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Abstract

We derive the asymptotic distribution of the standard F-test statistic for
fixed effects, in static linear panel data models, under both non-normality
and heteroskedasticity of the error terms, when the cross-sections dimension
is large but the time series dimension is fixed. It is shown that a simple lin-
ear transformation of the F-test statistic yields asymptotically valid inferences
and under local fixed (or correlated) individual effects, this heteroskedasticity-
robust F-test enjoys higher asymptotic power than a suitably robustified Ran-
dom Effects test. Wild bootstrap versions of these tests are considered which,
in a Monte Carlo study, provide more reliable inference in finite samples.

1 Introduction

In an earlier paper, Orme and Yamagata (2006) added to the already large literature
on the analysis of variance testing, by establishing that, in a static linear panel
data model, the standard F-test for individual effects remains asymptotically valid
(large N, fixed T') under non-normality of the error term. Moreover, their (local)
asymptotic analysis, supported by Monte Carlo evidence, showed that under (pure)
local random effects both the F-test and Random Effects test (RE-test) will have
similar power whilst under local fixed effects, or random effects which are correlated
with the regressors, the RF-test procedure will have lower asymptotic power than
the F-test procedure.

The key result in the above paper (Proposition 1, p.409) is, essentially, the as-
ymptotic equivalence of the appropriately centred F-test statistic and the numerator
(test indicator) in the RE-test statistic, under homoskedastic, but not necessarily
normally distributed, errors. However, it is straightforward to verify (Proposition
1 in Section 3.2 below) that this asymptotic equivalence continues to hold under

*Corresponding author. Chris D.Orme, Economics, School of Social Sciences, University of
Manchester, Manchester M13 9PL, UK. Email: chris.orme@manchester.ac.uk



general heteroskedasticity of the errors.! The analysis which produces this result
also shows that although under quite general, but neglected, heteroskedasticity, the
standard (homoskedastic-based) F' and RE tests may be asymptotically under, or
over, sized, predictions can be made in certain cases. For example, and in addition
to the maintained assumption of independent cross-sections, when the linear model
error terms are also serially independent, then: (i) if the (unconditional) error vari-
ance is constant within a cross section of data, but not across cross-sections, both
tests will be asymptotically oversized; (ii) on the other hand, if the (unconditional)
error variance is constant across cross-sections, but not through time, both tests
will be asymptotically undersized; (iii) furthermore, in the singular case of indepen-
dently and identically distributed (i.i.d.) data, over both the cross-section and time
dimensions, then even if the errors are conditionally heteroskedastic, the standard
F and RE tests remain asymptotically valid. The assumptions in this paper ex-
plicitly allow for independently but not identically distributed data and, therefore,
unconditional heteroskedasticity in the errors.

Given the result of Proposition 1, below, Wooldridge’s (2010, p.299) heteroskedastic-
robust RE-test suggests the appropriate transformation required of the standard
F-test statistic in order to recover its asymptotically validity under general het-
eroskedasticity of unknown form. This transformation, or correction, involves sim-
ple functions of the pooled model’s residuals (i.e., the restricted residuals), of which
there are a number of asymptotically valid choices. Following the literature on het-
eroskedasticity robust inference, restricted residuals are employed as advocated, for
example, by Davidson and MacKinnon (1985) and Godfrey and Orme (2004), who
report reliable sampling performance of tests of linear restrictions in the linear model
when employing restricted residuals in the construction of heteroskedasticity robust
standard errors.?

Importantly, though, the F' and RE heteroskedastic-robust tests, so constructed,
retain the qualitative properties that were reported by Orme and Yamagata (2006).
Specifically: (i) under (pure) local random effects, both tests have the same asymp-
totic power; and, (ii) under local fixed effects, or random effects which are correlated
with the regressors, the RE-test procedure will have lower asymptotic power than
the F-test procedure.

The plan of this paper is as follows. In order to make the current paper self-
contained, Section 2 reproduces Orme and Yamagata (2006, Section 2) and intro-
duces the notation and standard test statistics as discussed widely in standard texts;
for example Baltagi (2008). Assumptions are introduced in Section 3, justifying the
ensuing asymptotic analysis in Section 3.2 which characterises the asymptotic be-
haviour of the F-test statistic, including its relationship with the RFE-test statistic
under the null and local alternatives. All proofs of the main results are relegated
to the Appendix. Section 4 illustrates the main findings by reporting the results
of a small Monte Carlo study. This also includes an evaluation of a wild bootstrap

!Orme and Yamagata (2006) did not cover the case of heteroskedastic errors in the linear model,
although their analysis did allow for heteroskedastic individual effects.

2 As Wooldridge (2010, p.300) points out, standard tests for individual effects essentially test
for non-zero correlation in the errors; thus, constructing auto-correlation robust procedures would
appear to be counter productive.



procedure scheme, based on Mammen (1993) and Davidson and Flachaire (2008),
which might be employed in order to provide closer agreement between the desired
nominal and the empirical significance level of the proposed test procedures. Section
5 concludes.

2 The Notation, Model and Test Statistics

We consider the following static linear panel data model
yi :aiLT+Xi/81+ui7 1= 17"'7N (1)

where y; = (i, -, ¥ir)s Wi = (Ui, ..., uip), tr is a (T x 1) vector of ones, and
X; = (xi1, -, %7)" a (T x K) matrix. The innovations, u;, have zero mean and
uniformly bounded variances and the «; are the individual effects. By stacking the
N equations of (1), the model for all individuals becomes

y = Da + X131+u7 (2)

where y = (y},...,y¥%) and u = (u},...,uly) are both (NT x 1) vectors, a =
(1, ...,an) is a (N x 1) vector, D = [Iy ®¢r] is a (NT x N) matrix, X =
(X), .., Xy) is a (NT x K) matrix, and [D, X] has full column rank. Thus, for
the purposes of the current exposition, x; = (zj1, ..., Tix)', (K X 1), contains no
time invariant regressors, in particular a constant term corresponding to an overall
intercept. In the context of fixed effects this allows estimation of 3, as follows.

In general, define the projection matrices, Pg = B(B’ B)_IB’ and Mg = Iyr —
Pg, for any (NT x S) matrix B of full column rank, with B = MpB being the
residual matrix from a multivariate least squares regression of B on D which is,
of course, the within transformation. Then the fixed effects (least squares dummy
variable) estimator of 3, in (2) is given by

B = (X'MpX) 'X'Mpy = (X'X) X5, (3)
The null model of no individual effects is the pooled regression model of

y = Bowwr +XBy +u, (4)
= 7Z8+u,

where Z =y, X] = (2, ...,Z)", where Z; has rows z, = (1,zy1,...,Tux) =

{zitj}, 7 = 1,..., K + 1. The (pooled) regression of y on Z delivers the Ordinary
/

Least Squares (OLS) estimator 3 = (BmBi) = (Z2'7)"' Z'y.

The standard F-test for fixed effects requires estimation of both (2), treating
the a; as unknown parameters, and (4) whilst the standard RE-test only requires
estimation of (4). In order to provide a framework in which to investigate the limiting
behaviour of the F-test and RE-test statistics, under both fixed and random effects,
the individual effects are assumed to have the form o = Bgen + 6, 6 = (01, ...,0n) .
Fixed effects correspond to the «;, i = 1,..., N, being fixed unknown parameters
(or, equivalently, §; = 0 with 3, and ¢;, i« = 2,..., N, being the fixed unknown
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parameters). The case of random effects is accommodated when the §;,i =1,..., N
are random variables. Equations (1) and (2) will be employed to characterise the
data generation process, with the restrictions of Hy : § = d,¢x providing the null
model of no individual effects (notice that & = 0 belongs to this set of restrictions).
Specifically, when considering the alternative of fixed effects, the (N — 1) restrictions
placed on (2) are Hy : Ha = 0, where H =[¢y_1, —Iy_4], whilst for random effects
the null is Hy : var (6;) = 0.
The standard F' and RE test statistics are defined as follows:

F-test Statistic

This is constructed as

(RSSp — RSSy)/(N —1) -
RSSy/(N(T —1) - K) (5)

Fy =

where RSSr = @'t is the restricted sum of squares (from the pooled regression
(4)) with @ = Mgzy, and RSSy = @'t is the unrestricted sum of squares (from the
fixed effects regression (2)) with @t = Mgy, the residual vector from regressing y on
X. If normality, homoskedasticity and strong exogeneity were imposed such that,
conditional on X, u; ~ N(0,6%I7), i = 1,..., N, then a standard F-test would be
exact. In the case of non-normal, but homoskedastic, errors Orme and Yamagata
(2006) demonstrated that a standard F-test would be asymptotically valid.

RE-test Statistic
The usual RE-test statistic is®

R = 2(;\[1_1 1) {ﬁ, (I%iA)ﬁ} ~\lanT (1T— 1) {ﬁ, gfff]\fy ﬁ} (6)

where A = A’ = 171, — I, so that

N
11, (IN X A) u = Z ll;Alli = Z Z Z UitUjs -
i=1 )

) t  s#t

Ry has a limit standard normal distribution, as N — oo, under Hy and homoskedas-
ticity but not necessarily normality of the errors.

3 Asymptotic Properties of Fly

In this section we describe the properties of Fy, under both local fixed and random
effects, by (i) deriving its asymptotic distribution, and (ii) establishing its asymptotic
relationship with Ry. In the subsequent analysis asymptotic theory is employed in
which N — oo and T is fixed. To facilitate this, the next sections details the
assumptions that are made, which are of the sort found in, for example, White
(2001, p.120):

3See, for example, Breusch and Pagan (1980) or Honda (1985).

4



3.1 Assumptions
Al:

(i) {X;,u;}Y | is an independent sequence of (K + 1), (T x 1) vectors;
(ii) F (uy|X;) =0, for all ¢ and t;

(iii) E (uiuis|X;) =0 for all ¢ and t # s.

A2:

(i) £ (|Z7;5juit|2+n) <A< forsomen>0,alst=1,...T, j=1,...,K+1, and
alli=1,..,N;

(i) F (|zitj|4+”) <A<ooforsomen>0,allt=1,...,7,j=1,.., K + 1, and all
1=1,...,N;

(iii) E(Z'Z/N) is uniformly positive definite;
(iv) E (5(’ X /N) is uniformly positive definite;
(v) Vy=N"! ZZ 1 Zt | E (u?zy2},) is uniformly positive definite;

(vi) Vy = NIV ST E (u3%X,) is uniformly positive definite.

Assumption A1 imposes independent sampling of cross-section units and a strong
exogeneity assumption on X;, implying that E(X/u;) = 0 and thus ruling out (for
example) lagged dependent variables. It also constrains the u; to be condition-
ally serially uncorrelated, and thus serially uncorrelated but not necessarily serially
independent. Together with Assumption A2, which allows for heteroskedastic dis-
turbances, we obtain consistency and asymptotic normality of both the pooled and
fixed effects least squares regression estimators (ﬂ and Bl, respectively), and also
consistency of the corresponding heteroskedasticity-robust covariance matrix esti-
mators. These results follow for the fixed effects estimator because Assumption
A2(i) and (ii) also imply that E Uiis]un|2+n] and F Uiitﬂisl\%”} are both uni-
formly bounded. Thus, in particular, \IFZ’ , TX’ ~Z'Z and ]lv).'(’f( are all

0,(1), with V"?-LZ"u % N(0,T,,) and V"> LX'u 5% N(0,I), as N — oo,
T fixed. If Assumption Al (ii) is weakened to £ (Xju;) = 0, or even E (x;u;) = 0
(zero contemporaneous correlation), (3, is not guaranteed to be consistent and, when
it is inconsistent, the F-test is asymptotically invalid anyway, even under normal-
ity; for example, in the presence of lagged dependent variables - see the discussion
in Wooldridge (2010, Sections 10.5 and 11.6). Note that, although the assump-
tions constrain {u;} to be serially uncorrelated, they allow for rather arbitrary

heteroskedasticity, across individuals and /or through time, and do not demand, for

4See, for example, White (2001, Exercises 3.14, 5.12 and Chapter 6). Assumption A2(ii) is also
required to obtain a heteroskedasticity robust F-test.



example, that {u?} also be serially uncorrelated.” Assumptions A1(iii) and A2(v)

imply that & ;0 ST B2 = * SN B, ui)? is uniformly positive.
For the purposes of this paper, in addition, we assume the following:

A3:
(i) Fluy|"™ < A < oo forsomen >0, allt=1,. T, andalli=1,.., N;
(ii) var (N0 (Iy ® A)u) = N ! SV, E (w,Aw,;)? is uniformly positive.

A4:
. & .
(i) « 250+W7 i=1,.., N;

(ii) the §; are independent, satisfying F [u;0;] = 0 and E [6;]*7" < A < oo, for all
i=1,..,N.

(iii) N1 Zf\il E [dﬂ is uniformly positive, where &' = (81, ...,0n) .

Assumption A3 justifies the limit distribution obtained in Proposition 1 below,
and as a consequence also that of Ry. In fact, Assumption A3(i) and Assump-
tion A2(ii) actually imply Assumption A2(i), using the Cauchy-Schwartz inequality.
Assumption A4 characterises the alternative data generation process and permits
the investigation of asymptotic power, under local individual effects, by restrict-
ing the test criteria under consideration to be O, (1) with well defined limit dis-
tributions. Together with Assumptions A3(i) and A2(ii), Assumption A4(ii) im-
plies E|uit5i|2+" < A < oo and E|zitj5i|2+" < A < oo, for some n > 0, and all
i=1,..N,t=1,.,T,j=1,.., K+ 1. As well as fixed effects (with the §; be-
ing non-stochastic) it also accommodates local heteroskedastic random effects, but
which are uncorrelated with u;. If the ; are also distributed independently of X;,
then we have “pure” random effects whilst if the J; are correlated with X; then we
have “correlated” random effects. (As pointed out by Wooldridge (2010, p.287),
in microeconometric applications of panel data models with individual effects, the
term fixed effect is generally used to mean correlated random effects, rather than «;
being strictly non-stochastic.)

3.2 The Asymptotic Distribution of Fly

The results concerning the limiting behaviour of both the F-test and RE-test are
driven by the following Lemma, which also substantiates the asymptotic validity of
Wooldridge’s (2010, p.299) heteroskedasticity-robust test for unobserved effects; see
Section 3.2.2.

’Note that Assumption A1(iii) is often strengthened to that of u; being independent over
t = 1,...,T, conditionally on X,;. However, this would rule out certain forms of conditional het-
eroskedasticity; such as ARCH or GARCH processes.



Lemma 1 Define

"Iy ® A 1 al
NZU(N® )u: Zu;AuZ-
VNT(T-1) NI - D45
and
1 N )
/{N:Uar(HN):mizlE{u;Aui} .

Then under Assumptions A1(i),(iii) and A3,
k' *Hy -5 N(0,1),
for fixed T, as N — oc.

Armed with this, the asymptotic distribution of Fj, under non-normality and
heteroskedasticity, is given by following proposition:

Proposition 1 Define 6% = = S, S B(u2).

(i) Under model (2) and Assumptions Al to A4, VN (Fx — 1) = O,(1), with

2 VN (Fy —1) =

T _ 1HN+)\N+0p(1)

where Hy is given in Lemma 1 and Ay = O(1) is defined by
Av = E[C1¢/N] = py — pvEN Py 20,
¢ = Dé- 733 py,

Sy = E[Z'Z/N], py = E[Z'D8/N], uy = E[§D'DS/N].

o

\/RN/Q’

wyVN (Fy —1) — \/X_/ziN(O,Tz—_Tl).

Given our assumptions, note that both wy and Ay are O(1) satisfying

(ii) Furthermore, if wy = where ky is defined in Lemma 1, then

1 N /
NT Zi:l wu;

N ;N =0
1

\/2NT(T—1) > o1 {uiAu;}

and ' D'MzDéS

respectively, with wy is uniformly positive by Assumption, although neither wy
or Ay need necessarily converge. The special case of no individual effects, with
0 = 01Ly, yields Ay = 0, as it should (this includes the case of § = 0).
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As exploited by Orme and Yamagata (2006), it is easy to show that if £ 5 has an F’
distribution with n; = N —1 and ny = N(T'— 1) — K degrees of freedom, then £} =

N(2TT_1) (Ey —1) ~ N(0,1), or approximately for large N, &y AN (1, %)

Therefore, by Proposition 1, we can employ the following approximation, under the
null,

Fy=an{Fy—1}+12 F(ny,n) (7)

for any choice of &y satisfying &y — wy — 0, implying that F,, can be used in an
asymptotically valid “standard” F-test procedure.

Before proceeding to derive a suitable wy, note that under pure local random
effects, with E[5;|X;] = 0 and E [0;|X;] = 72, py = %ZZJLE[&Z] = 0 with
z; =T! Zthl z; so that \y =TFE [‘%‘s] = T'72. In this case we immediately obtain

the following Corollary to Proposition 1 (the proof is omitted):

Corollary 1 Under the alternative of (pure) local random effects, and under the
assumptions of Proposition 1,

T7? 2T
NV (Fy — 1) — —— ijv(o,_)

\ /iN/Q T—1
for any choice of & satisfying &On — wn — 0.

Therefore, a robust F-test, based on F,,, will have non-trivial asymptotic local
power against pure random effects. In fact, and analogous to Orme and Yamagata
(2006), a stronger result will be established in Section 3.2.2. There it is shown
that, under (pure) local random effects, a robust F-test procedure based on F,
will thus possess the same asymptotic power as a suitably “robustified” RFE-test,
of the sort proposed by Wooldridge (2010, p.299) or Higgstrom & Laitila (2002).
However, under “correlated” local random effects a robust F-test will possess higher
asymptotic power than a robust RFE-test.

3.2.1 Asymptotically Valid F-test Statistics

As noted above, an asymptotically valid F-test can be constructed if there is a @y
available satisfying &y — wy — 0. Using restricted OLS (i.e., pooled) residuals a
natural choice for wy might be

)
by = —
KN/Q

where 6% = @'0/(NT — K — 1) and

A 1 = Al A A2 1 - Ui Ul 2
K,N:m;{uiAui} ZmZ{ZZ“t“} '

=1 t s#t

Indeed, this choice is justified in Proposition 2 below; c.f., Wooldridge (2010, p.299).



However, other choices for iy, and thus wy, emerge if we are willing, or able,
to strengthen Assumption A1(iii).® To see this, first note that >, >, 2t UitUis =

T -1 :
2> o Wi, where wy; = u; Y . U, S0 that ky can equivalently be expressed as

N

o=z 2P () | )

=1

The first potential strengthening of A1(iii) also strengthens A1(i) and simply
states that, conditional on X;, u; is orthogonal to the entire past history of the
errors but without, necessarily, imposing serial independence:

A]_(iii),: E (uit\Xi, U p—1, Ui t—2, ) = O7 for all 7 and t.

This is like a martingale difference assumption but is more direct’ and might
be regarded as a mild additional constraint since it still allows, for example, a
GARCH process for u%. Under this Assumption, E [wywi_n,| = 0, for all ¢ > 3 and
m =1,....t — 1, so that (8) becomes

4 d )
"N NT(T - 1) Zl ; E (wq)
where
T T -1 T -1 s—1
Z Wy, = Z ugug, 4 2 Z Ui Ui Ui (9)
t=2 t=2 s=1 t=3 s=2 r=3

An alternative strengthening of Assumption A1(iii

~—

might be:
A1(iii)"”: All distinct pairs (w;, u;s) and (wi, uig), (t,s) # (r,q) , are uncorrelated.

In this case, E [wywi;_m] = 0 and E (u?u;su;,) = 0 so that (8) is

Ky = m;;;E(uiui)
2 = 2,2
- NT(T—1);;§E(“”““)

This is somewhat stronger than Assumption A1(iii)’, as it rules out an asymmetric
GARCH process for u2,.3

In addition to Assumption A1(i), a further strengthening of Assumption A1(iii)’
or A1(iii)"” would be full serial independence:

A1(iii)"”: {uy},_, is an independent sequence of random variables, for all i =
1,...N.

0We shall not, here, consider alternative estimators of 5%, altough this is possible.
"See, for example, White (2001, p.54).
8See, for example, Goncalves and Killian (2004).
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In this case, a GARCH process for u2 is ruled out and

"WENT(T-1) ZZZE )

=1 t s#t

The preceding discussion suggests differing possible consistent estimators for sy,
and thus for wy, according to the strengthening of Assumption Al(iii). These are
described in the following Proposition:

Proposition 2 Define 65

=
N
AN = T Z(

. . . t—1 ~
a/(NT — K — 1), Wy =y Y, Uis and
U
s#t

o :z N T
A = NT .y ZZZ@W = TDZZ 202,

Under model (2) and Assumptions A1 to A4:

1. 6% — &% 2 0;

2. &Y —ry 0.
Under Assumptions A1-A4 with A1(iii) strengthened to A1(iii), Al(iii)" or A1(iii)"

3. /%53) — ky 5 0;
Under Assumptions A1-Aj with A1(iii) strengthened to Al1(iii)" or Al(iii)" :

3)

4. &Y —rn 20,

From this analysis it follows that asymptotically valid choices for wy include the
following;:

A2
C:Jg\lf) - 57 (]‘0)
\/NT 1 1 (Zt 2 th)
\/NT ZZ 1 Zt 2
o = % , (12)

t—1
\/NT ZZ lzt 2231 z2t 'L2$
depending on assumptions made about the u;, t = 1,...,T. Robust F-test statistics

can then be constructed as F\™ = m) {Fy —1}+1, m =1,2,3, and approximate
inferences obtained based on (7).

10



3.2.2 The Relationship between Fy and Ry
Under the null of no individual effects, it is straightforward to show that

1 ﬁ,(IN(X)A)ﬁ . 1 u’(IN®A)u
VN @/ NT [T UN &

From (6), Lemma 1 and Proposition 1, therefore, we can write

+0p (1)

Ry = —=— +0p(1)

under the null, so that

R, =d&nRy % N(0,1) (13)
for any choice of &y satisfying &y —wy — 0. This substantiates Wooldridge’s (2010,
p.299) suggestion for a heteroskedasticity-robust RE test statistic constructed as
@S\l,)RN; or, under Assumption A1(iii)” or A1(iii)"”, d)g\?;)RN as proposed by Hig-
gstrom & Laitila (2002).

The following proposition extends this result to the case of local individual effects
(fixed or random):

Proposition 3 Under model (2) and Assumptions Al to A4,

N
2(T— 1) ,//{N/2
for any choice of &y satisfying n — wy — 0, where vy = O(1) defined by
v = E(C4¢y/N) = plNzﬁliszvle > 0,
~ —1
C; = ZXy py,

Sy = E(Z'Z/N), and the limit distribution of wyv/N [Fy — 1] is gien by Proposi-
tion 1.

. (-1 . T 0l
OonBy = { 5T }wN\/N[FN — 1] — + 0, (1),

_¥'D'Z(Z'Z)” N (Z'Z)(Z'Z) 'Z'Ds P,

Again, 5 need not converge, but it is O(1) and v, ~
0. As with Proposition 1, v, = 0 obtains under Hy : § = d1¢Ly, as it should, since
(ZZ)"'Z'Dé = (61,0") and the top-left, (1,1), element of Z'Z is 0. As discussed
above, under the alternative of (pure) local random effects py = 0, and we obtain
the following Corollary, which is immediate from Corollary 1 given Proposition 3:

Corollary 2 Under the alternative of (pure) local random effects, and under the
assumptions of Proposition 1,

) T(T—-1) 72 d
(_UNRN — { 9 } KN/Q — N (0, 1)

for any choice of & satisfying &y —wy — 0.

11



Thus, since under (pure) local random effects, Wy Ry — 4/ N(;FT_ DI (Fy —1) =
0p(1), both the robust RE and robust F-test procedures, based on (13) and (7),
respectively, will have identical asymptotic power functions. However, under local
fixed effects or random effects which are correlated with X;, the robust F-test can
have greater asymptotic power. In particular, when individual effects are correlated
with the mean values of the regressors, py # 0 and is O (1) , implying 7, > 0 so that
a test based on Ry (but suitably robust to heteroskedasticity) should have lower
asymptotic local power than one based on Fy. This makes intuitive sense, since Fly
is designed to test for individual effects which are correlated with z;, whereas Ry is
constructed on the assumption that the individual effects are uncorrelated with all
regressor values. The importance of distinguishing between individual effects which
are correlated or uncorrelated with regressors, rather than simply labelling them
fixed or random, is discussed by Wooldridge (2010, Section 10.2).

3.2.3 Analysis of the Standard F-test and RE-test

Given the analysis above the following conclusions emerge concerning the asymptotic
behaviour of both the standard F-test, based on Fy, and RE-test, based on Ry, in
certain special cases and under the null hypothesis. Under Assumption A1(iii)" and

E (ui‘XZ, U p—1, Ui t—2, ) =F (u?t’Xz) y for all 7 and t, (14)

we obtain, without recourse to Assumption A1(iii)”, that

2 - 2,2
KN = m Z Z Z E(ujug,), (15)

=1 t s#t
because, from (9),

In this case, (14) rules out conditional heteroskedastcity of the ARCH/GARCH

type.
Therefore:

(i) Under A1(iii)’ and (14) but conditional cross-sectional heteroskedasticity only
such that E (u3|X;) = h; > 0, and E (h?) < 0o, we obtain 5% = + S~ | E(h;)
and iy = 23N E(h?). Thus, wy < 1, since

1SN, 1 & o, (1LY
N;E(hi)_{N;E(hi>} ZN;%—{N;%} >0

where 02 = E(h;) > 0. This implies that both the F-test based on Fy and
RE-test based on Ry, without adjustment, will be asymptotically oversized
(in that, asymptotically, both will reject a correct null of no individual effects
too often for any given nominal significance level).”

Indeed, this particular consclusion explains some of the finite sample Monte Carlo results
obtained by Haggstrom & Laitila (2002).

12



(i) Under A1(iii)’ and (14) but time varying variances such that £ (v%|X;) = hy >
0, and E (h?) < oo, we have

) (l ZtT—l 02)2

CUN_ >]"

T ) Zt Zs;ét ‘71:‘72

where, here, 02 = E (h;) > 0, because

(25:0) e T St (1 (137) ) -0

t=1

This implies that both test procedures, without adjustment, will be asymp-
totically undersized.

(iii) Of course, the conclusions in (i) and (ii) must also hold under Assumption
A1(ii)” or A1(iii)”. Moreover, if {uy,x}},_, are serially independent with
E(u3|xi) = h(xi) > 0 and E[h(xy)] = 0% < oo, so that the errors are
unconditionally homoskedastic; then, Ky = 20* and wy = 1. In particular,
this result is true if the (u;,x},) are i.i.d., but the u; are conditionally het-
eroskedastic with F(u?|x;) = h(x;) > 0. This shows that both the F-test
and RFE-test, based on F and Ry, respectively, remain asymptotically valid
without any adjustment.

In order to shed light on the relevance of the preceding asymptotic analysis, the
next section reports the results of a small Monte Carlo experiment which illustrates
the asymptotic robustness of the F-test to non-normality/heteroskedasticity and its
power properties relative to the RFE-test.

4 Monte Carlo Study

The Monte Carlo study investigates the sampling behaviour of the test statistics
considered above, (7) and (13), for differing choices of wy, including wy = 1. As
our analytical results suggest, the tests are justified when N — oo with T fixed, we

consider (N,T) = (20,5), (50,5), (100,5), (50, 10), (50, 20).

4.1 Monte Carlo Design
The model employed is

3
Yit = ; + Z Zit,jﬁj + Uty Ujt = O44€4¢ (16)
j=1

where z;;1 = 1, 25 is drawn from a uniform distribution on (1,31) independently
for ¢ and ¢, and z;; 3 is generated following Nerlove (1971), such that

Zit,3 = 0.1t + 0.521'15_173 + Vit,
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where the value z;o 3 is chosen as 5+10v;9, and v;; (and v;) is drawn from the uniform
distribution on (—0.5,0.5) independently for ¢ and ¢, in order to avoid any normality
in regressors. These regressor values are held fixed over replications. Also, observe
that the regression design is not quadratically balanced.'® Without loss of generality,
the coefficients are set as §; = 1 for j = 1,2,3. The i.i.d. standardised errors for &
are drawn from: the standard normal distribution (SN); the ¢ distribution with five
degrees of freedom (¢5); and, the chi-square distribution with six degrees of freedom

(X3)-

We consider five specifications for o :

1.

Homoskedasticity (HETO)
op=0=1

Cross-sectional one-break-in-volatility heteroskedasticity (HET1)

o4 = 01, izl,...,Nl, t:]_,,T
= 02, i:N1+1,...,N,t:17...,T

with Ny = [N/2], where [A] is the largest integer not less than A, oy = 0.5
and oy = 1.5.

. Time series one-break-in-volatility heteroskedasticity (HET?2)

O = 01, izl,...,N, tzl,...,Tl
= oy, i=1,.,N, t=T,+1,..,T

with 77 = [T/2], 01 = 0.5 and 09 = 1.5.
Conditional heteroskedasticity depending on a regressor (HET3)
ot =N [(zie2 —1)/30)/c, i=1,.,N, t=1,..,T

n.[-] is the inverse of the cumulative distribution function of chi-squared dis-
tribution with degrees of freedom c. Since z;; 5 is drawn from a uniform distri-
bution on (1,31), o has mean 1 and variance 2/c, so it is easy to control the
degree of heteroskedasticity through the choice of c. We employ ¢ = 1.

. Conditional heteroskedasticity, GARCH(1,1) (HET4)

Uit = Oty t= —49, ...,T,i = 1, ceny N

where
U?t = ¢g + ¢1U?,t71 + ¢2012,t71'
The value of parameters are chosen to be ¢, = 0.5, ¢; = 0.25 and ¢, = 0.25,

and u; _50 = 0 with the first 50 observations being discarded, so that the
unconditional variance is E (u%) = ¢/ (1 — ¢; — &) -

10See the discussion in Orme and Yamagata (2006).
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6. Conditional heteroskedasticity, ARCH(1) (HET5)
Uit = Oty t= —49, ...,T,i = 1, ceny N

where
Uzzt = ¢g + ¢1U?,t71>
with ¢y > 0 and 0 < ¢; < 1. In particular, ¢, = 0.5, ¢; = 0.5 and u; 50 =

0, with the first 50 observations being discarded, so that the unconditional
variance is E(u%) = ¢y/ (1 — ¢1).

For power comparisons, the individual effects are generated according to
o =T [v R%g;(z;) + V1 — R?gp, (17)

where the ¢, are i.i.d. N(0,1), g:(z;) = ¢5(Z; — z)/s with ¢35 = (1,1,1)’, Z being
overall average of z;, s being the standard deviation of ¢4Z;, and the R? is from the
regression of (17). With this set up, the variance of inside of the square brackets is
always unity across designs. We consider two combinations of (7;, R?): (i) (74, R?) =
(0,0), which is a simple null model specification, with o; = 0, and; (ii) (7;, R?) =
(Va, 1), which is simple fixed effects specification (given that the z; are fixed over
replications).!! To control the power, we consider v = 0.1.

4.2 Asymptotic Tests

FOUR versions of the FE and RE test statistics are considered, constructed using
djgg) = 1 and wgg”), m = 1,2,3, as defined at (10)-(12), and all are based on the
restricted estimator, (3.2 Specifically:

1. F-test statistics (denoted F, in the Tables)
F = o\ (Fy —1) +1, m=0,1,2,3, (18)

where
Py — (RSSgp — RSSy)/(N —1) _ £,
RSSy/(N(T —1) — K) @

is the standard F-test statistic. The corresponding test procedure, for each
separate statistic (18), employs critical vales from an F' distribution with n4
and ns degrees of freedom, respectively, where ny = N — 1 and ny = N(T —
1) — K. That is, for each m = 0,1,2,3, reject Hy if F” > cy.a, where
Pr (¢ > ¢n) = a, for chosen o, and § ~ F' (ny,ng)

1'We also considered a pure random effects specification, 7; = v, R? = 0, and the results show
that the power properties of the modified fixed effects test and the modified random effects test
are very similar.

2The estimator @y, based on the unrestricted estimator (i.e., fixed effects estimator), is also
considered, but the finite sample performance of the tests considered is monotonically inferior to
that based on the estimator of Wy.

15



2. One sided (positive) RE-test statistics (denoted R, in the Tables)
R =Ry, m=0,1,2,3 (19)

where

NT [ﬁ' (Iy ® A) ﬁ}
Ry =

2(T — 1) @'
is the one sided (positive) standard RE-test Statistic. The corresponding
test procedure, for each separate statistic (19), employs critical values from
a N (0,1) distribution. That is, for each m = 0, 1,2, 3, reject Hy if R > Zas
where Pr (Z > z,) = «, for chosen «, and Z ~ N (0, 1).

4.3 Bootstrap Tests

As is well known, asymptotic theory can provide a poor approximation to actual
finite sample behaviour and that bootstrap procedures often lead to more reliable
inferences.'® Therefore, we also consider a simple wild bootstrap procedure scheme,
based on Mammen (1993) and Davidson and Flachaire (2008), which might be
employed in order to provide closer agreement between the desired nominal and the
empirical significance level of the proposed test procedures and which has proved
effective in previous studies; see, for example, Godfrey and Orme (2004). The wild
bootstrap is implemented using the following steps:

1. Estimate the models (2) and (4) to get 4 , i = 1,..., N, and construct test
statistics F5™ and RU™, m =0, 1,2, 3.

2. Repeat the following B times:

(a) Generate uf, = e;U;, where the € are ii.d., over ¢ and ¢, taking the
discrete values +0.5 with an equal probability of 0.5.
(b) Construct A A
Y = 2B + ity = 23,3 + ujy. (20)
and obtain restricted OLS residuals @}, = v}, — z;tB*, i = y* — Z3 and
restricted and unrestricted residual sums of squares (RSS}, and RSS},
respectively).

(c) Construct the bootstrap test statistics

(RSSi— RSS3)/(N = 1) _ o
RSSH/(N(T—1)—K) ~ ¢

3 = o™ (Fy - 1)+ 1, Fy =

and
NT [o”(Iy® A) &
R _ o m e g _ RO
v TEN T TN AT ) aar v
where cD*N(m), m = 1,2,3 is constructed as in (10)-(12) but using 4}, and
~x(0) __

13See Godffrey (2009) for an excellent guide to bootstrap test procedures for regression models.
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3. Calculate the proportion of bootstrap test statistics, Fri™ (respectively, Rf,(m)),
from the B repetitions of Step 2c that are at least as large as the actual value
of FOS’””) (respectively, R&m)). Let this proportion be denoted by p(™ and the
desired significance level be denoted by a. The asymptotically valid rejection
rule, for each m, is that Hy is rejected if pi™ < a.

The sampling behaviour of all the above the tests are investigated using 5000
replications of sample data and B = 200 bootstrap samples, employing a nominal
5% significance level.

4.4 Results

Before looking at the results from the Monte Carlo study, and drawing on the discus-
sion in Godfrey, Orme and Santos-Silva (2006), it is important to define criteria to
evaluate the performance of the different tests considered. Given the large number
of replications performed, the standard asymptotic test for proportions can be used
to test the null hypotheses that the true significance level is equal to its nominal
value. In these experiments, this null hypothesis is accepted (at the 5% level) for
estimated rejection frequencies in the range 4% to 6%. In practice, however, what is
important is not that the significance level of the test is identical to the chosen nom-
inal level, but rather that the true and nominal rejection frequencies stay reasonably
close, even when the test is only approximately valid. Following Cochran’s (1952)
suggestion, we shall regard a test as being robust, relative to a nominal value of 5%,
if its actual significance level is between 4.5% and 5.5%. Considering the number
of replications used in these experiments, estimated rejection frequencies within the
range 3.9% to 6.1% are viewed as providing evidence consistent with the robustness
of the test, according to this definition.

Under the null, with homoskedastic standard normal errors (reported in Table
1, Hy : a; = 0), the rejection frequencies of both the asymptotic Y = Fy and
) tests are close to the nominal significance level of 5%. The asymptotic F-test
based on FP, however, tends to under reject the null when T is relatively large,
whilst £ suffers from large size distortion with empirical significance levels being
considerably smaller than the nominal 5%. The size properties of the R,, tests, for
different @y, are qualitatively similar to those of the F, tests, but tend to have
empirical significance levels that are smaller than those of the corresponding F,
tests. Turning our attention to the bootstrap tests, all the modified fixed and
random effects tests control the empirical significance levels very well. The results
are qualitatively similar for t5 and x2 errors and, confirming the analysis of Orme and
Yamagata (2006), iV =r N appears quite robust to non-normality, whilst in these
cases as well the bootstrap tests provide very close agreement between nominal and
empirical significance levels. Given these results, we now just compare the power
of the bootstrap tests. All bootstrap F,, tests have very similar power, as do the
bootstrap R, tests. However, the power of the bootstrap F,, tests are uniformly
higher than power of the corresponding bootstrap R, tests which is as expected
given the analysis in Section 3.2.2 because of the correlation between regressors and
individual effects.
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The above results indicate that, even when the errors are homoskedastic, a wild
bootstrap procedure still offers reliable finite sample inference for all variants of
the FE and RE tests considered. Now let us look at the results under various
heteroskedastic schemes. Table 2 reports the results under cross-sectional one-break-
in-volatility scheme (HET1). First, and as predicted by the analysis in Section 3.2.3,
both the Fu(,o) = Fy and RL(UO) = Ry tests reject the correct null too often. On the
other hand, the empirical significance levels of the other F, and R, tests are very
similar to those presented in homoskedastic case. As before, however, the bootstrap
F* and R tests provide close agreement between nominal and empirical significance
levels, across all error distributions, so again it is sensible to focus only on the power
properties of these tests. In contrast to the power properties under homoskedastic
errors, under the HET1 scheme the power of bootstrap [}’ tests appear different

O =F . and F2® have similar powers

across different variants. For example, F,
but are slightly lower than that of Fs(z), which is again slightly exceeded by that
of Fj(l). This feature is qualitatively similar for the R tests, but is less striking.
Finally, the results confirm again that F}% has higher power than that of R} .

Table 3 reports the test results under time-series one-break-in-volatility scheme
(HET?2). In contrast to the results with HET1 scheme, but still consistent with
prediction of Section 3.2.3, both the Y= Fy and RY = Ry tests reject the null
too infrequently, especially for N = 20, 50,100 and 7' = 5. As before the bootstrap
versions control the size very well, and, interestingly, the power rankin% of the
bootstrap tests is different than that obtained under HET1. In fact, the F;") = F N
and @ tests (respectively RO = Ry and R:® tests) still have similar powers
but they are now slightly higher than those of the 2@ and F2O tests (respectively,
Ry? and R}V tests), which are in this case comparable.

Based on the analysis in Section 3.2.3 it is possible to derive approximate null
rejection frequencies of the Y = Fy test analytically, under the heteroskedastic
schemes of HET1 and HET2. Given the “population” value of wy, and a nominal
significance level of ax100%, the rejection frequency of the Fly test is, approximately,
Pr[Fn > Caning), where Pr[F,1 0 > canin2] = o and Fuy 0 ~ F (n1,n2) . But this
is identical to Pr [Fj,1 2 > ¢, where ¢ = wn(Can1n2—1)+1. More precisely, consider
first the case of HET1 where a little calculation shows that, since N is always even
in our experiments, wy = 0.781. Using a = 0.05, it is then straightforward to obtain
q and Pr [F},; .2 > ¢] . Similar calculations can be undertaken for the case HET2 but,
here, wy varies according to whether 7" is even (wy = 1.02) or odd (wy = 1.13).
From these calculations we obtain the following (approximate) significance levels for
our choices of (N, T) :

Approximate Significance Levels of Fly
T=5 N =50
N=20| N=50| N=100 | T=10 | T =20
HET1: | 8.8% 9.2% 9.4% 9.2% 9.2%
HET2: | 3.5% 3.4% 3.3% 4.8% 4.8%

As can be seen, the obtained empirical significance levels, for Fyy, are qualitatively
very similar to these predicted values.
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Table 4 summarises the results under conditional heteroskedasticity depending
on a regressor z;;o (HET3), where 0y = n;[(2ie2 —1)/30], ¢ =1,.,N, t=1,..,T,
and 7, [-] is the inverse of the cumulative distribution function of the x? distribution.
Since the z; o are initially i.i.d. draws from a uniform distribution on (1,31), the
values of 0;(%;2) are realisations from a X3 distribution. This means that even
though for a given N (and T') o;; will be held fixed for each replication of data,
possibly yielding a realisation of wy # 1, as N increases a Law of Large Numbers
implies that the given realisation of wy will converge to unity. For example, when
N =20and T =5, wy = 1.36, yielding a predicted (approximate) significance level
for Fy of 1.9%, which explains the under-rejection of this test in our experiments.
For larger sample sizes, the value of wy does, indeed, tend to unity, and the empirical
significance level of Fjy converges to the nominal level, as expected. Due to the
larger average error variance encountered here, than that under other heteroskedastic
schemes, the power of the tests are lower although, qualitatively, the results are very
similar to those under HETO but with Fi;© = F ' and @ (respectively, RO = Ry
and RZ(?’)) enjoying a slight power advantage and the F}} tests being more powerful
than their R counterparts.

Finally, the results under conditional heteroskedasticity, GARCH(1,1) (HET4)
and ARCH(1) (HET5) are reported in Tables 5 and 6, respectively. Similar to the
results obtained under HET1, the O =F v test rejects a correct null too often but
the empirical significance levels of other variants of the F, tests are very similar to
those presented in homoskedastic case. Again, all the bootstrap £ tests control the
em(pirical significance levels very well, and the power rankings are, from the lowest,
o= F}% and 29 followed by Fi?, then FY). The same comments apply to
the bootstrap R}, tests, which again exhibit lower power than their F* counterparts.
The results under ARCH(1) (HET5) are are qualitatively similar to those under
GARCH(1,1).
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5 Conclusions

This paper has provided an asymptotic analysis of the sampling behaviour of the
standard F-test statistic for fixed effects, in a static linear panel data model, under
both non-normality and heteroskedasticity of the error terms, when the number of
cross-sections, IV, is large and 7', the number of time periods, is fixed. First, it has
been shown that a linear transformation of the commonly cited F' and RE tests
(using a simple function of restricted residuals) provides asymptotically valid test
procedures, when employed in conjunction with the usual F' and standard normal
critical values (respectively). Although asymptotic theory does not always provide
a good approximation to finite sample behaviour, our experiments show that wild
bootstrap versions of these tests, employing the resampling scheme advocated by
Davidson and Flachaire (2008), yield reliable inferences in the sense of close agree-
ment between nominal and actual significance levels.

Furthermore, it has been established that the asymptotic relationship between
the heteroskedastic robust F-test and the RE-test statistics, carries over from the
homoskedastic case. That is, under (pure) local random effects, they share the same
asymptotic power, whilst under local fixed (or correlated) individual effects the
heteroskedastic robust F-test enjoys higher asymptotic power. A final contribution
has been to provide qualitative predictions about the approximate true significance
levels of the standard F' and RE Tests in certain special cases. These theoretical
findings are supported by Monte Carlo evidence.
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Appendix
In what follows [|C|| = \/tr (C'C)=,/>_,>", ci; denotes the Euclidean norm of a

matrix C = {¢;;}.

Proof of Lemma 1.
u,Au;
T(T-1)

E[W;] =0, by Assumption Al(iii). Since ||A| = /T(T — 1), |W;| =

Write W; = which are independent, so that Hy = W; and

1
Wi 2im1

[u; Ay

VIT-T

2
AP 1IA
% — |lu,]|*. Thus, by Minkowski’s inequality and Assumption A3(i), for
some 7 > 0,
EWw<B|Y Wi <Y {E 2 2*’7}“" —0(1),
t=1 t=1

so that ky = 55 SV E(W2) = O(1). With Assumption A3(ii), a standard (Lia-
pounov) Central Limit Theorem yields /@&1/ Hy % N (0,1). ®

Proof of Proposition 1.

The method of proof is nearly identical to that of Orme and Yamagata (2006, Propo-
sition 1) but where, now, our assumptions allow for heteroskedasticity. Briefly:

(i) Let Sy = (RSSg — RSSy)/(N — 1) and 6* = RSSy/ (N (T —1) - K), so
that

72V N(Fy —1) = ‘;—?gm (Sx — %) (21)

We first show that 6% — 53, = o, (1), so that (since 5% is uniformly positive by

Assumption A2(v)) 62/% 2 1. Following Orme and Yamagata (2006, Proof
of Proposition 1), we can write

52 _ N u' (Mg —Pp)u
N(T-1)-K N
B N u'u B u'Pgu B u'Ppu
- N(T-1)-K | N N N
u'Mpu .
= — N

b u'u u'Ppu
ecause —
N’ N

and uw'Pgu are all O,(1) and N(T*—NI)*K == +O(N ).
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Therefore,

— — N1
OO0 = N7-1 T-1 117"
1 1 1 r ’
_ 2 —2 2
= 71 T(WZZ“ “N) “\ar 2 (Z“) %
+0,(N71)
= Op<1)>

because, by Assumption A2(i) and A1(iii), both terms in side the {.} above
are 0,(1). Thus, provided v N (Sy —3%) = 0,(1), (21) yields

5'?\7\/N(FN — 1) = \/N(SN —6’2) + 0p (1)

But from exactly the same argument employed by Orme and Yamagata (2006,
pp.418-419) VN (Sy — 62) = O,(1) with

-9 1 1
VN (v =) = R

Thus, (21) can be expressed as

W' (In @ A)u] + Ay + 0,(1).

3V N(Fy —1) = + Ay + 0,(1),

By Lemma 1,

2T
wyVN(Fy — 1) — AV 4y (0, —) ,
/@N/2 T—-1

and the result follows. This completes the proof. B

Proof of Proposition 2.

1.

2.

/
By the Triangle Inequality, !&2 — 5fv| < |6% — % ]U\l[; — %] = o0,(1),
! 5, uu
since, as previously noted, = 0% + 0p(1) and 6° — NT = 0p(1) by the

arguments of Orme and Yamagata (2006, p.422).

From the proof of Lemma 1, we have that
1 & 1
Z uAu;)’ — N ZE (W Aw,)> 5 0.
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Therefore, by the Triangle Inequality, it remains to show that ZZ , (@ AW,) -
% SV (W Aw)* 2 0. Since, @; = u; +¥;, where ¥; = LT6,~/N1/‘1 Z:(3 - B),
we can write

= u,Au; + S;, say,

so that

N N
%Z(ﬁ;A .2:%2 uAuZ NZS2 NZuAuZZ
i=1 i=1

Now, + SV, (W}Aw;)? = 0,(1) and we shall show that % SV 82 =0,(1) so
that, by Cauchy-Schwartz, SV W Aw;S; = 0,(1); then we are done.

Again by Cauchy-Schwartz, %ZZ]\; S? = 0,(1) if it can be shown that (i)
* SV (WAY;)? = 0,(1); and (i) & 2N, (¥1A%,)* = 0,(1) and we take each

N
of these in turn:

(i) First, by repeated application of Cauchy-Schwartz, noting that ||A|]* =
T(T-1),

1 N
= [wAv)?
N =1

IN

T(T 1) = 12 o2
T;Huzﬂ INal
N

N
1 1 -
< T@=1)| 5 D Il 5 Yl
=1 =1

Now, F ||Juy||* is uniformly bounded, by Assumption A3(i), so by Markov’s
Inequality, + SV lwl|* = 0,(1) and it suffices to show that - Zl el

op(1).

Now,
s T5z2 0; Ve Iyl e
I90° = =~ 25atrZdB = B) + (B~ B)ZiZ(B ~ )

= Sii+ Sie + Sis, say,

so that, by Cauchy-Schwartz, + val 1¥:)* = op( ) if LSV 82, =
0,(1), for m = 1,2,3. Clearly, sz SE = 1> 15? = 0,(1 ), by
Assumptlon A4(11) and, by repeated use of Cauchy-Schwartz,

Ly s <+l p-pf LS s
Ni:l " \/N Ni:l o
= 0y(1)

because |8 = 8| = op(1), & TN, 6.2/ = & S, 0 5, 10071 =
O,(1), by an application of Markov’s Inequality, Cauchy-Schwartz and
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Assumptions A2(ii) and A4(ii). Finally,

1 — 1] &
2 2
> si<|p-a| D1z

=1 =1

where || Z/Z;|* = 32 DRI zitjZux ) and an application of Markov’s In-
equality, Minkowski’s Inequality, Cauchy-Schwartz and Assumption A2(ii)
yields + 3N 1Z1Z;|)* = Op(1) and £ S°N | S% = 0,(1).
Thus, 3 320 [9ill" = 0,(1).

(i) It immediately follows that = S~ (V/A¥,)* < T(T— 1)+ SN %] =
0p(1), and we are done.

147
. By Assumption A3(i), and Minkowski’s Inequality £ ‘Zthz w? is uniformly

bounded so that + >N S™T w2 — LSV S™ E(w?) 2 0. Thus, by the
Triangle Inequality, it remains to show that + PR D W —+ SV ST wk
0. Since iy = gy + Oy, Oy = 0;/NY4 — 2,(3 — B), we can write

t—1 t—1 i—1
Wiy = Wi + Uy E Uss + Vgt g Vs + Uit g Vs
s=1 s=1 s=1

= Wi + Git, say.

Thus, by Cauchy-Schwartz, it suffices to show that SN ST 82 = 0,(1).
It will be useful to note that

T T T T T 2
NI (m S ]+ 6 3 5l + ] 3 wz-t!)
=2 =1 =1 =1 =1
T
= Z(Sit1+5it2+5it3)2a say,
=1

so that, now, it is sufficient to demonstrate that , + SN ST 82 =0,(1),
m=1,2,3.
By Cauchy-Schwartz, we have

LN | T 2
WL W09t
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and

1 2 1 al d 9 ’ 1 N T . 4
WZZSMS NZ Zuit NZ Z‘Uit’ .
' j = i=1 \t=1

2

Both + ZZ 1 <Zt ) \ult|> and + ZZ ) (Zt 1 Zt) are O,(1), by Markov’s

Inequality, Minkowski’s Inequality and Assumption A3(i). Thus, it suffices to
2 4

show that + ZZ ) (Et 1 Zt) and + SV <ZtT:1 \ﬁﬂ) are both o0,(1). The

former is identical to SN IRl = 0,(1), by the proof of 2(i), above, and

the latter is 0,(1) by Assumption A2(ii), A4(ii) and the consistency of 3. This
completes the proof of part 3.

. As in previous proofs, by Assumption A3(i) and the Triangle Inequality it
suffices to show that

N
1
22 42 2 2
—ZZZ Uil — < > >, D i
i=1 t s#t i=1 t s#t
Again, since 1 = uy + 0y, 0y = 0;/NY* — 2z, (B — B), we can write

N N
53 B BTIES 35 3) DUTISPLS 3 35 911
i=1

t s#L i=1 t s#t i=1 t s#t

N
PR A

i=1 t  s#t
= Sn1+ Sna2, say,

where Vi; = 2u; 0 + 0%, and it suffices to show that Sy, = 0,(1), m =1,2.
Now,

L T
[Snil < QNZZU?tZ|‘/zt‘

=1 t=1 t=1
T T 2 XN T 2
SEES IR ol boll)
=1 t=1 =1 t=1

Thus, since + 3| (Zt u2)? = 0,(1), it suffices to show that & SN (32, [Vi|)* =

0p(1), or that + 3 S™ V2 = 0,(1) since (3, [Vie|)® < th V2. But this is
true because

| NT | NI | NI
NZZVESNZZ ‘t+4ﬁzzuztvzt+4_zzuztvzt
i=1 t=1 i=1 t=1 i=1 t=1 i=1 t=1

The first term on the right hand side is 0,(1) as are the latter two terms by
an application of Cauchy-Schwartz.
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Second,

| Sl <—Z<ZM) = 0,(1)

by the preceding result, and this completes the proof. B

Proof of Proposition 3.

1 Hy
We can write RN_T -, where 6° = @'i/NT and
o)
Ay — L Iy A
Yo NI Y
1 /
= ————= [y Mz (Iy ® A) Mzy].
NT(T—l)[y z (Iy ) Mzy]

By Proposition 1, it is sufficient to show that

. T-1 T
Hy = Hy +\| —=Av =\ 77— T 0p (1)

and

and the result follows.

Establishing the former follows exactly the argument as in Orme and Yamagata
(2006, Proof of Proposition 2), and 6° — 5%, = 0, (1), was established above. This
completes the proof. B
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Table 1: Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests
and modified random effects tests under homoskedastic errors (HETO).

H()ZO[Z':O

H;y :var (a;) = 0.1, ; correlated with regressors

Asymptotic Tests

Bootstrap Tests

Asymptotic Tests

Bootstrap Tests

w 1 o o o 1 o @ P 1 P P of 1 oY o o®
SN SN
N, T E, F E, F
20,5 58 2.8 47 59 62 59 59 6.1 200 18.0 254 294 304 299 298 30.4
50,5 5.2 2.8 45 52 57 58 58 57 | 46.8 38.6 444 471 479 488 483 47.8
100,5 4.7 3.1 41 48 53 52 53 53 | 721 666 708 723 73.0 743 736 73.0
50,10 4.3 1.9 3.1 43 45 47 44 45 | 942 87.9 92.6 942 944 040 944 944
50,20 4.7 1.6 34 48 51 52 50 51 | 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
R, R R, R
20,5 51 1.5 37 52 6.1 59 6.1 6.1 23.9 10.8 188 244 270 254 261 26.9
50,5 4.6 2.3 39 45 56 56 56 55 | 325 204 293 327 359 351 353 358
100,5 4.4 2.8 3.8 46 53 52 51 53 | 558 447 526 559 57.6 57.1 575 57.7
50,10 4.1 1.7 2.9 40 45 48 45 45 | 897 777 87.2 898  90.5 89.6 90.3 90.5
50,20 4.6 1.6 34 46 52 53 50 52 | 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
t5 t5
N, T E, F E, F
20,5 4.8 24 39 53 55 54 55 54 | 301 207 276 315 319 317 314 317
50,5 4.6 2.7 40 49 53 50 53 52 | 479 40.3 464 49.0 492 50.5 50.0 49.1
100,5 53 35 45 53 59 59 59 58 | 726 682 714 727 733 747 740 73.3
50,10 52 2.1 4.0 53 57 54 56 57 | 936 87.1 92.0 93.6 940 93.3 935 93.9
50,20 48 1.5 34 48 51 52 51 51 | 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
R, R}, R, R},
20,5 44 15 32 46 57 56 54 54 | 242 127 21.2 258 286 26.7 27.7 28.6
50,5 4.1 23 36 45 55 51 53 54 | 329 218 302 339 364 351 361 365
100,5 50 33 43 50 58 6.1 58 59 | 566 47.1 551 57.7 588 587 59.2 58.8
50,10 5.0 2.0 3.8 50 59 54 56 58 | 893 776 87.1 89.7 90.1 883 89.9 90.1
50,20 4.6 1.5 3.4 45 52 52 51 52 | 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0
Xé X3
N, T E, F E, F
20,5 4.5 2.3 3.6 44 47 51 47 45 | 301 197 274 31.0 315 31.6 322 314
50,5 5.1 2.3 3.6 48 49 50 50 4.9 | 46.3 384 442 46.6 472 49.1 47.6 47.3
100,5 4.9 3.0 40 48 50 53 52 50 | 728 678 723 73.6 744 755 749 743
50,10 4.5 19 33 44 51 54 50 5.1 93.0 86.9 91.5 93.3 933 92.7 934 934
50,20 5.2 1.8 3.6 49 51 55 54 51 | 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
R, R}, R, R},
20,5 43 1.4 29 3.9 47 54 46 44 | 243 114 203 252 278 268 27.5 27.6
50,5 4.6 1.8 3.1 41 49 49 49 48 | 315 205 27.8 31.6 342 333 341 34.2
100,5 4.8 2.8 39 46 51 54 54 49 | 57.0 459 539 575 592 582 58.6 59.3
50,10 4.4 1.7 32 43 51 53 50 5.1 89.1 765 86.7 89.3 89.8 88.1 89.5 89.9
50,20 5.1 1.7 3.6 48 52 55 54 52 | 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

Notes: The model employed is y;+ = a; + Z?zl zit,]ﬂj + uit, uip = 044€4¢, where 231 = 1, 25,2 is drawn from a
uniform distribution on (1,31) independently for ¢ and ¢, and z;; 3 is generated following Nerlove (1971), such that
zit,3 = 0.1t+0.52;4—1,3 +vit,where the value z0,3 is chosen as 54 10v;0, and v;; (and vjp) is drawn from the uniform
distribution on (—0.5,0.5) independently for ¢ and ¢, in order to avoid any normality in regressors. These regressor
values are held fixed over replications. 8; =1 for j = 1,2,3. The i.i.d. standardised errors for €;; are drawn from:
the standard normal distribution (SN); the ¢ distribution with five degrees of freedom (t5); and, the chi-square
distribution with six degrees of freedom (x%). For estimating size of the tests, a; = 0 and power is investigated

using a; = v0.1g(z;) where g;(z;) is the standardised value of Z;’:I Zzﬂ:l Zit,j, so that the regressors and oy are
correlated. F,, is the modified F-test and R, is the modified random effects test, and F} and R}, are their wild
bootstrap tests, with different choice of of;%n), m = 0,1,2,3 with oﬁzg\?) = 1, see section 4.2 and 4.3 Here o;+ = 1. The
sampling behaviour of the tests are investigated using 5000 replications of sample data and 200 bootstrap samples,
employing a nominal 5% significance level.
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Table 2: Rejection frequencies of the asymptotic and wild-bootstrap modified F-
tests and modified random effects tests under cross-sectional one-break-in-volatility
heteroskedastic scheme (HET1).

Hy:a;, =0 H; :var (a;) = 0.1, ; correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests
w 1 o P o 1 oV o o | 1 o o 0P 1 oY P o
SN SN
N, T F, E? F, E?

20,5 94 27 49 6.6 6.1 58 59 59 26.9 14.2 184 21.0 20.5 22.8 20.5 20.0

50,5 9.2 2.8 4.7 56 58 5.5 5.8 5.7 37.6 21.2 26.3 28.8 28.0 31.6 29.1 27.6

100,5 9.1 3.2 47 54 55 54 55 5.5 55.2 40.4 43.3 44.7 44.2 49.5 46.2 44.1

50,10 9.1 1.8 38 52 52 49 51 5.2 82.7 68.1 73.3 74.5 74.1 81.5 78.0 74.1

50,20 87 1.2 29 45 48 48 49 48 99.8 98.5 99.5 99.4 99.5 99.7 99.7  99.5
R, R, R., R

20,5 86 1.6 3.7 56 6.1 56 58 59 225 83 13.8 16.6 18.0 19.8 18.2 17.7
50,5 88 2.0 4.1 52 58 56 57 57 279 10.3 16.3 19.0 209 21.4 21.0 20.7
100,5 87 28 43 51 55 53 54 54 42.7 24.9 29.7 31.9 329 36.3 34.0 32.6
50,10 87 1.6 3.5 50 52 49 52 5.2 75.5 53.9 63.3 65.7 66.1 73.4 69.3 66.0
50,20 86 1.2 3.0 46 48 4.7 49 48 99.7 97.6 99.0 99.1 99.0 99.5 99.5 99.0
t5 t5
N,T F, F E, F:
20,5 85 2.7 46 6.0 58 56 54 56 26.6 16.0 20.0 21.9 21.7 23.5 224 21.1
50,5 86 29 43 55 52 53 54 5.1 39.3 24.4 28.6 30.9 30.7 33.1 31.5 30.3
100,5 104 3.3 4.8 6.2 5.8 6.0 6.1 538 56.9 43.2 46.4 47.4 47.3 52.3 49.5 47.1
50,10 9.2 1.8 39 52 56 52 55 5.5 82.1 68.0 73.7 74.6 73.6 80.4 77.1 73.5
50,20 88 1.2 3.0 47 51 53 47 5.1 99.7 98.2 99.0 99.3 99.2 99.4 99.4  99.2
R, R, R., R,
20,5 76 18 36 51 b59 55 56 56 224 93 146 176 19.2 21.0 194 18.4
50,5 81 2.1 3.8 49 53 52 52 52 28.6 11.7 17.3 20.5 219 22.7 22.0 21.6
100,5 9.9 28 44 57 6.0 6.0 6.0 59 44.5 27.2 324 35.1 35.6 38.8 37.1 35.5
50,10 88 1.7 3.7 51 55 51 56 5.6 75.3 56.3 64.6 66.5 67.1 72.7 70.2 67.0
50,20 87 1.3 3.0 47 51 53 48 5.0 99.5 96.9 98.5 99.0 98.9 99.0 99.1  98.9
Xé X3
N, T F, F} F, E}
20,5 84 2.6 45 55 51 54 50 4.9 26.4 15.1 18.8 20.8 19.9 23.0 21.1 19.3
50,5 84 2.2 3.7 4.5 45 49 4.7 44 36.6 21.2 25.7 27.6 275 30.2 284 27.1
100,5 9.5 3.0 44 52 55 55 53 54 57.3 41.0 44.5 45.9 45.7 50.6 47.6 45.6
50,10 9.1 1.7 34 47 48 51 50 4.8 81.4 67.6 72.7 74.0 73.9 80.0 76.7 73.9
50,20 &85 1.6 34 5.1 4.7 51 4.7 4.7 99.7 98.4 99.4 99.5 99.4 99.5 99.6 99.4

R., R}, R, R,
20,5 7.6 14 32 47 53 52 52 50 | 222 85 141 162 17.8 19.7 185 17.3
50,5 7.9 1.7 3.1 4.0 45 49 47 44 | 267 106 155 183 19.8 202 20.1 19.5
100,5 91 25 41 49 54 54 54 54 | 439 259 30.2 32.9 33.2 37.1 348 33.0
50,10 89 1.6 3.1 44 49 50 50 48 | 746 53.7 63.2 65.7 66.1 715 69.5 66.0
50,20 84 1.6 34 51 48 52 47 48 | 99.6 97.3 99.0 99.1 99.1 99.3 99.4  99.0

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except o4t =01, ¢ =1,....,N1, t =1,....,T
and ot =02, i=N1+1,..,N, t =1,...,T with N1 = [N/2], where [A] is the largest integer not less than A,
o1 =0.5 and o9 = 1.5.
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Table 3: Rejection frequencies of the asymptotic and wild-bootstrap modified F-
tests and modified random effects tests under time-series one-break-in-volatility het-
eroskedastic scheme (HET2).

Hy:a; =0 Hy :wvar (a;) = 0.1, ; correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests
w 1 o o o 1 oY o® P 1 P P 2P 1 o o® @
SN SN
N,T F F* F, F}

20,5 3.1 31 43 52 55 56 57 56 | 27.2 204 25.8 32.7 333 295 29.7 335

50,5 3.2 36 45 51 55 59 56 55 | 449 415 46.0 51.5 52.2 49.8 492  52.2

100,5 2.9 3.7 45 48 55 55 55 55 | 70.7 68.6 71.0 75.7 762 743 73.2  76.3

50,10 3.8 1.8 3.1 45 47 47 48 47 | 858 752 80.5 87.0 86.8 85.7 839 86.9

50,20 4.2 1.6 33 45 51 52 54 51 | 99.9 995 99.7 99.9 99.9 99.8 99.9 99.9
R, R, R, R,

20,5 26 2.0 3.6 45 57 54 57 5.7 21.3 12.1 19.1 26.5 30.5 25.2 26.1 30.6
50,5 2.7 2.7 3.8 45 56 5.7 57 5.7 29.8 23.3 29.7 36.0 39.6 35.2 35.6 39.5
100,5 2.7 3.3 41 44 56 55 54 56 53.3 48.6 53.4 59.8 62.3 57.5 57.7 62.3
50,10 3.5 1.6 3.0 4.1 47 4.7 4.8 4.7 78.9 62.1 71.7 80.2 &81.5 78.0 76.9 &81.5
50,20 4.1 1.6 3.2 44 51 52 53 5.1 99.8 99.0 99.5 99.8 999 99.7 99.7 999
t5 t5
N, T F, Fr F, F!
20,5 3.0 34 40 49 54 54 54 5.5 29.1 23.3 29.6 35.8 36.2 32.2 33.2 36.3
50,5 2.9 34 40 46 52 52 53 5.1 46.5 44.4 484 53.8 54.6 51.5 51.1 54.5
100,5 3.3 44 50 55 6.0 6.0 6.1 6.0 71.9 70.7 729 76.9 77.7 75.1 75.0 77.6
50,10 4.4 2.2 42 50 5.7 53 57 5.7 85.3 75.9 80.7 86.8 86.9 84.8 83.9 86.9
50,20 4.0 1.7 3.2 45 51 52 49 51 99.9 99.1 99.5 99.9 999 99.7 99.6 99.9
R, R R, R
20,5 23 19 28 39 54 54 53 53 22.9 13.9 21.8 29.3 329 27.8 294 33.1
50,5 2.3 2.7 34 40 53 53 54 5.3 31.0 25.7 32.4 38.4 41.8 37.1 38.2 41.7
100,5 3.0 3.9 45 50 58 6.1 6.1 5.8 55.5 52.6 56.7 63.2 64.8 60.5 61.0 64.9
50,10 4.1 2.0 3.9 4.7 57 54 58 58 79.2 63.6 72.9 80.7 &81.9 78.0 77.5 &81.8
50,20 39 16 32 43 50 52 50 5.0 99.9 98.7 99.3 99.9 99.9 99.5 99.5 99.8
X3 X3
N, T F, E; F, F}
20,5 3.2 28 3.8 43 4.6 52 47 4.6 28.8 22.7 279 35.1 359 31.1 32.0 35.9
50,5 3.4 3.0 3.8 42 4.8 4.6 4.7 4.7 44.2 41.4 45.2 51.0 52.2 49.4 49.0 52.1
100,5 3.3 3.7 45 46 51 50 52 5.0 71.8 70.7 729 774 776 75.6 746 T77.6
50,10 44 23 3.7 49 53 55 54 53 84.1 74.7 79.8 85.5 85.8 83.8 82.8 85.8
50,20 4.8 2.0 3.5 4.8 4.8 52 48 4.8 99.9 99.2 99.7 99.9 999 99.9 99.9 999

R, R, R, R,
20,5 25 1.9 27 34 45 51 46 44 | 221 143 21.1 281 321 268 27.8 322
50,5 2.9 2.5 32 3.7 47 49 46 46 | 27.9 222 281 350 383 339 344 385
100,5 3.1 34 41 44 52 52 52 51 | 547 50.2 54.8 620 64.1 59.0 59.1  64.2
50,10 4.2 1.9 34 46 51 55 54 51 | 778 61.4 715 79.7 81.0 76.9 77.0 81.0

50,20 4.7 20 3.5 47 47 50 48 4.7 99.9 98.7 994 99.9 99.9 99.7 99.8 999

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except o4+ =01, i =1,...N, t=1,...,T7,
oit =02, t=1,..,N, t=T1+1,..,T with Ty = [T/2], 01 = 0.5 and o2 = 1.5.
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Table 4: Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests
and modified random effects tests under conditional heteroskedasticity depending

on a regressor (HET3).

Hy:0;,=0 H;y :var («;) = 0.1, ; correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests
w 1 &7 o o 1 o P o 1 o o o 1 oo &P
SN SN
N, T E, F E, E
20,5 21 39 46 53 57 55 58 bH4 9.8 13.1 185 20.1 20.8 17.5 20.6 20.5
50,5 5.7 3.1 41 48 54 51 51 51 18.5 139 16.9 18.9 19.8 19.0 19.6 194
100,5 56 39 49 53 60 63 59 58 30.0 25.9 29.7 31.1 327 32.7 32.5 324
50,10 5.5 2.6 4.0 51 55 55 56 5.5 47.5 31.4 40.5 45.2 46.3 43.5 45.3 46.1
50,20 54 2.2 39 51 55 54 55 55 80.6 64.2 75.6 79.6 80.0 T7.7T 79.7 80.0
R., R R, R
20,5 1.7 25 34 44 59 6.0 59 6.0 72 7.8 134 16.0 189 158 18.6 18.6
50,5 5.1 25 33 41 56 53 52 53 13.1 7.6 10.8 12.6 154 13.8 15.1 14.8
100,5 5.3 35 44 49 60 6.3 6.0 58 21.7 16.1 20.7 22.7 252 23.9 24.9 24.9
50,10 53 2.5 3.7 48 55 54 55 54 41.0 22.6 33.0 38.5 40.5 36.5 38.8 40.2
50,20 53 2.2 3.7 50 54 54 54 54 76.9 57.5 71.6 759 T77.0 73.8 76.8 76.9
ts ts
N, T F, E F, F}
20,5 1.6 4.1 47 52 54 54 53 54 10.4 15.5 20.8 22.5 23.5 19.8 22.8 23.1
50,5 5.6 3.7 46 53 57 57 54 56 18.7 16.6 20.0 21.5 23.1 22.2 23.3 22.9
100,5 44 34 42 45 54 54 54 53 30.9 28.8 33.0 35.1 36.7 35.5 364 36.3
50,10 6.1 29 42 55 59 58 59 58 49.7 35.6 44.8 48.5 494 46.8 48.7 49.4
50,20 46 1.8 32 46 51 55 50 5.1 79.4 65.1 76.2 79.6 79.8 77.5 79.5 79.7
R., R R, R
20,5 1.3 24 3.1 38 56 57 53 53 7.7 9.2 152 179 21.2 174 204 20.8
50,5 5.1 27 3.7 43 57 56 54 55 13.3 9.1 124 149 176 154 17.0 17.3
100,5 4.2 3.1 38 43 53 52 53 52 219 18.0 23.3 25.6 28.0 26.4 27.8 27.6
50,10 5.7 24 38 52 59 58 59 58 43.3 26.7 38.0 42.8 44.4 40.0 43.0 44.2
50,20 4.6 1.7 32 44 51 55 50 5.1 76.3 59.8 72.8 76.5 774 73.7 76.8 77.3
X6 G
N, T F, E7 F, E
20,5 1.8 44 49 53 57 6.0 55 b5 10.6 13.2 179 19.3 20.7 176 20.3 20.2
50,5 54 34 43 48 54 50 50 5.0 16.9 13.3 15.8 17.2 185 181 18.6 18.0
100,5 54 3.7 42 47 56 55 55 54 27.8 25.1 28.1 299 314 31.1 31.0 31.0
50,10 6.0 2.5 3.7 46 50 55 55 4.9 47.9 33.7 41.5 46.1 47.3 46.6 46.7 47.2
50,20 4.5 1.5 3.1 39 42 45 4.7 4.2 80.0 66.7 77.0 80.5 80.9 79.4 80.9 80.8
R, R, R, R,
20,5 14 27 32 40 57 59 56 56 8.0 82 13.1 14.8 184 153 179 18.0
50,5 4.8 2.8 36 42 53 51 51 49 123 69 9.7 114 144 12.6 138 14.1
100,5 5.2 34 39 44 56 54 54 53 20.5 14.7 19.0 21.2 23.5 21.8 22.8 23.1
50,10 5.7 23 35 44 51 55 54 5.0 40.9 23.7 33.2 38.6 40.6 38.6 39.7 40.3
50,20 44 14 3.0 38 42 44 47 4.2 76.5 60.5 72.9 77.0 78.0 758 77.9 77.9
Notes: See notes to Table 1. The DGP is identical to that for Table 1 except o = n.[(zit,2 — 1)/30]/c, @ =
1,...,N, t = 1,...,T, where 7,.[] is the inverse of the cumulative distribution function of chi-squared distribution

with degrees of freedom c. Since z;s 2 is drawn from a uniform distribution on (1,31), o has mean 1 and variance
2/c, so it is easy to control the degree of heteroskedasticity through the choice of c. We employ ¢ = 1.
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Table 5: Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests
and modified random effects tests under conditional heteroskedasticity, GARCH(1,1)

(HET4).
Hy:0;, =0 Hi :var («;) = 0.1, a; correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests
w 1 oY oF o 1 oV o 0P 1 o o o 1 oY P 0P
SN SN
N,T F, F F, F*
20,5 72 23 45 6.0 6.0 58 58 58 30.5 17.6 24.3 27.5 27.5 288 28.1 27.1
50,5 79 23 44 55 58 56 54 bH7 47.2 349 39.1 41.2 40.9 46.2 42.8 40.7
100,5 88 29 51 63 60 58 6.0 6.0 71.1 60.8 62.9 64.4 63.4 704 66.2 63.3
50,10 6.8 1.8 39 52 57 59 55 5.7 92.7 85.3 89.9 90.9 90.8 926 91.9 90.8
50,20 56 16 36 49 53 56 53 53 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
R, R R, R
20,5 65 1.3 35 53 6.0 57 58 5.8 25.7 10.1 179 22.5 24.2 246 24.5 238
50,5 74 19 3.7 51 58 54 55 57 33.7 184 249 28.6 29.2 323 304 29.0
100,5 86 26 45 59 6.0 58 59 6.0 55.6 40.3 459 48.1 49.0 53.2 50.5 49.0
50,10 6.5 1.6 3.7 51 56 58 55 54 88.6 74.0 83.2 86.0 85.7 87.4 87.0 85.7
50,20 55 16 36 48 53 56 53 53 100.0 99.8 100.0 99.9 100.0 100.0 100.0 100.0
ts t5
N,T F, F F, bl
20,5 79 19 42 57 53 51 51 5.1 32.7 20.8 27.0 29.7 29.0 314 29.8 285
50,5 9.2 26 44 58 54 53 51 53 49.7 36.5 41.1 42.7 41.4 471 43.6 41.1
100,5 115 3.5 56 65 63 6.2 64 6.3 70.8 59.0 59.9 60.3 59.3 67.3 62.2 59.2
50,10 8.2 19 4.0 55 56 55 53 5.5 91.9 82.8 86.9 87.8 86.8 90.6 88.8 86.8
50,20 6.9 1.5 38 53 54 55 55 53 99.9 99.3 99.6 99.4 99.3 99.7 99.7 99.3
R., R R., R
20,5 74 13 32 51 54 51 52 52 27.7 12.0 19.8 24.0 25.7 26.3 26.2 252
50,5 87 20 37 53 54 51 52 53 36.4 20.0 26.3 29.2 30.5 33.3 314 30.2
100,5 11.1 3.0 50 6.2 6.3 63 64 6.3 56.9 39.5 44.6 46.3 46.6 52.4 488 464
50,10 80 1.8 3.6 53 56 54 53 56 87.7 72.1 80.2 82.3 81.9 854 84.4 81.9
50,20 6.8 1.5 3.7 52 54 55 55 53 99.9 99.0 994 994 99.2 99.7 99.6 99.1
X6 X
N,T F, Er F, F
20,5 69 19 33 44 37 42 37 34 29.8 17.2 23.2 26.2 25.1 28.0 259 24.6
50,5 81 2.0 33 47 43 42 4.1 4.2 46.2 33.1 36.9 38.9 376 44.6 403 37.3
100,5 9.3 1.8 3.0 46 3.8 44 35 3.7 68.3 56.2 57.3 58.7 57.3 66.5 60.3 57.0
50,10 74 1.2 29 45 43 47 41 4.3 92.4 84.4 87.6 89.2 88.4 92.3 89.9 88.3
50,20 6.4 1.1 2.7 45 48 48 44 48 100.0 99.8 99.9 99.9 99.8 100.0 99.9 99.8
R, R R, R
20,5 6.1 1.2 22 39 37 41 39 35 24.5 9.7 16.5 20.5 22.3 23.6 22.7 21.7
50,5 76 15 25 40 42 44 4.0 4.1 33.6 17.1 22.8 26.1 27.0 30.2 27.7 26.5
100,5 9.0 1.5 2.7 42 38 44 36 3.8 53.1 35.4 40.1 426 43.0 48.8 44.6 42.9
50,10 7.2 1.0 26 44 43 48 42 4.3 87.8 72.4 81.1 84.0 83.3 86.3 85.1 83.2
50,20 6.3 1.1 2.7 44 48 48 44 48 100.0 99.6 99.8 99.9 99.8 100.0 99.9 99.8

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except u;: = ojt&4¢, t = —49,...,T,i =1,..., N,

where o, =

32

2 = o3y +¢1u?’t71 +¢2012’t71. The value of parameters are chosen to be ¢y = 0.5, ¢; = 0.25 and ¢, = 0.25.



Table 6: Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests
and modified random effects tests under conditional heteroskedasticity, ARCH(1)

(HET5).
Hy:0;, =0 Hy :var («;) = 0.1, ; correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests
w 1 o oF o 1 oV o 0P 1 o o o 1 oo o
SN SN
N,T F, F* F, F*
20,5 98 2.7 54 6.8 6.2 6.0 6.0 6.0 32.7 19.6 25.4 28.1 27.0 304 28.0 26.5
50,5 103 2.5 5.1 64 57 56 57 5.6 47.2 33.2 372 38.1 36.2 444 39.1 35.9
100,5 11.6 2.6 4.5 6.2 5.3 5.3 5.3 5.2 68.3 53.4 54.9 55.1 524 63.7 57.2 52.1
50,10 7.8 1.6 33 5.1 48 51 49 48 91.6 82.0 85.6 85.7 84.8 90.6 87.7 84.7
50,20 6.8 14 33 5.0 50 52 52 5.0 100.0 99.6 99.7 99.6 99.5 99.8 99.8  99.5
R, R R, R
20,5 9.1 13 43 6.1 63 60 59 6.1 28.0 11.4 19.0 22.8 24.1 25.8 24.9 23.5
50,5 9.6 1.7 41 56 58 56 58 55 35.1 17.6 23.8 26.8 26.9 31.0 28.8 26.7
100,5 11.2 2.1 4.0 58 53 55 53 53 53.3 33.3 38.3 40.1 38.9 47.5 429 38.7
50,10 76 14 3.0 49 49 51 50 438 86.6 70.6 78.9 80.4 79.8 84.9 83.1 79.7
50,20 6.7 14 32 49 50 52 52 5.0 100.0 99.4 99.7 99.6 99.4 99.8 99.7 994
ts t5
N,T F, F F, E
20,5 92 22 42 6.0 55 53 52 52 36.3 23.7 28.7 314 306 33.9 31.6 30.0
50,5 119 2.5 50 70 59 57 57 58 51.6 38.2 40.5 41.3 39.4 474 424 38.8
100,5 151 3.1 54 70 6.0 59 58 59 69.0 55.3 55.3 55.1 523 63.9 56.6 52.0
50,10 10.9 2.0 4.0 6.0 55 56 54 54 90.7 80.4 82.5 82,9 81.5 88.0 84.6 81.3
50,20 9.0 1.3 3.5 56 52 48 52 52 99.5 98.0 98.2 98.2 97.7 99.0 98.5 97.7
R. R R., R
20,5 85 1.2 3.0 49 56 49 52 53 31.5 14.4 223 26.2 27.2 29.5 276 26.5
50,5 116 1.8 40 6.0 58 56 56 56 39.7 20.1 26.8 29.3 294 34.1 314 29.2
100,5 148 24 42 63 6.0 59 57 6.0 57.7 36.7 41.0 41.8 41.3 50.1 45.1 41.0
50,10 10.6 1.9 3.7 57 54 56 56 5.3 86.6 70.9 77.0 78.0 76.9 83.0 80.4 76.7
50,20 9.0 1.3 33 56 52 49 53 5.2 99.4 97.5 979 979 973 98.8 983 97.2
X6 X6
N,T F, Er F, Er
20,5 83 23 40 52 45 43 42 42 33.2 20.2 25.8 27.6 26.7 31.3 28.1 26.0
50,5 109 1.8 4.0 57 42 40 4.2 4.0 46.2 31.1 34.3 35.3 33.1 41.7 36.2 329
100,5 11.9 1.8 3.7 53 4.4 4.2 4.2 4.3 66.6 51.5 51.3 52.0 494 61.2 53.4 49.1
50,10 9.0 1.1 2.7 5.0 44 43 40 4.3 89.8 79.9 82.0 83.4 81.8 88.6 84.7 81.6
50,20 79 13 23 45 41 43 3.7 4.1 99.8 99.1 98.9 99.0 98.8 99.6 99.1 98.8
R, R R. R
20,5 76 1.0 25 44 45 41 4.2 4.2 28.2 109 18.3 22.3 23.0 25.8 24.4 225
50,5 10.5 1.0 2.8 4.8 4.2 4.1 4.1 4.0 33.6 15.2 20.3 23.5 23.7 279 250 23.2
100,5 11.8 1.3 2.9 4.7 44 42 42 44 52.9 32.2 34.6 37.6 36.6 45.5 39.5 36.3
50,10 88 1.0 24 48 44 42 40 44 85.4 68.4 74.7 77.7T 76.2 82.6 79.0 76.1
50,20 7.8 13 22 45 41 43 3.7 4.1 99.7 98.7 98.7 989 98.6 99.5 98.9 98.6

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except u;: = oit&4¢, t = —49,...,T,i =1,..., N,

2 _

where o7, =

33

bg + ¢1U‘12,t71' The value of parameters are chosen to be ¢y = 0.5 and ¢; = 0.5.



