptotically valid "standard" F-test procedure.

Before proceeding to derive a suitable $\hat{\omega}_{N}$, note that under pure local random effects, with $E\left[\delta_{i} \mid \mathbf{X}_{i}\right]=0$ and $E\left[\delta_{i}^{2} \mid \mathbf{X}_{i}\right]=\tau^{2}, \boldsymbol{\rho}_{N}=\frac{T}{N} \sum_{i=1}^{N} E\left[\delta_{i} \overline{\mathbf{z}}_{i}\right]=\mathbf{0}$ with $\overline{\mathbf{z}}_{i}=T^{-1} \sum_{t=1}^{T} \mathbf{z}_{i t}$ so that $\lambda_{N}=T E\left[\frac{\delta^{\prime} \delta}{N}\right]=T \tau^{2}$. In this case we immediately obtain the following Corollary to Proposition 1 (the proof is omitted):

Corollary 1 Under the alternative of (pure) local random effects, and under the assumptions of Proposition 1,

$$
\hat{\omega}_{N} \sqrt{N}\left(F_{N}-1\right)-\frac{T \tau^{2}}{\sqrt{\kappa_{N} / 2}} \xrightarrow{d} N\left(0, \frac{2 T}{T-1}\right)
$$

for any choice of $\hat{\omega}_{N}$ satisfying $\hat{\omega}_{N}-\omega_{N} \xrightarrow{p} 0$.
Therefore, a robust F-test, based on F_{ω}, will have non-trivial asymptotic local power against pure random effects. In fact, and analogous to Orme and Yamagata (2006), a stronger result will be established in Section 3.2.2. There it is shown that, under (pure) local random effects, a robust F-test procedure based on F_{ω} will thus possess the same asymptotic power as a suitably "robustified" RE-test, of the sort proposed by Wooldridge (2010, p.299) or Häggström \& Laitila (2002). However, under "correlated" local random effects a robust F-test will possess higher asymptotic power than a robust $R E$-test.

3.2.1 Asymptotically Valid F-test Statistics

As noted above, an asymptotically valid F-test can be constructed if there is a $\hat{\omega}_{N}$ available satisfying $\hat{\omega}_{N}-\omega_{N} \xrightarrow{p} 0$. Using restricted OLS (i.e., pooled) residuals a natural choice for $\hat{\omega}_{N}$ might be

$$
\hat{\omega}_{N}=\frac{\hat{\sigma}_{N}^{2}}{\sqrt{\hat{\kappa}_{N} / 2}}
$$

where $\hat{\sigma}_{N}^{2}=\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}} /(N T-K-1)$ and

$$
\hat{\kappa}_{N}=\frac{1}{N T(T-1)} \sum_{i=1}^{N}\left\{\hat{\mathbf{u}}_{i}^{\prime} \mathbf{A} \hat{\mathbf{u}}_{i}\right\}^{2}=\frac{1}{N T(T-1)} \sum_{i=1}^{N}\left\{\sum_{t} \sum_{s \neq t} \hat{u}_{i t} \hat{u}_{i s}\right\}^{2} .
$$

Indeed, this choice is justified in Proposition 2 below; c.f., Wooldridge (2010, p.299).

However, other choices for $\hat{\kappa}_{N}$, and thus $\hat{\omega}_{N}$, emerge if we are willing, or able, to strengthen Assumption A1(iii). ${ }^{6}$ To see this, first note that $\sum_{t} \sum_{s \neq t} u_{i t} u_{i s}=$ $2 \sum_{t=2}^{T} w_{i t}$, where $w_{i t}=u_{i t} \sum_{s=1}^{t-1} u_{i s}$, so that κ_{N} can equivalently be expressed as

$$
\begin{equation*}
\kappa_{N}=\frac{4}{N T(T-1)} \sum_{i=1}^{N} E\left[\left(\sum_{t=2}^{T} w_{i t}\right)^{2}\right] \tag{8}
\end{equation*}
$$

The first potential strengthening of A1(iii) also strengthens A1(i) and simply states that, conditional on $\mathbf{X}_{i}, u_{i t}$ is orthogonal to the entire past history of the errors but without, necessarily, imposing serial independence:

A1(iii)': $E\left(u_{i t} \mid \mathbf{X}_{i}, u_{i, t-1}, u_{i, t-2}, \ldots\right)=0$, for all i and t.
This is like a martingale difference assumption but is more direct ${ }^{7}$ and might be regarded as a mild additional constraint since it still allows, for example, a GARCH process for $u_{i t}^{2}$. Under this Assumption, $E\left[w_{i t} w_{i t-m}\right]=0$, for all $t \geq 3$ and $m=1, \ldots, t-1$, so that (8) becomes

$$
\kappa_{N}=\frac{4}{N T(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} E\left(w_{i t}^{2}\right)
$$

where

$$
\begin{equation*}
\sum_{t=2}^{T} w_{i t}^{2}=\sum_{t=2}^{T} \sum_{s=1}^{t-1} u_{i t}^{2} u_{i s}^{2}+2 \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{r=3}^{s-1} u_{i t}^{2} u_{i s} u_{i r} . \tag{9}
\end{equation*}
$$

An alternative strengthening of Assumption A1(iii) might be:
A1(iii)": All distinct pairs $\left(u_{i t}, u_{i s}\right)$ and $\left(u_{i r}, u_{i q}\right),(t, s) \neq(r, q)$, are uncorrelated.
In this case, $E\left[w_{i t} w_{i t-m}\right]=0$ and $E\left(u_{i t}^{2} u_{i s} u_{i r}\right)=0$ so that (8) is

$$
\begin{aligned}
\kappa_{N} & =\frac{4}{N T(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \sum_{s=1}^{t-1} E\left(u_{i t}^{2} u_{i s}^{2}\right) \\
& =\frac{2}{N T(T-1)} \sum_{i=1}^{N} \sum_{t} \sum_{s \neq t} E\left(u_{i t}^{2} u_{i s}^{2}\right) .
\end{aligned}
$$

This is somewhat stronger than Assumption A1(iii)', as it rules out an asymmetric GARCH process for $u_{i t}^{2}{ }^{8}{ }^{8}$

In addition to Assumption A1(i), a further strengthening of Assumption A1(iii) ${ }^{\prime}$ or A1(iii)" would be full serial independence:

A1(iii) $)^{\prime \prime}:\left\{u_{i t}\right\}_{t=1}^{T}$ is an independent sequence of random variables, for all $i=$ $1, \ldots . N$.

[^5]In this case, a GARCH process for $u_{i t}^{2}$ is ruled out and

$$
\kappa_{N}=\frac{2}{N T(T-1)} \sum_{i=1}^{N} \sum_{t} \sum_{s \neq t} E\left(u_{i t}^{2}\right) E\left(u_{i s}^{2}\right) .
$$

The preceding discussion suggests differing possible consistent estimators for κ_{N}, and thus for ω_{N}, according to the strengthening of Assumption A1(iii). These are described in the following Proposition:

Proposition 2 Define $\hat{\sigma}_{N}^{2}=\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}} /(N T-K-1), \hat{w}_{i t}=\hat{u}_{i t} \sum_{s=1}^{t-1} \hat{u}_{i s}$ and

$$
\begin{gathered}
\hat{\kappa}_{N}^{(1)}=\frac{1}{N T(T-1)} \sum_{i=1}^{N}\left(\sum_{t} \sum_{s \neq t} \hat{u}_{i t}^{2} \hat{u}_{i s}^{2}\right)^{2}=\frac{4}{N T(T-1)} \sum_{i=1}^{N}\left(\sum_{t=2}^{T} \hat{w}_{i t}\right)^{2} \\
\hat{\kappa}_{N}^{(2)}=\frac{4}{N T(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \hat{w}_{i t}^{2} \\
\hat{\kappa}_{N}^{(3)}=\frac{2}{N T(T-1)} \sum_{i=1}^{N} \sum_{t} \sum_{t \neq s} \hat{u}_{i t}^{2} \hat{u}_{i s}^{2}=\frac{4}{N T(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \hat{u}_{i t}^{2} \hat{u}_{i s}^{2} .
\end{gathered}
$$

Under model (2) and Assumptions A1 to A4:

1. $\hat{\sigma}_{N}^{2}-\bar{\sigma}_{N}^{2} \xrightarrow{p} 0$;
2. $\hat{\kappa}_{N}^{(1)}-\kappa_{N} \xrightarrow{p} 0$.

Under Assumptions A1-A4 with A1(iii) strengthened to A1(iii)', A1(iii)" or A1(iii)"' :
3. $\hat{\kappa}_{N}^{(2)}-\kappa_{N} \xrightarrow{p} 0$;

Under Assumptions A1-A4 with A1(iii) strengthened to A1(iii)" or A1(iii)"' :
4. $\hat{\kappa}_{N}^{(3)}-\kappa_{N} \xrightarrow{p} 0$.

From this analysis it follows that asymptotically valid choices for $\hat{\omega}_{N}$ include the following:

$$
\begin{align*}
\hat{\omega}_{N}^{(1)} & =\frac{\hat{\sigma}_{N}^{2}}{\sqrt{\frac{2}{N T(T-1)} \sum_{i=1}^{N}\left(\sum_{t=2}^{T} \hat{w}_{i t}\right)^{2}}}, \tag{10}\\
\hat{\omega}_{N}^{(2)} & =\frac{\hat{\sigma}_{N}^{2}}{\sqrt{\frac{2}{N T(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \hat{w}_{i t}^{2}}}, \tag{11}\\
\hat{\omega}_{N}^{(3)} & =\frac{\hat{\sigma}_{N}^{2}}{\sqrt{\frac{2}{N T(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \hat{u}_{i t}^{2} \hat{u}_{i s}^{2}}}, \tag{12}
\end{align*}
$$

depending on assumptions made about the $u_{i t}, t=1, \ldots, T$. Robust F-test statistics can then be constructed as $F_{\omega}^{(m)}=\hat{\omega}_{N}^{(m)}\left\{F_{N}-1\right\}+1, m=1,2,3$, and approximate inferences obtained based on (7).

3.2.2 The Relationship between F_{N} and R_{N}

Under the null of no individual effects, it is straightforward to show that

$$
\frac{1}{\sqrt{N}}\left[\frac{\hat{\mathbf{u}}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \hat{\mathbf{u}}}{\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}} / N T}\right]=\frac{1}{\sqrt{N}} \frac{\mathbf{u}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \mathbf{u}}{\bar{\sigma}_{N}^{2}}+o_{p}(1)
$$

From (6), Lemma 1 and Proposition 1, therefore, we can write

$$
\begin{aligned}
R_{N} & =\frac{1}{\sqrt{2}} \frac{H_{N}}{\bar{\sigma}_{N}^{2}}+o_{p}(1) \\
& =\sqrt{\frac{T-1}{2 T}} \sqrt{N}\left(F_{N}-1\right)+o_{p}(1),
\end{aligned}
$$

under the null, so that

$$
\begin{equation*}
R_{\omega} \equiv \hat{\omega}_{N} R_{N} \xrightarrow{d} N(0,1) \tag{13}
\end{equation*}
$$

for any choice of $\hat{\omega}_{N}$ satisfying $\hat{\omega}_{N}-\omega_{N} \xrightarrow{p} 0$. This substantiates Wooldridge's (2010, p.299) suggestion for a heteroskedasticity-robust $R E$ test statistic constructed as $\hat{\omega}_{N}^{(1)} R_{N}$; or, under Assumption A1(iii) ${ }^{\prime \prime}$ or A1(iii) ${ }^{\prime \prime \prime}, \hat{\omega}_{N}^{(3)} R_{N}$ as proposed by Häggström \& Laitila (2002).

The following proposition extends this result to the case of local individual effects (fixed or random):

Proposition 3 Under model (2) and Assumptions A1 to A4,

$$
\hat{\omega}_{N} R_{N}=\left\{\sqrt{\frac{(T-1)}{2 T}}\right\} \hat{\omega}_{N} \sqrt{N}\left[F_{N}-1\right]-\sqrt{\frac{T}{2(T-1)}} \frac{\gamma_{N}}{\sqrt{\kappa_{N} / 2}}+o_{p}(1),
$$

for any choice of $\hat{\omega}_{N}$ satisfying $\hat{\omega}_{N}-\omega_{N} \xrightarrow{p} 0$, where $\gamma_{N}=O(1)$ defined by

$$
\begin{aligned}
\gamma_{N} & =E\left(\boldsymbol{\zeta}_{2}^{\prime} \boldsymbol{\zeta}_{2} / N\right)=\boldsymbol{\rho}_{N}^{\prime} \boldsymbol{\Sigma}_{N}^{-1} \tilde{\boldsymbol{\Sigma}}_{N} \boldsymbol{\Sigma}_{N}^{-1} \boldsymbol{\rho}_{N} \geq 0, \\
\boldsymbol{\zeta}_{2} & =\tilde{\mathbf{Z}} \boldsymbol{\Sigma}_{N}^{-1} \boldsymbol{\rho}_{N},
\end{aligned}
$$

$\tilde{\boldsymbol{\Sigma}}_{N}=E\left(\tilde{\mathbf{Z}}^{\prime} \tilde{\mathbf{Z}} / N\right)$, and the limit distribution of $\omega_{N} \sqrt{N}\left[F_{N}-1\right]$ is given by Proposition 1.

Again, γ_{N} need not converge, but it is $O(1)$ and $\gamma_{N}-\frac{\delta^{\prime} \mathbf{D}^{\prime} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1}(\tilde{\mathbf{Z}} \tilde{\mathbf{Z}})\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{D} \boldsymbol{\delta}}{N} \xrightarrow{p}$ 0 . As with Proposition $1, \gamma_{N} \equiv 0$ obtains under $H_{0}: \boldsymbol{\delta}=\delta_{1} \boldsymbol{\iota}_{N}$, as it should, since $\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{D} \boldsymbol{\delta}=\left(\delta_{1}, \mathbf{0}^{\prime}\right)^{\prime}$ and the top-left, $(1,1)$, element of $\tilde{\mathbf{Z}}^{\prime} \tilde{\mathbf{Z}}$ is 0 . As discussed above, under the alternative of (pure) local random effects $\boldsymbol{\rho}_{N}=\mathbf{0}$, and we obtain the following Corollary, which is immediate from Corollary 1 given Proposition 3:

Corollary 2 Under the alternative of (pure) local random effects, and under the assumptions of Proposition 1,

$$
\hat{\omega}_{N} R_{N}-\left\{\sqrt{\frac{T(T-1)}{2}}\right\} \frac{\tau^{2}}{\sqrt{\kappa_{N} / 2}} \stackrel{d}{\rightarrow} N(0,1)
$$

for any choice of $\hat{\omega}_{N}$ satisfying $\hat{\omega}_{N}-\omega_{N} \xrightarrow{p} 0$.

Thus, since under (pure) local random effects, $\hat{\omega}_{N} R_{N}-\sqrt{\frac{N(T-1)}{2 T}} \hat{\omega}_{N}\left(F_{N}-1\right)=$ $o_{p}(1)$, both the robust $R E$ and robust F-test procedures, based on (13) and (7), respectively, will have identical asymptotic power functions. However, under local fixed effects or random effects which are correlated with \mathbf{X}_{i}, the robust F-test can have greater asymptotic power. In particular, when individual effects are correlated with the mean values of the regressors, $\boldsymbol{\rho}_{N} \neq \mathbf{0}$ and is $O(1)$, implying $\gamma_{N}>0$ so that a test based on R_{N} (but suitably robust to heteroskedasticity) should have lower asymptotic local power than one based on F_{N}. This makes intuitive sense, since F_{N} is designed to test for individual effects which are correlated with $\overline{\mathbf{z}}_{i}$, whereas R_{N} is constructed on the assumption that the individual effects are uncorrelated with all regressor values. The importance of distinguishing between individual effects which are correlated or uncorrelated with regressors, rather than simply labelling them fixed or random, is discussed by Wooldridge (2010, Section 10.2).

3.2.3 Analysis of the Standard F-test and RE-test

Given the analysis above the following conclusions emerge concerning the asymptotic behaviour of both the standard F-test, based on F_{N}, and $R E$-test, based on R_{N}, in certain special cases and under the null hypothesis. Under Assumption A1(iii)' and

$$
\begin{equation*}
E\left(u_{i t}^{2} \mid \mathbf{X}_{i}, u_{i, t-1}, u_{i, t-2}, \ldots\right) \equiv E\left(u_{i t}^{2} \mid \mathbf{X}_{i}\right), \quad \text { for all } i \text { and } t \tag{14}
\end{equation*}
$$

we obtain, without recourse to Assumption A1(iii) ${ }^{\prime \prime}$, that

$$
\begin{equation*}
\kappa_{N}=\frac{2}{N T(T-1)} \sum_{i=1}^{N} \sum_{t} \sum_{s \neq t} E\left(u_{i t}^{2} u_{i s}^{2}\right) \tag{15}
\end{equation*}
$$

because, from (9),

$$
E\left(u_{i t}^{2} u_{i s} u_{i r}\right)=E\left(E\left(u_{i t}^{2} \mid \mathbf{X}_{i}\right) E\left(u_{i s} u_{i r} \mid \mathbf{X}_{i}\right)\right)=0 .
$$

In this case, (14) rules out conditional heteroskedastcity of the ARCH/GARCH type.

Therefore:
(i) Under A1(iii)' and (14) but conditional cross-sectional heteroskedasticity only such that $E\left(u_{i t}^{2} \mid \mathbf{X}_{i}\right) \equiv h_{i}>0$, and $E\left(h_{i}^{2}\right)<\infty$, we obtain $\bar{\sigma}_{N}^{2}=\frac{1}{N} \sum_{i=1}^{N} E\left(h_{i}\right)$ and $\kappa_{N}=\frac{2}{N} \sum_{i=1}^{N} E\left(h_{i}^{2}\right)$. Thus, $\omega_{N}<1$, since

$$
\frac{1}{N} \sum_{i=1}^{N} E\left(h_{i}^{2}\right)-\left\{\frac{1}{N} \sum_{i=1}^{N} E\left(h_{i}\right)\right\}^{2} \geq \frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{4}-\left\{\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{2}\right\}^{2}>0
$$

where $\sigma_{i}^{2}=E\left(h_{i}\right)>0$. This implies that both the F-test based on F_{N} and $R E$-test based on R_{N}, without adjustment, will be asymptotically oversized (in that, asymptotically, both will reject a correct null of no individual effects too often for any given nominal significance level). ${ }^{9}$

[^6](ii) Under A1(iii)' and (14) but time varying variances such that $E\left(u_{i t}^{2} \mid \mathbf{X}_{i}\right) \equiv h_{t}>$ 0 , and $E\left(h_{t}^{2}\right)<\infty$, we have
$$
\omega_{N}^{2}=\frac{\left(\frac{1}{T} \sum_{t=1}^{T} \sigma_{t}^{2}\right)^{2}}{\frac{1}{T(T-1)} \sum_{t} \sum_{s \neq t} \sigma_{t}^{2} \sigma_{s}^{2}}>1
$$
where, here, $\sigma_{t}^{2}=E\left(h_{t}\right)>0$, because
$$
\left(\frac{1}{T} \sum_{t=1}^{T} \sigma_{t}^{2}\right)^{2}-\frac{1}{T(T-1)} \sum_{t} \sum_{s \neq t} \sigma_{t}^{2} \sigma_{s}^{2}=\frac{1}{T-1}\left(\frac{1}{T} \sum_{t=1}^{T} \sigma_{t}^{4}-\left(\frac{1}{T} \sum_{t=1}^{T} \sigma_{t}^{2}\right)^{2}\right)>0
$$

This implies that both test procedures, without adjustment, will be asymptotically undersized.
(iii) Of course, the conclusions in (i) and (ii) must also hold under Assumption A1(ii) ${ }^{\prime \prime}$ or A1 (iii) ${ }^{\prime \prime \prime}$. Moreover, if $\left\{u_{i t}, \mathbf{x}_{i t}^{\prime}\right\}_{t=1}^{T}$ are serially independent with $E\left(u_{i t}^{2} \mid \mathbf{x}_{i t}\right)=h\left(\mathbf{x}_{i t}\right)>0$ and $E\left[h\left(\mathbf{x}_{i t}\right)\right]=\sigma^{2}<\infty$, so that the errors are unconditionally homoskedastic; then, $\kappa_{N}=2 \sigma^{4}$ and $\omega_{N}=1$. In particular, this result is true if the $\left(u_{i t}, \mathbf{x}_{i t}^{\prime}\right)$ are i.i.d., but the $u_{i t}$ are conditionally heteroskedastic with $E\left(u_{i t}^{2} \mid \mathbf{x}_{i t}\right)=h\left(\mathbf{x}_{i t}\right)>0$. This shows that both the F-test and $R E$-test, based on F_{N} and R_{N}, respectively, remain asymptotically valid without any adjustment.

In order to shed light on the relevance of the preceding asymptotic analysis, the next section reports the results of a small Monte Carlo experiment which illustrates the asymptotic robustness of the F-test to non-normality/heteroskedasticity and its power properties relative to the $R E$-test.

4 Monte Carlo Study

The Monte Carlo study investigates the sampling behaviour of the test statistics considered above, (7) and (13), for differing choices of $\hat{\omega}_{N}$, including $\hat{\omega}_{N} \equiv 1$. As our analytical results suggest, the tests are justified when $N \rightarrow \infty$ with T fixed, we consider $(N, T)=(20,5),(50,5),(100,5),(50,10),(50,20)$.

4.1 Monte Carlo Design

The model employed is

$$
\begin{equation*}
y_{i t}=\alpha_{i}+\sum_{j=1}^{3} z_{i t, j} \beta_{j}+u_{i t}, u_{i t}=\sigma_{i t} \varepsilon_{i t} \tag{16}
\end{equation*}
$$

where $z_{i t, 1}=1, z_{i t, 2}$ is drawn from a uniform distribution on $(1,31)$ independently for i and t, and $z_{i t, 3}$ is generated following Nerlove (1971), such that

$$
z_{i t, 3}=0.1 t+0.5 z_{i t-1,3}+v_{i t},
$$

where the value $z_{i 0,3}$ is chosen as $5+10 v_{i 0}$, and $v_{i t}$ (and $v_{i 0}$) is drawn from the uniform distribution on $(-0.5,0.5)$ independently for i and t, in order to avoid any normality in regressors. These regressor values are held fixed over replications. Also, observe that the regression design is not quadratically balanced. ${ }^{10}$ Without loss of generality, the coefficients are set as $\beta_{j}=1$ for $j=1,2,3$. The i.i.d. standardised errors for $\varepsilon_{i t}$ are drawn from: the standard normal distribution $(S N)$; the t distribution with five degrees of freedom $\left(t_{5}\right)$; and, the chi-square distribution with six degrees of freedom $\left(\chi_{6}^{2}\right)$.

We consider five specifications for $\sigma_{i t}$:

1. Homoskedasticity (HET0)

$$
\sigma_{i t}=\sigma=1
$$

2. Cross-sectional one-break-in-volatility heteroskedasticity (HET1)

$$
\begin{aligned}
\sigma_{i t} & =\sigma_{1}, \quad i=1, \ldots, N_{1}, t=1, \ldots, T \\
& =\sigma_{2}, \quad i=N_{1}+1, \ldots, N, t=1, \ldots, T
\end{aligned}
$$

with $N_{1}=\lceil N / 2\rceil$, where $\lceil A\rceil$ is the largest integer not less than $A, \sigma_{1}=0.5$ and $\sigma_{2}=1.5$.
3. Time series one-break-in-volatility heteroskedasticity (HET2)

$$
\begin{aligned}
\sigma_{i t} & =\sigma_{1}, \quad i=1, \ldots, N, t=1, \ldots, T_{1} \\
& =\sigma_{2}, \quad i=1, \ldots, N, t=T_{1}+1, \ldots, T
\end{aligned}
$$

with $T_{1}=\lceil T / 2\rceil, \sigma_{1}=0.5$ and $\sigma_{2}=1.5$.
4. Conditional heteroskedasticity depending on a regressor (HET3)

$$
\sigma_{i t}=\eta_{c}\left[\left(z_{i t, 2}-1\right) / 30\right] / c, \quad i=1, \ldots, N, t=1, \ldots, T
$$

$\eta_{c}[\cdot]$ is the inverse of the cumulative distribution function of chi-squared distribution with degrees of freedom c. Since $z_{i t, 2}$ is drawn from a uniform distribution on $(1,31), \sigma_{i t}$ has mean 1 and variance $2 / c$, so it is easy to control the degree of heteroskedasticity through the choice of c. We employ $c=1$.
5. Conditional heteroskedasticity, $\operatorname{GARCH}(1,1)$ (HET4)

$$
u_{i t}=\sigma_{i t} \varepsilon_{i t}, t=-49, \ldots, T, i=1, \ldots, N
$$

where

$$
\sigma_{i t}^{2}=\phi_{0}+\phi_{1} u_{i, t-1}^{2}+\phi_{2} \sigma_{i, t-1}^{2} .
$$

The value of parameters are chosen to be $\phi_{0}=0.5, \phi_{1}=0.25$ and $\phi_{2}=0.25$, and $u_{i,-50}=0$ with the first 50 observations being discarded, so that the unconditional variance is $E\left(u_{i t}^{2}\right)=\phi_{0} /\left(1-\phi_{1}-\phi_{2}\right)$.

[^7]6. Conditional heteroskedasticity, $\mathrm{ARCH}(1)$ (HET5)
$$
u_{i t}=\sigma_{i t} \varepsilon_{i t}, t=-49, \ldots, T, i=1, \ldots, N
$$
where
$$
\sigma_{i t}^{2}=\phi_{0}+\phi_{1} u_{i, t-1}^{2},
$$
with $\phi_{0}>0$ and $0 \leq \phi_{1}<1$. In particular, $\phi_{0}=0.5, \phi_{1}=0.5$ and $u_{i, 50}=$ 0 , with the first 50 observations being discarded, so that the unconditional variance is $E\left(u_{i t}^{2}\right)=\phi_{0} /\left(1-\phi_{1}\right)$.

For power comparisons, the individual effects are generated according to

$$
\begin{equation*}
\alpha_{i}=\tau_{i}\left[\sqrt{R^{2}} g_{i}\left(\overline{\mathbf{z}}_{i}\right)+\sqrt{1-R^{2}} \varphi_{i}\right] \tag{17}
\end{equation*}
$$

where the φ_{i} are i.i.d. $N(0,1), g_{i}\left(\overline{\mathbf{z}}_{i}\right)=\boldsymbol{\iota}_{3}^{\prime}\left(\overline{\mathbf{z}}_{i}-\overline{\mathbf{z}}\right) / s$ with $\boldsymbol{\iota}_{3}=(1,1,1)^{\prime}$, $\overline{\overline{\mathbf{z}}}$ being overall average of $\mathbf{z}_{i t}, s$ being the standard deviation of $\boldsymbol{\iota}_{3}^{\prime} \overline{\mathbf{z}}_{i}$, and the R^{2} is from the regression of (17). With this set up, the variance of inside of the square brackets is always unity across designs. We consider two combinations of $\left(\tau_{i}, R^{2}\right):(\mathrm{i})\left(\tau_{i}, R^{2}\right)=$ $(0,0)$, which is a simple null model specification, with $\alpha_{i} \equiv 0$, and; (ii) $\left(\tau_{i}, R^{2}\right)=$ $\left(v_{\alpha}, 1\right)$, which is simple fixed effects specification (given that the $z_{i t}$ are fixed over replications). ${ }^{11}$ To control the power, we consider $v_{\alpha}^{2}=0.1$.

4.2 Asymptotic Tests

FOUR versions of the $F E$ and $R E$ test statistics are considered, constructed using $\hat{\omega}_{N}^{(0)} \equiv 1$ and $\hat{\omega}_{N}^{(m)}, m=1,2,3$, as defined at (10)-(12), and all are based on the restricted estimator, $\hat{\boldsymbol{\beta}} .{ }^{12}$ Specifically:

1. F-test statistics (denoted F_{ω} in the Tables)

$$
\begin{equation*}
F_{\omega}^{(m)}=\hat{\omega}_{N}^{(m)}\left(F_{N}-1\right)+1, \quad m=0,1,2,3, \tag{18}
\end{equation*}
$$

where

$$
F_{N}=\frac{\left(R S S_{R}-R S S_{U}\right) /(N-1)}{R S S_{U} /(N(T-1)-K)} \equiv F_{\omega}^{(0)}
$$

is the standard F-test statistic. The corresponding test procedure, for each separate statistic (18), employs critical vales from an F distribution with n_{1} and n_{2} degrees of freedom, respectively, where $n_{1}=N-1$ and $n_{2}=N(T-$ $1)-K$. That is, for each $m=0,1,2,3$, reject H_{0} if $F_{\omega}^{(m)}>c_{N, \alpha}$, where $\operatorname{Pr}\left(\xi>c_{N, \alpha}\right)=\alpha$, for chosen α, and $\xi \sim F\left(n_{1}, n_{2}\right)$

[^8]2. One sided (positive) $R E$-test statistics (denoted R_{ω} in the Tables)
\[

$$
\begin{equation*}
R_{\omega}^{(m)}=\hat{\omega}_{N}^{(m)} R_{N}, \quad m=0,1,2,3 \tag{19}
\end{equation*}
$$

\]

where

$$
R_{N}=\sqrt{\frac{N T}{2(T-1)}}\left[\frac{\hat{\mathbf{u}}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \hat{\mathbf{u}}}{\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}}}\right] \equiv R_{\omega}^{(0)}
$$

is the one sided (positive) standard RE-test Statistic. The corresponding test procedure, for each separate statistic (19), employs critical values from a $N(0,1)$ distribution. That is, for each $m=0,1,2,3$, reject H_{0} if $R_{\omega}^{(m)}>z_{\alpha}$, where $\operatorname{Pr}\left(Z>z_{\alpha}\right)=\alpha$, for chosen α, and $Z \sim N(0,1)$.

4.3 Bootstrap Tests

As is well known, asymptotic theory can provide a poor approximation to actual finite sample behaviour and that bootstrap procedures often lead to more reliable inferences. ${ }^{13}$ Therefore, we also consider a simple wild bootstrap procedure scheme, based on Mammen (1993) and Davidson and Flachaire (2008), which might be employed in order to provide closer agreement between the desired nominal and the empirical significance level of the proposed test procedures and which has proved effective in previous studies; see, for example, Godfrey and Orme (2004). The wild bootstrap is implemented using the following steps:

1. Estimate the models (2) and (4) to get $\hat{u}_{i t}, i=1, \ldots, N$, and construct test statistics $F_{\omega}^{(m)}$ and $R_{\omega}^{(m)}, m=0,1,2,3$.
2. Repeat the following B times:
(a) Generate $u_{i t}^{*}=\varepsilon_{i t} \hat{u}_{i t}$, where the $\varepsilon_{i t}$ are i.i.d., over i and t, taking the discrete values ± 0.5 with an equal probability of 0.5 .
(b) Construct

$$
\begin{equation*}
y_{i t}^{*}=\mathbf{z}_{i t}^{\prime} \hat{\boldsymbol{\beta}}+\varepsilon_{i t} \hat{u}_{i t}=\mathbf{z}_{i t}^{\prime} \hat{\boldsymbol{\beta}}+u_{i t}^{*} . \tag{20}
\end{equation*}
$$

and obtain restricted OLS residuals $\hat{u}_{i t}^{*}=y_{i t}^{*}-\mathbf{z}_{i t}^{\prime} \hat{\boldsymbol{\beta}}^{*}, \hat{\mathbf{u}}^{*}=\mathbf{y}^{*}-\mathbf{Z} \hat{\boldsymbol{\beta}}$ and restricted and unrestricted residual sums of squares $\left(R S S_{R}^{*}\right.$ and $R S S_{U}^{*}$, respectively).
(c) Construct the bootstrap test statistics

$$
F_{\omega}^{*(m)}=\hat{\omega}_{N}^{*(m)}\left(F_{N}^{*}-1\right)+1, \quad F_{N}^{*}=\frac{\left(R S S_{R}^{*}-R S S_{U}^{*}\right) /(N-1)}{R S S_{U}^{*} /(N(T-1)-K)} \equiv F_{\omega}^{*(0)}
$$

and

$$
R_{\omega}^{*(m)}=\hat{\omega}_{N}^{*(m)} R_{N}^{*}, \quad R_{N}^{*}=\sqrt{\frac{N T}{2(T-1)}}\left[\frac{\hat{\mathbf{u}}^{* \prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \hat{\mathbf{u}}^{*}}{\hat{\mathbf{u}}^{* \prime} \hat{\mathbf{u}}^{*}}\right] \equiv R_{\omega}^{*(0)}
$$

where $\hat{\omega}_{N}^{*(m)}, m=1,2,3$ is constructed as in (10)-(12) but using $\hat{u}_{i t}^{*}$, and $\hat{\omega}_{N}^{*(0)} \equiv 1$.

[^9]3. Calculate the proportion of bootstrap test statistics, $F_{\omega}^{*(m)}$ (respectively, $R_{\omega}^{*(m)}$), from the B repetitions of Step 2c that are at least as large as the actual value of $F_{\omega}^{(m)}$ (respectively, $R_{\omega}^{(m)}$). Let this proportion be denoted by $\hat{p}^{(m)}$ and the desired significance level be denoted by α. The asymptotically valid rejection rule, for each m, is that H_{0} is rejected if $\hat{p}^{(m)} \leq \alpha$.

The sampling behaviour of all the above the tests are investigated using 5000 replications of sample data and $B=200$ bootstrap samples, employing a nominal 5% significance level.

4.4 Results

Before looking at the results from the Monte Carlo study, and drawing on the discussion in Godfrey, Orme and Santos-Silva (2006), it is important to define criteria to evaluate the performance of the different tests considered. Given the large number of replications performed, the standard asymptotic test for proportions can be used to test the null hypotheses that the true significance level is equal to its nominal value. In these experiments, this null hypothesis is accepted (at the 5% level) for estimated rejection frequencies in the range 4% to 6%. In practice, however, what is important is not that the significance level of the test is identical to the chosen nominal level, but rather that the true and nominal rejection frequencies stay reasonably close, even when the test is only approximately valid. Following Cochran's (1952) suggestion, we shall regard a test as being robust, relative to a nominal value of 5%, if its actual significance level is between 4.5% and 5.5%. Considering the number of replications used in these experiments, estimated rejection frequencies within the range 3.9% to 6.1% are viewed as providing evidence consistent with the robustness of the test, according to this definition.

Under the null, with homoskedastic standard normal errors (reported in Table 1, $H_{0}: \alpha_{i}=0$), the rejection frequencies of both the asymptotic $F_{\omega}^{(0)} \equiv F_{N}$ and $F_{\omega}^{(3)}$ tests are close to the nominal significance level of 5%. The asymptotic F-test based on $F_{\omega}^{(2)}$, however, tends to under reject the null when T is relatively large, whilst $F_{\omega}^{(1)}$ suffers from large size distortion with empirical significance levels being considerably smaller than the nominal 5%. The size properties of the R_{ω} tests, for different $\hat{\omega}_{N}$, are qualitatively similar to those of the F_{ω} tests, but tend to have empirical significance levels that are smaller than those of the corresponding F_{ω} tests. Turning our attention to the bootstrap tests, all the modified fixed and random effects tests control the empirical significance levels very well. The results are qualitatively similar for t_{5} and χ_{6}^{2} errors and, confirming the analysis of Orme and Yamagata (2006), $F_{\omega}^{(0)} \equiv F_{N}$ appears quite robust to non-normality, whilst in these cases as well the bootstrap tests provide very close agreement between nominal and empirical significance levels. Given these results, we now just compare the power of the bootstrap tests. All bootstrap F_{ω} tests have very similar power, as do the bootstrap R_{ω} tests. However, the power of the bootstrap F_{ω} tests are uniformly higher than power of the corresponding bootstrap R_{ω} tests which is as expected given the analysis in Section 3.2.2 because of the correlation between regressors and individual effects.

The above results indicate that, even when the errors are homoskedastic, a wild bootstrap procedure still offers reliable finite sample inference for all variants of the $F E$ and $R E$ tests considered. Now let us look at the results under various heteroskedastic schemes. Table 2 reports the results under cross-sectional one-break-in-volatility scheme (HET1). First, and as predicted by the analysis in Section 3.2.3, both the $F_{\omega}^{(0)} \equiv F_{N}$ and $R_{\omega}^{(0)} \equiv R_{N}$ tests reject the correct null too often. On the other hand, the empirical significance levels of the other F_{ω} and R_{ω} tests are very similar to those presented in homoskedastic case. As before, however, the bootstrap F_{ω}^{*} and R_{ω}^{*} tests provide close agreement between nominal and empirical significance levels, across all error distributions, so again it is sensible to focus only on the power properties of these tests. In contrast to the power properties under homoskedastic errors, under the HET1 scheme the power of bootstrap F_{ω}^{*} tests appear different across different variants. For example, $F_{\omega}^{*(0)} \equiv F_{N}^{*}$ and $F_{\omega}^{*(3)}$ have similar powers but are slightly lower than that of $F_{\omega}^{*(2)}$, which is again slightly exceeded by that of $F_{\omega}^{*(1)}$. This feature is qualitatively similar for the R_{ω}^{*} tests, but is less striking. Finally, the results confirm again that F_{ω}^{*} has higher power than that of R_{ω}^{*}.

Table 3 reports the test results under time-series one-break-in-volatility scheme (HET2). In contrast to the results with HET1 scheme, but still consistent with prediction of Section 3.2 .3 , both the $F_{\omega}^{(0)} \equiv F_{N}$ and $R_{\omega}^{(0)} \equiv R_{N}$ tests reject the null too infrequently, especially for $N=20,50,100$ and $T=5$. As before the bootstrap versions control the size very well, and, interestingly, the power ranking of the bootstrap tests is different than that obtained under HET1. In fact, the $F_{\omega}^{*(0)} \equiv F_{N}^{*}$ and $F_{\omega}^{*(3)}$ tests (respectively $R_{\omega}^{*(0)}=R_{N}$ and $R_{\omega}^{*(3)}$ tests) still have similar powers but they are now slightly higher than those of the $F_{\omega}^{*(2)}$ and $F_{\omega}^{*(1)}$ tests (respectively, $R_{\omega}^{*(2)}$ and $R_{\omega}^{*(1)}$ tests), which are in this case comparable.

Based on the analysis in Section 3.2.3 it is possible to derive approximate null rejection frequencies of the $F_{\omega}^{(0)} \equiv F_{N}$ test analytically, under the heteroskedastic schemes of HET1 and HET2. Given the "population" value of ω_{N}, and a nominal significance level of $\alpha \times 100 \%$, the rejection frequency of the F_{N} test is, approximately, $\operatorname{Pr}\left[F_{N}>c_{\alpha, n 1, n 2}\right]$, where $\operatorname{Pr}\left[F_{n 1, n 2}>c_{\alpha, n 1, n 2}\right]=\alpha$ and $F_{n 1, n 2} \sim F\left(n_{1}, n_{2}\right)$. But this is identical to $\operatorname{Pr}\left[F_{n 1, n 2}>q\right]$, where $q=\omega_{N}\left(c_{\alpha, n 1, n 2}-1\right)+1$. More precisely, consider first the case of HET1 where a little calculation shows that, since N is always even in our experiments, $\omega_{N}=0.781$. Using $\alpha=0.05$, it is then straightforward to obtain q and $\operatorname{Pr}\left[F_{n 1, n 2}>q\right]$. Similar calculations can be undertaken for the case HET2 but, here, ω_{N} varies according to whether T is even $\left(\omega_{N}=1.02\right)$ or odd ($\omega_{N}=1.13$). From these calculations we obtain the following (approximate) significance levels for our choices of (N, T) :

Approximate Significance Levels of F_{N}					
	$T=5$			$N=50$	
	$N=20$	$N=50$	$N=100$	$T=10$	$T=20$
HET1:	8.8%	9.2%	9.4%	9.2%	9.2%
HET2:	3.5%	3.4%	3.3%	4.8%	4.8%

As can be seen, the obtained empirical significance levels, for F_{N}, are qualitatively very similar to these predicted values.

Table 4 summarises the results under conditional heteroskedasticity depending on a regressor $z_{i t, 2}$ (HET3), where $\sigma_{i t}=\eta_{1}\left[\left(z_{i t, 2}-1\right) / 30\right], \quad i=1, \ldots, N, t=1, \ldots, T$, and $\eta_{1}[\cdot]$ is the inverse of the cumulative distribution function of the χ_{1}^{2} distribution. Since the $z_{i t, 2}$ are initially i.i.d. draws from a uniform distribution on $(1,31)$, the values of $\sigma_{i t}\left(z_{i t, 2}\right)$ are realisations from a χ_{1}^{2} distribution. This means that even though for a given N (and T) $\sigma_{i t}$ will be held fixed for each replication of data, possibly yielding a realisation of $\omega_{N} \neq 1$, as N increases a Law of Large Numbers implies that the given realisation of ω_{N} will converge to unity. For example, when $N=20$ and $T=5, \omega_{N}=1.36$, yielding a predicted (approximate) significance level for F_{N} of 1.9%, which explains the under-rejection of this test in our experiments. For larger sample sizes, the value of ω_{N} does, indeed, tend to unity, and the empirical significance level of F_{N} converges to the nominal level, as expected. Due to the larger average error variance encountered here, than that under other heteroskedastic schemes, the power of the tests are lower although, qualitatively, the results are very similar to those under HET0 but with $F_{\omega}^{*(0)}=F_{N}^{*}$ and $F_{\omega}^{*(3)}$ (respectively, $R_{\omega}^{*(0)}=R_{N}^{*}$ and $R_{\omega}^{*(3)}$) enjoying a slight power advantage and the F_{ω}^{*} tests being more powerful than their R_{ω}^{*} counterparts.

Finally, the results under conditional heteroskedasticity, GARCH(1,1) (HET4) and $\operatorname{ARCH}(1)$ (HET5) are reported in Tables 5 and 6, respectively. Similar to the results obtained under HET1, the $F_{\omega}^{(0)}=F_{N}$ test rejects a correct null too often but the empirical significance levels of other variants of the F_{ω} tests are very similar to those presented in homoskedastic case. Again, all the bootstrap F_{ω}^{*} tests control the empirical significance levels very well, and the power rankings are, from the lowest, $F_{\omega}^{*(0)}=F_{N}^{*}$ and $F_{\omega}^{*(3)}$, followed by $F_{\omega}^{*(2)}$, then $F_{\omega}^{*(1)}$. The same comments apply to the bootstrap R_{ω}^{*} tests, which again exhibit lower power than their F_{ω}^{*} counterparts. The results under $\operatorname{ARCH}(1)$ (HET5) are are qualitatively similar to those under $\operatorname{GARCH}(1,1)$.

5 Conclusions

This paper has provided an asymptotic analysis of the sampling behaviour of the standard F-test statistic for fixed effects, in a static linear panel data model, under both non-normality and heteroskedasticity of the error terms, when the number of cross-sections, N, is large and T, the number of time periods, is fixed. First, it has been shown that a linear transformation of the commonly cited F and $R E$ tests (using a simple function of restricted residuals) provides asymptotically valid test procedures, when employed in conjunction with the usual F and standard normal critical values (respectively). Although asymptotic theory does not always provide a good approximation to finite sample behaviour, our experiments show that wild bootstrap versions of these tests, employing the resampling scheme advocated by Davidson and Flachaire (2008), yield reliable inferences in the sense of close agreement between nominal and actual significance levels.

Furthermore, it has been established that the asymptotic relationship between the heteroskedastic robust F-test and the $R E$-test statistics, carries over from the homoskedastic case. That is, under (pure) local random effects, they share the same asymptotic power, whilst under local fixed (or correlated) individual effects the heteroskedastic robust F-test enjoys higher asymptotic power. A final contribution has been to provide qualitative predictions about the approximate true significance levels of the standard F and $R E$ Tests in certain special cases. These theoretical findings are supported by Monte Carlo evidence.

References

[1] Baltagi, B.H. (2008). Econometric Analysis of Panel Data. Fourth Edition, Wiley.
[2] Breusch, T. S. and A. R. Pagan (1980) The Lagrange multiplier test and its applications to model misspecification in econometrics. Review of Economic Studies 47, 239-253.
[3] Cochran, W. (1952). The chisquare test of goodness of fit. Annals of Mathematical Statistics, 23, 315-345.
[4] Davidson, R. and E. Flachaire (2008). The wild bootstrap, tamed at last. Journal of Econometrics, 146, 162-169.
[5] Davidson, R., and J.G. MacKinnon (1985). Heteroskedasticity-robust tests in regression directions. Annales de l'INSEE, 59/60, 183-218.
[6] Godfrey, L.G. (2009). Bootstrap Tests for Regression Models. Palgrave Macmillan.
[7] Godfrey, L.G. and C.D. Orme (2004). Controlling the finite sample significance levels of heteroskedasticity-robust tests of several linear restrictions on regression coefficients. Economics Letters, 82, 281-287.
[8] Godfrey, L.G., C.D. Orme, C.D. and J.M.C. Santos-Silva (2006). Simulationbased tests for heteroskedasticity in linear regression models: some further results. Econometrics Journal, 9, 76-97.
[9] Goncalves, S. and L. Kilian (2004). Bootstrapping autoregressions with conditional heteroskedasticity of unknown form. Journal of Econometrics, 123, 89-120.
[10] Häggström, E. and T. Laitila (2002). Test of random subject effects in heteroskedastic linear models. Biometrical Journal, 7, 825-834.
[11] Honda, Y. (1985) Testing the error components model with non-normal disturbances. Review of Economic Studies 52, 681-690.
[12] Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. Annals of Statistics, 21, 255-285.
[13] Nerlove, M. (1971). Further evidence on the estimation of dynamic economic relations from a time-series of cross-sections. Econometrica, 39, 359-382.
[14] Orme, C.D., and T. Yamagata (2006). The asymptotic distribution of the F-test statistic for individual effects. Econometrics Journal, 9, 404-422.
[15] White, H. (2001). Asymptotic Theory for Econometricians. Revised Edition, Academic Press.
[16] Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. Second Edition, MIT Press.

Appendix

In what follows $\|\mathbf{C}\|=\sqrt{\operatorname{tr}\left(\mathbf{C}^{\prime} \mathbf{C}\right)}=\sqrt{\sum_{i} \sum_{j} c_{i j}^{2}}$ denotes the Euclidean norm of a matrix $\mathbf{C}=\left\{c_{i j}\right\}$.

Proof of Lemma 1.

Write $W_{i}=\frac{\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}}{\sqrt{T(T-1)}}$, which are independent, so that $H_{N}=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} W_{i}$ and $E\left[W_{i}\right]=0$, by Assumption A1(iii). Since $\|\mathbf{A}\|=\sqrt{T(T-1)},\left|W_{i}\right|=\frac{\left|\mathbf{u}_{i}^{\prime} \mathbf{A u}_{i}\right|}{\sqrt{T(T-1)}} \leq$ $\frac{\left\|\mathbf{u}_{i}\right\|^{2}\|\mathbf{A}\|}{\sqrt{T(T-1)}}=\left\|\mathbf{u}_{i}\right\|^{2}$. Thus, by Minkowski's inequality and Assumption A3(i), for some $\eta>0$,

$$
E\left|W_{i}\right|^{2+\eta} \leq E\left|\sum_{t=1}^{T} u_{i t}^{2}\right|^{2+\eta} \leq\left[\sum_{t=1}^{T}\left\{E\left|u_{i t}^{2}\right|^{2+\eta}\right\}^{\frac{1}{2+\eta}}\right]^{2+\eta}=O(1)
$$

so that $\kappa_{N}=\frac{1}{2 N} \sum_{i=1}^{N} E\left(W_{i}^{2}\right)=O(1)$. With Assumption A3(ii), a standard (Liapounov) Central Limit Theorem yields $\kappa_{N}^{-1 / 2} H_{N} \xrightarrow{d} N(0,1)$.

Proof of Proposition 1.

The method of proof is nearly identical to that of Orme and Yamagata (2006, Proposition 1) but where, now, our assumptions allow for heteroskedasticity. Briefly:
(i) Let $S_{N}=\left(R S S_{R}-R S S_{U}\right) /(N-1)$ and $\tilde{\sigma}^{2}=R S S_{U} /(N(T-1)-K)$, so that

$$
\begin{equation*}
\bar{\sigma}_{N}^{2} \sqrt{N}\left(F_{N}-1\right)=\frac{\bar{\sigma}_{N}^{2}}{\tilde{\sigma}^{2}} \sqrt{N}\left(S_{N}-\tilde{\sigma}^{2}\right) \tag{21}
\end{equation*}
$$

We first show that $\tilde{\sigma}^{2}-\bar{\sigma}_{N}^{2}=o_{p}(1)$, so that (since $\bar{\sigma}_{N}^{2}$ is uniformly positive by Assumption A2(v)) $\tilde{\sigma}^{2} / \bar{\sigma}_{N}^{2} \xrightarrow{p}$ 1. Following Orme and Yamagata (2006, Proof of Proposition 1), we can write

$$
\begin{aligned}
\tilde{\sigma}^{2} & =\frac{N}{N(T-1)-K} \frac{\mathbf{u}^{\prime}\left(\mathbf{M}_{\tilde{\mathbf{x}}}-\mathbf{P}_{\mathbf{D}}\right) \mathbf{u}}{N} \\
& =\frac{N}{N(T-1)-K}\left\{\frac{\mathbf{u}^{\prime} \mathbf{u}}{N}-\frac{\mathbf{u}^{\prime} \mathbf{P}_{\tilde{\mathbf{x}}} \mathbf{u}}{N}-\frac{\mathbf{u}^{\prime} \mathbf{P}_{\mathbf{D}} \mathbf{u}}{N}\right\} \\
& =\frac{\mathbf{u}^{\prime} \mathbf{M}_{\mathbf{D}} \mathbf{u}}{N(T-1)}+O_{p}\left(N^{-1}\right)
\end{aligned}
$$

because $\frac{\mathbf{u}^{\prime} \mathbf{u}}{N}, \frac{\mathbf{u}^{\prime} \mathbf{P}_{\mathbf{D}} \mathbf{u}}{N}$ and $\mathbf{u}^{\prime} \mathbf{P}_{\tilde{\mathbf{x}}} \mathbf{u}$ are all $O_{p}(1)$ and $\frac{N}{N(T-1)-K}=\frac{1}{T-1}+O\left(N^{-1}\right)$.

Therefore,

$$
\begin{aligned}
\tilde{\sigma}^{2}-\bar{\sigma}_{N}^{2}= & \frac{\mathbf{u}^{\prime} \mathbf{M}_{\mathbf{D}} \mathbf{u}}{N(T-1)}-\frac{T \bar{\sigma}_{N}^{2}}{T-1}+\frac{\bar{\sigma}_{N}^{2}}{T-1}+O_{p}\left(N^{-1}\right) \\
= & \frac{1}{T-1}\left\{T\left(\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=1}^{T} u_{i t}^{2}-\bar{\sigma}_{N}^{2}\right)-\left(\frac{1}{N T} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} u_{i t}\right)^{2}-\bar{\sigma}_{N}^{2}\right)\right\} \\
& +O_{p}\left(N^{-1}\right) \\
= & o_{p}(1)
\end{aligned}
$$

because, by Assumption A2(i) and A1(iii), both terms in side the $\{$.$\} above$ are $o_{p}(1)$. Thus, provided $\sqrt{N}\left(S_{N}-\tilde{\sigma}^{2}\right)=O_{p}(1)$, (21) yields

$$
\bar{\sigma}_{N}^{2} \sqrt{N}\left(F_{N}-1\right)=\sqrt{N}\left(S_{N}-\tilde{\sigma}^{2}\right)+o_{p}(1) .
$$

But from exactly the same argument employed by Orme and Yamagata (2006, pp.418-419) $\sqrt{N}\left(S_{N}-\tilde{\sigma}^{2}\right)=O_{p}(1)$ with

$$
\sqrt{N}\left(S_{N}-\tilde{\sigma}^{2}\right)=\frac{1}{(T-1)} \frac{1}{\sqrt{N}}\left[\mathbf{u}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \mathbf{u}\right]+\lambda_{N}+o_{p}(1) .
$$

Thus, (21) can be expressed as

$$
\begin{aligned}
\bar{\sigma}_{N}^{2} \sqrt{N}\left(F_{N}-1\right) & =\frac{1}{\sqrt{N}} \frac{\mathbf{u}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \mathbf{u}}{T-1}+\lambda_{N}+o_{p}(1) \\
& =\sqrt{\frac{T}{T-1}} H_{N}+\lambda_{N}+o_{p}(1)
\end{aligned}
$$

(ii) By Lemma 1,

$$
\omega_{N} \sqrt{N}\left(F_{N}-1\right)-\frac{\lambda_{N}}{\sqrt{\kappa_{N} / 2}} \xrightarrow{d} N\left(0, \frac{2 T}{T-1}\right),
$$

and the result follows. This completes the proof.

Proof of Proposition 2.

1. By the Triangle Inequality, $\left|\hat{\sigma}^{2}-\bar{\sigma}_{N}^{2}\right| \leq\left|\hat{\sigma}^{2}-\frac{\mathbf{u}^{\prime} \mathbf{u}}{N T}\right|+\left|\frac{\mathbf{u}^{\prime} \mathbf{u}}{N T}-\bar{\sigma}_{N}^{2}\right|=o_{p}(1)$, since, as previously noted, $\frac{\mathbf{u}^{\prime} \mathbf{u}}{N T}=\bar{\sigma}_{N}^{2}+o_{p}(1)$ and $\hat{\sigma}^{2}-\frac{\mathbf{u}^{\prime} \mathbf{u}}{N T}=o_{p}(1)$ by the arguments of Orme and Yamagata (2006, p.422).
2. From the proof of Lemma 1, we have that

$$
\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}\right)^{2}-\frac{1}{N} \sum_{i=1}^{N} E\left(\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}\right)^{2} \xrightarrow{p} 0
$$

Therefore, by the Triangle Inequality, it remains to show that $\frac{1}{N} \sum_{i=1}^{N}\left(\hat{\mathbf{u}}_{i}^{\prime} \mathbf{A} \hat{\mathbf{u}}_{i}\right)^{2}-$ $\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}\right)^{2} \xrightarrow{p} 0$. Since, $\hat{\mathbf{u}}_{i}=\mathbf{u}_{i}+\hat{\mathbf{v}}_{i}$, where $\hat{\mathbf{v}}_{i}=\boldsymbol{\iota}_{T} \delta_{i} / N^{1 / 4}-\mathbf{Z}_{i}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$, we can write

$$
\begin{aligned}
\hat{\mathbf{u}}_{i}^{\prime} \mathbf{A} \hat{\mathbf{u}}_{i} & =\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}+2 \mathbf{u}_{i}^{\prime} \mathbf{A} \hat{\mathbf{v}}_{i}+\hat{\mathbf{v}}_{i}^{\prime} \mathbf{A} \hat{\mathbf{v}}_{i} \\
& =\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}+S_{i}, \text { say },
\end{aligned}
$$

so that

$$
\frac{1}{N} \sum_{i=1}^{N}\left(\hat{\mathbf{u}}_{i}^{\prime} \mathbf{A} \hat{\mathbf{u}}_{i}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}\right)^{2}+\frac{1}{N} \sum_{i=1}^{N} S_{i}^{2}+\frac{1}{N} \sum_{i=1}^{N} \mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i} S_{i} .
$$

Now, $\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i}\right)^{2}=O_{p}(1)$ and we shall show that $\frac{1}{N} \sum_{i=1}^{N} S_{i}^{2}=o_{p}(1)$ so that, by Cauchy-Schwartz, $\frac{1}{N} \sum_{i=1}^{N} \mathbf{u}_{i}^{\prime} \mathbf{A} \mathbf{u}_{i} S_{i}=o_{p}(1)$; then we are done.
Again by Cauchy-Schwartz, $\frac{1}{N} \sum_{i=1}^{N} S_{i}^{2}=o_{p}(1)$ if it can be shown that (i) $\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}_{i}^{\prime} \mathbf{A} \hat{\mathbf{v}}_{i}\right)^{2}=o_{p}(1)$; and (ii) $\frac{1}{N} \sum_{i=1}^{N}\left(\hat{\mathbf{v}}_{i}^{\prime} \mathbf{A} \hat{\mathbf{v}}_{i}\right)^{2}=o_{p}(1)$ and we take each of these in turn:
(i) First, by repeated application of Cauchy-Schwartz, noting that $\|\mathbf{A}\|^{2}=$ $T(T-1)$,

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N}\left|\mathbf{u}_{i}^{\prime} \mathbf{A} \hat{\mathbf{v}}_{i}\right|^{2} & \leq \frac{T(T-1)}{N} \sum_{i=1}^{N}\left\|\mathbf{u}_{i}\right\|^{2}\left\|\hat{\mathbf{v}}_{i}\right\|^{2} \\
& \leq T(T-1) \sqrt{\frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{u}_{i}\right\|^{4} \frac{1}{N} \sum_{i=1}^{N}\left\|\hat{\mathbf{v}}_{i}\right\|^{4}}
\end{aligned}
$$

Now, $E\left\|\mathbf{u}_{i}\right\|^{4}$ is uniformly bounded, by Assumption A3(i), so by Markov's Inequality, $\frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{u}_{i}\right\|^{4}=O_{p}(1)$ and it suffices to show that $\frac{1}{N} \sum_{i=1}^{N}\left\|\hat{\mathbf{v}}_{i}\right\|^{4}=$ $o_{p}(1)$.
Now,

$$
\begin{aligned}
\left\|\hat{\mathbf{v}}_{i}\right\|^{2} & =\frac{T \delta_{i}^{2}}{\sqrt{N}}-2 \frac{\delta_{i}}{N^{1 / 4}} \boldsymbol{\iota}_{T}^{\prime} \mathbf{Z}_{i}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})+(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime} \mathbf{Z}_{i}^{\prime} \mathbf{Z}_{i}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \\
& =S_{i 1}+S_{i 2}+S_{i 3}, \text { say },
\end{aligned}
$$

so that, by Cauchy-Schwartz, $\frac{1}{N} \sum_{i=1}^{N}\left\|\hat{\mathbf{v}}_{i}\right\|^{4}=o_{p}(1)$ if $\frac{1}{N} \sum_{i=1}^{N} S_{i m}^{2}=$ $o_{p}(1)$, for $m=1,2,3$. Clearly, $\frac{1}{N} \sum_{i=1}^{N} S_{i 1}^{2}=\frac{T}{N} \frac{1}{N} \sum_{i=1}^{N} \delta_{i}^{2}=o_{p}(1)$, by Assumption A4(ii) and, by repeated use of Cauchy-Schwartz,

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} S_{i 2}^{2} & \leq 4 \frac{T}{\sqrt{N}}\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|^{2} \frac{1}{N} \sum_{i=1}^{N}\left\|\delta_{i} \mathbf{Z}_{i}\right\|^{2} \\
& =o_{p}(1)
\end{aligned}
$$

because $\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|=o_{p}(1), \frac{1}{N} \sum_{i=1}^{N}\left\|\delta_{i} \mathbf{Z}_{i}\right\|^{2}=\frac{1}{N} \sum_{i=1}^{N} \sum_{t} \sum_{j}\left|\delta_{i} z_{i t j}\right|^{2}=$ $O_{p}(1)$, by an application of Markov's Inequality, Cauchy-Schwartz and

Assumptions A2(ii) and A4(ii). Finally,

$$
\frac{1}{N} \sum_{i=1}^{N} S_{i 3}^{2} \leq\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|^{4} \frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{Z}_{i}^{\prime} \mathbf{Z}_{i}\right\|^{2}
$$

where $\left\|\mathbf{Z}_{i}^{\prime} \mathbf{Z}_{i}\right\|^{2}=\sum_{j} \sum_{k}\left\{\sum_{t} z_{i t j} z_{i t k}\right\}^{2}$ and an application of Markov's Inequality, Minkowski's Inequality, Cauchy-Schwartz and Assumption A2(ii) yields $\frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{Z}_{i}^{\prime} \mathbf{Z}_{i}\right\|^{2}=O_{p}(1)$ and $\frac{1}{N} \sum_{i=1}^{N} S_{i 3}^{2}=o_{p}(1)$.
Thus, $\frac{1}{N} \sum_{i=1}^{N}\left\|\hat{\mathbf{v}}_{i}\right\|^{4}=o_{p}(1)$.
(ii) It immediately follows that $\frac{1}{N} \sum_{i=1}^{N}\left(\hat{\mathbf{v}}_{i}^{\prime} \mathbf{A} \hat{\mathbf{v}}_{i}\right)^{2} \leq T(T-1) \frac{1}{N} \sum_{i=1}^{N}\left\|\hat{\mathbf{v}}_{i}\right\|^{4}=$ $o_{p}(1)$, and we are done.
3. By Assumption A3(i), and Minkowski's Inequality $E\left|\sum_{t=2}^{T} w_{i t}^{2}\right|^{1+\eta}$ is uniformly bounded so that $\frac{1}{N} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t}^{2}-\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} E\left(w_{i t}^{2}\right) \xrightarrow{p} 0$. Thus, by the Triangle Inequality, it remains to show that $\frac{1}{N} \sum_{i=1}^{N} \sum_{t=2}^{T} \hat{w}_{i t}^{2}-\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} w_{i t}^{2} \xrightarrow{p}$ 0 . Since $\hat{u}_{i t}=u_{i t}+\hat{v}_{i t}, \hat{v}_{i t}=\delta_{i} / N^{1 / 4}-\mathbf{z}_{i t}^{\prime}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$, we can write

$$
\begin{aligned}
\hat{w}_{i t} & =w_{i t}+\hat{v}_{i t} \sum_{s=1}^{t-1} u_{i s}+\hat{v}_{i t} \sum_{s=1}^{t-1} \hat{v}_{i s}+u_{i t} \sum_{s=1}^{t-1} \hat{v}_{i s} \\
& =w_{i t}+\hat{g}_{i t}, \text { say. }
\end{aligned}
$$

Thus, by Cauchy-Schwartz, it suffices to show that $\frac{1}{N} \sum_{i=1}^{N} \sum_{t=2}^{T} \hat{g}_{i t}^{2}=o_{p}(1)$. It will be useful to note that

$$
\begin{aligned}
\sum_{t=2}^{T} \hat{g}_{i t}^{2} & \leq \sum_{t=1}^{T}\left(\left|\hat{v}_{i t}\right| \sum_{t=1}^{T}\left|u_{i t}\right|+\left|\hat{v}_{i t}\right| \sum_{t=1}^{T}\left|\hat{v}_{i t}\right|+\left|u_{i t}\right| \sum_{t=1}^{T}\left|\hat{v}_{i t}\right|\right)^{2} \\
& =\sum_{t=1}^{T}\left(S_{i t 1}+S_{i t 2}+S_{i t 3}\right)^{2}, \text { say, }
\end{aligned}
$$

so that, now, it is sufficient to demonstrate that, $\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} S_{i t m}^{2}=o_{p}(1)$, $m=1,2,3$.
By Cauchy-Schwartz, we have

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} S_{i t 1}^{2} & =\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{v}_{i t}^{2}\left(\sum_{t=1}^{T}\left|u_{i t}\right|\right)^{2} \\
& \leq \sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \hat{v}_{i t}^{2}\right)^{2} \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T}\left|u_{i t}\right|\right)^{4}} \\
\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} S_{i t 2}^{2} & \leq \sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \hat{v}_{i t}^{2}\right)^{2} \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T}\left|\hat{v}_{i t}\right|\right)^{4}}
\end{aligned}
$$

and

$$
\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} S_{i t 3}^{2} \leq \sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} u_{i t}^{2}\right)^{2} \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T}\left|\hat{v}_{i t}\right|\right)^{4}}
$$

Both $\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T}\left|u_{i t}\right|\right)^{4}$ and $\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} u_{i t}^{2}\right)^{2}$ are $O_{p}(1)$, by Markov's Inequality, Minkowski's Inequality and Assumption A3(i). Thus, it suffices to show that $\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \hat{v}_{i t}^{2}\right)^{2}$ and $\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T}\left|\hat{v}_{i t}\right|\right)^{4}$ are both $o_{p}(1)$. The former is identical to $\frac{1}{N} \sum_{i=1}^{N}\left\|\hat{\mathbf{v}}_{i}\right\|^{4}=o_{p}(1)$, by the proof of 2(i), above, and the latter is $o_{p}(1)$ by Assumption A2(ii), A4(ii) and the consistency of $\hat{\boldsymbol{\beta}}$. This completes the proof of part 3 .
4. As in previous proofs, by Assumption A3(i) and the Triangle Inequality it suffices to show that

$$
\frac{1}{N} \sum_{i=1}^{N} \sum_{t} \sum_{s \neq t} \hat{u}_{i t}^{2} \hat{u}_{i s}^{2}-\frac{1}{N} \sum_{i=1}^{N} \sum_{t} \sum_{s \neq t} u_{i t}^{2} u_{i s}^{2} \xrightarrow{p} 0 .
$$

Again, since $\hat{u}_{i t}=u_{i t}+\hat{v}_{i t}, \hat{v}_{i t}=\delta_{i} / N^{1 / 4}-\mathbf{z}_{i t}^{\prime}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$, we can write

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \sum_{t} \sum_{s \neq t} \hat{u}_{i t}^{2} \hat{u}_{i s}^{2}-\frac{1}{N} \sum_{i=1}^{N} \sum_{t} \sum_{s \neq t} u_{i t}^{2} u_{i s}^{2}= & 2 \frac{1}{N} \sum_{i=1}^{N} \sum_{t} \sum_{s \neq t} u_{i t}^{2} V_{i s} \\
& +\frac{1}{N} \sum_{i=1}^{N} \sum_{t} \sum_{s \neq t} V_{i t} V_{i s} \\
= & S_{N 1}+S_{N 2}, \text { say, }
\end{aligned}
$$

where $V_{i t}=2 u_{i t} \hat{v}_{i t}+\hat{v}_{i t}^{2}$, and it suffices to show that $S_{N m}=o_{p}(1), m=1,2$. Now,

$$
\begin{aligned}
\left|S_{N 1}\right| & \leq 2 \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} u_{i t}^{2} \sum_{t=1}^{T}\left|V_{i t}\right| \\
& \leq 2 \sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} u_{i t}^{2}\right)^{2} \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T}\left|V_{i t}\right|\right)^{2}}
\end{aligned}
$$

Thus, since $\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t} u_{i t}^{2}\right)^{2}=O_{p}(1)$, it suffices to show that $\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t}\left|V_{i t}\right|\right)^{2}=$ $o_{p}(1)$, or that $\frac{1}{N} \sum_{i=1}^{N} \sum_{t} V_{i t}^{2}=o_{p}(1)$ since $\left(\sum_{t}\left|V_{i t}\right|\right)^{2} \leq T \sum_{t} V_{i t}^{2}$. But this is true because

$$
\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} V_{i t}^{2} \leq \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{v}_{i t}^{4}+4 \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} u_{i t} \hat{v}_{i t}^{3}+4 \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} u_{i t}^{2} \hat{v}_{i t}^{2} .
$$

The first term on the right hand side is $o_{p}(1)$ as are the latter two terms by an application of Cauchy-Schwartz.

Second,

$$
\left|S_{N 2}\right| \leq \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T}\left|V_{i t}\right|\right)^{2}=o_{p}(1)
$$

by the preceding result, and this completes the proof.

Proof of Proposition 3.

We can write $R_{N}=\frac{1}{\sqrt{2}} \frac{\hat{H}_{N}}{\hat{\sigma}^{2}}$, where $\hat{\sigma}^{2}=\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}} / N T$ and

$$
\begin{aligned}
\hat{H}_{N} & =\frac{1}{\sqrt{N T(T-1)}}\left[\hat{\mathbf{u}}^{\prime}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \hat{\mathbf{u}}\right] \\
& =\frac{1}{\sqrt{N T(T-1)}}\left[\mathbf{y}^{\prime} \mathbf{M}_{\mathbf{Z}}\left(\mathbf{I}_{N} \otimes \mathbf{A}\right) \mathbf{M}_{\mathbf{z} \mathbf{y}}\right]
\end{aligned}
$$

By Proposition 1, it is sufficient to show that

$$
\hat{H}_{N}=H_{N}+\sqrt{\frac{T-1}{T}} \lambda_{N}-\sqrt{\frac{T}{T-1}} \gamma_{N}+o_{p}(1)
$$

and

$$
\hat{\sigma}^{2}-\bar{\sigma}_{N}^{2}=o_{p}(1)
$$

and the result follows.
Establishing the former follows exactly the argument as in Orme and Yamagata (2006, Proof of Proposition 2), and $\hat{\sigma}^{2}-\bar{\sigma}_{N}^{2}=o_{p}(1)$, was established above. This completes the proof.

Table 1: Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and modified random effects tests under homoskedastic errors (HET0).

[^10]Table 2: Rejection frequencies of the asymptotic and wild-bootstrap modified Ftests and modified random effects tests under cross-sectional one-break-in-volatility heteroskedastic scheme (HET1).

$H_{0}: \alpha_{i}=0$									$H_{1}: \operatorname{var}\left(\alpha_{i}\right)=0.1, \alpha_{i}$ correlated with regressors							
	Asymptotic Tests				Bootstrap Tests				Asymptotic Tests				Bootstrap Tests			
ω	1	$\hat{\omega}_{N}^{(1)}$	$\hat{\omega}_{N}^{(2)}$	$\hat{\omega}_{N}^{(3)}$	1	$\hat{\omega}_{N}^{*(1)}$	$\hat{\omega}_{N}^{*(2)}$	$\hat{\omega}_{N}^{*(3)}$		$\hat{\omega}_{N}^{(1)}$	$\hat{\omega}_{N}^{(2)}$	$\hat{\omega}_{N}^{(3)}$	1	$\hat{\omega}_{N}^{*(1)}$	$\hat{\omega}_{N}^{*(2)}$	$\hat{\omega}_{N}^{*(3)}$
	SN								SN							
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}			
20,5	9.4	2.7	4.9	6.6	6.1	5.8	5.9	5.9	26.9	14.2	18.4	21.0	20.5	22.8	20.5	20.0
50, 5	9.2	2.8	4.7	5.6	5.8	5.5	5.8	5.7	37.6	21.2	26.3	28.8	28.0	31.6	29.1	27.6
100, 5	9.1	3.2	4.7	5.4	5.5	5.4	5.5	5.5	55.2	40.4	43.3	44.7	44.2	49.5	46.2	44.1
50, 10	9.1	1.8	3.8	5.2	5.2	4.9	5.1	5.2	82.7	68.1	73.3	74.5	74.1	81.5	78.0	74.1
50, 20	8.7	1.2	2.9	4.5	4.8	4.8	4.9	4.8	99.8	98.5	99.5	99.4	99.5	99.7	99.7	99.5
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20,5	8.6	1.6	3.7	5.6	6.1	5.6	5.8	5.9	22.5	8.3	13.8	16.6	18.0	19.8	18.2	17.7
50, 5	8.8	2.0	4.1	5.2	5.8	5.6	5.7	5.7	27.9	10.3	16.3	19.0	20.9	21.4	21.0	20.7
100, 5	8.7	2.8	4.3	5.1	5.5	5.3	5.4	5.4	42.7	24.9	29.7	31.9	32.9	36.3	34.0	32.6
50, 10	8.7	1.6	3.5	5.0	5.2	4.9	5.2	5.2	75.5	53.9	63.3	65.7	66.1	73.4	69.3	66.0
50, 20	8.6	1.2	3.0	4.6	4.8	4.7	4.9	4.8	99.7	97.6	99.0	99.1	99.0	99.5	99.5	99.0
	t_{5}								t_{5}							
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}			
20, 5	8.5	2.7	4.6	6.0	5.8	5.6	5.4	5.6	26.6	16.0	20.0	21.9	21.7	23.5	22.4	21.1
50, 5	8.6	2.9	4.3	5.5	5.2	5.3	5.4	5.1	39.3	24.4	28.6	30.9	30.7	33.1	31.5	30.3
100, 5	10.4	3.3	4.8	6.2	5.8	6.0	6.1	5.8	56.9	43.2	46.4	47.4	47.3	52.3	49.5	47.1
50, 10	9.2	1.8	3.9	5.2	5.6	5.2	5.5	5.5	82.1	68.0	73.7	74.6	73.6	80.4	77.1	73.5
50, 20	8.8	1.2	3.0	4.7	5.1	5.3	4.7	5.1	99.7	98.2	99.0	99.3	99.2	99.4	99.4	99.2
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20,5	7.6	1.8	3.6	5.1	5.9	5.5	5.6	5.6	22.4	9.3	14.6	17.6	19.2	21.0	19.4	18.4
50, 5	8.1	2.1	3.8	4.9	5.3	5.2	5.2	5.2	28.6	11.7	17.3	20.5	21.9	22.7	22.0	21.6
100, 5	9.9	2.8	4.4	5.7	6.0	6.0	6.0	5.9	44.5	27.2	32.4	35.1	35.6	38.8	37.1	35.5
50, 10	8.8	1.7	3.7	5.1	5.5	5.1	5.6	5.6	75.3	56.3	64.6	66.5	67.1	72.7	70.2	67.0
50, 20	8.7	1.3	3.0	4.7	5.1	5.3	4.8	5.0	99.5	96.9	98.5	99.0	98.9	99.0	99.1	98.9
	χ_{6}^{2}								χ_{6}^{2}							
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}			
20, 5	8.4	2.6	4.5	5.5	5.1	5.4	5.0	4.9	26.4	15.1	18.8	20.8	19.9	23.0	21.1	19.3
50, 5	8.4	2.2	3.7	4.5	4.5	4.9	4.7	4.4	36.6	21.2	25.7	27.6	27.5	30.2	28.4	27.1
100, 5	9.5	3.0	4.4	5.2	5.5	5.5	5.3	5.4	57.3	41.0	44.5	45.9	45.7	50.6	47.6	45.6
50, 10	9.1	1.7	3.4	4.7	4.8	5.1	5.0	4.8	81.4	67.6	72.7	74.0	73.9	80.0	76.7	73.9
50, 20	8.5	1.6	3.4	5.1	4.7	5.1	4.7	4.7	99.7	98.4	99.4	99.5	99.4	99.5	99.6	99.4
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20,5	7.6	1.4	3.2	4.7	5.3	5.2	5.2	5.0	22.2	8.5	14.1	16.2	17.8	19.7	18.5	17.3
50, 5	7.9	1.7	3.1	4.0	4.5	4.9	4.7	4.4	26.7	10.6	15.5	18.3	19.8	20.2	20.1	19.5
100, 5	9.1	2.5	4.1	4.9	5.4	5.4	5.4	5.4	43.9	25.9	30.2	32.9	33.2	37.1	34.8	33.0
50, 10	8.9	1.6	3.1	4.4	4.9	5.0	5.0	4.8	74.6	53.7	63.2	65.7	66.1	71.5	69.5	66.0
50, 20	8.4	1.6	3.4	5.1	4.8	5.2	4.7	4.8	99.6	97.3	99.0	99.1	99.1	99.3	99.4	99.0

[^11]Table 3: Rejection frequencies of the asymptotic and wild-bootstrap modified Ftests and modified random effects tests under time-series one-break-in-volatility heteroskedastic scheme (HET2).

$H_{0}: \alpha_{i}=0$									$H_{1}: \operatorname{var}\left(\alpha_{i}\right)=0.1, \alpha_{i}$ correlated with regressors							
	Asymptotic Tests				Bootstrap Tests				Asymptotic Tests				Bootstrap Tests			
ω	1	$\hat{\omega}_{N}^{(1)}$	$\hat{\omega}_{N}^{(2)}$	$\hat{\omega}_{N}^{(3)}$	1	$\hat{\omega}_{N}^{*(1)}$	$\hat{\omega}_{N}^{*(2)}$	$\hat{\omega}_{N}^{*(3)}$	1	$\hat{\omega}_{N}^{(1)}$	$\hat{\omega}_{N}^{(2)}$	$\hat{\omega}_{N}^{(3)}$	1	$\hat{\omega}_{N}^{*(1)}$	$\hat{\omega}_{N}^{*(2)}$	$\hat{\omega}_{N}^{*(3)}$
	SN								SN							
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}			
20, 5	3.1	3.1	4.3	5.2	5.5	5.6	5.7	5.6	27.2	20.4	25.8	32.7	33.3	29.5	29.7	33.5
50, 5	3.2	3.6	4.5	5.1	5.5	5.9	5.6	5.5	44.9	41.5	46.0	51.5	52.2	49.8	49.2	52.2
100, 5	2.9	3.7	4.5	4.8	5.5	5.5	5.5	5.5	70.7	68.6	71.0	75.7	76.2	74.3	73.2	76.3
50, 10	3.8	1.8	3.1	4.5	4.7	4.7	4.8	4.7	85.8	75.2	80.5	87.0	86.8	85.7	83.9	86.9
50, 20	4.2	1.6	3.3	4.5	5.1	5.2	5.4	5.1	99.9	99.5	99.7	99.9	99.9	99.8	99.9	99.9
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20,5	2.6	2.0	3.6	4.5	5.7	5.4	5.7	5.7	21.3	12.1	19.1	26.5	30.5	25.2	26.1	30.6
50, 5	2.7	2.7	3.8	4.5	5.6	5.7	5.7	5.7	29.8	23.3	29.7	36.0	39.6	35.2	35.6	39.5
100, 5	2.7	3.3	4.1	4.4	5.6	5.5	5.4	5.6	53.3	48.6	53.4	59.8	62.3	57.5	57.7	62.3
50, 10	3.5	1.6	3.0	4.1	4.7	4.7	4.8	4.7	78.9	62.1	71.7	80.2	81.5	78.0	76.9	81.5
50, 20	4.1	1.6	3.2	4.4	5.1	5.2	5.3	5.1	99.8	99.0	99.5	99.8	99.9	99.7	99.7	99.9
	t_{5}								t_{5}							
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}			
20,5	3.0	3.4	4.0	4.9	5.4	5.4	5.4	5.5	29.1	23.3	29.6	35.8	36.2	32.2	33.2	36.3
50, 5	2.9	3.4	4.0	4.6	5.2	5.2	5.3	5.1	46.5	44.4	48.4	53.8	54.6	51.5	51.1	54.5
100, 5	3.3	4.4	5.0	5.5	6.0	6.0	6.1	6.0	71.9	70.7	72.9	76.9	77.7	75.1	75.0	77.6
50, 10	4.4	2.2	4.2	5.0	5.7	5.3	5.7	5.7	85.3	75.9	80.7	86.8	86.9	84.8	83.9	86.9
50, 20	4.0	1.7	3.2	4.5	5.1	5.2	4.9	5.1	99.9	99.1	99.5	99.9	99.9	99.7	99.6	99.9
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20,5	2.3	1.9	2.8	3.9	5.4	5.4	5.3	5.3	22.9	13.9	21.8	29.3	32.9	27.8	29.4	33.1
50, 5	2.3	2.7	3.4	4.0	5.3	5.3	5.4	5.3	31.0	25.7	32.4	38.4	41.8	37.1	38.2	41.7
100, 5	3.0	3.9	4.5	5.0	5.8	6.1	6.1	5.8	55.5	52.6	56.7	63.2	64.8	60.5	61.0	64.9
50, 10	4.1	2.0	3.9	4.7	5.7	5.4	5.8	5.8	79.2	63.6	72.9	80.7	81.9	78.0	77.5	81.8
50, 20	3.9	1.6	3.2	4.3	5.0	5.2	5.0	5.0	99.9	98.7	99.3	99.9	99.9	99.5	99.5	99.8
	χ_{6}^{2}								χ_{6}^{2}							
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}			
20, 5	3.2	2.8	3.8	4.3	4.6	5.2	4.7	4.6	28.8	22.7	27.9	35.1	35.9	31.1	32.0	35.9
50, 5	3.4	3.0	3.8	4.2	4.8	4.6	4.7	4.7	44.2	41.4	45.2	51.0	52.2	49.4	49.0	52.1
100, 5	3.3	3.7	4.5	4.6	5.1	5.0	5.2	5.0	71.8	70.7	72.9	77.4	77.6	75.6	74.6	77.6
50, 10	4.4	2.3	3.7	4.9	5.3	5.5	5.4	5.3	84.1	74.7	79.8	85.5	85.8	83.8	82.8	85.8
50, 20	4.8	2.0	3.5	4.8	4.8	5.2	4.8	4.8	99.9	99.2	99.7	99.9	99.9	99.9	99.9	99.9
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20,5	2.5	1.9	2.7	3.4	4.5	5.1	4.6	4.4	22.1	14.3	21.1	28.1	32.1	26.8	27.8	32.2
50, 5	2.9	2.5	3.2	3.7	4.7	4.9	4.6	4.6	27.9	22.2	28.1	35.0	38.3	33.9	34.4	38.5
100, 5	3.1	3.4	4.1	4.4	5.2	5.2	5.2	5.1	54.7	50.2	54.8	62.0	64.1	59.0	59.1	64.2
50, 10	4.2	1.9	3.4	4.6	5.1	5.5	5.4	5.1	77.8	61.4	71.5	79.7	81.0	76.9	77.0	81.0
50, 20	4.7	2.0	3.5	4.7	4.7	5.0	4.8	4.7	99.9	98.7	99.4	99.9	99.9	99.7	99.8	99.9

[^12]Table 4: Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and modified random effects tests under conditional heteroskedasticity depending on a regressor (HET3).

$H_{0}: \alpha_{i}=0$									$H_{1}: \operatorname{var}\left(\alpha_{i}\right)=0.1, \alpha_{i}$ correlated with regressors											
	Asymptotic Tests				Bootstrap Tests				Asymptotic Tests				Bootstrap Tests							
ω	1	$\hat{\omega}_{N}^{(1)}$	$\hat{\omega}_{N}^{(2)}$	$\hat{\omega}_{N}^{(3)}$	1	$\hat{\omega}_{N}^{*(1)}$	$\hat{\omega}_{N}^{*(2)}$	$\hat{\omega}_{N}^{*(3)}$	1	$\hat{\omega}_{N}^{(1)}$	$\hat{\omega}_{N}^{(2)}$	$\hat{\omega}_{N}^{(3)}$	1	$\hat{\omega}_{N}^{*(1)}$	$\hat{\omega}_{N}^{*(2)}$	$\hat{\omega}_{N}^{*(3)}$				
	SN								SN											
N, T		F								F	${ }_{\omega}$				F_{ω}^{*}					
20, 5	2.1	3.9	4.6	5.3	5.7	5.5	5.8	5.4	9.8	13.1	18.5	20.1	20.8	17.5	20.6	20.5				
50, 5	5.7	3.1	4.1	4.8	5.4	5.1	5.1	5.1	18.5	13.9	16.9	18.9	19.8	19.0	19.6	19.4				
100, 5	5.6	3.9	4.9	5.3	6.0	6.3	5.9	5.8	30.0	25.9	29.7	31.1	32.7	32.7	32.5	32.4				
50, 10	5.5	2.6	4.0	5.1	5.5	5.5	5.6	5.5	47.5	31.4	40.5	45.2	46.3	43.5	45.3	46.1				
50, 20	5.4	2.2	3.9	5.1	5.5	5.4	5.5	5.5	80.6	64.2	75.6	79.6	80.0	77.7	79.7	80.0				
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}							
20,5	1.7	2.5	3.4	4.4	5.9	6.0	5.9	6.0	7.2	7.8	13.4	16.0	18.9	15.8	18.6	18.6				
50, 5	5.1	2.5	3.3	4.1	5.6	5.3	5.2	5.3	13.1	7.6	10.8	12.6	15.4	13.8	15.1	14.8				
100, 5	5.3	3.5	4.4	4.9	6.0	6.3	6.0	5.8	21.7	16.1	20.7	22.7	25.2	23.9	24.9	24.9				
50, 10	5.3	2.5	3.7	4.8	5.5	5.4	5.5	5.4	41.0	22.6	33.0	38.5	40.5	36.5	38.8	40.2				
50, 20	5.3	2.2	3.7	5.0	5.4	5.4	5.4	5.4	76.9	57.5	71.6	75.9	77.0	73.8	76.8	76.9				
	t_{5}								t_{5}											
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}							
20,5	1.6	4.1	4.7	5.2	5.4	5.4	5.3	5.4	10.4	15.5	20.8	22.5	23.5	19.8	22.8	23.1				
50, 5	5.6	3.7	4.6	5.3	5.7	5.7	5.4	5.6	18.7	16.6	20.0	21.5	23.1	22.2	23.3	22.9				
100, 5	4.4	3.4	4.2	4.5	5.4	5.4	5.4	5.3	30.9	28.8	33.0	35.1	36.7	35.5	36.4	36.3				
50, 10	6.1	2.9	4.2	5.5	5.9	5.8	5.9	5.8	49.7	35.6	44.8	48.5	49.4	46.8	48.7	49.4				
50, 20	$\begin{array}{ll}4.6 & 1.8 \\ R_{\omega} & 3.2 \\ \\ & 4.6 \\ \end{array}$				$\begin{array}{llll}5.1 & 5.5 \\ R_{\omega}^{*}\end{array}$				79.4	65.1	76.2	79.6	79.8	77.5	79.5	79.7				
					R_{ω}	R_{ω}^{*}														
20,5	1.3	2.4	3.1	3.8					5.6	5.7	5.3	5.3	7.7	9.2	15.2	17.9	21.2	17.4	20.4	20.8
50, 5	5.1	2.7	3.7	4.3	5.7	5.6	5.4	5.5	13.3	9.1	12.4	14.9	17.6	15.4	17.0	17.3				
100, 5	4.2	3.1	3.8	4.3	5.3	5.2	5.3	5.2	21.9	18.0	23.3	25.6	28.0	26.4	27.8	27.6				
50, 10	5.7	2.4	3.8	5.2	5.9	5.8	5.9	5.8	43.3	26.7	38.0	42.8	44.4	40.0	43.0	44.2				
50, 20	4.6	1.7	3.2	4.4	5.1	5.5	5.0	5.1	76.3	59.8	72.8	76.5	77.4	73.7	76.8	77.3				
	χ_{6}^{2}								χ_{6}^{2}											
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}							
20, 5	1.8	4.4	4.9	5.3	5.7	6.0	5.5	5.5	10.6	13.2	17.9	19.3	20.7	17.6	20.3	20.2				
50, 5	5.4	3.4	4.3	4.8	5.4	5.0	5.0	5.0	16.9	13.3	15.8	17.2	18.5	18.1	18.6	18.0				
100, 5	5.4	3.7	4.2	4.7	5.6	5.5	5.5	5.4	27.8	25.1	28.1	29.9	31.4	31.1	31.0	31.0				
50, 10	6.0	2.5	3.7	4.6	5.0	5.5	5.5	4.9	47.9	33.7	41.5	46.1	47.3	46.6	46.7	47.2				
50, 20	$\begin{array}{llll}4.5 & 1.5 & 3.1 & 3.9 \\ R_{\omega}\end{array}$				4.2	4.5	4.7	4.2	80.0	66.7	77.0	80.5	80.9	79.4	80.9	80.8				
					R_{ω}^{*}				R_{ω}				R_{ω}^{*}							
20, 5	1.4	2.7	3.2	4.0	5.7	5.9	5.6	5.6	8.0	8.2	13.1	14.8	18.4	15.3	17.9	18.0				
50, 5	4.8	2.8	3.6	4.2	5.3	5.1	5.1	4.9	12.3	6.9	9.7	11.4	14.4	12.6	13.8	14.1				
100, 5	5.2	3.4	3.9	4.4	5.6	5.4	5.4	5.3	20.5	14.7	19.0	21.2	23.5	21.8	22.8	23.1				
50, 10	5.7	2.3	3.5	4.4	5.1	5.5	5.4	5.0	40.9	23.7	33.2	38.6	40.6	38.6	39.7	40.3				
50, 20	4.4	1.4	3.0	3.8	4.2	4.4	4.7	4.2	76.5	60.5	72.9	77.0	78.0	75.8	77.9	77.9				

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except $\sigma_{i t}=\eta_{c}\left[\left(z_{i t, 2}-1\right) / 30\right] / c, \quad i=$ $1, \ldots, N, t=1, \ldots, T$, where $\eta_{c}[\cdot]$ is the inverse of the cumulative distribution function of chi-squared distribution with degrees of freedom c. Since $z_{i t, 2}$ is drawn from a uniform distribution on $(1,31), \sigma_{i t}$ has mean 1 and variance $2 / c$, so it is easy to control the degree of heteroskedasticity through the choice of c. We employ $c=1$.

Table 5: Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and modified random effects tests under conditional heteroskedasticity, $\operatorname{GARCH}(1,1)$ (HET4).

$H_{0}: \alpha_{i}=0$									$H_{1}: \operatorname{var}\left(\alpha_{i}\right)=0.1, \alpha_{i}$ correlated with regressors							
	Asymptotic Tests				Bootstrap Tests				Asymptotic Tests				Bootstrap Tests			
ω	1	$\hat{\omega}_{N}^{(1)}$	$\hat{\omega}_{N}^{(2)}$	$\hat{\omega}_{N}^{(3)}$	1	$\hat{\omega}_{N}^{*(1)}$	$\hat{\omega}_{N}^{*(2)}$	$\hat{\omega}_{N}^{*(3)}$	1	$\hat{\omega}_{N}^{(1)}$	$\hat{\omega}_{N}^{(2)}$	$\hat{\omega}_{N}^{(3)}$	1	$\hat{\omega}_{N}^{*(1)}$	$\hat{\omega}_{N}^{*(2)}$	$\hat{\omega}_{N}^{*(3)}$
	SN								SN							
N, T							F_{ω}^{*}				F_{ω}			F_{ω}		
20, 5	7.2	2.3	4.5	6.0	6.0	5.8	5.8	5.8	30.5	17.6	24.3	27.5	27.5	28.8	28.1	27.1
50, 5	7.9	2.3	4.4	5.5	5.8	5.6	5.4	5.7	47.2	34.9	39.1	41.2	40.9	46.2	42.8	40.7
100, 5	8.8	2.9	5.1	6.3	6.0	5.8	6.0	6.0	71.1	60.8	62.9	64.4	63.4	70.4	66.2	63.3
50, 10	6.8	1.8	3.9	5.2	5.7	5.9	5.5	5.7	92.7	85.3	89.9	90.9	90.8	92.6	91.9	90.8
50, 20	5.6	1.6	3.6	4.9	5.3	5.6	5.3	5.3	100.0	99.9	100.0	100.0	100.0	100.0	100.0	100.0
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20,5	6.5	1.3	3.5	5.3	6.0	5.7	5.8	5.8	25.7	10.1	17.9	22.5	24.2	24.6	24.5	23.8
50, 5	7.4	1.9	3.7	5.1	5.8	5.4	5.5	5.7	33.7	18.4	24.9	28.6	29.2	32.3	30.4	29.0
100, 5	8.6	2.6	4.5	5.9	6.0	5.8	5.9	6.0	55.6	40.3	45.9	48.1	49.0	53.2	50.5	49.0
50, 10	6.5	1.6	3.7	5.1	5.6	5.8	5.5	5.4	88.6	74.0	83.2	86.0	85.7	87.4	87.0	85.7
50, 20	5.5	1.6	3.6	4.8	5.3	5.6	5.3	5.3	100.0	99.8	100.0	99.9	100.0	100.0	100.0	100.0
	t_{5}								t_{5}							
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}			
20, 5	7.9	1.9	4.2	5.7	5.3	5.1	5.1	5.1	32.7	20.8	27.0	29.7	29.0	31.4	29.8	28.5
50, 5	9.2	2.6	4.4	5.8	5.4	5.3	5.1	5.3	49.7	36.5	41.1	42.7	41.4	47.1	43.6	41.1
100, 5	11.5	3.5	5.6	6.5	6.3	6.2	6.4	6.3	70.8	59.0	59.9	60.3	59.3	67.3	62.2	59.2
50, 10	8.2	1.9	4.0	5.5	5.6	5.5	5.3	5.5	91.9	82.8	86.9	87.8	86.8	90.6	88.8	86.8
50, 20	6.9	1.5	3.8	5.3	5.4	5.5	5.5	5.3	99.9	99.3	99.6	99.4	99.3	99.7	99.7	99.3
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20,5	7.4	1.3	3.2	5.1	5.4	5.1	5.2	5.2	27.7	12.0	19.8	24.0	25.7	26.3	26.2	25.2
50, 5	8.7	2.0	3.7	5.3	5.4	5.1	5.2	5.3	36.4	20.0	26.3	29.2	30.5	33.3	31.4	30.2
100, 5	11.1	3.0	5.0	6.2	6.3	6.3	6.4	6.3	56.9	39.5	44.6	46.3	46.6	52.4	48.8	46.4
50, 10	8.0	1.8	3.6	5.3	5.6	5.4	5.3	5.6	87.7	72.1	80.2	82.3	81.9	85.4	84.4	81.9
50, 20	6.8	1.5	3.7	5.2	5.4	5.5	5.5	5.3	99.9	99.0	99.4	99.4	99.2	99.7	99.6	99.1
	χ_{6}^{2}								χ_{6}^{2}							
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}			
20,5	6.9	1.9	3.3	4.4	3.7	4.2	3.7	3.4	29.8	17.2	23.2	26.2	25.1	28.0	25.9	24.6
50, 5	8.1	2.0	3.3	4.7	4.3	4.2	4.1	4.2	46.2	33.1	36.9	38.9	37.6	44.6	40.3	37.3
100, 5	9.3	1.8	3.0	4.6	3.8	4.4	3.5	3.7	68.3	56.2	57.3	58.7	57.3	66.5	60.3	57.0
50, 10	7.4	1.2	2.9	4.5	4.3	4.7	4.1	4.3	92.4	84.4	87.6	89.2	88.4	92.3	89.9	88.3
50, 20	6.4	1.1	2.7	4.5	4.8	4.8	4.4	4.8	100.0	99.8	99.9	99.9	99.8	100.0	99.9	99.8
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20,5	6.1	1.2	2.2	3.9	3.7	4.1	3.9	3.5	24.5	9.7	16.5	20.5	22.3	23.6	22.7	21.7
50, 5	7.6	1.5	2.5	4.0	4.2	4.4	4.0	4.1	33.6	17.1	22.8	26.1	27.0	30.2	27.7	26.5
100, 5	9.0	1.5	2.7	4.2	3.8	4.4	3.6	3.8	53.1	35.4	40.1	42.6	43.0	48.8	44.6	42.9
50, 10	7.2	1.0	2.6	4.4	4.3	4.8	4.2	4.3	87.8	72.4	81.1	84.0	83.3	86.3	85.1	83.2
50, 20	6.3	1.1	2.7	4.4	4.8	4.8	4.4	4.8	100.0	99.6	99.8	99.9	99.8	100.0	99.9	99.8

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except $u_{i t}=\sigma_{i t} \varepsilon_{i t}, t=-49, \ldots, T, i=1, \ldots, N$,
where $\sigma_{i t}^{2}=\phi_{0}+\phi_{1} u_{i, t-1}^{2}+\phi_{2} \sigma_{i, t-1}^{2}$. The value of parameters are chosen to be $\phi_{0}=0.5, \phi_{1}=0.25$ and $\phi_{2}=0.25$.

Table 6: Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and modified random effects tests under conditional heteroskedasticity, $\operatorname{ARCH}(1)$ (HET5).

$H_{0}: \alpha_{i}=0$									$H_{1}: \operatorname{var}\left(\alpha_{i}\right)=0.1, \alpha_{i}$ correlated with regressors							
	Asymptotic Tests				Bootstrap Tests				Asymptotic Tests				Bootstrap Tests			
ω	1	$\hat{\omega}_{N}^{(1)}$	$\hat{\omega}_{N}^{(2)}$	$\hat{\omega}_{N}^{(3)}$	1	$\hat{\omega}_{N}^{*(1)}$	$\hat{\omega}_{N}^{*(2)}$	$\hat{\omega}_{N}^{*(3)}$	1	$\hat{\omega}_{N}^{(1)}$	$\hat{\omega}_{N}^{(2)}$	$\hat{\omega}_{N}^{(3)}$	1	$\hat{\omega}_{N}^{*(1)}$	$\hat{\omega}_{N}^{*(2)}$	$\hat{\omega}_{N}^{*(3)}$
	$S N$								SN							
N, T		F					F_{ω}^{*}			F	F_{ω}				F_{ω}^{*}	
20, 5	9.8	2.7	5.4	6.8	6.2	6.0	6.0	6.0	32.7	19.6	25.4	28.1	27.0	30.4	28.0	26.5
50, 5	10.3	2.5	5.1	6.4	5.7	5.6	5.7	5.6	47.2	33.2	37.2	38.1	36.2	44.4	39.1	35.9
100, 5	11.6	2.6	4.5	6.2	5.3	5.3	5.3	5.2	68.3	53.4	54.9	55.1	52.4	63.7	57.2	52.1
50, 10	7.8	1.6	3.3	5.1	4.8	5.1	4.9	4.8	91.6	82.0	85.6	85.7	84.8	90.6	87.7	84.7
50, 20	6.8	1.4	3.3	5.0	5.0	5.2	5.2	5.0	100.0	99.6	99.7	99.6	99.5	99.8	99.8	99.5
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20, 5	9.1	1.3	4.3	6.1	6.3	6.0	5.9	6.1	28.0	11.4	19.0	22.8	24.1	25.8	24.9	23.5
50, 5	9.6	1.7	4.1	5.6	5.8	5.6	5.8	5.5	35.1	17.6	23.8	26.8	26.9	31.0	28.8	26.7
100, 5	11.2	2.1	4.0	5.8	5.3	5.5	5.3	5.3	53.3	33.3	38.3	40.1	38.9	47.5	42.9	38.7
50, 10	7.6	1.4	3.0	4.9	4.9	5.1	5.0	4.8	86.6	70.6	78.9	80.4	79.8	84.9	83.1	79.7
50, 20	6.7	1.4	3.2	4.9	5.0	5.2	5.2	5.0	100.0	99.4	99.7	99.6	99.4	99.8	99.7	99.4
	t_{5}								t_{5}							
N, T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}			
20, 5	9.2	2.2	4.2	6.0	5.5	5.3	5.2	5.2	36.3	23.7	28.7	31.4	30.6	33.9	31.6	30.0
50, 5	11.9	2.5	5.0	7.0	5.9	5.7	5.7	5.8	51.6	38.2	40.5	41.3	39.4	47.4	42.4	38.8
100, 5	15.1	3.1	5.4	7.0	6.0	5.9	5.8	5.9	69.0	55.3	55.3	55.1	52.3	63.9	56.6	52.0
50, 10	10.9	2.0	4.0	6.0	5.5	5.6	5.4	5.4	90.7	80.4	82.5	82.9	81.5	88.0	84.6	81.3
50, 20	$\begin{array}{cccc}9.0 & 1.3 & 3.5 & 5.6 \\ & R_{\omega} & \end{array}$				5.2	4.8	5.2	5.2	99.5	98.0	98.2	98.2	97.7	99.0	98.5	97.7
					R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20, 5	8.5	1.2	3.0	4.9	5.6	4.9	5.2	5.3	31.5	14.4	22.3	26.2	27.2	29.5	27.6	26.5
50, 5	11.6	1.8	4.0	6.0	5.8	5.6	5.6	5.6	39.7	20.1	26.8	29.3	29.4	34.1	31.4	29.2
100, 5	14.8	2.4	4.2	6.3	6.0	5.9	5.7	6.0	57.7	36.7	41.0	41.8	41.3	50.1	45.1	41.0
50, 10	10.6	1.9	3.7	5.7	5.4	5.6	5.6	5.3	86.6	70.9	77.0	78.0	76.9	83.0	80.4	76.7
50,20	9.0	1.3	3.3	5.6	5.2	4.9	5.3	5.2	99.4	97.5	97.9	97.9	97.3	98.8	98.3	97.2
	χ_{6}^{2}								χ_{6}^{2}							
N,T	F_{ω}				F_{ω}^{*}				F_{ω}				F_{ω}^{*}			
20,5	8.3	2.3	4.0	5.2	4.5	4.3	4.2	4.2	33.2	20.2	25.8	27.6	26.7	31.3	28.1	26.0
50, 5	10.9	1.8	4.0	5.7	4.2	4.0	4.2	4.0	46.2	31.1	34.3	35.3	33.1	41.7	36.2	32.9
100, 5	11.9	1.8	3.7	5.3	4.4	4.2	4.2	4.3	66.6	51.5	51.3	52.0	49.4	61.2	53.4	49.1
50, 10	9.0	1.1	2.7	5.0	4.4	4.3	4.0	4.3	89.8	79.9	82.0	83.4	81.8	88.6	84.7	81.6
50, 20	7.9	1.3	2.3	4.5	4.1	4.3	3.7	4.1	99.8	99.1	98.9	99.0	98.8	99.6	99.1	98.8
	R_{ω}				R_{ω}^{*}				R_{ω}				R_{ω}^{*}			
20, 5	7.6	1.0	2.5	4.4	4.5	4.1	4.2	4.2	28.2	10.9	18.3	22.3	23.0	25.8	24.4	22.5
50,5	10.5	1.0	2.8	4.8	4.2	4.1	4.1	4.0	33.6	15.2	20.3	23.5	23.7	27.9	25.0	23.2
100, 5	11.8	1.3	2.9	4.7	4.4	4.2	4.2	4.4	52.9	32.2	34.6	37.6	36.6	45.5	39.5	36.3
50, 10	8.8	1.0	2.4	4.8	4.4	4.2	4.0	4.4	85.4	68.4	74.7	77.7	76.2	82.6	79.0	76.1
50, 20	7.8	1.3	2.2	4.5	4.1	4.3	3.7	4.1	99.7	98.7	98.7	98.9	98.6	99.5	98.9	98.6

[^13]
[^0]: *Corresponding author. Chris D.Orme, Economics, School of Social Sciences, University of Manchester, Manchester M13 9PL, UK. Email: chris.orme@manchester.ac.uk

[^1]: ${ }^{1}$ Orme and Yamagata (2006) did not cover the case of heteroskedastic errors in the linear model, although their analysis did allow for heteroskedastic individual effects.
 ${ }^{2}$ As Wooldridge (2010, p.300) points out, standard tests for individual effects essentially test for non-zero correlation in the errors; thus, constructing auto-correlation robust procedures would appear to be counter productive.

[^2]: ${ }^{3}$ See, for example, Breusch and Pagan (1980) or Honda (1985).

[^3]: ${ }^{4}$ See, for example, White (2001, Exercises 3.14, 5.12 and Chapter 6). Assumption A2(ii) is also required to obtain a heteroskedasticity robust F-test.

[^4]: ${ }^{5}$ Note that Assumption A 1 (iii) is often strengthened to that of $u_{i t}$ being independent over $t=1, \ldots, T$, conditionally on \mathbf{X}_{i}. However, this would rule out certain forms of conditional heteroskedasticity; such as ARCH or GARCH processes.

[^5]: ${ }^{6}$ We shall not, here, consider alternative estimators of $\bar{\sigma}_{N}^{2}$, altough this is possible.
 ${ }^{7}$ See, for example, White (2001, p.54).
 ${ }^{8}$ See, for example, Goncalves and Killian (2004).

[^6]: ${ }^{9}$ Indeed, this particular consclusion explains some of the finite sample Monte Carlo results obtained by Häggström \& Laitila (2002).

[^7]: ${ }^{10}$ See the discussion in Orme and Yamagata (2006).

[^8]: ${ }^{11}$ We also considered a pure random effects specification, $\tau_{i}=v_{\alpha}, R^{2}=0$, and the results show that the power properties of the modified fixed effects test and the modified random effects test are very similar.
 ${ }^{12}$ The estimator $\tilde{\omega}_{N}$, based on the unrestricted estimator (i.e., fixed effects estimator), is also considered, but the finite sample performance of the tests considered is monotonically inferior to that based on the estimator of $\hat{\omega}_{N}$.

[^9]: ${ }^{13}$ See Godffrey (2009) for an excellent guide to bootstrap test procedures for regression models.

[^10]: Notes: The model employed is $y_{i t}=\alpha_{i}+\sum_{j=1}^{3} z_{i t, j} \beta_{j}+u_{i t}, u_{i t}=\sigma_{i t} \varepsilon_{i t}$, where $z_{i t, 1}=1, z_{i t, 2}$ is drawn from a uniform distribution on (1,31) independently for i and t, and $z_{i t, 3}$ is generated following Nerlove (1971), such that $z_{i t, 3}=0.1 t+0.5 z_{i t-1,3}+v_{i t}$, where the value $z_{i 0,3}$ is chosen as $5+10 v_{i 0}$, and $v_{i t}$ (and $v_{i 0}$) is drawn from the uniform distribution on $(-0.5,0.5)$ independently for i and t, in order to avoid any normality in regressors. These regressor values are held fixed over replications. $\beta_{j}=1$ for $j=1,2,3$. The i.i.d. standardised errors for $\varepsilon_{i t}$ are drawn from: the standard normal distribution $(S N)$; the t distribution with five degrees of freedom $\left(t_{5}\right)$; and, the chi-square distribution with six degrees of freedom $\left(\chi_{6}^{2}\right)$. For estimating size of the tests, $\alpha_{i}=0$ and power is investigated using $\alpha_{i}=\sqrt{0.1} g\left(z_{i}\right)$ where $g_{i}\left(z_{i}\right)$ is the standardised value of $\sum_{j=1}^{3} \sum_{t=1}^{T} z_{i t, j}$, so that the regressors and α_{i} are correlated. F_{ω} is the modified F-test and R_{ω} is the modified random effects test, and F_{ω}^{*} and R_{ω}^{*} are their wild bootstrap tests, with different choice of $\hat{\omega}_{N}^{(m)}, m=0,1,2,3$ with $\hat{\omega}_{N}^{(0)} \equiv 1$; see section 4.2 and 4.3 Here $\sigma_{i t}=1$. The sampling behaviour of the tests are investigated using 5000 replications of sample data and 200 bootstrap samples, employing a nominal 5% significance level.

[^11]: Notes: See notes to Table 1. The DGP is identical to that for Table 1 except $\sigma_{i t}=\sigma_{1}, i=1, \ldots, N_{1}, t=1, \ldots, T$ and $\sigma_{i t}=\sigma_{2}, \quad i=N_{1}+1, \ldots, N, t=1, \ldots, T$ with $N_{1}=\lceil N / 2\rceil$, where $\lceil A\rceil$ is the largest integer not less than A, $\sigma_{1}=0.5$ and $\sigma_{2}=1.5$.

[^12]: Notes: See notes to Table 1. The DGP is identical to that for Table 1 except $\sigma_{i t}=\sigma_{1}, i=1, \ldots, N, t=1, \ldots, T_{1}$, $\sigma_{i t}=\sigma_{2}, \quad i=1, \ldots, N, t=T_{1}+1, \ldots, T$ with $T_{1}=\lceil T / 2\rceil, \sigma_{1}=0.5$ and $\sigma_{2}=1.5$.

[^13]: Notes: See notes to Table 1. The DGP is identical to that for Table 1 except $u_{i t}=\sigma_{i t} \varepsilon_{i t}, t=-49, \ldots, T, i=1, \ldots, N$, where $\sigma_{i t}^{2}=\phi_{0}+\phi_{1} u_{i, t-1}^{2}$. The value of parameters are chosen to be $\phi_{0}=0.5$ and $\phi_{1}=0.5$.

