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Abstract

We derive the asymptotic distribution of the standard F-test statistic for
�xed e¤ects, in static linear panel data models, under both non-normality
and heteroskedasticity of the error terms, when the cross-sections dimension
is large but the time series dimension is �xed. It is shown that a simple lin-
ear transformation of the F-test statistic yields asymptotically valid inferences
and under local �xed (or correlated) individual e¤ects, this heteroskedasticity-
robust F-test enjoys higher asymptotic power than a suitably robusti�ed Ran-
dom E¤ects test. Wild bootstrap versions of these tests are considered which,
in a Monte Carlo study, provide more reliable inference in �nite samples.

1 Introduction

In an earlier paper, Orme and Yamagata (2006) added to the already large literature
on the analysis of variance testing, by establishing that, in a static linear panel
data model, the standard F-test for individual e¤ects remains asymptotically valid
(large N; �xed T ) under non-normality of the error term. Moreover, their (local)
asymptotic analysis, supported by Monte Carlo evidence, showed that under (pure)
local random e¤ects both the F-test and Random E¤ects test (RE-test) will have
similar power whilst under local �xed e¤ects, or random e¤ects which are correlated
with the regressors, the RE-test procedure will have lower asymptotic power than
the F-test procedure.
The key result in the above paper (Proposition 1, p.409) is, essentially, the as-

ymptotic equivalence of the appropriately centred F-test statistic and the numerator
(test indicator) in the RE-test statistic, under homoskedastic, but not necessarily
normally distributed, errors. However, it is straightforward to verify (Proposition
1 in Section 3.2 below) that this asymptotic equivalence continues to hold under

�Corresponding author. Chris D.Orme, Economics, School of Social Sciences, University of
Manchester, Manchester M13 9PL, UK. Email: chris.orme@manchester.ac.uk
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general heteroskedasticity of the errors.1 The analysis which produces this result
also shows that although under quite general, but neglected, heteroskedasticity, the
standard (homoskedastic-based) F and RE tests may be asymptotically under, or
over, sized, predictions can be made in certain cases. For example, and in addition
to the maintained assumption of independent cross-sections, when the linear model
error terms are also serially independent, then: (i) if the (unconditional) error vari-
ance is constant within a cross section of data, but not across cross-sections, both
tests will be asymptotically oversized; (ii) on the other hand, if the (unconditional)
error variance is constant across cross-sections, but not through time, both tests
will be asymptotically undersized; (iii) furthermore, in the singular case of indepen-
dently and identically distributed (i.i.d.) data, over both the cross-section and time
dimensions, then even if the errors are conditionally heteroskedastic, the standard
F and RE tests remain asymptotically valid. The assumptions in this paper ex-
plicitly allow for independently but not identically distributed data and, therefore,
unconditional heteroskedasticity in the errors.
Given the result of Proposition 1, below, Wooldridge�s (2010, p.299) heteroskedastic-

robust RE-test suggests the appropriate transformation required of the standard
F-test statistic in order to recover its asymptotically validity under general het-
eroskedasticity of unknown form. This transformation, or correction, involves sim-
ple functions of the pooled model�s residuals (i.e., the restricted residuals), of which
there are a number of asymptotically valid choices. Following the literature on het-
eroskedasticity robust inference, restricted residuals are employed as advocated, for
example, by Davidson and MacKinnon (1985) and Godfrey and Orme (2004), who
report reliable sampling performance of tests of linear restrictions in the linear model
when employing restricted residuals in the construction of heteroskedasticity robust
standard errors.2

Importantly, though, the F and RE heteroskedastic-robust tests, so constructed,
retain the qualitative properties that were reported by Orme and Yamagata (2006).
Speci�cally: (i) under (pure) local random e¤ects, both tests have the same asymp-
totic power; and, (ii) under local �xed e¤ects, or random e¤ects which are correlated
with the regressors, the RE-test procedure will have lower asymptotic power than
the F-test procedure.
The plan of this paper is as follows. In order to make the current paper self-

contained, Section 2 reproduces Orme and Yamagata (2006, Section 2) and intro-
duces the notation and standard test statistics as discussed widely in standard texts;
for example Baltagi (2008). Assumptions are introduced in Section 3, justifying the
ensuing asymptotic analysis in Section 3.2 which characterises the asymptotic be-
haviour of the F-test statistic, including its relationship with the RE-test statistic
under the null and local alternatives. All proofs of the main results are relegated
to the Appendix. Section 4 illustrates the main �ndings by reporting the results
of a small Monte Carlo study. This also includes an evaluation of a wild bootstrap

1Orme and Yamagata (2006) did not cover the case of heteroskedastic errors in the linear model,
although their analysis did allow for heteroskedastic individual e¤ects.

2As Wooldridge (2010, p.300) points out, standard tests for individual e¤ects essentially test
for non-zero correlation in the errors; thus, constructing auto-correlation robust procedures would
appear to be counter productive.
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procedure scheme, based on Mammen (1993) and Davidson and Flachaire (2008),
which might be employed in order to provide closer agreement between the desired
nominal and the empirical signi�cance level of the proposed test procedures. Section
5 concludes.

2 The Notation, Model and Test Statistics

We consider the following static linear panel data model

yi = �i�T +Xi�1+ui; i = 1; :::; N (1)

where yi = (yi1; :::; yiT )
0, ui = (ui1; :::; uiT )

0, �T is a (T � 1) vector of ones, and
Xi = (xi1; :::;xiT )

0 a (T �K) matrix. The innovations, uit; have zero mean and
uniformly bounded variances and the �i are the individual e¤ects. By stacking the
N equations of (1), the model for all individuals becomes

y = D�+X�1+u, (2)

where y = (y01; :::;y
0
N)

0 and u = (u01; :::;u
0
N)

0 are both (NT � 1) vectors, � =
(�1; :::; �N)

0 is a (N � 1) vector, D = [IN 
 �T ] is a (NT � N) matrix, X =
(X0

1; :::;X
0
N)

0 is a (NT � K) matrix, and [D;X] has full column rank. Thus, for
the purposes of the current exposition, xit = (xit1; :::; xitK)

0; (K � 1) ; contains no
time invariant regressors, in particular a constant term corresponding to an overall
intercept. In the context of �xed e¤ects this allows estimation of �1; as follows.
In general, de�ne the projection matrices, PB = B(B0B)

�1B0 andMB = INT �
PB; for any (NT � S) matrix B of full column rank, with ~B =MDB being the
residual matrix from a multivariate least squares regression of B on D which is,
of course, the within transformation. Then the �xed e¤ects (least squares dummy
variable) estimator of �1 in (2) is given by

~�1 = (X
0MDX)

�1X0MDy = (~X
0 ~X)

�1 ~X0~y: (3)

The null model of no individual e¤ects is the pooled regression model of

y = �0�NT +X�1 + u, (4)

= Z� + u;

where Z = [�NT ;X] = (Z01; :::;Z
0
N)

0; where Zi has rows z0it = (1; xit1; :::; xitK) =
fzitjg ; j = 1; :::; K + 1: The (pooled) regression of y on Z delivers the Ordinary

Least Squares (OLS) estimator �̂ =
�
�̂0; �̂

0
1

�0
= (Z0Z)�1 Z0y:

The standard F-test for �xed e¤ects requires estimation of both (2), treating
the �i as unknown parameters, and (4) whilst the standard RE-test only requires
estimation of (4). In order to provide a framework in which to investigate the limiting
behaviour of the F-test and RE-test statistics, under both �xed and random e¤ects,
the individual e¤ects are assumed to have the form � = �0�N + �; � = (�1; :::; �N)

0.
Fixed e¤ects correspond to the �i; i = 1; :::; N; being �xed unknown parameters
(or, equivalently, �1 � 0 with �0 and �i; i = 2; :::; N; being the �xed unknown
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parameters). The case of random e¤ects is accommodated when the �i, i = 1; :::; N
are random variables. Equations (1) and (2) will be employed to characterise the
data generation process, with the restrictions of H0 : � = �1�N providing the null
model of no individual e¤ects (notice that � = 0 belongs to this set of restrictions).
Speci�cally, when considering the alternative of �xed e¤ects, the (N � 1) restrictions
placed on (2) are H0 : H� = 0; where H = [�N�1;�IN�1] ; whilst for random e¤ects
the null is H0 : var (�i) = 0:
The standard F and RE test statistics are de�ned as follows:

F-test Statistic

This is constructed as

FN =
(RSSR �RSSU)=(N � 1)
RSSU=(N(T � 1)�K)

, (5)

where RSSR = û0û is the restricted sum of squares (from the pooled regression
(4)) with û =MZy; and RSSU = ~u0~u is the unrestricted sum of squares (from the
�xed e¤ects regression (2)) with ~u =M~X~y, the residual vector from regressing ~y on
~X: If normality, homoskedasticity and strong exogeneity were imposed such that,
conditional on X; ui � N(0;�2IT ); i = 1; :::; N; then a standard F-test would be
exact. In the case of non-normal, but homoskedastic, errors Orme and Yamagata
(2006) demonstrated that a standard F-test would be asymptotically valid.

RE-test Statistic

The usual RE-test statistic is3

RN =

s
NT

2 (T � 1)

�
û0 (IN 
A) û

û0û

�
=

s
1

2NT (T � 1)

�
û0 (IN 
A) û
û0û=NT

�
(6)

where A = A0 = �T �
0
T � IT ; so that

u0 (IN 
A)u =
NX
i=1

u0iAui =
X
i

X
t

X
s 6=t

uituis:

RN has a limit standard normal distribution, as N !1; underH0 and homoskedas-
ticity but not necessarily normality of the errors.

3 Asymptotic Properties of FN
In this section we describe the properties of FN ; under both local �xed and random
e¤ects, by (i) deriving its asymptotic distribution, and (ii) establishing its asymptotic
relationship with RN . In the subsequent analysis asymptotic theory is employed in
which N ! 1 and T is �xed. To facilitate this, the next sections details the
assumptions that are made, which are of the sort found in, for example, White
(2001, p.120):

3See, for example, Breusch and Pagan (1980) or Honda (1985).
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3.1 Assumptions

A1:

(i) fXi;uigNi=1 is an independent sequence of (K + 1) ; (T � 1) vectors;

(ii) E (uitjXi) = 0; for all i and t;

(iii) E (uituisjXi) = 0 for all i and t 6= s:

A2:

(i) E
�
jzisjuitj2+�

�
� � <1 for some � > 0; all s; t = 1; :::; T; j = 1; :::; K + 1; and

all i = 1; :::; N ;

(ii) E
�
jzitjj4+�

�
� � <1 for some � > 0; all t = 1; :::; T; j = 1; :::; K + 1; and all

i = 1; :::; N ;

(iii) E (Z0Z=N) is uniformly positive de�nite;

(iv) E(~X0 ~X=N) is uniformly positive de�nite;

(v) VN = N
�1PN

i=1

PT
t=1E (u

2
itzitz

0
it) is uniformly positive de�nite;

(vi) ~VN = N
�1PN

i=1

PT
t=1E (u

2
it~xit~x

0
it) is uniformly positive de�nite.

Assumption A1 imposes independent sampling of cross-section units and a strong
exogeneity assumption on Xi; implying that E(~X0

iui) = 0 and thus ruling out (for
example) lagged dependent variables. It also constrains the uit to be condition-
ally serially uncorrelated, and thus serially uncorrelated but not necessarily serially
independent. Together with Assumption A2, which allows for heteroskedastic dis-
turbances, we obtain consistency and asymptotic normality of both the pooled and
�xed e¤ects least squares regression estimators (�̂ and ~�1; respectively), and also
consistency of the corresponding heteroskedasticity-robust covariance matrix esti-
mators.4 These results follow for the �xed e¤ects estimator because Assumption
A2(i) and (ii) also imply that E

�
j~xisjuitj2+�

�
and E

�
j~xitj~xislj2+�

�
are both uni-

formly bounded. Thus, in particular, 1p
N
Z0u, 1p

N
~X0u, 1

N
Z0Z and 1

N
~X0 ~X are all

Op(1); with V
�1=2
N

1p
N
Z0u

d! N(0; IK+1) and ~V
�1=2
N

1p
N
~X0u

d! N(0; IK); as N !1;
T �xed. If Assumption A1 (ii) is weakened to E (X0

iui) = 0; or even E (xituit) = 0
(zero contemporaneous correlation), ~�1 is not guaranteed to be consistent and, when
it is inconsistent, the F-test is asymptotically invalid anyway, even under normal-
ity; for example, in the presence of lagged dependent variables - see the discussion
in Wooldridge (2010, Sections 10.5 and 11.6). Note that, although the assump-
tions constrain fuitg to be serially uncorrelated, they allow for rather arbitrary
heteroskedasticity, across individuals and/or through time, and do not demand, for

4See, for example, White (2001, Exercises 3.14, 5.12 and Chapter 6). Assumption A2(ii) is also
required to obtain a heteroskedasticity robust F-test.
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example, that fu2itg also be serially uncorrelated.5 Assumptions A1(iii) and A2(v)
imply that 1

N

PN
i=1

PT
t=1E(u

2
it) =

1
N

PN
i=1E(

PT
t=1 uit)

2 is uniformly positive.
For the purposes of this paper, in addition, we assume the following:

A3:

(i) E juitj4+� � � <1 for some � > 0; all t = 1; :::; T; and all i = 1; :::; N ;

(ii) var
�
N�1=2u0 (IN 
A)u

�
= N�1PN

i=1E (u
0
iAui)

2 is uniformly positive.

A4:

(i) �i = �0 +
�i
N1=4

; i = 1; :::; N ;

(ii) the �i are independent, satisfying E [uit�i] = 0 and E j�ij4+� � � < 1; for all
i = 1; :::; N:

(iii) N�1PN
i=1E

�
�2i
�
is uniformly positive; where �0 = (�1; :::; �N) :

Assumption A3 justi�es the limit distribution obtained in Proposition 1 below,
and as a consequence also that of RN : In fact, Assumption A3(i) and Assump-
tion A2(ii) actually imply Assumption A2(i), using the Cauchy-Schwartz inequality.
Assumption A4 characterises the alternative data generation process and permits
the investigation of asymptotic power, under local individual e¤ects, by restrict-
ing the test criteria under consideration to be Op (1) with well de�ned limit dis-
tributions. Together with Assumptions A3(i) and A2(ii), Assumption A4(ii) im-
plies E juit�ij2+� � � < 1 and E jzitj�ij2+� � � < 1; for some � > 0; and all
i = 1; :::; N; t = 1; :::; T; j = 1; :::; K + 1: As well as �xed e¤ects (with the �i be-
ing non-stochastic) it also accommodates local heteroskedastic random e¤ects, but
which are uncorrelated with ui: If the �i are also distributed independently of Xi;
then we have �pure�random e¤ects whilst if the �i are correlated with Xi then we
have �correlated� random e¤ects. (As pointed out by Wooldridge (2010, p.287),
in microeconometric applications of panel data models with individual e¤ects, the
term �xed e¤ect is generally used to mean correlated random e¤ects, rather than �i
being strictly non-stochastic.)

3.2 The Asymptotic Distribution of FN
The results concerning the limiting behaviour of both the F-test and RE-test are
driven by the following Lemma, which also substantiates the asymptotic validity of
Wooldridge�s (2010, p.299) heteroskedasticity-robust test for unobserved e¤ects; see
Section 3.2.2.

5Note that Assumption A1(iii) is often strengthened to that of uit being independent over
t = 1; :::; T; conditionally on Xi: However, this would rule out certain forms of conditional het-
eroskedasticity; such as ARCH or GARCH processes.
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Lemma 1 De�ne

HN =
u0 (IN 
A)up
NT (T � 1)

=
1p

NT (T � 1)

NX
i=1

u0iAui

and

�N = var (HN) =
1

NT (T � 1)

NX
i=1

E fu0iAuig
2
:

Then under Assumptions A1(i),(iii) and A3,

�
�1=2
N HN

d! N(0; 1);

for �xed T; as N !1:

Armed with this, the asymptotic distribution of FN , under non-normality and
heteroskedasticity, is given by following proposition:

Proposition 1 De�ne ��2N =
1
NT

PN
i=1

PT
t=1E(u

2
it):

(i) Under model (2) and Assumptions A1 to A4,
p
N (FN � 1) = Op(1); with

��2N
p
N (FN � 1) =

r
T

T � 1HN + �N + op(1)

where HN is given in Lemma 1 and �N = O(1) is de�ned by

�N = E[� 01�1=N ] = �N � �0N��1N �N � 0;
�1 = D� � Z��1

N �N ;

�N = E [Z
0Z=N ], �N = E [Z

0D�=N ] ; �N = E [�
0D0D�=N ] :

(ii) Furthermore, if !N =
��2Np
�N=2

; where �N is de�ned in Lemma 1, then

!N
p
N (FN � 1)�

�Np
�N=2

d! N

�
0;

2T

T � 1

�
:

Given our assumptions, note that both !N and �N are O(1) satisfying

1
NT

PN
i=1 u

0
iuiq

1
2NT (T�1)

PN
i=1 fu0iAuig

2
� !N

p! 0

and
�0D0MZD�

N
� �N

p! 0;

respectively, with !N is uniformly positive by Assumption, although neither !N
or �N need necessarily converge. The special case of no individual e¤ects, with
� = �1�N ; yields �N � 0; as it should (this includes the case of � = 0):
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As exploited by Orme and Yamagata (2006), it is easy to show that if �N has an F
distribution with n1 = N �1 and n2 = N(T �1)�K degrees of freedom, then ��N =q

N(T�1)
2T

(�N � 1) s N(0; 1); or approximately for large N; �N
As N

�
1; 2T

N(T�1)

�
.

Therefore, by Proposition 1, we can employ the following approximation, under the
null,

F! � !̂N fFN � 1g+ 1
As F (n1; n2) ; (7)

for any choice of !̂N satisfying !̂N � !N
p! 0; implying that F! can be used in an

asymptotically valid �standard�F-test procedure.
Before proceeding to derive a suitable !̂N ; note that under pure local random

e¤ects, with E [�ijXi] = 0 and E
�
�2i jXi

�
= � 2; �N = T

N

PN
i=1E [�i�zi] = 0 with

�zi = T
�1PT

t=1 zit so that �N = TE
h
�0�
N

i
= T� 2: In this case we immediately obtain

the following Corollary to Proposition 1 (the proof is omitted):

Corollary 1 Under the alternative of (pure) local random e¤ects, and under the
assumptions of Proposition 1,

!̂N
p
N (FN � 1)�

T� 2p
�N=2

d! N

�
0;

2T

T � 1

�
for any choice of !̂N satisfying !̂N � !N

p! 0:

Therefore, a robust F-test, based on F!; will have non-trivial asymptotic local
power against pure random e¤ects. In fact, and analogous to Orme and Yamagata
(2006), a stronger result will be established in Section 3.2.2. There it is shown
that, under (pure) local random e¤ects, a robust F-test procedure based on F!
will thus possess the same asymptotic power as a suitably �robusti�ed�RE-test,
of the sort proposed by Wooldridge (2010, p.299) or Häggström & Laitila (2002).
However, under �correlated�local random e¤ects a robust F-test will possess higher
asymptotic power than a robust RE-test.

3.2.1 Asymptotically Valid F-test Statistics

As noted above, an asymptotically valid F-test can be constructed if there is a !̂N
available satisfying !̂N � !N

p! 0: Using restricted OLS (i.e., pooled) residuals a
natural choice for !̂N might be

!̂N =
�̂2Np
�̂N=2

where �̂2N = û
0û=(NT �K � 1) and

�̂N =
1

NT (T � 1)

NX
i=1

fû0iAûig
2
=

1

NT (T � 1)

NX
i=1

(X
t

X
s 6=t

ûitûis

)2
:

Indeed, this choice is justi�ed in Proposition 2 below; c.f., Wooldridge (2010, p.299).
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However, other choices for �̂N ; and thus !̂N ; emerge if we are willing, or able,
to strengthen Assumption A1(iii).6 To see this, �rst note that

P
t

P
s 6=t uituis =

2
PT

t=2wit; where wit = uit
Pt�1

s=1 uis; so that �N can equivalently be expressed as

�N =
4

NT (T � 1)

NX
i=1

E

��XT

t=2
wit

�2�
: (8)

The �rst potential strengthening of A1(iii) also strengthens A1(i) and simply
states that, conditional on Xi; uit is orthogonal to the entire past history of the
errors but without, necessarily, imposing serial independence:

A1(iii)0: E (uitjXi; ui;t�1; ui;t�2; :::) = 0; for all i and t:

This is like a martingale di¤erence assumption but is more direct7 and might
be regarded as a mild additional constraint since it still allows, for example, a
GARCH process for u2it: Under this Assumption, E [witwit�m] = 0; for all t � 3 and
m = 1; :::; t� 1; so that (8) becomes

�N =
4

NT (T � 1)

NX
i=1

TX
t=2

E
�
w2it
�

where
TX
t=2

w2it =
TX
t=2

t�1X
s=1

u2itu
2
is + 2

TX
t=3

t�1X
s=2

s�1X
r=3

u2ituisuir: (9)

An alternative strengthening of Assumption A1(iii) might be:

A1(iii)00: All distinct pairs (uit; uis) and (uir; uiq), (t; s) 6= (r; q) ; are uncorrelated.

In this case, E [witwit�m] = 0 and E (u2ituisuir) = 0 so that (8) is

�N =
4

NT (T � 1)

NX
i=1

TX
t=2

t�1X
s=1

E
�
u2itu

2
is

�
=

2

NT (T � 1)

NX
i=1

X
t

X
s 6=t

E
�
u2itu

2
is

�
:

This is somewhat stronger than Assumption A1(iii)0; as it rules out an asymmetric
GARCH process for u2it:

8

In addition to Assumption A1(i), a further strengthening of Assumption A1(iii)0

or A1(iii)00 would be full serial independence:

A1(iii)000: fuitgTt=1 is an independent sequence of random variables, for all i =
1; ::::N:

6We shall not, here, consider alternative estimators of ��2N ; altough this is possible.
7See, for example, White (2001, p.54).
8See, for example, Goncalves and Killian (2004).
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In this case, a GARCH process for u2it is ruled out and

�N =
2

NT (T � 1)

NX
i=1

X
t

X
s 6=t

E
�
u2it)E(u

2
is

�
:

The preceding discussion suggests di¤ering possible consistent estimators for �N ,
and thus for !N ; according to the strengthening of Assumption A1(iii). These are
described in the following Proposition:

Proposition 2 De�ne �̂2N = û
0û=(NT �K � 1); ŵit = ûit

Pt�1
s=1 ûis and

�̂
(1)
N =

1

NT (T � 1)

NX
i=1

 X
t

X
s 6=t

û2itû
2
is

!2
=

4

NT (T � 1)

NX
i=1

 
TX
t=2

ŵit

!2

�̂
(2)
N =

4

NT (T � 1)

NX
i=1

TX
t=2

ŵ2it

�̂
(3)
N =

2

NT (T � 1)

NX
i=1

X
t

X
t6=s

û2itû
2
is =

4

NT (T � 1)

NX
i=1

TX
t=2

t�1X
s=1

û2itû
2
is:

Under model (2) and Assumptions A1 to A4:

1. �̂2N � ��2N
p! 0;

2. �̂(1)N � �N
p! 0:

Under Assumptions A1-A4 with A1(iii) strengthened to A1(iii)0, A1(iii)00 or A1(iii)000 :

3. �̂(2)N � �N
p! 0;

Under Assumptions A1-A4 with A1(iii) strengthened to A1(iii)00 or A1(iii)000 :

4. �̂(3)N � �N
p! 0:

From this analysis it follows that asymptotically valid choices for !̂N include the
following:

!̂
(1)
N =

�̂2Nr
2

NT (T � 1)
PN

i=1

�PT
t=2 ŵit

�2 ; (10)

!̂
(2)
N =

�̂2Nr
2

NT (T � 1)
PN

i=1

PT
t=2 ŵ

2
it

; (11)

!̂
(3)
N =

�̂2Nr
2

NT (T � 1)
PN

i=1

PT
t=2

Pt�1
s=1 û

2
itû

2
is

; (12)

depending on assumptions made about the uit; t = 1; :::; T: Robust F-test statistics
can then be constructed as F (m)! = !̂

(m)
N fFN � 1g+1; m = 1; 2; 3; and approximate

inferences obtained based on (7).
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3.2.2 The Relationship between FN and RN

Under the null of no individual e¤ects, it is straightforward to show that

1p
N

�
û0 (IN 
A) û
û0û=NT

�
=

1p
N

u0 (IN 
A)u
��2N

+ op (1) :

From (6), Lemma 1 and Proposition 1, therefore, we can write

RN =
1p
2

HN
��2N

+ op(1)

=

r
T � 1
2T

p
N (FN � 1) + op(1);

under the null, so that
R! � !̂NRN

d! N(0; 1) (13)

for any choice of !̂N satisfying !̂N�!N
p! 0: This substantiates Wooldridge�s (2010,

p.299) suggestion for a heteroskedasticity-robust RE test statistic constructed as
!̂
(1)
N RN ; or, under Assumption A1(iii)

00 or A1(iii)000; !̂(3)N RN as proposed by Häg-
gström & Laitila (2002).
The following proposition extends this result to the case of local individual e¤ects

(�xed or random):

Proposition 3 Under model (2) and Assumptions A1 to A4,

!̂NRN =

(r
(T � 1)
2T

)
!̂N
p
N [FN � 1]�

s
T

2 (T � 1)

Np
�N=2

+ op (1) ;

for any choice of !̂N satisfying !̂N � !N
p! 0; where 
N = O(1) de�ned by


N = E(� 02�2=N) = �
0
N�

�1
N
~�N�

�1
N �N � 0;

�2 = ~Z�
�1
N �N ;

~�N = E(~Z
0~Z=N); and the limit distribution of !N

p
N [FN � 1] is given by Proposi-

tion 1.

Again, 
N need not converge, but it isO(1) and 
N�
�0D0Z(Z0Z)�1(~Z0~Z)(Z0Z)�1Z0D�

N

p!
0: As with Proposition 1, 
N � 0 obtains under H0 : � = �1�N ; as it should, since
(Z0Z)�1 Z0D� = (�1;0

0)0 and the top-left, (1; 1) ; element of ~Z0~Z is 0. As discussed
above, under the alternative of (pure) local random e¤ects �N = 0; and we obtain
the following Corollary, which is immediate from Corollary 1 given Proposition 3:

Corollary 2 Under the alternative of (pure) local random e¤ects, and under the
assumptions of Proposition 1,

!̂NRN �
(r

T (T � 1)
2

)
� 2p
�N=2

d! N (0; 1)

for any choice of !̂N satisfying !̂N � !N
p! 0:

11



Thus, since under (pure) local random e¤ects, !̂NRN �
q

N(T�1)
2T

!̂N (FN � 1) =
op(1), both the robust RE and robust F-test procedures, based on (13) and (7),
respectively, will have identical asymptotic power functions. However, under local
�xed e¤ects or random e¤ects which are correlated with Xi; the robust F-test can
have greater asymptotic power. In particular, when individual e¤ects are correlated
with the mean values of the regressors, �N 6= 0 and is O (1) ; implying 
N > 0 so that
a test based on RN (but suitably robust to heteroskedasticity) should have lower
asymptotic local power than one based on FN : This makes intuitive sense, since FN
is designed to test for individual e¤ects which are correlated with �zi; whereas RN is
constructed on the assumption that the individual e¤ects are uncorrelated with all
regressor values. The importance of distinguishing between individual e¤ects which
are correlated or uncorrelated with regressors, rather than simply labelling them
�xed or random, is discussed by Wooldridge (2010, Section 10.2).

3.2.3 Analysis of the Standard F-test and RE-test

Given the analysis above the following conclusions emerge concerning the asymptotic
behaviour of both the standard F-test, based on FN ; and RE-test, based on RN ; in
certain special cases and under the null hypothesis. Under Assumption A1(iii)0 and

E
�
u2itjXi; ui;t�1; ui;t�2; :::

�
� E

�
u2itjXi

�
; for all i and t; (14)

we obtain, without recourse to Assumption A1(iii)00, that

�N =
2

NT (T � 1)

NX
i=1

X
t

X
s 6=t

E(u2itu
2
is); (15)

because, from (9),

E
�
u2ituisuir

�
= E

�
E
�
u2itjXi

�
E(uisuirjXi)

�
= 0:

In this case, (14) rules out conditional heteroskedastcity of the ARCH/GARCH
type.
Therefore:

(i) Under A1(iii)0 and (14) but conditional cross-sectional heteroskedasticity only
such that E (u2itjXi) � hi > 0; and E (h2i ) <1, we obtain ��2N = 1

N

PN
i=1E(hi)

and �N = 2
N

PN
i=1E (h

2
i ). Thus, !N < 1, since

1

N

NX
i=1

E(h2i )�
(
1

N

NX
i=1

E(hi)

)2
� 1

N

NX
i=1

�4i �
(
1

N

NX
i=1

�2i

)2
> 0

where �2i = E(hi) > 0: This implies that both the F-test based on FN and
RE-test based on RN ; without adjustment, will be asymptotically oversized
(in that, asymptotically, both will reject a correct null of no individual e¤ects
too often for any given nominal signi�cance level).9

9Indeed, this particular consclusion explains some of the �nite sample Monte Carlo results
obtained by Häggström & Laitila (2002).
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(ii) Under A1(iii)0 and (14) but time varying variances such that E (u2itjXi) � ht >
0; and E (h2t ) <1, we have

!2N =

�
1
T

PT
t=1 �

2
t

�2
1

T (T�1)
P

t

P
s 6=t �

2
t�
2
s

> 1;

where, here, �2t = E (ht) > 0; because 
1

T

TX
t=1

�2t

!2
� 1

T (T � 1)
X
t

X
s 6=t

�2t�
2
s =

1

T � 1

0@ 1
T

TX
t=1

�4t �
 
1

T

TX
t=1

�2t

!21A > 0:

This implies that both test procedures; without adjustment, will be asymp-
totically undersized.

(iii) Of course, the conclusions in (i) and (ii) must also hold under Assumption
A1(ii)00 or A1(iii)000: Moreover, if fuit;x0itg

T
t=1 are serially independent with

E(u2itjxit) = h(xit) > 0 and E [h(xit)] = �2 < 1; so that the errors are
unconditionally homoskedastic; then, �N = 2�4 and !N = 1: In particular,
this result is true if the (uit;x0it) are i.i.d., but the uit are conditionally het-
eroskedastic with E(u2itjxit) = h(xit) > 0: This shows that both the F-test
and RE-test, based on FN and RN ; respectively, remain asymptotically valid
without any adjustment.

In order to shed light on the relevance of the preceding asymptotic analysis, the
next section reports the results of a small Monte Carlo experiment which illustrates
the asymptotic robustness of the F-test to non-normality/heteroskedasticity and its
power properties relative to the RE-test.

4 Monte Carlo Study

The Monte Carlo study investigates the sampling behaviour of the test statistics
considered above, (7) and (13), for di¤ering choices of !̂N , including !̂N � 1. As
our analytical results suggest, the tests are justi�ed when N !1 with T �xed, we
consider (N; T ) = (20; 5), (50; 5), (100; 5), (50; 10), (50; 20).

4.1 Monte Carlo Design

The model employed is

yit = �i +
3X
j=1

zit;j�j + uit, uit = �it"it (16)

where zit;1 = 1, zit;2 is drawn from a uniform distribution on (1; 31) independently
for i and t, and zit;3 is generated following Nerlove (1971), such that

zit;3 = 0:1t+ 0:5zit�1;3 + �it,
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where the value zi0;3 is chosen as 5+10�i0, and �it (and �i0) is drawn from the uniform
distribution on (�0:5; 0:5) independently for i and t, in order to avoid any normality
in regressors. These regressor values are held �xed over replications. Also, observe
that the regression design is not quadratically balanced.10 Without loss of generality,
the coe¢ cients are set as �j = 1 for j = 1; 2; 3. The i.i.d. standardised errors for "it
are drawn from: the standard normal distribution (SN); the t distribution with �ve
degrees of freedom (t5); and, the chi-square distribution with six degrees of freedom
(�26).
We consider �ve speci�cations for �it :

1. Homoskedasticity (HET0)
�it = � = 1

2. Cross-sectional one-break-in-volatility heteroskedasticity (HET1)

�it = �1; i = 1; :::; N1; t = 1; :::; T

= �2; i = N1 + 1; :::; N; t = 1; :::; T

with N1 = dN=2e, where dAe is the largest integer not less than A, �1 = 0:5
and �2 = 1:5.

3. Time series one-break-in-volatility heteroskedasticity (HET2)

�it = �1; i = 1; :::; N; t = 1; :::; T1

= �2; i = 1; :::; N; t = T1 + 1; :::; T

with T1 = dT=2e, �1 = 0:5 and �2 = 1:5.

4. Conditional heteroskedasticity depending on a regressor (HET3)

�it = �c[(zit;2 � 1)=30]=c; i = 1; :::; N; t = 1; :::; T

�c[�] is the inverse of the cumulative distribution function of chi-squared dis-
tribution with degrees of freedom c. Since zit;2 is drawn from a uniform distri-
bution on (1; 31), �it has mean 1 and variance 2=c, so it is easy to control the
degree of heteroskedasticity through the choice of c. We employ c = 1.

5. Conditional heteroskedasticity, GARCH(1,1) (HET4)

uit = �it"it; t = �49; :::; T; i = 1; :::; N

where
�2it = �0 + �1u

2
i;t�1 + �2�

2
i;t�1:

The value of parameters are chosen to be �0 = 0:5, �1 = 0:25 and �2 = 0:25,
and ui;�50 = 0 with the �rst 50 observations being discarded, so that the
unconditional variance is E (u2it) = �0= (1� �1 � �2) :

10See the discussion in Orme and Yamagata (2006).
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6. Conditional heteroskedasticity, ARCH(1) (HET5)

uit = �it"it; t = �49; :::; T; i = 1; :::; N

where
�2it = �0 + �1u

2
i;t�1,

with �0 > 0 and 0 � �1 < 1. In particular, �0 = 0:5, �1 = 0:5 and ui;50 =
0, with the �rst 50 observations being discarded, so that the unconditional
variance is E(u2it) = �0= (1� �1).

For power comparisons, the individual e¤ects are generated according to

�i = � i

hp
R2gi(�zi) +

p
1�R2'i

i
(17)

where the 'i are i.i.d. N(0; 1), gi(�zi) = �03(�zi � �z)=s with �3 = (1; 1; 1)0, �z being
overall average of zit, s being the standard deviation of �03�zi, and the R

2 is from the
regression of (17). With this set up, the variance of inside of the square brackets is
always unity across designs. We consider two combinations of (� i; R2): (i) (� i; R2) =
(0; 0), which is a simple null model speci�cation, with �i � 0, and; (ii) (� i; R2) =
(v�; 1), which is simple �xed e¤ects speci�cation (given that the zit are �xed over
replications).11 To control the power, we consider v2� = 0:1.

4.2 Asymptotic Tests

FOUR versions of the FE and RE test statistics are considered, constructed using
!̂
(0)
N � 1 and !̂(m)N , m = 1; 2; 3; as de�ned at (10)-(12), and all are based on the
restricted estimator, �̂.12 Speci�cally:

1. F-test statistics (denoted F! in the Tables)

F (m)! = !̂
(m)
N (FN � 1) + 1; m = 0; 1; 2; 3; (18)

where

FN =
(RSSR �RSSU)=(N � 1)
RSSU=(N(T � 1)�K)

� F (0)! ;

is the standard F-test statistic. The corresponding test procedure, for each
separate statistic (18), employs critical vales from an F distribution with n1
and n2 degrees of freedom, respectively, where n1 = N � 1 and n2 = N(T �
1) � K. That is, for each m = 0; 1; 2; 3, reject H0 if F

(m)
! > cN;�; where

Pr (� > cN;�) = �; for chosen �; and � � F (n1; n2)
11We also considered a pure random e¤ects speci�cation, � i = v�; R2 = 0, and the results show

that the power properties of the modi�ed �xed e¤ects test and the modi�ed random e¤ects test
are very similar.
12The estimator ~!N , based on the unrestricted estimator (i.e., �xed e¤ects estimator), is also

considered, but the �nite sample performance of the tests considered is monotonically inferior to
that based on the estimator of !̂N :
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2. One sided (positive) RE-test statistics (denoted R! in the Tables)

R(m)! = !̂
(m)
N RN ; m = 0; 1; 2; 3 (19)

where

RN =

s
NT

2 (T � 1)

�
û0 (IN 
A) û

û0û

�
� R(0)!

is the one sided (positive) standard RE-test Statistic. The corresponding
test procedure, for each separate statistic (19), employs critical values from
a N (0; 1) distribution. That is, for each m = 0; 1; 2; 3, reject H0 if R

(m)
! > z�;

where Pr (Z > z�) = �; for chosen �; and Z � N (0; 1).

4.3 Bootstrap Tests

As is well known, asymptotic theory can provide a poor approximation to actual
�nite sample behaviour and that bootstrap procedures often lead to more reliable
inferences.13 Therefore, we also consider a simple wild bootstrap procedure scheme,
based on Mammen (1993) and Davidson and Flachaire (2008), which might be
employed in order to provide closer agreement between the desired nominal and the
empirical signi�cance level of the proposed test procedures and which has proved
e¤ective in previous studies; see, for example, Godfrey and Orme (2004). The wild
bootstrap is implemented using the following steps:

1. Estimate the models (2) and (4) to get ûit ; i = 1; :::; N , and construct test
statistics F (m)! and R(m)! ; m = 0; 1; 2; 3:

2. Repeat the following B times:

(a) Generate u�it = "itûit; where the "it are i.i.d., over i and t; taking the
discrete values �0:5 with an equal probability of 0:5:

(b) Construct
y�it = z

0
it�̂ + "itûit = z

0
it�̂ + u

�
it: (20)

and obtain restricted OLS residuals û�it = y
�
it � z0it�̂

�
; û� = y� � Z�̂ and

restricted and unrestricted residual sums of squares (RSS�R and RSS
�
U ;

respectively).

(c) Construct the bootstrap test statistics

F �(m)! = !̂
�(m)
N (F �N � 1) + 1; F �N =

(RSS�R �RSS�U)=(N � 1)
RSS�U=(N(T � 1)�K)

� F �(0)!

and

R�(m)! = !̂
�(m)
N R�N ; R�N =

s
NT

2 (T � 1)

�
û�0 (IN 
A) û�

û�0û�

�
� R�(0)!

where !̂�(m)N ; m = 1; 2; 3 is constructed as in (10)-(12) but using û�it; and
!̂
�(0)
N � 1:

13See God¤rey (2009) for an excellent guide to bootstrap test procedures for regression models.
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3. Calculate the proportion of bootstrap test statistics, F �(m)! (respectively, R�(m)! ),
from the B repetitions of Step 2c that are at least as large as the actual value
of F (m)! (respectively, R(m)! ). Let this proportion be denoted by p̂(m) and the
desired signi�cance level be denoted by �. The asymptotically valid rejection
rule, for each m; is that H0 is rejected if p̂(m) � �.

The sampling behaviour of all the above the tests are investigated using 5000
replications of sample data and B = 200 bootstrap samples, employing a nominal
5% signi�cance level.

4.4 Results

Before looking at the results from the Monte Carlo study, and drawing on the discus-
sion in Godfrey, Orme and Santos-Silva (2006), it is important to de�ne criteria to
evaluate the performance of the di¤erent tests considered. Given the large number
of replications performed, the standard asymptotic test for proportions can be used
to test the null hypotheses that the true signi�cance level is equal to its nominal
value. In these experiments, this null hypothesis is accepted (at the 5% level) for
estimated rejection frequencies in the range 4% to 6%. In practice, however, what is
important is not that the signi�cance level of the test is identical to the chosen nom-
inal level, but rather that the true and nominal rejection frequencies stay reasonably
close, even when the test is only approximately valid. Following Cochran�s (1952)
suggestion, we shall regard a test as being robust, relative to a nominal value of 5%;
if its actual signi�cance level is between 4:5% and 5:5%. Considering the number
of replications used in these experiments, estimated rejection frequencies within the
range 3:9% to 6:1% are viewed as providing evidence consistent with the robustness
of the test, according to this de�nition.
Under the null, with homoskedastic standard normal errors (reported in Table

1, H0 : �i = 0), the rejection frequencies of both the asymptotic F (0)! � FN and
F
(3)
! tests are close to the nominal signi�cance level of 5%. The asymptotic F-test
based on F (2)! ; however, tends to under reject the null when T is relatively large,
whilst F (1)! su¤ers from large size distortion with empirical signi�cance levels being
considerably smaller than the nominal 5%: The size properties of the R! tests, for
di¤erent !̂N ; are qualitatively similar to those of the F! tests, but tend to have
empirical signi�cance levels that are smaller than those of the corresponding F!
tests. Turning our attention to the bootstrap tests, all the modi�ed �xed and
random e¤ects tests control the empirical signi�cance levels very well. The results
are qualitatively similar for t5 and �26 errors and, con�rming the analysis of Orme and
Yamagata (2006), F (0)! � FN appears quite robust to non-normality, whilst in these
cases as well the bootstrap tests provide very close agreement between nominal and
empirical signi�cance levels. Given these results, we now just compare the power
of the bootstrap tests. All bootstrap F! tests have very similar power, as do the
bootstrap R! tests. However, the power of the bootstrap F! tests are uniformly
higher than power of the corresponding bootstrap R! tests which is as expected
given the analysis in Section 3.2.2 because of the correlation between regressors and
individual e¤ects.
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The above results indicate that, even when the errors are homoskedastic, a wild
bootstrap procedure still o¤ers reliable �nite sample inference for all variants of
the FE and RE tests considered. Now let us look at the results under various
heteroskedastic schemes. Table 2 reports the results under cross-sectional one-break-
in-volatility scheme (HET1). First, and as predicted by the analysis in Section 3.2.3,
both the F (0)! � FN and R(0)! � RN tests reject the correct null too often. On the
other hand, the empirical signi�cance levels of the other F! and R! tests are very
similar to those presented in homoskedastic case. As before, however, the bootstrap
F �! and R

�
! tests provide close agreement between nominal and empirical signi�cance

levels, across all error distributions, so again it is sensible to focus only on the power
properties of these tests. In contrast to the power properties under homoskedastic
errors, under the HET1 scheme the power of bootstrap F �! tests appear di¤erent
across di¤erent variants. For example, F �(0)! � F �N and F �(3)! have similar powers
but are slightly lower than that of F �(2)! , which is again slightly exceeded by that
of F �(1)! . This feature is qualitatively similar for the R�! tests, but is less striking.
Finally, the results con�rm again that F �! has higher power than that of R

�
!:

Table 3 reports the test results under time-series one-break-in-volatility scheme
(HET2). In contrast to the results with HET1 scheme, but still consistent with
prediction of Section 3.2.3, both the F (0)! � FN and R(0)! � RN tests reject the null
too infrequently, especially for N = 20; 50; 100 and T = 5. As before the bootstrap
versions control the size very well, and, interestingly, the power ranking of the
bootstrap tests is di¤erent than that obtained under HET1. In fact, the F �(0)! � F �N
and F �(3)! tests (respectively R�(0)! = RN and R

�(3)
! tests) still have similar powers

but they are now slightly higher than those of the F �(2)! and F �(1)! tests (respectively,
R
�(2)
! and R�(1)! tests), which are in this case comparable.
Based on the analysis in Section 3.2.3 it is possible to derive approximate null

rejection frequencies of the F (0)! � FN test analytically, under the heteroskedastic
schemes of HET1 and HET2. Given the �population�value of !N , and a nominal
signi�cance level of ��100%; the rejection frequency of the FN test is, approximately,
Pr [FN > c�;n1;n2] ; where Pr [Fn1;n2 > c�;n1;n2] = � and Fn1;n2 � F (n1; n2) : But this
is identical to Pr [Fn1;n2 > q], where q = !N(c�;n1;n2�1)+1. More precisely, consider
�rst the case of HET1 where a little calculation shows that, since N is always even
in our experiments; !N = 0:781. Using � = 0:05, it is then straightforward to obtain
q and Pr [Fn1;n2 > q] : Similar calculations can be undertaken for the case HET2 but,
here, !N varies according to whether T is even (!N = 1:02) or odd (!N = 1:13).
From these calculations we obtain the following (approximate) signi�cance levels for
our choices of (N; T ) :

Approximate Signi�cance Levels of FN
T = 5 N = 50

N = 20 N = 50 N = 100 T = 10 T = 20
HET1: 8:8% 9:2% 9:4% 9:2% 9:2%
HET2: 3:5% 3:4% 3:3% 4:8% 4:8%

As can be seen, the obtained empirical signi�cance levels, for FN ; are qualitatively
very similar to these predicted values.
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Table 4 summarises the results under conditional heteroskedasticity depending
on a regressor zit;2 (HET3), where �it = �1[(zit;2 � 1)=30]; i = 1; :::; N; t = 1; :::; T ,
and �1[�] is the inverse of the cumulative distribution function of the �21 distribution.
Since the zit;2 are initially i.i.d. draws from a uniform distribution on (1; 31), the
values of �it(zit;2) are realisations from a �21 distribution. This means that even
though for a given N (and T ) �it will be held �xed for each replication of data,
possibly yielding a realisation of !N 6= 1; as N increases a Law of Large Numbers
implies that the given realisation of !N will converge to unity. For example, when
N = 20 and T = 5, !N = 1:36, yielding a predicted (approximate) signi�cance level
for FN of 1:9%, which explains the under-rejection of this test in our experiments.
For larger sample sizes, the value of !N does, indeed, tend to unity, and the empirical
signi�cance level of FN converges to the nominal level, as expected. Due to the
larger average error variance encountered here, than that under other heteroskedastic
schemes, the power of the tests are lower although, qualitatively, the results are very
similar to those under HET0 but with F �(0)! = F �N and F

�(3)
! (respectively, R�(0)! = R�N

and R�(3)! ) enjoying a slight power advantage and the F �! tests being more powerful
than their R�! counterparts.
Finally, the results under conditional heteroskedasticity, GARCH(1,1) (HET4)

and ARCH(1) (HET5) are reported in Tables 5 and 6, respectively. Similar to the
results obtained under HET1, the F (0)! = FN test rejects a correct null too often but
the empirical signi�cance levels of other variants of the F! tests are very similar to
those presented in homoskedastic case. Again, all the bootstrap F �! tests control the
empirical signi�cance levels very well, and the power rankings are, from the lowest,
F
�(0)
! = F �N and F

�(3)
! , followed by F �(2)! ; then F �(1)! . The same comments apply to

the bootstrap R�! tests, which again exhibit lower power than their F
�
! counterparts.

The results under ARCH(1) (HET5) are are qualitatively similar to those under
GARCH(1,1).
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5 Conclusions

This paper has provided an asymptotic analysis of the sampling behaviour of the
standard F-test statistic for �xed e¤ects, in a static linear panel data model, under
both non-normality and heteroskedasticity of the error terms, when the number of
cross-sections, N; is large and T; the number of time periods, is �xed. First, it has
been shown that a linear transformation of the commonly cited F and RE tests
(using a simple function of restricted residuals) provides asymptotically valid test
procedures, when employed in conjunction with the usual F and standard normal
critical values (respectively). Although asymptotic theory does not always provide
a good approximation to �nite sample behaviour, our experiments show that wild
bootstrap versions of these tests, employing the resampling scheme advocated by
Davidson and Flachaire (2008), yield reliable inferences in the sense of close agree-
ment between nominal and actual signi�cance levels.
Furthermore, it has been established that the asymptotic relationship between

the heteroskedastic robust F-test and the RE-test statistics, carries over from the
homoskedastic case. That is, under (pure) local random e¤ects, they share the same
asymptotic power, whilst under local �xed (or correlated) individual e¤ects the
heteroskedastic robust F-test enjoys higher asymptotic power. A �nal contribution
has been to provide qualitative predictions about the approximate true signi�cance
levels of the standard F and RE Tests in certain special cases. These theoretical
�ndings are supported by Monte Carlo evidence.
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Appendix

In what follows kCk =
p
tr (C0C)=

qP
i

P
j c
2
ij denotes the Euclidean norm of a

matrix C = fcijg :

Proof of Lemma 1.

Write Wi =
u0iAuip
T (T � 1)

; which are independent, so that HN =
1p
N

PN
i=1Wi and

E [Wi] = 0; by Assumption A1(iii). Since kAk =
p
T (T � 1); jWij =

ju0iAuijp
T (T � 1)

�

kuik2 jjAjjp
T (T � 1)

= kuik2 : Thus, by Minkowski�s inequality and Assumption A3(i), for

some � > 0;

E jWij2+� � E
�����
TX
t=1

u2it

�����
2+�

�
"

TX
t=1

n
E
��u2it��2+�o 1

2+�

#2+�
= O(1);

so that �N = 1
2N

PN
i=1E (W

2
i ) = O(1). With Assumption A3(ii), a standard (Lia-

pounov) Central Limit Theorem yields ��1=2N HN
d! N(0; 1). �

Proof of Proposition 1.

The method of proof is nearly identical to that of Orme and Yamagata (2006, Propo-
sition 1) but where, now, our assumptions allow for heteroskedasticity. Brie�y:

(i) Let SN = (RSSR � RSSU)=(N � 1) and ~�2 = RSSU= (N (T � 1)�K) ; so
that

��2N
p
N(FN � 1) =

��2N
~�2
p
N
�
SN � ~�2

�
: (21)

We �rst show that ~�2� ��2N = op (1) ; so that (since ��2N is uniformly positive by
Assumption A2(v)) ~�2=��2N

p! 1: Following Orme and Yamagata (2006, Proof
of Proposition 1), we can write

~�2 =
N

N (T � 1)�K
u0 (M~X �PD)u

N

=
N

N (T � 1)�K

�
u0u

N
� u

0P~Xu

N
� u

0PDu

N

�
=

u0MDu

N (T � 1) +Op(N
�1)

because
u0u

N
,
u0PDu

N
and u0P~Xu are all Op(1) and

N
N(T�1)�K =

1
T�1+O(N

�1).
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Therefore,

~�2 � ��2N =
u0MDu

N (T � 1) �
T ��2N
T � 1 +

��2N
T � 1 +Op(N

�1)

=
1

T � 1

8<:T
 
1

NT

NX
i=1

TX
t=1

u2it � ��2N

!
�

0@ 1

NT

NX
i=1

 
TX
t=1

uit

!2
� ��2N

1A9=;
+Op(N

�1)

= op(1);

because, by Assumption A2(i) and A1(iii), both terms in side the f:g above
are op(1): Thus, provided

p
N
�
SN � ~�2

�
= Op(1); (21) yields

��2N
p
N(FN � 1) =

p
N
�
SN � ~�2

�
+ op (1) :

But from exactly the same argument employed by Orme and Yamagata (2006,
pp.418-419)

p
N
�
SN � ~�2

�
= Op(1) with

p
N
�
SN � ~�2

�
=

1

(T � 1)
1p
N
[u0 (IN 
A)u] + �N + op(1):

Thus, (21) can be expressed as

��2N
p
N(FN � 1) =

1p
N

u0 (IN 
A)u
T � 1 + �N + op(1);

=

r
T

T � 1HN + �N + op(1);

(ii) By Lemma 1,

!N
p
N(FN � 1)�

�Np
�N=2

d! N

�
0;

2T

T � 1

�
;

and the result follows. This completes the proof. �

Proof of Proposition 2.

1. By the Triangle Inequality,
���̂2 � ��2N �� � �����̂2 � u0u

NT

���� + ����u0uNT � ��2N
���� = op(1);

since, as previously noted,
u0u

NT
= ��2N + op(1) and �̂

2 � u0u

NT
= op(1) by the

arguments of Orme and Yamagata (2006, p.422).

2. From the proof of Lemma 1, we have that

1

N

NX
i=1

(u0iAui)
2 � 1

N

NX
i=1

E (u0iAui)
2 p! 0:
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Therefore, by the Triangle Inequality, it remains to show that 1
N

PN
i=1 (û

0
iAûi)

2�
1
N

PN
i=1 (u

0
iAui)

2 p! 0: Since, ûi = ui+ v̂i; where v̂i = �T �i=N1=4�Zi(�̂ � �);
we can write

û0iAûi = u0iAui + 2u
0
iAv̂i + v̂

0
iAv̂i

= u0iAui + Si; say,

so that

1

N

NX
i=1

(û0iAûi)
2
=
1

N

NX
i=1

(u0iAui)
2
+
1

N

NX
i=1

S2i +
1

N

NX
i=1

u0iAuiSi:

Now, 1
N

PN
i=1 (u

0
iAui)

2 = Op(1) and we shall show that 1
N

PN
i=1 S

2
i = op(1) so

that, by Cauchy-Schwartz, 1
N

PN
i=1 u

0
iAuiSi = op(1); then we are done.

Again by Cauchy-Schwartz, 1
N

PN
i=1 S

2
i = op(1) if it can be shown that (i)

1
N

PN
i=1 (u

0
iAv̂i)

2 = op(1); and (ii) 1
N

PN
i=1 (v̂

0
iAv̂i)

2 = op(1) and we take each
of these in turn:

(i) First, by repeated application of Cauchy-Schwartz, noting that kAk2 =
T (T � 1) ;

1

N

NX
i=1

ju0iAv̂ij
2 � T (T � 1)

N

NX
i=1

kuik2 kv̂ik2

� T (T � 1)

vuut 1

N

NX
i=1

kuik4
1

N

NX
i=1

kv̂ik4 :

Now, E kuik4 is uniformly bounded, by Assumption A3(i), so by Markov�s
Inequality, 1

N

PN
i=1 kuik

4 = Op(1) and it su¢ ces to show that 1
N

PN
i=1 kv̂ik

4 =
op(1):
Now,

kv̂ik2 =
T�2ip
N
� 2 �i

N1=4
�0TZi(�̂ � �) + (�̂ � �)0Z0iZi(�̂ � �)

= Si1 + Si2 + Si3; say,

so that, by Cauchy-Schwartz, 1
N

PN
i=1 kv̂ik

4 = op(1) if 1
N

PN
i=1 S

2
im =

op(1); for m = 1; 2; 3: Clearly, 1
N

PN
i=1 S

2
i1 =

T
N
1
N

PN
i=1 �

2
i = op(1); by

Assumption A4(ii) and, by repeated use of Cauchy-Schwartz,

1

N

NX
i=1

S2i2 � 4
Tp
N




�̂ � �


2 1
N

NX
i=1

k�iZik2

= op(1)

because



�̂ � �


 = op(1);

1
N

PN
i=1 k�iZik

2 = 1
N

PN
i=1

P
t

P
j j�izitjj

2 =

Op(1); by an application of Markov�s Inequality, Cauchy-Schwartz and
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Assumptions A2(ii) and A4(ii). Finally,

1

N

NX
i=1

S2i3 �



�̂ � �


4 1

N

NX
i=1

kZ0iZik
2

where kZ0iZik
2 =

P
j

P
k f
P

t zitjzitkg
2 and an application of Markov�s In-

equality, Minkowski�s Inequality, Cauchy-Schwartz and Assumption A2(ii)
yields 1

N

PN
i=1 kZ0iZik

2 = Op(1) and 1
N

PN
i=1 S

2
i3 = op(1):

Thus, 1
N

PN
i=1 kv̂ik

4 = op(1).

(ii) It immediately follows that 1
N

PN
i=1 (v̂

0
iAv̂i)

2 � T (T � 1) 1
N

PN
i=1 kv̂ik

4 =
op(1); and we are done.

3. By Assumption A3(i), andMinkowski�s InequalityE
���PT

t=2w
2
it

���1+� is uniformly
bounded so that 1

N

PN
i=1

PT
t=2w

2
it � 1

N

PN
i=1

PT
t=1E (w

2
it)

p! 0: Thus, by the
Triangle Inequality, it remains to show that 1

N

PN
i=1

PT
t=2 ŵ

2
it� 1

N

PN
i=1

PT
t=1w

2
it

p!
0: Since ûit = uit + v̂it; v̂it = �i=N1=4 � z0it(�̂ � �); we can write

ŵit = wit + v̂it

t�1X
s=1

uis + v̂it

t�1X
s=1

v̂is + uit

t�1X
s=1

v̂is

= wit + ĝit; say.

Thus, by Cauchy-Schwartz, it su¢ ces to show that 1
N

PN
i=1

PT
t=2 ĝ

2
it = op(1):

It will be useful to note that

TX
t=2

ĝ2it �
TX
t=1

 
jv̂itj

TX
t=1

juitj+ jv̂itj
TX
t=1

jv̂itj+ juitj
TX
t=1

jv̂itj
!2

=
TX
t=1

(Sit1 + Sit2 + Sit3)
2 ; say,

so that, now, it is su¢ cient to demonstrate that , 1
N

PN
i=1

PT
t=1 S

2
itm = op(1);

m = 1; 2; 3:
By Cauchy-Schwartz, we have

1

N

NX
i=1

TX
t=1

S2it1 =
1

N

NX
i=1

TX
t=1

v̂2it

 
TX
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juitj
!2
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TX
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!2
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juitj
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S2it2 �
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and

1

N

NX
i=1

TX
t=1

S2it3 �

vuut 1

N

NX
i=1

 
TX
t=1

u2it

!2
1

N

NX
i=1

 
TX
t=1

jv̂itj
!4
:

Both 1
N

PN
i=1

�PT
t=1 juitj

�4
and 1

N

PN
i=1

�PT
t=1 u

2
it

�2
are Op(1); by Markov�s

Inequality, Minkowski�s Inequality and Assumption A3(i). Thus, it su¢ ces to

show that 1
N

PN
i=1

�PT
t=1 v̂

2
it

�2
and 1

N

PN
i=1

�PT
t=1 jv̂itj

�4
are both op(1): The

former is identical to 1
N

PN
i=1 kv̂ik

4 = op(1); by the proof of 2(i), above, and
the latter is op(1) by Assumption A2(ii), A4(ii) and the consistency of �̂: This
completes the proof of part 3.

4. As in previous proofs, by Assumption A3(i) and the Triangle Inequality it
su¢ ces to show that

1

N

NX
i=1

X
t

X
s 6=t

û2itû
2
is �

1

N

NX
i=1

X
t

X
s 6=t

u2itu
2
is

p! 0:

Again, since ûit = uit + v̂it; v̂it = �i=N1=4 � z0it(�̂ � �); we can write

1

N

NX
i=1

X
t

X
s 6=t

û2itû
2
is �

1

N

NX
i=1

X
t

X
s 6=t

u2itu
2
is = 2

1
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NX
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X
t

X
s 6=t

u2itVis

+
1

N

NX
i=1

X
t

X
s 6=t

VitVis

= SN1 + SN2; say,

where Vit = 2uitv̂it + v̂2it; and it su¢ ces to show that SNm = op(1); m = 1; 2:
Now,

jSN1j � 2
1

N

NX
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TX
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u2it

TX
t=1

jVitj

� 2
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NX
i=1

 
TX
t=1

u2it

!2
1
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NX
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jVitj
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Thus, since 1
N

PN
i=1 (

P
t u

2
it)
2
= Op(1); it su¢ ces to show that 1

N

PN
i=1 (

P
t jVitj)

2 =

op(1); or that 1
N

PN
i=1

P
t V

2
it = op(1) since (

P
t jVitj)

2 � T
P

t V
2
it : But this is

true because

1

N

NX
i=1

TX
t=1

V 2it �
1

N

NX
i=1

TX
t=1

v̂4it + 4
1

N

NX
i=1

TX
t=1

uitv̂
3
it + 4

1

N

NX
i=1

TX
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u2itv̂
2
it:

The �rst term on the right hand side is op(1) as are the latter two terms by
an application of Cauchy-Schwartz.

26



Second,

jSN2j �
1

N

NX
i=1

 
TX
t=1

jVitj
!2
= op(1)

by the preceding result, and this completes the proof. �

Proof of Proposition 3.

We can write RN =
1p
2

ĤN

�̂2
; where �̂2 = û0û=NT and

ĤN =
1p

NT (T � 1)
[û0 (IN 
A) û]

=
1p

NT (T � 1)
[y0MZ (IN 
A)MZy] :

By Proposition 1, it is su¢ cient to show that

ĤN = HN +

r
T � 1
T

�N �
r

T

T � 1
N + op (1)

and
�̂2 � ��2N = op (1)

and the result follows.
Establishing the former follows exactly the argument as in Orme and Yamagata
(2006, Proof of Proposition 2), and �̂2 � ��2N = op (1) ; was established above. This
completes the proof. �
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Table 1: Rejection frequencies of the asymptotic and wild-bootstrap modi�ed F-tests
and modi�ed random e¤ects tests under homoskedastic errors (HET0).

H0 : �i = 0 H1 : var (�i) = 0:1, �i correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests

! 1 !̂
(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N 1 !̂

(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N

SN SN
N;T F! F �! F! F �!
20; 5 5:8 2:8 4:7 5:9 6:2 5:9 5:9 6:1 29:0 18:0 25:4 29:4 30:4 29:9 29:8 30:4
50; 5 5:2 2:8 4:5 5:2 5:7 5:8 5:8 5:7 46:8 38:6 44:4 47:1 47:9 48:8 48:3 47:8
100; 5 4:7 3:1 4:1 4:8 5:3 5:2 5:3 5:3 72:1 66:6 70:8 72:3 73:0 74:3 73:6 73:0
50; 10 4:3 1:9 3:1 4:3 4:5 4:7 4:4 4:5 94:2 87:9 92:6 94:2 94:4 94:0 94:4 94:4
50; 20 4:7 1:6 3:4 4:8 5:1 5:2 5:0 5:1 100:0 100:0 100:0 100:0 100:0 100:0 100:0 100:0

R! R�! R! R�!
20; 5 5:1 1:5 3:7 5:2 6:1 5:9 6:1 6:1 23:9 10:8 18:8 24:4 27:0 25:4 26:1 26:9
50; 5 4:6 2:3 3:9 4:5 5:6 5:6 5:6 5:5 32:5 20:4 29:3 32:7 35:9 35:1 35:3 35:8
100; 5 4:4 2:8 3:8 4:6 5:3 5:2 5:1 5:3 55:8 44:7 52:6 55:9 57:6 57:1 57:5 57:7
50; 10 4:1 1:7 2:9 4:0 4:5 4:8 4:5 4:5 89:7 77:7 87:2 89:8 90:5 89:6 90:3 90:5
50; 20 4:6 1:6 3:4 4:6 5:2 5:3 5:0 5:2 100:0 99:9 100:0 100:0 100:0 100:0 100:0 100:0

t5 t5
N;T F! F �! F! F �!
20; 5 4:8 2:4 3:9 5:3 5:5 5:4 5:5 5:4 30:1 20:7 27:6 31:5 31:9 31:7 31:4 31:7
50; 5 4:6 2:7 4:0 4:9 5:3 5:0 5:3 5:2 47:9 40:3 46:4 49:0 49:2 50:5 50:0 49:1
100; 5 5:3 3:5 4:5 5:3 5:9 5:9 5:9 5:8 72:6 68:2 71:4 72:7 73:3 74:7 74:0 73:3
50; 10 5:2 2:1 4:0 5:3 5:7 5:4 5:6 5:7 93:6 87:1 92:0 93:6 94:0 93:3 93:5 93:9
50; 20 4:8 1:5 3:4 4:8 5:1 5:2 5:1 5:1 100:0 99:9 100:0 100:0 100:0 100:0 100:0 100:0

R! R�! R! R�!
20; 5 4:4 1:5 3:2 4:6 5:7 5:6 5:4 5:4 24:2 12:7 21:2 25:8 28:6 26:7 27:7 28:6
50; 5 4:1 2:3 3:6 4:5 5:5 5:1 5:3 5:4 32:9 21:8 30:2 33:9 36:4 35:1 36:1 36:5
100; 5 5:0 3:3 4:3 5:0 5:8 6:1 5:8 5:9 56:6 47:1 55:1 57:7 58:8 58:7 59:2 58:8
50; 10 5:0 2:0 3:8 5:0 5:9 5:4 5:6 5:8 89:3 77:6 87:1 89:7 90:1 88:3 89:9 90:1
50; 20 4:6 1:5 3:4 4:5 5:2 5:2 5:1 5:2 100:0 99:8 100:0 100:0 100:0 100:0 100:0 100:0

�26 �26
N;T F! F �! F! F �!
20; 5 4:5 2:3 3:6 4:4 4:7 5:1 4:7 4:5 30:1 19:7 27:4 31:0 31:5 31:6 32:2 31:4
50; 5 5:1 2:3 3:6 4:8 4:9 5:0 5:0 4:9 46:3 38:4 44:2 46:6 47:2 49:1 47:6 47:3
100; 5 4:9 3:0 4:0 4:8 5:0 5:3 5:2 5:0 72:8 67:8 72:3 73:6 74:4 75:5 74:9 74:3
50; 10 4:5 1:9 3:3 4:4 5:1 5:4 5:0 5:1 93:0 86:9 91:5 93:3 93:3 92:7 93:4 93:4
50; 20 5:2 1:8 3:6 4:9 5:1 5:5 5:4 5:1 100:0 99:9 100:0 100:0 100:0 100:0 100:0 100:0

R! R�! R! R�!
20; 5 4:3 1:4 2:9 3:9 4:7 5:4 4:6 4:4 24:3 11:4 20:3 25:2 27:8 26:8 27:5 27:6
50; 5 4:6 1:8 3:1 4:1 4:9 4:9 4:9 4:8 31:5 20:5 27:8 31:6 34:2 33:3 34:1 34:2
100; 5 4:8 2:8 3:9 4:6 5:1 5:4 5:4 4:9 57:0 45:9 53:9 57:5 59:2 58:2 58:6 59:3
50; 10 4:4 1:7 3:2 4:3 5:1 5:3 5:0 5:1 89:1 76:5 86:7 89:3 89:8 88:1 89:5 89:9
50; 20 5:1 1:7 3:6 4:8 5:2 5:5 5:4 5:2 100:0 99:9 100:0 100:0 100:0 100:0 100:0 100:0

Notes: The model employed is yit = �i +
P3
j=1 zit;j�j + uit, uit = �it"it, where zit;1 = 1, zit;2 is drawn from a

uniform distribution on (1; 31) independently for i and t, and zit;3 is generated following Nerlove (1971), such that
zit;3 = 0:1t+0:5zit�1;3+�it,where the value zi0;3 is chosen as 5+10�i0, and �it (and �i0) is drawn from the uniform
distribution on (�0:5; 0:5) independently for i and t, in order to avoid any normality in regressors. These regressor
values are held �xed over replications. �j = 1 for j = 1; 2; 3. The i.i.d. standardised errors for "it are drawn from:
the standard normal distribution (SN); the t distribution with �ve degrees of freedom (t5); and, the chi-square
distribution with six degrees of freedom (�26). For estimating size of the tests, �i = 0 and power is investigated
using �i =

p
0:1g(zi) where gi(zi) is the standardised value of

P3
j=1

PT
t=1 zit;j , so that the regressors and �i are

correlated. F! is the modi�ed F-test and R! is the modi�ed random e¤ects test, and F �! and R�! are their wild

bootstrap tests, with di¤erent choice of !̂(m)N , m = 0; 1; 2; 3 with !̂(0)N � 1; see section 4.2 and 4.3 Here �it = 1: The
sampling behaviour of the tests are investigated using 5000 replications of sample data and 200 bootstrap samples,
employing a nominal 5% signi�cance level. 28



Table 2: Rejection frequencies of the asymptotic and wild-bootstrap modi�ed F-
tests and modi�ed random e¤ects tests under cross-sectional one-break-in-volatility
heteroskedastic scheme (HET1).

H0 : �i = 0 H1 : var (�i) = 0:1, �i correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests

! 1 !̂
(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N 1 !̂

(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N

SN SN
N;T F! F �! F! F �!
20; 5 9:4 2:7 4:9 6:6 6:1 5:8 5:9 5:9 26:9 14:2 18:4 21:0 20:5 22:8 20:5 20:0
50; 5 9:2 2:8 4:7 5:6 5:8 5:5 5:8 5:7 37:6 21:2 26:3 28:8 28:0 31:6 29:1 27:6
100; 5 9:1 3:2 4:7 5:4 5:5 5:4 5:5 5:5 55:2 40:4 43:3 44:7 44:2 49:5 46:2 44:1
50; 10 9:1 1:8 3:8 5:2 5:2 4:9 5:1 5:2 82:7 68:1 73:3 74:5 74:1 81:5 78:0 74:1
50; 20 8:7 1:2 2:9 4:5 4:8 4:8 4:9 4:8 99:8 98:5 99:5 99:4 99:5 99:7 99:7 99:5

R! R�! R! R�!
20; 5 8:6 1:6 3:7 5:6 6:1 5:6 5:8 5:9 22:5 8:3 13:8 16:6 18:0 19:8 18:2 17:7
50; 5 8:8 2:0 4:1 5:2 5:8 5:6 5:7 5:7 27:9 10:3 16:3 19:0 20:9 21:4 21:0 20:7
100; 5 8:7 2:8 4:3 5:1 5:5 5:3 5:4 5:4 42:7 24:9 29:7 31:9 32:9 36:3 34:0 32:6
50; 10 8:7 1:6 3:5 5:0 5:2 4:9 5:2 5:2 75:5 53:9 63:3 65:7 66:1 73:4 69:3 66:0
50; 20 8:6 1:2 3:0 4:6 4:8 4:7 4:9 4:8 99:7 97:6 99:0 99:1 99:0 99:5 99:5 99:0

t5 t5
N;T F! F �! F! F �!
20; 5 8:5 2:7 4:6 6:0 5:8 5:6 5:4 5:6 26:6 16:0 20:0 21:9 21:7 23:5 22:4 21:1
50; 5 8:6 2:9 4:3 5:5 5:2 5:3 5:4 5:1 39:3 24:4 28:6 30:9 30:7 33:1 31:5 30:3
100; 5 10:4 3:3 4:8 6:2 5:8 6:0 6:1 5:8 56:9 43:2 46:4 47:4 47:3 52:3 49:5 47:1
50; 10 9:2 1:8 3:9 5:2 5:6 5:2 5:5 5:5 82:1 68:0 73:7 74:6 73:6 80:4 77:1 73:5
50; 20 8:8 1:2 3:0 4:7 5:1 5:3 4:7 5:1 99:7 98:2 99:0 99:3 99:2 99:4 99:4 99:2

R! R�! R! R�!
20; 5 7:6 1:8 3:6 5:1 5:9 5:5 5:6 5:6 22:4 9:3 14:6 17:6 19:2 21:0 19:4 18:4
50; 5 8:1 2:1 3:8 4:9 5:3 5:2 5:2 5:2 28:6 11:7 17:3 20:5 21:9 22:7 22:0 21:6
100; 5 9:9 2:8 4:4 5:7 6:0 6:0 6:0 5:9 44:5 27:2 32:4 35:1 35:6 38:8 37:1 35:5
50; 10 8:8 1:7 3:7 5:1 5:5 5:1 5:6 5:6 75:3 56:3 64:6 66:5 67:1 72:7 70:2 67:0
50; 20 8:7 1:3 3:0 4:7 5:1 5:3 4:8 5:0 99:5 96:9 98:5 99:0 98:9 99:0 99:1 98:9

�26 �26
N;T F! F �! F! F �!
20; 5 8:4 2:6 4:5 5:5 5:1 5:4 5:0 4:9 26:4 15:1 18:8 20:8 19:9 23:0 21:1 19:3
50; 5 8:4 2:2 3:7 4:5 4:5 4:9 4:7 4:4 36:6 21:2 25:7 27:6 27:5 30:2 28:4 27:1
100; 5 9:5 3:0 4:4 5:2 5:5 5:5 5:3 5:4 57:3 41:0 44:5 45:9 45:7 50:6 47:6 45:6
50; 10 9:1 1:7 3:4 4:7 4:8 5:1 5:0 4:8 81:4 67:6 72:7 74:0 73:9 80:0 76:7 73:9
50; 20 8:5 1:6 3:4 5:1 4:7 5:1 4:7 4:7 99:7 98:4 99:4 99:5 99:4 99:5 99:6 99:4

R! R�! R! R�!
20; 5 7:6 1:4 3:2 4:7 5:3 5:2 5:2 5:0 22:2 8:5 14:1 16:2 17:8 19:7 18:5 17:3
50; 5 7:9 1:7 3:1 4:0 4:5 4:9 4:7 4:4 26:7 10:6 15:5 18:3 19:8 20:2 20:1 19:5
100; 5 9:1 2:5 4:1 4:9 5:4 5:4 5:4 5:4 43:9 25:9 30:2 32:9 33:2 37:1 34:8 33:0
50; 10 8:9 1:6 3:1 4:4 4:9 5:0 5:0 4:8 74:6 53:7 63:2 65:7 66:1 71:5 69:5 66:0
50; 20 8:4 1:6 3:4 5:1 4:8 5:2 4:7 4:8 99:6 97:3 99:0 99:1 99:1 99:3 99:4 99:0

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except �it = �1; i = 1; :::; N1; t = 1; :::; T
and �it = �2; i = N1 + 1; :::; N; t = 1; :::; T with N1 = dN=2e, where dAe is the largest integer not less than A,
�1 = 0:5 and �2 = 1:5.
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Table 3: Rejection frequencies of the asymptotic and wild-bootstrap modi�ed F-
tests and modi�ed random e¤ects tests under time-series one-break-in-volatility het-
eroskedastic scheme (HET2).

H0 : �i = 0 H1 : var (�i) = 0:1, �i correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests

! 1 !̂
(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N 1 !̂

(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N

SN SN
N;T F! F �! F! F �!
20; 5 3:1 3:1 4:3 5:2 5:5 5:6 5:7 5:6 27:2 20:4 25:8 32:7 33:3 29:5 29:7 33:5
50; 5 3:2 3:6 4:5 5:1 5:5 5:9 5:6 5:5 44:9 41:5 46:0 51:5 52:2 49:8 49:2 52:2
100; 5 2:9 3:7 4:5 4:8 5:5 5:5 5:5 5:5 70:7 68:6 71:0 75:7 76:2 74:3 73:2 76:3
50; 10 3:8 1:8 3:1 4:5 4:7 4:7 4:8 4:7 85:8 75:2 80:5 87:0 86:8 85:7 83:9 86:9
50; 20 4:2 1:6 3:3 4:5 5:1 5:2 5:4 5:1 99:9 99:5 99:7 99:9 99:9 99:8 99:9 99:9

R! R�! R! R�!
20; 5 2:6 2:0 3:6 4:5 5:7 5:4 5:7 5:7 21:3 12:1 19:1 26:5 30:5 25:2 26:1 30:6
50; 5 2:7 2:7 3:8 4:5 5:6 5:7 5:7 5:7 29:8 23:3 29:7 36:0 39:6 35:2 35:6 39:5
100; 5 2:7 3:3 4:1 4:4 5:6 5:5 5:4 5:6 53:3 48:6 53:4 59:8 62:3 57:5 57:7 62:3
50; 10 3:5 1:6 3:0 4:1 4:7 4:7 4:8 4:7 78:9 62:1 71:7 80:2 81:5 78:0 76:9 81:5
50; 20 4:1 1:6 3:2 4:4 5:1 5:2 5:3 5:1 99:8 99:0 99:5 99:8 99:9 99:7 99:7 99:9

t5 t5
N;T F! F �! F! F �!
20; 5 3:0 3:4 4:0 4:9 5:4 5:4 5:4 5:5 29:1 23:3 29:6 35:8 36:2 32:2 33:2 36:3
50; 5 2:9 3:4 4:0 4:6 5:2 5:2 5:3 5:1 46:5 44:4 48:4 53:8 54:6 51:5 51:1 54:5
100; 5 3:3 4:4 5:0 5:5 6:0 6:0 6:1 6:0 71:9 70:7 72:9 76:9 77:7 75:1 75:0 77:6
50; 10 4:4 2:2 4:2 5:0 5:7 5:3 5:7 5:7 85:3 75:9 80:7 86:8 86:9 84:8 83:9 86:9
50; 20 4:0 1:7 3:2 4:5 5:1 5:2 4:9 5:1 99:9 99:1 99:5 99:9 99:9 99:7 99:6 99:9

R! R�! R! R�!
20; 5 2:3 1:9 2:8 3:9 5:4 5:4 5:3 5:3 22:9 13:9 21:8 29:3 32:9 27:8 29:4 33:1
50; 5 2:3 2:7 3:4 4:0 5:3 5:3 5:4 5:3 31:0 25:7 32:4 38:4 41:8 37:1 38:2 41:7
100; 5 3:0 3:9 4:5 5:0 5:8 6:1 6:1 5:8 55:5 52:6 56:7 63:2 64:8 60:5 61:0 64:9
50; 10 4:1 2:0 3:9 4:7 5:7 5:4 5:8 5:8 79:2 63:6 72:9 80:7 81:9 78:0 77:5 81:8
50; 20 3:9 1:6 3:2 4:3 5:0 5:2 5:0 5:0 99:9 98:7 99:3 99:9 99:9 99:5 99:5 99:8

�26 �26
N;T F! F �! F! F �!
20; 5 3:2 2:8 3:8 4:3 4:6 5:2 4:7 4:6 28:8 22:7 27:9 35:1 35:9 31:1 32:0 35:9
50; 5 3:4 3:0 3:8 4:2 4:8 4:6 4:7 4:7 44:2 41:4 45:2 51:0 52:2 49:4 49:0 52:1
100; 5 3:3 3:7 4:5 4:6 5:1 5:0 5:2 5:0 71:8 70:7 72:9 77:4 77:6 75:6 74:6 77:6
50; 10 4:4 2:3 3:7 4:9 5:3 5:5 5:4 5:3 84:1 74:7 79:8 85:5 85:8 83:8 82:8 85:8
50; 20 4:8 2:0 3:5 4:8 4:8 5:2 4:8 4:8 99:9 99:2 99:7 99:9 99:9 99:9 99:9 99:9

R! R�! R! R�!
20; 5 2:5 1:9 2:7 3:4 4:5 5:1 4:6 4:4 22:1 14:3 21:1 28:1 32:1 26:8 27:8 32:2
50; 5 2:9 2:5 3:2 3:7 4:7 4:9 4:6 4:6 27:9 22:2 28:1 35:0 38:3 33:9 34:4 38:5
100; 5 3:1 3:4 4:1 4:4 5:2 5:2 5:2 5:1 54:7 50:2 54:8 62:0 64:1 59:0 59:1 64:2
50; 10 4:2 1:9 3:4 4:6 5:1 5:5 5:4 5:1 77:8 61:4 71:5 79:7 81:0 76:9 77:0 81:0
50; 20 4:7 2:0 3:5 4:7 4:7 5:0 4:8 4:7 99:9 98:7 99:4 99:9 99:9 99:7 99:8 99:9

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except �it = �1; i = 1; :::; N; t = 1; :::; T1,
�it = �2; i = 1; :::; N; t = T1 + 1; :::; T with T1 = dT=2e, �1 = 0:5 and �2 = 1:5.
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Table 4: Rejection frequencies of the asymptotic and wild-bootstrap modi�ed F-tests
and modi�ed random e¤ects tests under conditional heteroskedasticity depending
on a regressor (HET3).

H0 : �i = 0 H1 : var (�i) = 0:1, �i correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests

! 1 !̂
(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N 1 !̂

(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N

SN SN
N;T F! F �! F! F �!
20; 5 2:1 3:9 4:6 5:3 5:7 5:5 5:8 5:4 9:8 13:1 18:5 20:1 20:8 17:5 20:6 20:5
50; 5 5:7 3:1 4:1 4:8 5:4 5:1 5:1 5:1 18:5 13:9 16:9 18:9 19:8 19:0 19:6 19:4
100; 5 5:6 3:9 4:9 5:3 6:0 6:3 5:9 5:8 30:0 25:9 29:7 31:1 32:7 32:7 32:5 32:4
50; 10 5:5 2:6 4:0 5:1 5:5 5:5 5:6 5:5 47:5 31:4 40:5 45:2 46:3 43:5 45:3 46:1
50; 20 5:4 2:2 3:9 5:1 5:5 5:4 5:5 5:5 80:6 64:2 75:6 79:6 80:0 77:7 79:7 80:0

R! R�! R! R�!
20; 5 1:7 2:5 3:4 4:4 5:9 6:0 5:9 6:0 7:2 7:8 13:4 16:0 18:9 15:8 18:6 18:6
50; 5 5:1 2:5 3:3 4:1 5:6 5:3 5:2 5:3 13:1 7:6 10:8 12:6 15:4 13:8 15:1 14:8
100; 5 5:3 3:5 4:4 4:9 6:0 6:3 6:0 5:8 21:7 16:1 20:7 22:7 25:2 23:9 24:9 24:9
50; 10 5:3 2:5 3:7 4:8 5:5 5:4 5:5 5:4 41:0 22:6 33:0 38:5 40:5 36:5 38:8 40:2
50; 20 5:3 2:2 3:7 5:0 5:4 5:4 5:4 5:4 76:9 57:5 71:6 75:9 77:0 73:8 76:8 76:9

t5 t5
N;T F! F �! F! F �!
20; 5 1:6 4:1 4:7 5:2 5:4 5:4 5:3 5:4 10:4 15:5 20:8 22:5 23:5 19:8 22:8 23:1
50; 5 5:6 3:7 4:6 5:3 5:7 5:7 5:4 5:6 18:7 16:6 20:0 21:5 23:1 22:2 23:3 22:9
100; 5 4:4 3:4 4:2 4:5 5:4 5:4 5:4 5:3 30:9 28:8 33:0 35:1 36:7 35:5 36:4 36:3
50; 10 6:1 2:9 4:2 5:5 5:9 5:8 5:9 5:8 49:7 35:6 44:8 48:5 49:4 46:8 48:7 49:4
50; 20 4:6 1:8 3:2 4:6 5:1 5:5 5:0 5:1 79:4 65:1 76:2 79:6 79:8 77:5 79:5 79:7

R! R�! R! R�!
20; 5 1:3 2:4 3:1 3:8 5:6 5:7 5:3 5:3 7:7 9:2 15:2 17:9 21:2 17:4 20:4 20:8
50; 5 5:1 2:7 3:7 4:3 5:7 5:6 5:4 5:5 13:3 9:1 12:4 14:9 17:6 15:4 17:0 17:3
100; 5 4:2 3:1 3:8 4:3 5:3 5:2 5:3 5:2 21:9 18:0 23:3 25:6 28:0 26:4 27:8 27:6
50; 10 5:7 2:4 3:8 5:2 5:9 5:8 5:9 5:8 43:3 26:7 38:0 42:8 44:4 40:0 43:0 44:2
50; 20 4:6 1:7 3:2 4:4 5:1 5:5 5:0 5:1 76:3 59:8 72:8 76:5 77:4 73:7 76:8 77:3

�26 �26
N;T F! F �! F! F �!
20; 5 1:8 4:4 4:9 5:3 5:7 6:0 5:5 5:5 10:6 13:2 17:9 19:3 20:7 17:6 20:3 20:2
50; 5 5:4 3:4 4:3 4:8 5:4 5:0 5:0 5:0 16:9 13:3 15:8 17:2 18:5 18:1 18:6 18:0
100; 5 5:4 3:7 4:2 4:7 5:6 5:5 5:5 5:4 27:8 25:1 28:1 29:9 31:4 31:1 31:0 31:0
50; 10 6:0 2:5 3:7 4:6 5:0 5:5 5:5 4:9 47:9 33:7 41:5 46:1 47:3 46:6 46:7 47:2
50; 20 4:5 1:5 3:1 3:9 4:2 4:5 4:7 4:2 80:0 66:7 77:0 80:5 80:9 79:4 80:9 80:8

R! R�! R! R�!
20; 5 1:4 2:7 3:2 4:0 5:7 5:9 5:6 5:6 8:0 8:2 13:1 14:8 18:4 15:3 17:9 18:0
50; 5 4:8 2:8 3:6 4:2 5:3 5:1 5:1 4:9 12:3 6:9 9:7 11:4 14:4 12:6 13:8 14:1
100; 5 5:2 3:4 3:9 4:4 5:6 5:4 5:4 5:3 20:5 14:7 19:0 21:2 23:5 21:8 22:8 23:1
50; 10 5:7 2:3 3:5 4:4 5:1 5:5 5:4 5:0 40:9 23:7 33:2 38:6 40:6 38:6 39:7 40:3
50; 20 4:4 1:4 3:0 3:8 4:2 4:4 4:7 4:2 76:5 60:5 72:9 77:0 78:0 75:8 77:9 77:9

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except �it = �c[(zit;2 � 1)=30]=c; i =
1; :::; N; t = 1; :::; T , where �c[�] is the inverse of the cumulative distribution function of chi-squared distribution
with degrees of freedom c. Since zit;2 is drawn from a uniform distribution on (1; 31), �it has mean 1 and variance
2=c, so it is easy to control the degree of heteroskedasticity through the choice of c. We employ c = 1.
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Table 5: Rejection frequencies of the asymptotic and wild-bootstrap modi�ed F-tests
and modi�ed random e¤ects tests under conditional heteroskedasticity, GARCH(1,1)
(HET4).

H0 : �i = 0 H1 : var (�i) = 0:1, �i correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests

! 1 !̂
(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N 1 !̂

(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N

SN SN
N;T F! F �! F! F �!
20; 5 7:2 2:3 4:5 6:0 6:0 5:8 5:8 5:8 30:5 17:6 24:3 27:5 27:5 28:8 28:1 27:1
50; 5 7:9 2:3 4:4 5:5 5:8 5:6 5:4 5:7 47:2 34:9 39:1 41:2 40:9 46:2 42:8 40:7
100; 5 8:8 2:9 5:1 6:3 6:0 5:8 6:0 6:0 71:1 60:8 62:9 64:4 63:4 70:4 66:2 63:3
50; 10 6:8 1:8 3:9 5:2 5:7 5:9 5:5 5:7 92:7 85:3 89:9 90:9 90:8 92:6 91:9 90:8
50; 20 5:6 1:6 3:6 4:9 5:3 5:6 5:3 5:3 100:0 99:9 100:0 100:0 100:0 100:0 100:0 100:0

R! R�! R! R�!
20; 5 6:5 1:3 3:5 5:3 6:0 5:7 5:8 5:8 25:7 10:1 17:9 22:5 24:2 24:6 24:5 23:8
50; 5 7:4 1:9 3:7 5:1 5:8 5:4 5:5 5:7 33:7 18:4 24:9 28:6 29:2 32:3 30:4 29:0
100; 5 8:6 2:6 4:5 5:9 6:0 5:8 5:9 6:0 55:6 40:3 45:9 48:1 49:0 53:2 50:5 49:0
50; 10 6:5 1:6 3:7 5:1 5:6 5:8 5:5 5:4 88:6 74:0 83:2 86:0 85:7 87:4 87:0 85:7
50; 20 5:5 1:6 3:6 4:8 5:3 5:6 5:3 5:3 100:0 99:8 100:0 99:9 100:0 100:0 100:0 100:0

t5 t5
N;T F! F �! F! F �!
20; 5 7:9 1:9 4:2 5:7 5:3 5:1 5:1 5:1 32:7 20:8 27:0 29:7 29:0 31:4 29:8 28:5
50; 5 9:2 2:6 4:4 5:8 5:4 5:3 5:1 5:3 49:7 36:5 41:1 42:7 41:4 47:1 43:6 41:1
100; 5 11:5 3:5 5:6 6:5 6:3 6:2 6:4 6:3 70:8 59:0 59:9 60:3 59:3 67:3 62:2 59:2
50; 10 8:2 1:9 4:0 5:5 5:6 5:5 5:3 5:5 91:9 82:8 86:9 87:8 86:8 90:6 88:8 86:8
50; 20 6:9 1:5 3:8 5:3 5:4 5:5 5:5 5:3 99:9 99:3 99:6 99:4 99:3 99:7 99:7 99:3

R! R�! R! R�!
20; 5 7:4 1:3 3:2 5:1 5:4 5:1 5:2 5:2 27:7 12:0 19:8 24:0 25:7 26:3 26:2 25:2
50; 5 8:7 2:0 3:7 5:3 5:4 5:1 5:2 5:3 36:4 20:0 26:3 29:2 30:5 33:3 31:4 30:2
100; 5 11:1 3:0 5:0 6:2 6:3 6:3 6:4 6:3 56:9 39:5 44:6 46:3 46:6 52:4 48:8 46:4
50; 10 8:0 1:8 3:6 5:3 5:6 5:4 5:3 5:6 87:7 72:1 80:2 82:3 81:9 85:4 84:4 81:9
50; 20 6:8 1:5 3:7 5:2 5:4 5:5 5:5 5:3 99:9 99:0 99:4 99:4 99:2 99:7 99:6 99:1

�26 �26
N;T F! F �! F! F �!
20; 5 6:9 1:9 3:3 4:4 3:7 4:2 3:7 3:4 29:8 17:2 23:2 26:2 25:1 28:0 25:9 24:6
50; 5 8:1 2:0 3:3 4:7 4:3 4:2 4:1 4:2 46:2 33:1 36:9 38:9 37:6 44:6 40:3 37:3
100; 5 9:3 1:8 3:0 4:6 3:8 4:4 3:5 3:7 68:3 56:2 57:3 58:7 57:3 66:5 60:3 57:0
50; 10 7:4 1:2 2:9 4:5 4:3 4:7 4:1 4:3 92:4 84:4 87:6 89:2 88:4 92:3 89:9 88:3
50; 20 6:4 1:1 2:7 4:5 4:8 4:8 4:4 4:8 100:0 99:8 99:9 99:9 99:8 100:0 99:9 99:8

R! R�! R! R�!
20; 5 6:1 1:2 2:2 3:9 3:7 4:1 3:9 3:5 24:5 9:7 16:5 20:5 22:3 23:6 22:7 21:7
50; 5 7:6 1:5 2:5 4:0 4:2 4:4 4:0 4:1 33:6 17:1 22:8 26:1 27:0 30:2 27:7 26:5
100; 5 9:0 1:5 2:7 4:2 3:8 4:4 3:6 3:8 53:1 35:4 40:1 42:6 43:0 48:8 44:6 42:9
50; 10 7:2 1:0 2:6 4:4 4:3 4:8 4:2 4:3 87:8 72:4 81:1 84:0 83:3 86:3 85:1 83:2
50; 20 6:3 1:1 2:7 4:4 4:8 4:8 4:4 4:8 100:0 99:6 99:8 99:9 99:8 100:0 99:9 99:8

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except uit = �it"it; t = �49; :::; T; i = 1; :::; N ,
where �2it = �0+�1u

2
i;t�1+�2�

2
i;t�1. The value of parameters are chosen to be �0 = 0:5, �1 = 0:25 and �2 = 0:25.
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Table 6: Rejection frequencies of the asymptotic and wild-bootstrap modi�ed F-tests
and modi�ed random e¤ects tests under conditional heteroskedasticity, ARCH(1)
(HET5).

H0 : �i = 0 H1 : var (�i) = 0:1, �i correlated with regressors
Asymptotic Tests Bootstrap Tests Asymptotic Tests Bootstrap Tests

! 1 !̂
(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N 1 !̂

(1)
N !̂

(2)
N !̂

(3)
N 1 !̂

�(1)
N !̂

�(2)
N !̂

�(3)
N

SN SN
N;T F! F �! F! F �!
20; 5 9:8 2:7 5:4 6:8 6:2 6:0 6:0 6:0 32:7 19:6 25:4 28:1 27:0 30:4 28:0 26:5
50; 5 10:3 2:5 5:1 6:4 5:7 5:6 5:7 5:6 47:2 33:2 37:2 38:1 36:2 44:4 39:1 35:9
100; 5 11:6 2:6 4:5 6:2 5:3 5:3 5:3 5:2 68:3 53:4 54:9 55:1 52:4 63:7 57:2 52:1
50; 10 7:8 1:6 3:3 5:1 4:8 5:1 4:9 4:8 91:6 82:0 85:6 85:7 84:8 90:6 87:7 84:7
50; 20 6:8 1:4 3:3 5:0 5:0 5:2 5:2 5:0 100:0 99:6 99:7 99:6 99:5 99:8 99:8 99:5

R! R�! R! R�!
20; 5 9:1 1:3 4:3 6:1 6:3 6:0 5:9 6:1 28:0 11:4 19:0 22:8 24:1 25:8 24:9 23:5
50; 5 9:6 1:7 4:1 5:6 5:8 5:6 5:8 5:5 35:1 17:6 23:8 26:8 26:9 31:0 28:8 26:7
100; 5 11:2 2:1 4:0 5:8 5:3 5:5 5:3 5:3 53:3 33:3 38:3 40:1 38:9 47:5 42:9 38:7
50; 10 7:6 1:4 3:0 4:9 4:9 5:1 5:0 4:8 86:6 70:6 78:9 80:4 79:8 84:9 83:1 79:7
50; 20 6:7 1:4 3:2 4:9 5:0 5:2 5:2 5:0 100:0 99:4 99:7 99:6 99:4 99:8 99:7 99:4

t5 t5
N;T F! F �! F! F �!
20; 5 9:2 2:2 4:2 6:0 5:5 5:3 5:2 5:2 36:3 23:7 28:7 31:4 30:6 33:9 31:6 30:0
50; 5 11:9 2:5 5:0 7:0 5:9 5:7 5:7 5:8 51:6 38:2 40:5 41:3 39:4 47:4 42:4 38:8
100; 5 15:1 3:1 5:4 7:0 6:0 5:9 5:8 5:9 69:0 55:3 55:3 55:1 52:3 63:9 56:6 52:0
50; 10 10:9 2:0 4:0 6:0 5:5 5:6 5:4 5:4 90:7 80:4 82:5 82:9 81:5 88:0 84:6 81:3
50; 20 9:0 1:3 3:5 5:6 5:2 4:8 5:2 5:2 99:5 98:0 98:2 98:2 97:7 99:0 98:5 97:7

R! R�! R! R�!
20; 5 8:5 1:2 3:0 4:9 5:6 4:9 5:2 5:3 31:5 14:4 22:3 26:2 27:2 29:5 27:6 26:5
50; 5 11:6 1:8 4:0 6:0 5:8 5:6 5:6 5:6 39:7 20:1 26:8 29:3 29:4 34:1 31:4 29:2
100; 5 14:8 2:4 4:2 6:3 6:0 5:9 5:7 6:0 57:7 36:7 41:0 41:8 41:3 50:1 45:1 41:0
50; 10 10:6 1:9 3:7 5:7 5:4 5:6 5:6 5:3 86:6 70:9 77:0 78:0 76:9 83:0 80:4 76:7
50; 20 9:0 1:3 3:3 5:6 5:2 4:9 5:3 5:2 99:4 97:5 97:9 97:9 97:3 98:8 98:3 97:2

�26 �26
N;T F! F �! F! F �!
20; 5 8:3 2:3 4:0 5:2 4:5 4:3 4:2 4:2 33:2 20:2 25:8 27:6 26:7 31:3 28:1 26:0
50; 5 10:9 1:8 4:0 5:7 4:2 4:0 4:2 4:0 46:2 31:1 34:3 35:3 33:1 41:7 36:2 32:9
100; 5 11:9 1:8 3:7 5:3 4:4 4:2 4:2 4:3 66:6 51:5 51:3 52:0 49:4 61:2 53:4 49:1
50; 10 9:0 1:1 2:7 5:0 4:4 4:3 4:0 4:3 89:8 79:9 82:0 83:4 81:8 88:6 84:7 81:6
50; 20 7:9 1:3 2:3 4:5 4:1 4:3 3:7 4:1 99:8 99:1 98:9 99:0 98:8 99:6 99:1 98:8

R! R�! R! R�!
20; 5 7:6 1:0 2:5 4:4 4:5 4:1 4:2 4:2 28:2 10:9 18:3 22:3 23:0 25:8 24:4 22:5
50; 5 10:5 1:0 2:8 4:8 4:2 4:1 4:1 4:0 33:6 15:2 20:3 23:5 23:7 27:9 25:0 23:2
100; 5 11:8 1:3 2:9 4:7 4:4 4:2 4:2 4:4 52:9 32:2 34:6 37:6 36:6 45:5 39:5 36:3
50; 10 8:8 1:0 2:4 4:8 4:4 4:2 4:0 4:4 85:4 68:4 74:7 77:7 76:2 82:6 79:0 76:1
50; 20 7:8 1:3 2:2 4:5 4:1 4:3 3:7 4:1 99:7 98:7 98:7 98:9 98:6 99:5 98:9 98:6

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except uit = �it"it; t = �49; :::; T; i = 1; :::; N ,
where �2it = �0 + �1u

2
i;t�1. The value of parameters are chosen to be �0 = 0:5 and �1 = 0:5.
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