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Abstract

This paper investigates simultaneous consistent nonparametric testing
of the conditional mean and conditional variance structure of univariate
GARCH, or UGARCH, regression models. The approach is developed
from the Integrated Generalized Spectral (IGS) and Projected Integrated
Conditional Moment (PICM) procedures proposed recently by Escanciano
(2008 and 2009, respectively) for time series models. Extending Escan-
ciano (2008), a new and simple wild bootstrap procedure is proposed to
implement these tests. A Monte Carlo study compares the performance
of these nonparametric tests and four parametric tests of nonlinearity
and/or asymmetry under a wide range of alternatives. The simulation re-
sults demonstrate the proposed bootstrap scheme�s ability to control the
size extremely well and therefore the power comparison seems justi�ed.
The simulation exercise also presents the new evidence of the e¤ect of con-
ditional mean misspeci�cation on various parametric tests of conditional
variance. The testing procedures are also illustrated with the help of the
S&P 500 data.
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1 Introduction

In many economic and �nancial time series applications, such as portfolio se-
lection and asset pricing, deciding whether the dynamics are determined by
the conditional mean and/or conditional variance has signi�cant implications.
The widespread application of the univariate ARCH (UARCH) or its extension,
univariate generalized ARCH (UGARCH), in �nancial econometrics is a clear
indication of the popularity and success of these models.1 Speci�cation testing
procedures of these volatility models, particularly parametric ones, have right-
fully received considerable attention in the literature and almost all of them
implicitly assume a correct speci�cation for the conditional mean. A separate
stream of literature deals with the problem of diagnostic testing of the mean
function in the presence of heteroskedascity. On the other hand, only a few
studies consider simultaneously testing both the mean and variance function.
To test for the presence of the ARCH e¤ects Engle (1982) provided a LM type

testing procedure.2 Despite the singularity problem of the block of information
matrix required to construct a LM test for the GARCH disturbances against
white noise disturbances (Bollerslev, 1986), Lee (1991) bypassed this problem
by showing that for the linear regression model LM tests for the GARCH and
ARCH disturbances are the same. A number of diagnostic testing procedures
have also been proposed in the literature; for example, a portmanteau type test
to test the null that the squared standardized error process is serially uncorre-
lated (Li and Mak, 1994), score-type tests for testing a GARCH speci�cation
against a higher order GARCH (Bollerslev, 1986), for asymmetry (Engle and
Ng, 1993) and for (a) no remaining ARCH e¤ects in standardized errors, (b)
linearity or symmetry against a smooth transition GARCH, and (c) parameter
constancy against smoothly changing parameters (Lundbergh and Teräsvirta,
2002). Halunga and Orme (2009) provided a unifying framework based on a
Conditional Moment (CM) principle and proposed "new" tests for asymmetry
and non-linearity.
The parametric CM tests, however, are not necessarily consistent against all

possible alternatives (see, for example, Bierens, 1982; Holly, 1982; Newey, 1985;
Tauchen, 1985) as they only employ a �nite number of moment restrictions
implied by the model; e.g.,

E [e (�0) jZ] = 0 a.s. for some �0 2 � � <p; (1)

where e (�0) is the regression error and Z is the conditioning set. Further we
want to reemphasize that all above mentioned tests are developed assuming a
correct mean speci�cation. It is worthwhile to quote Engle�s (1982, pp.990)
third interpretation of the ARCH regression model which says "an approxima-
tion to a more complex regression which has non-ARCH disturbances. The

1To allow for asymmetry and/or nonlinearity in the ARCH/GARCH process, several ex-
tensions, such as exponential GARCH (EGARCH), threshold GARCH (TGARCH), smooth
transition GARCH (STGARCH) to name a few, have been proposed in the subsequent liter-
ature; for a survey of univariate ARCH/GARCH models, see Bollerslev et al. (1994).

2This test has a simple form as TR2and under the null of no ARCH e¤ect (i.e., white noise
disturbances) has a �2 distribution.
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ARCH speci�cation might then be picking up the e¤ect of variables omitted
from the estimated model. The existence of an ARCH e¤ect would be inter-
preted as evidence of misspeci�cation, either by omitted variables or through
structural change. If this is the case, ARCH may be a better approximation to
reality than making standard assumptions about the disturbances, but trying to
�nd the omitted variable or determine the nature of the structural change would
be even better". Noting the possible spill-over e¤ect from neglected misspeci-
�cation of conditional mean on testing the conditional variance and the incon-
sistency of the parametric CM tests, this paper aims to test both joint (mean
and variance) speci�cation of a UGARCH regression model and its marginal
components simultaneously applying a consistent nonparametric approach.
If the conditional mean is misspeci�ed, existing tests in the literature may

perform poorly by over-rejecting the correct conditional variance speci�cation.
A number of studies examined the e¤ect of misspeci�ed mean (e.g., omitted
variables, structural change parameter instability, noisy chaotic function) on
the diagnostic tests of variance speci�cation. For example, Lumsdaine and Ng
(1999) found that under mean misspeci�cation the ARCH-LM test, in general,
over-rejects the null of conditional homoskedasticity and suggested using recur-
sive residuals or some functions of them to robustify the ARCH-LM test.3 For a
noisy chaotic (highly non-linear) conditional mean model with homoskedastic er-
rors, Kyrtsou (2008) showed that the ARCH-LM (Engle, 1982) and the McLeod
and Li (1983) tests for non-linearity in the second moment may exhibit spuri-
ous heteroskedasticity due to inappropriate �ltering of neglected non-linearity.4

Blake and Kapetanios (2007) also found that misspeci�cation of the conditional
mean may lead to the spurious rejection of the null of no ARCH and suggested
a new testing procedure based on an arti�cial neural network (ANN) which is
robust to the presence of neglected non-linearity.5 On the other hand there is
also the problem of testing the conditional mean speci�cation in the presence
of (G)ARCH error. To address this problem a number of techniques have been
suggested in the literature; e.g., using a heteroskedasticity-consistent covariance
matrix estimator or correctly specifying ARCH process (Lee et al., 1993), using a
heteroskedastic consistent auxiliary regression together with the wild bootstrap
(Becker and Hurn, 2009).
The above evidence suggests that it is desirable to test the conditional mean

and variance speci�cation simultaneously. There are some suggestions of se-

3 In their empirical application with the S&P 500 returns, which was also used by Bera and
Higgins (1997), they found that the standard ARCH-LM test rejects the null hypothesis of
conditional homoskedasticity while using recursive residuals and their squares cannot reject
the null.

4Kyrtsou�s noisy chaotic model with homoskedastic error is given by:

Yt = �
Yt�t0

1 + Y c
t�t0

� �Yt�1 + Yt�j (1� Yt�j) + "t; "t v N(0; 1)

where �; � and  are parameters; t0 is the delay, and c is constant.
5 In their empirical application with bilateral exchange rate, they again found that standard

ARCH-LM test rejects the null quite often (18 out of 39 series) while using new tests only 10
series reject the null of no ARCH.
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quential testing; i.e., the conditional mean �rst and then testing the conditional
variance with correctly speci�ed mean function. If sole interest lies in the con-
ditional variance speci�cation, another possibility is to estimate the conditional
mean by some nonparametric method and then use the residuals in the variance
diagnostic test (cf. Blake and Kapetanios, 2007). Although the problem of test-
ing many conditional moment restrictions has been considered in the literature
(see, for example, Chen and Fan, 1999 for mixing data or Delgado, Dominguez
and Lavergne, 2006 for independent data), the literature on joint diagnostic
tests of conditional mean and variance is very limited. Ngatchou-Wandji (2005)
suggested a Wald-type test based on �2-discrepancy measures which is, however,
not consistent against a wide class of alternatives to the correct speci�cation.
The aim of this paper is to develop tests of both speci�cations jointly by em-
ploying consistent testing procedures.
Bierens (1982) �rst proposed a consistent testing procedure, an Integrated

CM (ICM) test, for non-linear parametric regression models involving inde-
pendent and identically distributed (i.i.d.) data. Since then a vast amount of
literature has addressed the issue of consistent testing in both the i.i.d. and time
series contexts. For time series, a few prominent examples are Bierens (1984),
de Jong (1996), Bierens and Polberger (1997), Koul and Stute (1999), Hong
and Lee (2005), Escanciano (2006a, 2006b, 2007a, 2008). This can be broadly
categorized into two classes of tests: namely tests based on a local approach and
tests based on an integrated approach. The �rst approach uses nonparametric
smoothing estimators of a local measure of dependence E [e (�0) jZ] : The local
approach requires smoothing of the data which leads to a less precise �t and for
high (or even moderate) dimension of Z; this approach su¤ers from "curse of
dimensionality"; i.e., considerable bias, even for large sample (see, for example,
Section 7.1 of Fan and Gijbels, 1996 ). But these tests have standard asymptotic
null distributions, though �nite-sample distributions depend on the choice of the
bandwidth and on the nonparametric estimator. On the other hand, ICM tests
use integrated (or cumulative) measures of dependence and avoid the smoothing
by converting conditional orthogonality conditions of (1) to uncountably many
unconditional (parametric) orthogonality moment restrictions; i.e.,

E [e (�0) jZ] = 0 a.s., E [e (�0)w (Z; x)] = 0; a.e. in � � <q; (2)

where the parametric family fw (:; x) : x 2 �g is such that (2) holds and � � <q
is a properly chosen space. More details are provided in Section 3, also see
e.g., Bierens and Polberger (1997), Stinchcombe and White (1998), Escanciano
(2006a). However, in this case the asymptotic null distribution depends on the
Data Generating Process (DGP) and null speci�cation. Hence critical values
can not be tabulated for general cases and a bootstrap procedure is required to
implement the test.
We can, in principle, use the classical ICM tests in our case. However, for

GARCH regression model bootstrapping is a complex and problematic opera-
tional issue. One solution is to use a feasible projected version of the classical
ICM test (Escanciano, 2009), which we shall term as the Projected ICM (PICM)
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test, to address our problem of simultaneous testing of joint and marginal hy-
pothesis. Although this procedure also requires bootstrap, it does not need
to estimate the parameters in the bootstrap world, therefore making it much
simpler to implement. To the best of our knowledge there is no study which
examines this approach in detail in the context of GARCH regression models.
Escanciano (2008) proposed an Integrated Generalized Spectral (IGS) test

which is a consistent joint and marginal testing procedure for conditional mean
and conditional variance models. This test is based on a pair-wise generalized
spectral approach. To calculate the critical values of the IGS tests, the author
suggested and theoretically justi�ed a Fixed Design Wild Bootstrap (FDWB)
procedure which requires estimating the parameters in each bootstrap repli-
cation. The theoretical null conditional heteroskedastic model considered by
Escanciano indeed include GARCH regression models, however the null DGPs
in his Monte Carlo experiments do not include GARCH with conditional mean.
The two null DGPs considered in his simulation design can be consistently es-
timated by the OLS regression, both in real and bootstrap world (see Remark
1). Further the validity of the OLS approach was not checked. This FDWB
method, as we will see later, involves generating two separate bootstrap data
samples: one provides only the conditional mean structure (and does not include
any information about conditional variance structure) while the other provides
conditional variance structure. Therefore, for GARCH regression models the
QML estimation is not possible in the bootstrap world (since we need a single
dependent variable containing both mean and variance structure) whereas we
still require the QMLE in the real world to estimate conditional variance para-
meters. This implies that Escanciano�s procedure is not directly applicable in
our case (see Section 5 for more on this topic).

1.1 Contributions and Plan of the Paper

The �rst major contribution of this paper is to identify a problem of Escanciano�s
(2008) Fixed Design Wild Bootstrap (FDWB) in the context of UGARCH re-
gression model, implying that a modi�cation of this procedure is required to
accommodate this model. Since a full parametric GARCH bootstrap procedure
for IGS tests using the QMLE is operationally problematic, a simple alterna-
tive bootstrap procedure for IGS tests using least squares estimation has been
proposed. Asymptotic analysis suggests that it does not strictly satisfy the suf-
�cient conditions identi�ed in the previous literature (Escanciano 2007b) which
however does not necessarily imply that our procedure is asymptotically in-
valid. Nonetheless, due to the simplicity of the procedure a Monte Carlo study
is conducted to evaluate its ability to control for size of the IGS tests. Our sim-
ulation study demonstrates excellent size property for the proposed bootstrap
procedure which raises questions about the restrictiveness of the conditions set
by Escanciano (2007b) and probably the IGS tests can be implemented under
a weaker set of conditions. Moreover the ability of our procedure to control
the size very well makes power comparisons justi�ed. The speci�cation testing
literature reveals that asymptotically valid tests often display poor size proper-
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ties leading to inconsequential power comparisons. For example, asymptotically
valid tests of stationarity against the alternative of a unit root process is known
to lead to over-rejections in �nite samples when the considered process is sta-
tionary but highly persistent (see, e.g., Lanne and Saikkone, 2003; Caner and
Kilian, 2001). Similarly, Orme (1990) showed that several asymptotically valid
variants of the IM test statistics, such as �TR2�variant proposed by Chesher
(1983) and Lancaster (1984), demonstrate extremely poor size. Shi (2011) found
that the Vuong (1989) test for nonnested model comparison over-reject the null
hypothesis when the null hypothesis is true.
Secondly, we illustrate in detail how to execute the PICM tests for this

model. Thirdly, an extensive Monte Carlo study is conducted to compare the
performance of these two nonparametric tests and four parametric CM tests of
nonlinearity and/or asymmetry considered in Halunga and Orme (2009), Engle
and Ng (1993) and Lundbergh and Teräsvirta (2002). This simulation exercise
also provides us with the opportunity to investigate the e¤ect of conditional
mean misspeci�cation on various parametric LM and CM tests of conditional
variance in the regression context which has not been done in the literature
before. Finally, we illustrate the testing procedures with the help of the S&P
500 data.
The remainder of this paper is organized as follows. In Section 2 we provide

the null model and moment conditions considered here. The PICM testing
framework is discussed next which is followed by the Escanciano�s IGS test
and wild bootstrap scheme suggested by him. In Section 5 the limitations
of Escanciano�s FDWB procedure while applying for our GARCH regression
model are pointed out and we put forward a modi�ed bootstrap scheme. The
parametric CM tests of the conditional variance are brie�y introduced in Section
6. Finally, we present the simulation evidence in Section 7 and an empirical
application in Section 8. All proofs are relegated to the appendix. In the
remaining Ac is the complex conjugate of A; kAkM denotes the weighted norm
A0MAc for a positive de�nite matrix M and a complex vector A.

2 The Null Model and Moment Conditions

Consider a f(yt; X 0
t)
0gt2Z be a strictly stationary and ergodic time series process

on a probability space (
;F ; P ) where yt is the dependent variable and Zt�1 =
(yt�1; X

0
t)
0 2 <1+m;m 2 N; is the explanatory random vector containing lagged

values of yt and possibly other variables. Suppose It�1 =
�
Z 0t�1; Z

0
t�2; � � �

�0
is

the information set at time t� 1 and Ft�1 = �
�
Z 0t�1; Z

0
t�2; � � �

�
is the ���eld

generated by the past information up to and including time t � 1. Then de-
�ne the conditional mean and variance m (It�1) = E [ytj It�1], and h (It�1) =
V ar [ytj It�1] ; respectively, and standardized errors �t =

(yt�m(It�1))p
h(It�1)

; t 2 Z.
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We consider the following parametric model

yt = m (It�1;q; '0) + "0t;

"0t =
q
h (It�1;q; �0)�t; (3)

where �t is i.i.d. (0; 1) ; It�1;q = fZsg
t�q
s=1, q < 1; q 2 N and �0 = ('00; �00)

0 2
� � <p where '0 and �0 represent the true conditional mean and conditional
variance parameters, respectively. This speci�cation is quite general and in-
cludes linear ARMA-ARCH, ARMA-GARCH as well as nonlinear conditional
mean (e.g., GARCH-in-Mean, bilinear) and non-linear and asymmetric variance
models (e.g., GJR GARCH, EGARCH, STGARCH ).
To focus our discussion we will consider the AR(1)-GARCH(1; 1) process,

where

m (It�1;q; '0) = Wt'0 = '00 + '01yt�1;

h (It�1;q; �0) = �00s0;t�1 = �00 + �01"
2
0;t�1 + �01h0;t�1; (4)

with Wt = (1; yt�1) ; '
0 = ('0; '1) ; st�1 =

�
1; "2t�1; ht�1

�0
, �=(�0; �1; �1)

0
:

For notational convenience we write mt � m (It�1;q; ') and ht � h (It�1;q; �).
Under correct model speci�cation, f"0tg is MDS wrt Ft�1; with zero mean and
conditional variance ht: That is the correct joint speci�cation is tantamount to
saying

H0 : E [e0;1tjIt�1] = 0 a.s. and E [e0;2tjIt�1] = 0 a.s. for some �0 2 �; (5)

where e0;1t � "0t = Yt �m0t and e0;2t � "20t � h0t. Or more compactly

H0 : E [e0;tjIt�1] = 0 a.s. for some �0 2 �; (6)

where e0;t � et (�0) = (e0;1t; e0;2t)
0
: It is important to note that �rst condi-

tional moment restriction (CMR) corresponds to adequacy of the conditional
mean whereas both CMRs are necessary for correct speci�cation of conditional
variance.
We assume that our model satis�es the following regularity conditions:

Assumption 2.1 fyt; Xtgt2Z is a strictly stationary and ergodic process.

Assumption 2.2 E
�
e20;1t

�
= E

h
(yt �m0t)

2
i
<1; and

E
�
e20;2t

�
= E

�
e20;1t � h0t

�2
<1:

Assumption 2.3 Let �0 be a small convex neighborhood of �0: The functions
m (It�1;q; :) and h (It�1;q; :) are twice continuously di¤erentiable (a.s.) wrt � 2
�0: Also, E

�
sup�2�0

g0jt (�)� < 1; j = 1; 2 where g01t (�) =
@e1t
@�0 = @mt

@�0 ;

g02t (�) =
@e2t
@�0 = 2e1t (�) g

0
1t (�)� @ht

@�0 :

Assumption 2.4 The parameter space � is compact in <p and �0 belongs to
the interior of �:
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Assumption 2.5 The observed information set at time t; bIt; may contain some
initial values and satis�es 

TX
t=1

�
E sup
�2�0

m�bIt�1; ���m (It�1; �)2�1=2!2 = o (T ) ;

0@ TX
t=1

"
E sup
�2�0

�Yt �m�bIt�1; ���2 � (Yt �m (It�1; �))22
#1=21A2

= o (T ) ;

 
TX
t=1

�
E sup
�2�0

h�bIt�1; ��� h (It�1; �)2�1=2!2 = o (T ) :

These assumptions are fairly general and considerably weaker compared to
the related conditions made in the literature. Assumptions 2.1 and 2.2 do not
involve any mixing or asymptotic independence assumption as opposed to the
mixing Assumption A.1 in Hong and Lee (2003), yet they allow for a long
memory process. Assumption 2.3 and 2.4 are standard in the literature see,
e.g., Escanciano (2006a) and satis�ed in our model. Finally, Assumption 2.5 is
a start-up value condition and similar in spirit to Assumption A4 in Hong and
Lee (2003), which ensures that the impacts of initial values are asymptotically
negligible. This condition holds for many time series models including ARMA-
GARCH models; see Francq and Zakoian (2004).

3 The Projected ICM (PICM)Test

3.1 Test Statistics and Limit Distribution

The underlying idea of the ICM tests is to characterize the CMR under con-
sideration by an in�nite number of unconditional moment restrictions. More
speci�cally, for a moment condition of the form E [et (�0)jZt�1] ; we have (by
the law of iterated expectation)

E [et (�0)w (Zt�1; x)] =

Z
(�1;x]

E [et (�0)jZt�1 = x] dPz; x 2 <1+m; (7)

where Pz is a stationary probability measure of Zt�1 and w (Zt�1; x) is some
weighting function such that the above equivalence holds (see Lemma 1 for the
su¢ cient conditions for the weight function). Now from (7) and Billingsley
(1995, Theorem 16.10iii), we have

E [et (�0)jZt�1] � 0 a.s., E [et (�0)w (Zt�1; x)] � 0:

Within this framework, the null hypothesis can be written as:

H0 : E [et (�0)w (Zt�1; x)] = 0; 8x 2 <1+m and some �0 2 �;
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against the class of nonparametric alternatives

HA : Pz [E [et (�0)w (Zt�1; x)] 6= 0] > 0; 8 � 2 �:

Lemma 1 Let Cb
�
<1+m

�
be the space of all bounded, continuous, complex val-

ued functions on <1+m: Then, any of the following conditions are su¢ cient for
the class of function W = fw (Z; x) : x 2 � � [�1;1]sg ; Z is a random vari-
able with the same dimension as Zt; t 2 Z; � is the nuisance parameter space
with dimension s which depends on the particular family W used to satisfy the
equivalence in (7):

1. W� Cb
�
<1+m

�
is a vector lattice that contains the constant functions and

separate points of R1+m:

2. W� Cb
�
<1+m

�
is a algebra that contains the constant functions and sep-

arate points of <1+m:

3. W = fw (x0Z) : x 2 �g and is a non-polynomial analytical function.

4. W = f1 (Z 2 Bx) : x 2 �g and fBxgx2� is a separating class of Borel sets
of <1+m:

The most commonly used examples of w are the indicator weight function
w (Zt�1; x) = 1 (Zt�1 � x) with x 2 �ind = [�1;1]m+1 (Stute and Zhu, 2002)
and the complex exponential function w (Zt�1; x) = exp (ix0Zt�1) with i =

p
�1

and x 2 �exp = <m+1 (Bierens, 1982). Di¤erent families w have di¤erent power
properties. "Optimal" choices for w depend on the true alternative at hand and
the function used to measure orthogonality restrictions.
Now de�ne the classical marked empirical process as

RT (x; �) = T�1=2
TX
t=1

[et(�)w (Zt�1; x)] :

In the �eld of econometrics and statistics inference, there is a long tradition
of using processes like RT (x; �), see, e.g., Bierens (1982), Stute (1997), Koul
and Stute(1999), Escanciano (2007a) among others. Note that �0 is a nuisance
parameters in the construction of the test and most existing tests do not ac-
knowledge this fact. Since �0 is unknown, deviations in the direction of the
score function cannot be di¤erentiated from local deviation of �0 (i.e., devia-
tions within the parametric model) which may result in tests with low power.
To address this, for any

p
T -consistent estimator �̂, Escanciano (2009) suggested

a projected marked empirical process as follows:

R1T

�
x; �̂
�
= T�1=2

TX
t=1

h
w (Zt�1; x) Ie �G0

�
x; �̂
�
��1g

�
Zt�1; �̂

�i
êt; (8)

9



where êt � et(�̂); Ie is the identity matrix with same dimension of êt;

g (Zt�1; �) =
@et(�)

@�
;

� = E
�
g (Zt�1; �0) g (Zt�1; �0)

0�
; and

G (x; �) = E [g (Zt�1; �)w (Zt�1; x)] :

The idea is that because of the amalgamation of the score information, tests
constructed based on (8) do not waste power due to the local deviation of �0:
Note that, under some regularity conditions,

sup
x2<1+m

R1T �x; �̂��R1T (x; �0) = op (1) : (9)

Because of this key property, implementation of the test neither requires the
asymptotic distribution of the estimator nor � to be estimated in the each boot-
strap world.6

Then the test statistic is a continuous functional of the feasible projected
marked empirical process:

R̂1T (x) = T�1=2
TX
t=1

h
w (Zt�1; x) Ie � Ĝ0

�
x; �̂
�
�̂�1g

�
Zt�1; �̂

�i
êt; (10)

with

Ĝ
�
x; �̂
�

= T�1
TX
t=1

h
g
�
Zt�1; �̂

�
w (Zt�1; x)

i
; and

�̂ : = T�1
TX
t=1

�
g
�
Zt�1; �̂

�
g
�
Zt�1; �̂

�0�
:

Using the Cramer-von Mises (CvM) norm, the test statistic becomes:

CvMT :=

Z
<1+m

R̂1T (x)2 dFT;Z (x) ; (11)

where FT;Z is the Empirical Distribution Function (EDF) of fZt�1gTt=1 : For the
limit distribution of R̂1T (x) ; in addition to the Assumptions 2.1 - 2.5, we require
the following assumptions:

Assumption 3.1 The derivatives g (Zt�1; �) satis�es

E

�
sup
�2�0

kg (Zt�1; �)k2
�
<1; E

h
kg (Zt�1; �0) et (�0)k2

i
<1;

and E [g (Zt�1; �) g0 (Zt�1; �)] is positive de�nite in �0:

6As a matter of fact, any test statistics of the form T�1=2
PT
t=1 a (Zt) êt(�̂); with

E [a (Zt) g(Zt; �0)] = 0; satis�es (9).

10



Assumption 3.2
Gt (x1)�Gt (x2) � Ct kx1 � x2ks1 for each (x1; x2) 2

<1+m � <1+m; for some s1 > 0 and a generic stationary sequence Ct with
E [Ct] <1 where Gt (x1) = E

�
E
�
sup�2�0

e2t (�0) jZt�1 �w (Zt�1; x) jFt�1 � :
Assumption 3.3

p
T
�
�̂ � �0

�
= Op (1) :

Assumption 3.2 requires the existence of conditional Lipschitz moments while
by Assumption 3.3 we only need any

p
T consistent estimator of �. Then follow-

ing Theorem and Corollary provide the limit distribution of the process R̂1T (x)
and CvM test statistics (for proof, see Escanciano, 2009):

Theorem 1 Under the above assumptions,

sup
x2<1+m

R̂1T (x)�R1T (x; �0) = op (1) :

Corollary 1 Under the above assumptions,

R̂1T (x) ) R11;

CvMT ) CvM1 :=

Z
R1+m

R11 (x)2 dFZ (x) ;
where R11 is a Gaussian process with zero mean and covariance function
E
�
Ket (�0) et (�0)

0
K 0� with K = w (Zt�1; x) Ie �G0 (:; �0) ��1g (Zt�1; �0) :

3.2 The PICM Tests of the UGARCH Regression Model

Since the asymptotic null distribution of R̂1T (x) depends on the DGP and null
hypothesis in a complicated way, some approximation is required to obtain
the critical values. More speci�cally, the unknown limiting null distribution

of CvMT =  
�
R̂1T (x)

�
; i.e., the distribution of  

�
R11 (x)

�
; is approximated

by the bootstrap distribution of  
�
R̂�1T (x)

�
where R̂�1T (x) is some bootstrap

version of R̂1T (x). Although there are some suggestions available in the litera-
ture,7 the most popular choice is the wild bootstrap technique which is used in
a variety of problems; see, e.g., Stute et al. (1998), Whang (2000), Escanciano
(2007a) among others.

De�nition 1 A wild bootstrap involves adding together an estimated predicted
part, which serves as a bootstrap world conditional mean, and a bootstrap error
term which allow for heteroskedasticity of unknown form. Consider the regres-
sion model: yt = x0t�+ "t: A typical observation for a wild bootstrap scheme for
this regression model can be written as

y�t = x0t�̂ + "
�
t ;

7For example, the Hansen�s (1996) conditional p-value method, the Khmaladze�s (1981)
martingale transformation, upper bounds for the critical values (Bierens and Ploberger, 1997).
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where �̂ is an estimator of � and "�t = f ("̂t)Ut is the bootstrap error term in
which f ("̂t) is some function of OLS residuals "̂t = yt � x0t�̂ ("̂t can possibly be
obtained using a di¤erent estimator, say e�; other than �̂) and Ut is a mutually
independent drawing from a pick distribution which itself is completely indepen-
dent of the data (yt; x0t) with E (Ut) = 0; V ar (Ut) = 1 and has bounded support.
The two most popular choices of Ut are Mammen�s (1993) i.i.d. Bernoulli vari-
ates with

Pr

�
Ut =

1

2

�
1�

p
5
��

=
1 +

p
5

2
p
5
; Pr

�
Ut =

1

2

�
1 +

p
5
��

= 1� 1 +
p
5

2
p
5
;

(12)
and Davidson and Flachaire�s (2001,2008) Rademacher distribution with

Pr (Ut = 1) = Pr (Ut = �1) = 0:5: (13)

Note that the wild bootstrap method requires a separable moment function "t so
that the dependent variable can be recovered in an additive manner (e.g., in a
regression model, "t = yt�x0t�̂ so that yt = x0t�̂+"t) and involves the estimation
of �0 in each bootstrap replication.

Escanciano (2009) suggested a simple multiplier type approximation of R̂1T (x)
as

R̂�1T (x) = T�1=2
TX
t=1

h
w (Zt�1; x) Ie � Ĝ0

�
x; �̂
�
�̂�1g

�
Zt�1; �̂

�i
Utêt(�̂);

where fUtgTt=1 is a drawing from a pick distribution. This allows the execu-
tion of the tests without estimating the parameters in the bootstrap world (see
Chapter 2.9 in van der Vaart and Wellner, 1996 for a discussion on multiplier
central limit Theorem). This can be seen as an extension of the conventional
wild bootstrap and can be applied to possibly non-separable CMR. For any
continuous functional  (:) ; Escanciano (2009) proved the consistency of this

bootstrap procedure by showing that  
�
R̂�1T (x)

�
d!  

�
R11

�
:

Escanciano (2009) does mention about GARCH regression models in his
paper (see Example 2 in Escanciano, 2009), however details are not provided
there. For the AR-GARCH regression model de�ned in (4), to obtain the mar-
ginal tests corresponding to the conditional mean and the conditional variance,
we construct separate projection for each element of êt = (ê1t; ê2t)

0 and then
sum the resulting test statistics to obtain the joint speci�cation tests. That is,
for êt = fêjtg ; j = 1; 2 we �rst construct

R̂1Tj (x) = T�1=2
TX
t=1

h
w (Zt�1; x) Ie � Ĝ0j

�
x; �̂
�
�̂�1j gj

�
Zt�1; �̂

�i
êjt;

12



with

gj

�
Zt�1; �̂

�
=

@ejt
@�

����
�=�̂

;

Ĝj

�
x; �̂
�

= T�1
TX
t=1

h
gj

�
Zt�1; �̂

�
w (Zt�1; x)

i
; and

�̂j = T�1
TX
t=1

�
gj

�
Zt�1; �̂

�
gj

�
Zt�1; �̂

�0�
:

The step by step PICM testing procedure is given below:

1. Given the information set It�1 =
�
Z 0t�1; Z

0
t�2; � � �

�0
at time t � 1, con-

struct the (T � T ) weight matrix W. For example, the (r; s)-th element
of indicator weight matrix is Wr;s = 1 (Zr�1 � Zs�1) ; r; s = 1; � � � ; T:

2. Estimate �̂ and êt = (ê1t; ê2t)
0 by the QMLE.

3. For i = 1; 2; construct the matrix of derivative eGi with rows gi �Zt; �̂�0
where

g1 (Zt; �) =
@e1t (�)

@�
=

�
@e1t (�)

@'0
;
@e1t (�)

@�0

�0
= (�Wt; 0)

0
;

and

g2 (Zt; �) =
@e2t (�)

@�
=

�
@e2t (�)

@'0
;
@e2t (�)

@�0

�0
=

��
�2Wte1t �

@ht
@'0

�
; � @ht

@�0

�0
;

where (for the GARCH(1,1) case)@ht@' = �2�1"t�1Wt�1 + �1
@ht�1
@' and

@ht
@� = st�1 + �1

@ht�1
@� which can be obtained by recursions. For the

GARCH (p,q) case this can be generalized easily.

4. Regress êi on eGi, i = 1; 2 (deleting the columns containing only zeros); and
obtain the residuals as eeei �M eGi

êi; where M eGi
= IT � eGi � eG0i eGi��1 eG0i is

the usual Projection matrix.

5. Calculate CvMT;i = T�2eee0iWW 0eeei = T�2ê0iPP
0êi; where P �M eGi

W:

6. In bootstrap world, generate ê�i = fUtêitg
T
t=1 where fUtg

T
t=1 is a sequence

of i.i.d. draws from a pick distribution and CvM�
Ti = T�2ê0�i PP

0ê�i :
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7. For joint test, obtain CvMT;J =
P2

i=1 CvMT;i and CvM�
T;J =

P2
i=1 CvM

�
T;i:

8. Reject H0 at 100�% when bootstrap p-value p�T < �; where

p�T = P
�
CvM�

T � CvMT

���fyt; It�1gTt=1� :
In practice, the bootstrap p-value is computed as

p�T =
#
n
CvM�

T;b � CvMT

o
B

;

where# fAg denotes the number of times that eventA occurs, CvM�
T;b; b =

1; � � � ; B are the bootstrap realizations of the test statistics and B is the
number of bootstrap replications.

4 The Integrated Generalized Spectral (IGS) Tests

Most �nancial data shows highly persistent volatility suggesting that the condi-
tioning set for variance speci�cations should contain long lags. Again for large
lags d, classical consistent tests are a¤ected by "curse of dimensionality". For
example, de Jong�s (1996) generalization of Bierens (1982) test for d ! 1 as
T ! 1 su¤ers from two drawbacks: it requires numerical integration with di-
mension T and loss of degrees of freedom due to introducing many lags. In
addition popular conditional variance models (such as GARCH, ARCH(1))
are non-markovian. The IGS testing approach, introduced by Hong (1999) in
a non-linear time series framework, is particularly useful when dealing with
in�nite-dimensional conditioning sets and non-Markovian processes. Hong and
Lee (2003, 2005) extended this idea to test the null for processes having condi-
tional dependence at second and higher conditional moments. Escanciano and
Velasco (2006) proposed generalized spectral tests for Martingale Di¤erence Hy-
pothesis (MDH) which, unlike Hong and Lee tests, do not depend on kernel and
bandwidth parameter and do not require the existence of fourth moment. We
introduce the idea of generalized spectral density below.

De�nition 2 Generalized Spectral Density (Hong, 1999): For a strictly sta-
tionary time series fetg consider the spectrum of the transformed series

�
eiuet

	
;

where i =
p
�1; u 2 (�1;1) : The covariance between eiuet and eivet�j is given

by

�j (u; v) = cov
�
eiuet ; eivet�j

�
j = 0;�1; � � � ;

= E
h
ei(uet+vet�j)

i
� E

�
eiuet

�
E
�
eivet�j

�
;

where the �rst component is the joint and second is the product of marginal
characteristic functions of (et; et�j) : Thus �j (u; v) = 0 for all (u; v) 2 <2 i¤
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et and ej are independent. Assuming sup(u;v)2<2
P1

j=�1 k�j (u; v)k < 1; the
Fourier transform of �j (u; v) exists:

f (!; u; v) =
1

2�

1X
j=�1

�j (u; v) e
�ij!; ! = [��; �] ; (14)

which contains the same information as contained in �j (u; v) and important to
note that no moment condition on et is required. However, when var (et) exists,
the conventional spectral density is obtained from (14) as:

�@
2f (!; u; v)

@u@v
=
1

2�

1X
j=�1

cov (et; et�j) e
�ij!:

For this reason Hong (1999) termed (14) as generalized spectral density. Note
that when fetg is i.i.d., f (!; u; v) becomes a �at generalized spectrum: f0 (!; u; v) =
1
2��0 (u; v) ; ! = [��; �] : Therefore any deviation of f (!; u; v) from f0 (!; u; v)
provides evidence of serial dependence of fetg :

Now we brie�y outline Escanciano�s (2008) joint and marginal IGS tests
which apply a pair-wise generalized spectrum approach. Under H0; we write
the joint CMR as:

j (�0) = E [et (�0) jZt�j ] = 0 a.s. 8j � 1 for some �0 2 � � <p: (15)

By appropriately choosing a weight function w (Zt�j ; x) ; (15) can be written
as:

j;w (x; �0) = E [et (�0)w (Zt�j ; x)] = 0 a.e. in � � [�1;1]
s
;8j � 1; (16)

where � is the nuisance parameter space with dimension s which depends on the
particular familyW used. To consider simultaneously all dependence measures,
de�ne �j;w (:; �0) = j;w (:; �0) for j � 1 and 0;w (:; �0) = E [et (�0)w (Zt; x)] :
Then the Fourier transform of the functions

�
j;w (:; �0)

	1
j=�1 is

fw (u; x; �0) =
1

2�

1X
j=�1

j;w (x; �0) e
�iju; 8u 2 [��; �] ; x 2 �: (17)

Under H0; it becomes fw (u; x; �0) � f0;w (x; �0) = (2�)
�1
�0;w (x; �0) and

serves as the basis to test the hypothesis (5). To avoid the nonparametric
smoothed estimation of (17) (as proposed by Hong and Lee, 2003 based on
Parzen�s (1957) smoothed kernel estimators), a generalized spectral distribution
function is used based on the dependence measure

�
�j;w (:; �0)

	1
j=�1 and the

test is based on the integral of fw (u; x; �0) :

Qw (� ; x; �0) = 2

Z ��

0

fw (u; x; �0) du; 8� 2 [0; 1] ; x 2 �

= 0;w (x; �0) � + 2
1X
j=1

j;w (x; �0)
sin j��

j�
: (18)
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For a sample fYt; It�1;qgTt=1 ; let �̂ be a
p
T -consistent estimator for �0 (e.g.,

the QMLE) and let

ê1t � e1t

�
�̂
�
; ê2t � e2t

�
�̂
�
and êt = (ê1t; ê2t)

0
: (19)

Then, sample analogues of (16) and (18) are, respectively,

̂j;w

�
x; �̂
�

=
1

Tj

TX
t=j

êtw (Zt�j ; x) ; Tj = T � j + 1; (20)

Q̂w

�
� ; x; �̂

�
= ̂0;w

�
x; �̂
�
� + 2

TX
j=1

̂j;w

�
x; �̂
��Tj

T

�1=2
sin j��

j�
; (21)

where
�
Tj
T

�1=2
is a �nite sample correction factor to put lesser weight for larger

lag, which has no e¤ect on asymptotic theory but provides better �nite sample
performance. Under H0; Qw (� ; x; �0) = 0;w (x; �0) � suggesting a test based on

the distance between Q̂w
�
� ; x; �̂

�
and Q̂0;w

�
� ; x; �̂

�
= ̂0;w

�
x; �̂
�
� . We de�ne

the marked empirical process RT;w
�
� ; x; �̂

�
as

RT;w

�
� ; x; �̂

�
=

�
T

2

�1=2 h
Q̂w

�
� ; x; �̂

�
� Q̂0;w

�
� ; x; �̂

�i
=

TX
j=1

T
1=2
j ̂j;w

�
x; �̂
� p2 sin j��

j�
: (22)

To evaluate the distance from RT;w to zero we need to consider some norms; e.g.,
Cramer-von Mises (CvM) and Kolmogorov-Smirnov (KS) functionals. Using the
CvM norm, the joint speci�cation test statistics are given by

J2T;w � J2T;w

�
�̂T

�
=

Z
�0

RT;w �� ; x; �̂�2
M
W (dx) d �

=
TX
j=1

Tj

(j�)
2

Z
�

̂j;w �x; �̂�2
M
W (dx) ;

where �0 = [0; 1]��; W (:) is an integrating function depending on the weight
family W and M is a 2 � 2 psd matrix with rows (m1; 0) and (0;m2) to ob-
tain marginal components from the joint test (see Assumption 4.2). For exam-
ple, m1 = 1; and m2 = 0; leads to marginal test for mean speci�cation. For
any

p
T -consistent estimators �̂; with indicator weight function w (Zt�j ; x) =

1 (Zt�j � x) and W (:) = FT (:) where FT (:) is the empirical distribution func-
tion of fZt�1gTt=1 ; the test statistic has the following simple form:

J2T;I =
TX
j=1

Tj

T (j�)
2

TX
t=1

n
m1�̂

�2
1e ̂

2
I;j;m

�
Zt�1; �̂

�
+m2�̂

�2
2e ̂

2
I;j;v

�
Zt�1; �̂

�o
;

(23)
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where Tj = T � j + 1; �̂2ie = T�1
PT

t=1 ê
2
it; i = 1; 2 and ̂I;j =

�
̂I;j;m; ̂I;j;v

�0
;

with

̂I;j;m

�
Zt�1; �̂

�
=

1

Tj

TX
t=j

ê1tw (Zt�j ; Zt�1) ;

̂I;j;v

�
Zt�1; �̂

�
=

1

Tj

TX
t=j

ê2tw (Zt�j ; Zt�1) :

Note that (m1;m2) = (1; 1) gives the joint test whilst setting (m1;m2) = (1; 0)
and (m1;m2) = (0; 1) give the marginal tests for conditional mean

�
D2
T;I;m

�
and

conditional variance
�
D2
T;I;v

�
; respectively; i.e.,

D2
T;I;m =

TX
j=1

Tj

T (j�)
2

TX
t=1

m1�̂
�2
1e ̂

2
I;j;m

�
Zt�1; �̂

�
; (24)

D2
T;I;v =

TX
j=1

Tj

T (j�)
2

TX
t=1

m2�̂
�2
2e ̂

2
I;j;v

�
Zt�1; �̂

�
: (25)

Similarly with the complex exponential weight function w (Zt�j ; x) = exp (ix0Zt�j)
and W (dx) = ' (x) dx where ' (x) is the standard normal density, the test sta-
tistic can be expressed as

J2T;C =
TX
j=1

T�1j

(j�)
2

TX
t=1

TX
s=j

�
m1

�̂21e
ê1tê1s +

m2

�̂22e
ê2tê2s

�
exp

�
�0:5 (Zt�j � Zs�j)2

�
;

(26)
and analogously D2

T;C;m and D2
T;C;v are de�ned as

D2
T;C;m =

TX
j=1

T�1j

(j�)
2

TX
t=1

TX
s=j

m1

�̂21e
ê1tê1s exp

�
�0:5 (Zt�j � Zs�j)2

�
; (27)

D2
T;C;v =

TX
j=1

T�1j

(j�)
2

TX
t=1

TX
s=j

m2

�̂22e
ê2tê2s exp

�
�0:5 (Zt�j � Zs�j)2

�
: (28)

4.1 Asymptotic Null Distribution and Bootstrap Approx-
imation

To establish the asymptotic theory, in addition to the Assumptions 2.1 - 2.5,
Escanciano (2007b, 2008) made the following assumptions:

Assumption 4.1 Under H0; �̂ satis�es the asymptotic Bahadur expansion

p
T
�
�̂ � �0

�
= T�1=2

TX
t=1

% (It�1;q; �0) et (�0) + op (1) ;
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where % (:) is such that E [% (It�1;q; �0) et (�0) e0t (�0) %0 (It�1;q; �0)] exists and
positive de�nite.

Assumption 4.2 The integrating function W (:) is a probability density func-
tion absolutely continuous wrt Lebesgue measure. M is 2 � 2 psd matrix. The
weight function w (:) is such that the equivalence between (15) and (16) holds
and it is uniformly bounded on compacta. Also, w (:) satis�es the following
Uniform Law of Large Number (ULLN)

sup
x2�c

T�1


nX
t=1

e�tw (�t; x)� E [e�tw (�t; x)]
! 0; as,

whenever f(e�t; �t) ; t = 0;�1; � � � g is strictly stationary and ergodic process withe�t 2 <; �t 2 <1+m; E [1] <1; and �c is any compact subset of � � [�1;1]s :
Assumption 4.1 is satis�ed under mild conditions for most estimators. Con-

ditions for the local QMLE under martingale conditions have been established in
Lee and Hansen (1994). The following Lemma shows that the QMLE �̂ indeed
satis�es Assumption 4.1.

Lemma 2 The QMLE �̂ =
�
'̂0; �̂0

�0
of (3) satis�es

p
T (�̂ � �0) = T�1=2

TX
t=1

%t(�0)et(�0) + op(1);

and E [%t(�0)et(�0)e
0
t(�0)%

0
t(�0)] is �nite and positive de�nite, where J�� is the

negative of the expected Hessian and

%t(�0) = J�1�� h
�1
0t

�
f0t

1
2c0t

0 1
2x0t

�
:

with ft =
@mt

@'
; xt =

1

ht

@ht
@�

; ct =
1

ht

@ht
@'

and f0t = ft('0), c0t = ct(�0); and

x0t = xt(�0):

Given these assumptions the limit distribution of J2T;w under H0 can be

given as J2T;w
d�! J21;w =

R
jRw (� ; x; �0)j2M W (dx) d � (for details and proof,

see Escanciano 2007b, 2008). To perform the IGS tests, Escanciano (2008)

suggested the following FDWB procedure to approximate R�T;w
�
� ; x; �̂

��
=PT

j=1 T
1=2
j ̂�j (x)

p
2 sin j��
j� with

̂�j (x) =
�
̂�j;m (x) ; ̂

�
j;v (x)

�0
=

0@ 1

Tj

TX
t=j

ê�1tw (Zt�j ; x) ;
1

Tj

TX
t=j

ê�2tw (Zt�j ; x)

1A0

;

where ê�t = (ê
�
1t; ê

�
2t)

0 are obtained from the following algorithm:
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A. Estimate the original model (here by the QMLE) and obtain �̂; m̂t; ĥt
and êt:

B. Generate wild bootstrap residuals as "̂�1t = ê1tUt; and "̂
�
2t = ê2tUt for 1 �

t � T where fUtgTt=1 is a sequence of i.i.d. draws from a pick distribution.

C. Given �̂; "̂�1t and "̂
�
2t; generate �xed design bootstrap data according to

Y �1t = m̂t + "̂
�
1t; Y �2t = ĥt + "̂

�
2t for 1 � t � T:

D. Compute �̂
�
from the bootstrap data

�
Y �1t; Y

�
2t; I 0t�1;q

	T
t=1

to construct

ê�1t = Y �1t � m̂�
t ; ê

�
2t = Y �2t � ĥ�t for 1 � t � T where m̂�

t � m
�
It�1;q; �̂

��
and ĥ�t � ĥ�t

�
It�1;q; �̂

��
:

The consistency of this FDWB procedure is proved in Escanciano (2007b)
under previously stated assumptions A1-A7 and the following conditions on �̂

�
:

Assumption 4.3 The estimator �̂
�
satis�es the asymptotic expansion

p
T
�
�̂
�
� �̂
�
= T�1=2

TX
t=1

Ut%
�
It�1;q; �̂

�
êt + op (1) :

5 Problems with Escanciano�s FDWB and AMod-
i�ed Testing Procedure

Since we obtain �̂ and êt by the QMLE in the real world, ideally we would like to
mimic the same estimation procedure in the bootstrap world. We can apply the
QMLE in the bootstrap world for the UGARCH models by adapting the model
based bootstrap used in Pascual et al. (2006) and Christo¤ersen and Gonclaves
(2005). However, this will be computationally costly and can not be performed
with the standard software which may discourage the applied researcher to use
these tests. Unfortunately with Escanciano�s FDWB scheme, which is an easier
alternative to model based bootstrap, it is problematic to employ the QMLE in
the bootstrap world.
To appreciate the problem associated with this procedure, note that in step

C, Y �1t and Y
�
2t provide the conditional mean and variance structure separately in

the bootstrap world; as opposed to the single variable yt in the real world which
contain both mean and variance information. The presence of two dependent
variables thus restricts the use of the QMLE to compute �̂

�
in step D.

Remark 1 The nature of the null DGPs considered in Escanciano�s (2008)
study is the reason for the FDWB working in his simulation study. The null
DGPs are:

DGP1: yt =
p
htut; ht = a+ by2t�1:

DGP2: yt = ayt�1 +
p
htut; ht = b+ cy2t�1:
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Table 1: Empirical size with normal errors using Escanciano�s FDWB
E2

T 100 200 300
D2
I;m 14.80 21.50 26.20

D2
I;v 11.20 8.30 8.70
J2I 14.90 13.90 18.10

D2
C;m 8.90 10.40 12.00

D2
C;v 10.20 7.10 5.70
J2C 11.90 9.30 9.50

The �rst one is an ARCH process with no conditional mean and the second one
is an AR(1) regression model with conditional heteroskedastic (1) error (in short
AR(1)-CH(1) model). Note that unlike our AR-GARCH null model, neither of
these DGPs involves lagged unobserved variables, such as "t�1 or ht�1, making it
possible to estimate the conditional variance parameters by the OLS both in real
and bootstrap world. The author also indicates the application of least squares
estimator in his simulation study (Escanciano, 2008, p.82). In addition, we
remark that it is not veri�ed whether the OLS estimators satisfy Assumption
4.3 in his study.

Remark 2 Escanciano (2008) further illustrates the IGS test with an empirical
application to the S&P 500 data. In particular, he �ts the AR (1)-GARCH(1,1)
to the data and �nds the evidence that the conditional mean is well speci�ed
whereas the conditional variance is misspeci�ed. Though the author does men-
tion that in the real world the QMLE is used to obtain parameter estimates, it
is, however, not clear how the parameter estimates in the bootstrap world are
obtained. Given his FDWB algorithm, we assume that the OLS is used to obtain
�̂
�
:

We have examined the consequences of ignoring this problem of obtaining �̂
�

by the QMLE and employ Escanciano�s FDWB scheme. In particular, in the real
world �̂ is obtained by the QMLE and sample moment conditions are obtained
through these estimates. Then in bootstrap world, in step C, the OLS is applied

to Y �1t on (1; m̂t) and Y �2t on
�
1; ĥt

�
to get bootstrapped moment conditions.

Table 1 reports the size of the IGS tests with a AR(1)-GARCH(1,1) null model
(for details of the DGP, see Section 7). As expected, the poor size performance
of the IGS tests with this procedure is demonstrated in Monte Carlo experiments
which suggests that we need some modi�cations in the testing procedure.
In the next subsection we propose a simple bootstrap procedure which pro-

vide a solution to this problem.

5.1 Modi�ed Test Procedure

To implement the IGS tests for AR-GARCH regression model as de�ned in (4),
the idea put forward in this paper is a simple one: after the QMLE estimation
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to obtain �̂ and ĥt; we consider ĥt as observed and introduce a set of auxiliary
OLS regressions (possibly nonlinear in case of nonlinear speci�cation for mean
function) to obtain the moment conditions in the real world; and �nally mimic-
ing the same OLS regressions in the bootstrap world. In what follows "hats (b)" denotes the QMLE while "tilda (e)" denotes the OLS estimation. A step-
by-step discussion of the proposed testing procedure for AR(1)-GARCH(1,1) is
given below, which can be generalized for nonlinear mean function and higher
order/extension of GARCH models in an obvious way.

5.1.1 Real World Estimation

1. Estimate the original model by the QMLE and obtain �̂ =
�
'̂0; �̂0

�0
;

m̂t; ĥt:

2. Since we have linear conditional mean speci�cation (e.g., AR(1)), regress
yt on a constant and yt�1 to obtain

~v1t = yt � ~'0 � ~'1yt�1 = yt �W 0
t ~'

� yt � ~mt;

where ~' = (~'0; ~'1)
0 are OLS estimators from the regression yt on Wt =

(1; yt�1)
0 and ~mt =W 0

t ~': See Remark 3 for nonlinear mean function.

3. De�ne ẑt =
�
1; ĥt

�0
: Then obtain the second sample moment condition

as the residual from an OLS regression of ~v21t on ẑt; i.e.,

~v2t = ~v21t � ~�0 � ~�1ĥt = ~v21t � ẑ0t~�
� ~v21t � ~ht;

where ~� =
�
~�0;

~�1

�0
are OLS estimators and ~ht = ẑ0t

~�:

5.1.2 Bootstrap World

1. Generate WB residuals :

"̂�1t = ~v1tUt;

"̂�2t = ~v2tUt;

where fUtg a sequence of i.i.d. r.v.s with zero mean and unit variance,
bounded support and independent of the sequence fyt; It�1;qgTt=1 :

2. Generate bootstrap data:

Y �1t = ~mt + "̂
�
1t;

Y �2t = ~ht + "̂
�
2t:
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3. Compute ~'� = (~'�0; ~'
�
1)
0 from fY �1t; It�1;qg by an OLS regression of Y �1t

on Wt and subsequently �rst moment condition in the bootstrap world
~v�1t = Y �1t � ~'�0 � ~'�1yt�1 = Y �1t �W 0

t ~'
�:

4. Compute ~�
�
=
�
~�
�
0;
~�
�
1

�0
from fY �2t; It�1;qg by an OLS regression of Y �2t

on ẑt and obtain ~v�2t = Y �2t � ~�
�
0 � ~�

�
1ĥt = Y �2t � ẑ0t~�

�
:

Remark 3 For non-linear conditional mean function, one can employ a non-
linear least squares (NLS) method in Step 2 to estimate ~mt and ~v1t: Note that
we need to perform the same NLS estimation in the bootstrap world for ~v�1t:
Alternatively we can avoid the NLSE by using the m̂t (obtained from the QMLE
estimation at Step 1) to estimate ~v1t as the residual from a OLS regression of
yt on (1; m̂t) : And then follow the above algorithm in bootstrap world.

Remark 4 Imitating the GARCH process, we can adopt a slightly di¤erent
speci�cation for the auxiliary regression in step 3 (real world) to obtain ~v2t and
subsequently in step 4 (bootstrap world) for ~v�2t (all other steps remain same). In

particular, in the Step 3 (real world) compute ~� =
�
~�0;

~�1;
~�2

�0
by an OLS re-

gression of ~v21t on ẑt =
�
1; ~v21;t�1; ĥt�1

�0
and subsequently obtain the second mo-

ment condition as ~v2t = ~v21t� ~�0� ~�1~v21;t�1� ~�2ĥt�1: Note that in this case, with
this new de�nition of ~� and ẑ0t; we have ~ht = ẑ0t

~� and this will be used in Step 2
(bootstrap world) to generate Y �2t: Similarly in Step 4 (bootstrap world), compute
~�
�
=
�
~�
�
0;
~�
�
1;
~�
�
2

�0
by an OLS regression of Y �2t on ẑt =

�
1; ~v21;t�1; ĥt�1

�0
and

subsequently obtain the second moment condition as ~v�2t = Y �2t � ẑ0t
~�
�
: In an

analogous way to Theorem 2 (below), it can be shown that in this case also ~�
satis�es the asymptotic Bahadur expansion.

The next theorem shows that for the above testing procedure ~' and ~� in the
real world satisfy the asymptotic Bahadur expansion as stated in Assumption
4.1.

Theorem 2 Under the stated regularity conditions (Assumptions 2.1-2.5),

p
T

�
~'� '0
~� � �0

�
= T�1=2

TX
t=1

�
qt(�0)
pt (�0)

�
et(�0) + op(1);

where ~' = (~'0; ~'1)
0
; ~� =

�
~�0;

~�1

�0
; �00 = ('00; �

0
0) ; and the expressions for

qt(�0) and pt (�0) are provided in the proof.

The asymptotic analysis shows that although in the bootstrap world ~'�

satis�es the su¢ cient asymptotic expansion, unfortunately ~�
�
does not meet

the su¢ cient conditions; i.e., Assumption 4.3 (see Appendix for the details). It
is found that ~�

�
would have satis�ed the Bahadur expansion if we could use the
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true z0t = (1; h0t)
0 instead of ẑt =

�
1; ĥt

�0
: Since h0t is not observable, we are

forced to use ĥt: Therefore, strictly speaking the proposed bootstrap procedure
does not satisfy the su¢ cient conditions. However, this does not mean the
procedure is necessarily invalid. We assess the potential validity of our procedure
via a simulation study. On the other hand it is an easily implementable solution
as opposed to the full parametric model based bootstrap. In addition, many
asymptotically valid tests display disappointing size property (see, subsection
1.1). It is, therefore, worthwhile to investigate the �nite sample performance of
the IGS tests with our proposed bootstrap scheme.

6 CM Tests of the GARCH Speci�cation

In this section we will brie�y discuss the parametric CM tests considered in
Halunga and Orme (2009) which will be used in our simulation. Assuming the
correct speci�cation for the conditional mean, the general CM testing framework
of Halunga and Orme (2009) based on the idea that under a correct GARCH
speci�cation the squared standardized residuals �2t should be serially uncorre-
lated with any function of the past information:

H0 : E
��
�2t � 1

�
rt (�0)

�
= 0;

where is rt (�0) is Ft�1 measurable. Then the generic CM test indicator is

�
�
�̂
�
=
1

T

TX
t=1

h�
�̂
2

t � 1
�
r̂t

i
;

and the generic form of the test statistic is

T = n�
�
�̂
�0
�̂�1T �

�
�̂
�
;

where �̂T = �+op (1) ; � is the asymptotic variance-covariance matrix of �
�
�̂
�

which has a �2m limiting distribution under the null (see Halunga and Orme,
2009).
Halunga and Orme (2009) also analyzed the Engle and Ng (1993) asymme-

try and Lundbergh and Teräsvirta (2002) non-linearity tests and showed that
these tests are asymptotically invalid as these do not take account of the as-
ymptotically non-negligible estimation e¤ects from the correct speci�cation of
the conditional mean function. Halunga and Orme (2009) also suggested two
alternative asymptotically valid tests of asymmetry and non-linearity.
In our study we consider the following four parametric CM tests for a

GARCH (1,1) regression process, all of which has a �2 limit distribution:

1. The Engle and Ng asymmetry (negative size bias) test (TEN ) with r̂1t =
[1 ("̂t�1 � 0)] "̂t�1;
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2. The Lundbergh and Teräsvirta non-linearity test (TLT ) with r̂2t = "̂3t�1;

3. The Halunga and Orme asymmetry (TA) test with

r̂3t =
1

ĥt

t�1X
i=0

�̂
i

1 [1 (ê2;t�1�i � 0)] "̂t�1�i;

4. The Halunga and Orme nonlinearity (TN ) test with r̂4t = 1
ĥt

Pt�1
i=0 �̂

i

1"̂
3
t�1�i:

The corresponding expressions of �̂T for these tests and other details are
presented in Halunga and Orme (2009). To be speci�c TEN and TLT employ
expression given by equation (14) in their paper (Halunga and Orme, 2009, p.
375), whereas TA and TN employ expressions given by equation (13) and (15),
respectively (Halunga and Orme, 2009, p. 375).

7 Monte Carlo Experiments

In this section the �nite sample performance of previously discussed two non-
parametric testing procedures (the PICM and IGS) and four parametric CM
tests (TLT ; TEN ; TA and TN ) are compared. For both nonparametric testing
procedures, we consider two family of weight functions, namely, the indicator
and exponential weight functions and we set Zt�1 = yt�1. The joint and mar-
ginal mean and variance IGS tests based on indicator weight function J2I ; D

2
I;m;

D2
I;v; and complex exponential weight functions J

2
C ; D

2
C;m and D2

C;v are given
in (23) -(28): These IGS tests are constructed employing the proposed modi-
�ed bootstrap scheme. The alternative speci�cation of the conditional variance
auxiliary regression (as mentioned in Remark 4) is also considered in the sim-
ulation, however the results are qualitatively similar to the former one and to
save space we do not report them here.8 The PICM joint and marginal mean
and variance tests with indicator weight are denoted by C2I;J ; C

2
I;m and C

2
I;v; re-

spectively, while the corresponding tests with exponential weight are denoted by
C2C;J ; C

2
C;m and C2C;v; respectively. All experiments are done with 1000 Monte

Carlo replications and for nonparametric tests 300 bootstrap samples are gen-
erated. We consider the sample size T = 100; 200; 300 and 500; after discarding
the �rst 200 observations from the sample to o¤set any initial value e¤ect. For
generating the bootstrap data, we consider the Rademacher distribution given
in (13).9 All simulations are programmed in GAUSS.

7.1 Size and Robustness to Non-normality

For size experiments we consider the following AR(1)-GARCH(1,1) null models:

8These can be obtained from the author upon request.
9Similar conclusions are obtained by using the Mammen�s distribution as given in (12),

hence we do not report them.
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Table 2: Empirical size with the Normal errors
E1 E2

T 100 200 300 500 100 200 300 500
TLT 0.70 2.60 3.50 2.70 1.70 2.60 2.10 1.80
TN 1.20 3.60 4.10 4.80 3.80 4.90 3.20 5.10
TEN 3.40 3.70 5.90 4.90 4.50 5.80 4.70 3.70
TA 12.50 7.70 6.30 6.80 13.00 8.20 8.70 6.60

IGS tests
D2
I;m 6.80 6.30 4.90 5.30 5.40 4.50 5.60 7.00

D2
I;v 4.80 3.80 5.90 5.70 5.60 5.60 5.50 4.40

J2I 4.60 4.80 5.50 5.90 5.50 6.20 5.70 4.90
D2
C;m 7.80 6.00 4.60 5.10 5.50 5.20 6.30 7.20

D2
C;v 4.60 3.80 4.80 5.00 5.50 5.10 4.60 3.90

J2C 5.00 4.00 5.60 5.30 6.20 5.30 4.30 4.90
PICM tests

C2I;m 6.30 6.30 5.50 5.20 5.60 4.10 5.20 4.40
C2I;v 7.50 6.70 5.30 4.50 8.50 6.80 6.60 5.80
C2I;J 8.00 6.80 5.30 4.90 8.40 7.10 6.80 5.90
C2C;m 4.80 5.10 5.40 5.60 6.00 4.90 5.10 3.40
C2C;v 6.80 6.60 5.40 4.60 7.50 6.90 6.50 5.30
C2C;J 7.30 6.70 5.60 5.10 7.60 6.60 6.80 4.70

E1 : Yt = 1 + 0:1Yt�1 + "t; "t =
p
ht�t;

ht = 0:20 + 0:05"2t�1 + 0:75ht�1; �t � N (0; 1) :

E2 : Yt = 1 + 0:1Yt�1 + "t; "t =
p
ht�t;

ht = 0:01 + 0:09"2t�1 + 0:90ht�1; �t � N (0; 1) :

E1 and E2 correspond to low persistent and high persistent volatility process
with �+� = 0:80 and �+� = 0:99; respectively, where �t � N (0; 1). To check
the robustness to non-normality, we generate these two DGPs where �t follows
a standardized Student�s t�distribution with 5 and 3 degrees of freedom: The
parameter values are standard in the literature and are used by Halunga and
Orme (2009) and Engle and Ng (1993) among others.
Table 2 displays the size of the various tests for a nominal size of 5% and

for T = 100; 200; 300 and 500; where the null DGPs are E1 and E2 with �t �
N (0; 1) : The parametric CM tests perform poorly for small sample size but size
distortions decrease as T increases except TLT ; which is the worst performer in
terms of size. This �nding is similar to Halunga and Orme study where even
for T = 1000; TLT is signi�cantly undersized. On the other hand the empirical
sizes of the IGS tests, for both high and low persistent GARCH process and
with both weight functions, are close to the nominal level. Even for very small
size, e.g., T = 100 and T = 200; these tests, in general, demonstrate excellent
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size property. The PICM tests are slightly oversized for smaller sample size, but
they perform much better than the parametric tests.
To investigate the robustness of these tests to non-normality, Table 3 reports

the size, again against 5% nominal level, for E1 and E2 where �t � t(5) and
�t � t(3): The performances of the parametric CM tests are worse in this case
compared to Gaussian error. TLT ; TN and TEN are undersized while TA is
signi�cantly oversized for both DGPs, although for T = 500; TA and TN size
distortions decrease, as expected. It should be noted that Halunga and Orme
(2009) reports that for T = 1000; TA and TN show satisfactory size under non-
normality, however our �ndings reveal that for smaller sample size these are less
robust to non-normality. On the other hand both nonparametric tests display
robust size property under non-normality, even for very small T .

7.2 Power

For the power experiments we consider 3 types of misspeci�ed models, namely,
correct speci�cation for mean but misspeci�ed variance (P1, P2 and P3), mis-
speci�ed mean and correct speci�cation for variance (P4 and P5) and both
conditional mean and variance are misspeci�ed (P6):

P1 : yt = 1 + 0:1yt�1 + "t; "t =
p
ht�t;

ht = 0:005 + 0:28[j"t�1j � 0:23"t�1]2 + 0:7ht�1; �t � N (0; 1) :

P2 : yt = 1 + 0:1yt�1 + "t; "t =
p
ht�t;

ht = �0:23 + 0:9 log (ht�1) + 0:25
����t�1��� 0:3�t�1� ; �t � N (0; 1) :

P3 : yt = 1 + 0:1yt�1 + "t; "t =
p
ht�t;

ht = 0:9 + 0:1y2t�1; �t � N (0; 1) :

P4 : yt = 1 + 0:1yt�1 + 1:5
p
ht + "t, "t =

p
ht�t;

ht = 0:2 + 0:05"2t�1 + 0:75ht�1; �t � N (0; 1) :

P5 : yt = 0:4yt�1 � 0:3yt�2 + 0:5yt�1"t�1 + "t; "t =
p
ht�t;

ht = 0:2 + 0:05"2t�1 + 0:75ht�1; �t � N (0; 1) :

P6 : yt = 1 + 0:1yt�1 + 1:5
p
ht + "t; "t =

p
ht�t;

ht = 0:005 + 0:28[j"t�1j � 0:23"t�1]2 + 0:7ht�1; �t � N (0; 1) :

Among the alternative models corresponding to misspeci�ed variance but cor-
rect mean functions, P1 is the AR(1) - GJR(1,1), P2 is the AR(1) - EGARCH
(1,1), and P3 is the AR(1) - Conditional heteroskedasticity (CH(1)) model.
While P4 (GARCH-in-mean - Null GARCH (1,1)) and P5 (bilinear AR(2) -Null
GARCH (1,1)) are the two misspeci�ed conditional mean with correct variance
function DGPs. Finally, for P6 (GARCH-in-mean - GJR (1,1) GARCH) both
functions are misspeci�ed. The parameter values are again common in the
literature; e.g., Halunga and Orme (2009), Lundbergh and Teräsvirta (2002),
Engle and Ng (1993), Escanciano (2009), Becker and Hurn (2009) used these
alternative models and parameters in their simulation experiments.
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Table 3: Empirical size with the t(5) and t(3) standardized errors
E1 E2

T 100 200 300 500 100 200 300 500
�t � t(5)

TLT 0.90 1.00 0.90 1.30 1.60 0.50 1.00 0.80
TN 2.60 2.40 2.10 4.10 1.90 2.00 2.60 4.20
TEN 2.80 2.10 3.20 3.80 2.30 2.80 2.70 2.10
TA 14.00 10.30 8.00 6.70 16.10 10.30 8.50 9.20

IGS tests
D2
I;m 5.50 5.70 5.30 4.10 5.60 6.10 5.80 6.80

D2
I;v 5.80 5.00 5.00 6.70 4.00 5.30 5.90 4.90

J2I 5.80 4.90 5.30 6.20 4.30 5.60 6.00 5.20
D2
C;m 5.00 5.40 6.10 6.10 6.50 7.00 6.00 5.20

D2
C;v 5.90 5.30 4.90 6.30 4.70 6.30 5.30 5.80

J2C 6.40 5.20 5.40 5.40 4.60 6.60 5.70 5.60
PICM tests

C2I;m 7.10 5.20 6.30 4.20 4.40 5.70 5.80 5.50
C2I;v 6.30 6.60 7.00 5.40 8.60 6.70 6.80 6.40
C2I;J 6.90 6.60 6.70 5.50 8.50 6.90 7.10 6.30
C2C;m 5.80 5.40 5.20 4.30 4.80 6.60 5.30 5.50
C2C;v 6.10 6.70 6.90 4.90 9.10 6.00 5.30 5.40
C2C;J 7.00 6.40 7.20 4.50 8.50 6.40 6.30 5.40

�t � t(3)
TLT 0.50 0.60 0.90 0.70 0.50 0.90 0.30 0.70
TN 0.60 2.10 1.50 1.60 1.00 2.00 1.20 1.80
TEN 1.00 2.40 1.30 1.70 1.70 1.90 1.50 2.10
TA 15.90 14.40 10.80 4.80 16.40 11.10 9.70 9.60

IGS tests
D2
I;m 5.60 5.20 5.80 5.60 5.50 6.80 6.20 6.10

D2
I;v 4.10 6.40 4.90 5.00 5.30 5.60 4.40 5.20

J2I 5.10 5.90 4.00 5.90 5.40 7.70 5.40 5.30
D2
C;m 6.00 5.80 5.10 6.60 6.00 6.30 6.40 6.20

D2
C;v 5.00 5.40 4.30 4.60 6.00 5.80 5.10 5.00

J2C 5.70 6.60 5.00 5.30 6.70 7.00 6.40 5.80
PICM tests

C2I;m 5.40 5.10 5.30 4.80 6.10 5.70 5.40 5.40
C2I;v 4.90 5.40 5.90 5.50 5.70 7.50 5.40 6.50
C2I;J 5.40 5.80 6.00 5.60 6.00 7.40 6.20 7.00
C2C;m 5.80 4.80 5.40 5.10 5.40 4.80 6.20 5.00
C2C;v 5.60 4.60 6.20 5.30 7.80 7.30 5.70 4.50
C2C;J 6.80 4.50 5.30 5.20 8.50 7.00 6.10 4.80
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Table 4 reports the empirical power of the tests for misspeci�ed variance
with correct mean models where the nominal size is again 5%. A number of
interesting issues to be noticed here. Firstly, in this case it is expected that for
the nonparametric tests the joint and marginal variance component (i.e., J2 and
D2
v in case of the IGS and C

2
J and C

2
v in case of the PICM) would pick up the

misspeci�cation in conditional variance while this would have no impact on D2
m

and C2m. The power property indeed re�ect this fact as the empirical rejection
frequencies of D2

m and C
2
m are close to nominal level of 5% while the power of D

2
v

and C2v (J
2 and C2J) indicate that they pick up the misspeci�cation and increase

as sample size grow. Secondly, the parametric CM tests particularly TN and TA;
show very good power properties even with a moderate T = 500 and TLT lacks
in power in all three cases. Once again, these are supported by the results of
Halunga and Orme. Thirdly, for EGARCH(1,1) and CH(1) alternative models
(i.e., P2 and P3) the IGS tests demonstrate equally impressive (even better in
case of P3) power compared to parametric ones. The PICM tests display slightly
lower power than the IGS tests for P1 and P2. However, note that even with
T = 500 the power of both nonparametric tests is relatively weak in case of P1
(GJR alternative); e.g., below 30%. It is worthwhile to note that the parametric
CM tests also perform relatively poorly for GJR alternative. With our small
to moderate sample size this is not unusual though, as Engle and Ng (1993, p.
1762) also observe weak power for small sample size and concluded "This weak-
ness is expected as both asymmetric e¤ect and time-varying variance are hard to
detect in small samples". Important to note that the power is increasing with T
and for large sample sizes (which is the case in most real life situation) we could
expect that the power would increase substantially for this type of alternative.
Finally, the tests based on indicator weight function generally perform slightly
better compared to complex exponential weight function.
Next, Table 5 displays the simulated power, against 5% nominal level, when

the data is generated by models P4 and P5 (misspeci�ed mean but correct
variance) and P6 (both mean and variance are misspeci�ed). For P4 and P5, one
would expect that D2

m and C
2
m ( J

2 and C2J) would pick up the misspeci�cation
in conditional mean; and ideally want thatD2

v and C
2
v to be robust to this type of

misspeci�cation. We can not, however, be sure about the rejection frequencies of
marginal variance tests (i.e.,D2

v and C
2
v ) as the conditional variance speci�cation

depends on conditional mean and thereby they may pick the misspeci�cation
in mean despite the correct speci�cation of variance. From our Monte Carlo
experiments, we can see that J2 and D2

m (in case of the IGS tests) and C2J and
C2m (in case of the PICM tests) demonstrate excellent power with both weight
functions. On the other hand the rejection frequencies for D2

v and C
2
v increase

with sample size. However, the rejection frequencies for D2
v and C

2
v are well

below compared to D2
mand C

2
m; respectively.

The parametric CM tests inherently assume a correct speci�cation of mean
function and it is observed that all these tests (except TLT ) pick up the mis-
speci�cation in mean and their rejection frequencies are much higher than D2

v

and C2v . TEN is mostly a¤ected by the misspeci�cation in mean followed by
TN and TA; whereas TLT surprisingly seems to be insensitive to the conditional
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mean misspeci�cation. This �nding con�rms that the parametric CM tests are
not robust to the misspeci�cation in mean function and in the presence of mean
misspeci�cation these tests erroneously over-reject the null of correct variance
speci�cation.
Finally when both mean and variance are misspeci�ed (P6), evidence shows

that except TLT all tests, parametric and nonparametric, pick up the misspec-
i�cation. Since we are using a GJR alternative model for conditional variance,
marginal variance tests show relatively low power compared to joint and mar-
ginal mean tests.
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8 Empirical Illustration

In this Section, we illustrate the nonparametric and parametric testing method-
ology to the famous and extensively used S&P 500 daily stock index, which is
also a representative set of data for which substantial number of studies used
GARCH regression models (see Bollerslev, 1992 and references therein). We
consider the daily index data covering the time period July 1, 2004 to July 30,
2010. Therefore we have a sample of 1531 observations. We further subdivide
the whole sample period into three two-years sub-period: July1, 2004 to June
30, 2006 (505 observations), July 3, 2006 to June 30, 2008 (501 observations)
and July 1, 2008 to July 30, 2010 (525 observations). The choice of these sample
periods is motivated from the �nancial crisis of 2007.
We want to examine the dynamics of the S&P 500 by �tting an AR(1)-

GARCH(1,1) model to the data (log returns) and applying our tests to make
inference of the null speci�cation. The QML estimates of the parameters along
with their standard errors are presented in Table 6. Next we apply the four
parametric CM tests and two nonparametric tests (i.e., the IGS and PICM
tests) and the results are given in Table 7. The parametric CM tests do not
test the mean speci�cation and we can see a clear disagreement between the
nonlinearity tests of Lundbergh and Teräsvirta (2002) and Halunga and Orme
(2009) and between asymmetry tests of Engle and Ng (1993) and Halunga and
Orme (2009). TLT and TEN do not reject the null of correct conditional variance
speci�cation in any of three sub-periods and full samples whereas TA and TN
reject the null in all periods under consideration; except TN for 2006-08 in which
case we can not reject the null. The nonparametric tests, on the other hand,
give us the scope to test the mean and variance speci�cation simultaneously. It
can be seen that the AR(1) speci�cation is correct for all periods as revealed by
very large p-values of D2

m and C2m. This implies that the parametric CM tests
are not adversely a¤ected from mean misspeci�cation in this case. Secondly,
this �nding questions the inclination of many empirical researchers to consider
a zero (or known) conditional mean speci�cation and �tting solely a conditional
variance model while modelling stock market.
In terms of marginal variance speci�cation tests, both the IGS and PICM

tests are mostly in agreement except 2006-08 period. For the overall period
2004-2010, D2

v and C
2
v strongly reject the GARCH(1,1) speci�cation with p-

values 0.01 and 0.00, respectively. The joint tests also reject the correct joint
speci�cation for this period. The results indicate that a AR(1)-GARCH(1,1)
model is adequate representation for the �rst sub-period 2004-06 (i.e., before
the �nancial crisis of 2007) with p-values 0.11, 0.12, 0.29 and 0.21 for D2

v; J
2;

C2v and C2J ; respectively. Similarly, both the IGS and PICM tests strongly
reject the null GARCH(1,1) model for 2008-10 when the �nancial crisis is in
place. However, for 2006-08 the PICM tests reject the null of correct variance
and joint speci�cation quite strongly with p-values 0.62 and 0.68, respectively,
while the corresponding p-values for the IGS tests are 0.047 (D2

v) and .077 (J
2)

which are in borderline of acceptance and rejection region.
In summary, we can see that though the AR(1) is an adequate representa-
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Table 6: The QML parameter estimates
2004-06 2006-08 2008-10 2004-10

'̂0 0.027 0.049 0.085 0.046*
(0.029) (0.037) (0.056) (0.021)

'̂1 -0.044 -0.105* -0.089 -0.081*
(0.046) (0.048) (0.047) (0.027)

�̂0 0.030 0.012* 0.026 0.013*
(0.020) (0.006) (0.015) (0.004)

�̂1 0.039 0.060* 0.120* 0.084*
(0.021) (0.016) (0.014) (0.012)

�̂1 0.895* 0.930* 0.878* 0.907*
(0.054) (0.019) (0.02) (0.012)

T 505 501 525 1531
Note: Figures in the parenthesis are the standard errors

Table 7: The p-values of various tests
2004-06 2006-08 2008-10 2004-10

TLT 0.1486 0.7700 0.5981 0.5340
TN 0.0002 0.1276 0.0205 0.0002
TEN 0.5536 0.7025 0.7549 0.8940
TA 0.0002 0.0000 0.0009 0.0008

IGS Tests
D2
m 0.2600 0.8200 0.4667 0.4500

D2
v 0.1100 0.0467 0.0033 0.0100

J2 0.1200 0.0767 0.0100 0.0167
PICM tests

Cm 0.1367 0.6733 0.8167 0.7233
Cv 0.2933 0.6233 0.0033 0.0000
CJ 0.2133 0.6833 0.0033 0.0000
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tion of the conditional mean speci�cation for all time periods considered here,
however the GARCH (1,1) �ts well only in 2004-06. Note that, the nonpara-
metric tests tell us that there is something wrong in the speci�cation (i.e., they
are omnibus tests) but do not direct us to the correct model speci�cation. Here
comes the importance of parametric test which assume a speci�c parametric
alternative in their construction. In this sense we consider these nonparametric
and parametric testing procedures as complimentary not competing. However,
the contradiction among the parametric CM tests about the variance speci�ca-
tion is indeed a confusing issue. For example, in our case the asymmetry test of
Engle and Ng (1993) never reject the null with very high p-values whereas the
Halunga and Orme (2009) TA strongly rejects GARCH (1,1) in all periods. As
noted by Halunga and Orme (2009) that the Engle and Ng (1993) and Lundberg
and Teräsvirta (2002) tests neglect the recursive behavior of the alternative un-
der consideration and therefore they may lack power. In this particular case,
since the nonparametric tests also suggest a misspeci�cation we need to modify
the conditional variance speci�cation.

9 Concluding Remarks

In this paper, we investigate the nonparametric simultaneous joint and marginal
conditional mean and conditional variance speci�cation testing of the null AR-
GARCH model. We explicitly demonstrate how to perform the IGS and PICM
tests in the model. In particular, we propose a modi�ed wild bootstrap proce-
dure for the IGS tests which performs well in our Monte Carlo study. A number
of parametric CM tests for conditional variance, which implicitly assumes a cor-
rect conditional mean speci�cation, are also considered and our Monte Carlo
simulation con�rms that these tests are indeed sensitive to misspeci�ed mean
function. The empirical application with the S&P 500 data also highlights the
usefulness of the marginal and joint testing within the nonparametric frame-
work.
Our simulation experiments reveal that both the IGS and PICM tests have

satisfactory size and impressive robustness to non-normality. The parametric
CM tests su¤er from size distortion for small T and the distortion is greater
under non-normality. Except TLT ; size property of other three parametric tests
improve as T increase. Further research could focus on using the proposed
bootstrap scheme to improve the size properties of the parametric tests.
We want to stress that the inability of our proposed bootstrap procedure

to strictly satisfy the identi�ed su¢ cient conditions does not necessarily mean
our test is asymptotically invalid. Our Monte Carlo evidence shows that the
size performance of the IGS tests outperforms the parametric tests, particularly
TLT ; in small samples and, in absolute terms, has satisfactory signi�cance level.
The excellent size property under variety of distributional assumptions may
indicate that the identi�ed su¢ cient conditions are too stringent/restrictive and
there exists a weaker set of conditions under which the tests are implementable.
Searching such less restrictive necessary and su¢ cient conditions for this test is
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left for future research.
The power analysis indicates that for correct mean but misspeci�ed variance

models, the marginal nonparametric tests demonstrate the ability to identify
the source of misspeci�cation with the rejection frequencies of marginal mean
tests (D2

m and C
2
m) close to the nominal signi�cance level whereas the joint and

marginal variance tests pick up the misspeci�cation. The parametric CM tests
(barring TLT ) also show excellent power in this case. We also note that for
GJR alternative (P1) tests have relatively low power, the IGS tests in general
demonstrate better power compared to the PICM tests and the indicator weight
function performs slightly better than exponential weight function.
For misspeci�ed mean and correct variance, the parametric CM tests incor-

rectly but unsurprisingly over-reject the null of correct variance speci�cation.
In case of the nonparametric tests, D2

m and C2m (and their corresponding joint
tests) display excellent empirical power. As expected the marginal variance
tests pick some of the misspeci�cation through the channel of conditional mean
and the rejection frequencies increase as T increase. The PICM tests, in gen-
eral, su¤er more with relatively higher rejection rate. However, in this case D2

m

and C2m reject signi�cantly more often than D2
v and C

2
v . Our suggestion is that

whenever D2
m or C2m rejects the null one has to revise the mean speci�cation

�rst until the tests provide evidence against mean misspeci�cation and then
examine the variance speci�cation.
Finally, the IGS tests can easily be applied to check the adequacy of other ex-

tensions of GARCH models without any further modi�cations. The PICM tests
are much quicker and easy to implement for our AR-GARCH model, however
for extensions of GARCH models one needs to �nd the �rst partial derivatives
of the moment conditions under consideration.
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Appendix

.1 Proof of Lemma 2

Proof. Write �0 = ('0; �0) ; and let �̂ be the QMLE for �0. De�ne ft =
@mt

@'
;

xt =
1

ht

@ht
@�

and ct =
1

ht

@ht
@'
. Halunga and Orme (2009) showed that

p
T (�̂ � �0) = J�1��

p
TD�T (�0) + op(1); (29)

whereD�T (�0) = (D'T (�); D�T (�))
0
; D'T (�) = T�1

PT
t=1

�
"tft
ht

+
1

2

�
"2t
ht
� 1
�
ct

�
and D�T (�) = T�1

1

2

PT
t=1

�
"2t
ht
� 1
�
xt:

Given regularity conditions, �̂
p! �0 and

p
T (�̂ � �0)

d! N
�
0; J�1�� 
��J

�1
��

�
;

where J�� and 
�� are both �nite and positive de�nite, and are de�ned in
Halunga and Orme (2009, Theorem 1).
De�ne e1t (') � "t = yt � mt, e2t � "2t � ht = e21t (') � �0st�1 (�), and

et(�) = (e1t (�) ; e2t (�))
0
; so that

D'T (�) = T�1
TX
t=1

h�1t

�
ft;
1

2
ct

�
et(�); and

D�T (�) = T�1
TX
t=1

h�1t

�
0;
1

2
xt

�
et(�):

Now, it is straightforward to show that

p
T (�̂ � �0) = T�1=2

TX
t=1

%t(�0)e0t + op(1); (30)

and E [%0te0te
0
0t%

0
0t] = J�1�� 
��J

�1
�� is �nite and positive de�nite, where e0t =

et(�0) and %0t � %t(�0) = J�1�� h
�1
0t

�
f0t

1
2c0t

0 1
2x0t

�
; f0t = ft('0), c0t = ct(�0);

and x0t = xt(�0):

.2 Proof of Theorem 2

Proof. For simplicity of exposition, we will assume a linear mean speci�cation
so that m (wt;') = w0t': In the test procedures, the estimators ~' and ~� are used
as follows:
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(a) ~' is obtained from a (possibly non-linear) least squares regression of yt
on w0t and residuals ~�1t � �1t(~') = yt � w0t~' are obtained and used in the con-
struction of the various test statistics (rather than e1t('̂)), for the construction
of ~�; next, and when implementing a wild bootstrap scheme (see Section .3,
below).
(b) Let ĥt = ht(�̂) be constructed using the QMLE, �̂; and de�ne ẑ0t =�

1; ĥt

�
. Then ~� is obtained as the (2� 1) least squares parameter estimator

following a regression of ~�21t on ẑ
0
t: Following this regression the residuals ~�

2
1t�ẑ0t~�

are obtained and used in the construction of the various test statistics (rather
than e2t(�̂)), and when implementing a wild bootstrap scheme (see Section .3,
below).
For the above estimators, the corresponding �true�parameter values are '0

and �0 � (0; 1)
0, respectively. Ideally, to obtain ~�; we would like to regress ~�21t on

z00t = (1; h0t) ; but h0t is unobservable so we use ĥt instead. Because of this, the
residual associated with the estimation of ~� depends upon �̂; through ĥt; so this
must be taken into account. In addition, the moment errors must be de�ned
in terms of the parameters being estimated in the least squares procedures.
Accordingly, let � =

�
'0; �0

�0
and de�ne the following �second moment�error

�2t(�) = �21t(')� ẑ0t� = �21t(')� z00t� � (ẑt � z0t)
0
�:

The corresponding residual would then be

�2t(~�) = �21t(~')� ẑ0t~� = �21t(~')� z00t~� � (ẑt � z0t)
0 ~�:

It is important to make the distinction between the �jt used here and the ejt
de�ned previously, j = 1; 2; because although it is true that �1t(') � e1t(');
for all '; it is not true that �2t(�) = �21t(')� ẑ0t� is the same as e2t(�). In the
ensuing analysis it will be useful to de�ne �t(�) = (�1t ('); �2t(�))

0
:

First consider ~': The least squares regression of yt on w0t yields ~'; which
satis�es

p
T (~'� '0) = Q̂�1T

1p
T

TX
t=1

wt�1t('0) + op(1)

=
1p
T

TX
t=1

qt�t(�0) + op(1); (31)

where Q̂T = T�1
PT

t=1 wtw
0
t; qt = Q�1 [wt; 0], Q = E [wtw

0
t], and

E [qt�t(�0)�
0
t(�0)q

0
t] = Q�1 E

�
"20twtw

0
t

�
Q�1 is �nite and positive de�nite. From

this, residuals ~�1t � �1t(~') = yt�w0t~' are obtained and used in the construction
of the various test statistics, for the construction of ~�.
Next consider ~�: Now regress ~�21t = (yt � w0t~')

2 on ẑ0t to give

~� = V̂ �1T T�1
TX
t=1

ẑt~�
2
1t; (32)
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where V̂T = T�1
PT

t=1 ẑtẑ
0
t:

Note that:

~�21t = �21t('0) +
~�t; where ~�t = 2w

0
t�1t('0) (~'� '0) + (~'� '0)

0
wtw

0
t (~'� '0) ;

and

�21t('0) = ẑ0t�0 + �2t(�0) = ẑ0t�0 +
�
�21t('0)� h0t

�
� (ẑt � z0t)0 �0;

where, recall, �0 � (0; 1)
0
; and h0t = z00t�0: Using these in (32), we obtain

~� = V̂ �1T T�1
TX
t=1

ẑt

�
�21t('0) +

~�t

�
= �0 + V̂

�1
T T�1

TX
t=1

ẑt

�
�21t('0)� z00t�0 � (ẑt � zt)

0
�0 +

~�t

�
;

so that

p
T (~� � �0) = V̂ �1T

1p
T

TX
t=1

ẑt
�
�21t('0)� z00t�0 � (ẑt � z0t)

0
�0
�
+ op(1)

= V̂ �1T

1p
T

TX
t=1

ẑt�2t(�0) + op(1); (33)

which exploits
p
T consistency of '̂ and ~' and a ULLN which ensures that

V̂T = Op(1) and T�1
PT

t=1 ẑt
~�t = op(1):

However, �2t(�0) = �21t('0)� ẑ0t�0 depends on �̂; through ẑt; and this must
be taken into account when analyzing the asymptotic sampling distribution ofp
T (~� � �0):
Firstly, then, since ĥt � h0t = �ht (�c0t; �x0t)

�
�̂ � �0

�
; where here a �bar�indi-

cates evaluation at the mean value ��, we have

1p
T

TX
t=1

ĥt�2t(�0) =
1p
T

TX
t=1

h0t�2t(�0) + T
�1

TX
t=1

�2t(�0)�ht (�c
0
t; �x

0
t)
p
T
�
�̂ � �0

�
=

1p
T

TX
t=1

h0t�2t(�0) + op(T
�1=2);

since by consistency �̂ and a ULLN, T�1
PT

t=1 �2t(�0)
�ht (�c

0
t; �x

0
t) = op(1): Thus

T�1=2
TX
t=1

ẑt�2t(�0) = T�1=2
TX
t=1

z0t�2t(�0) + op(1);
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and substituting this into (33) yields
p
T (~� � �0) = V̂ �1T

1p
T

PT
t=1 z0t�2t(�0); so

that

p
T (~� � �0) = V̂ �1T

1p
T

TX
t=1

z0t
�
�21t('0)� h0t

�
�V̂ �1T

p
T

 
V̂T � T�1

TX
t=1

ẑtz
0
0t

!
�0 + op(1): (34)

Now, consider how we might express the second term. We have

p
T

 
V̂T � T�1

TX
t=1

ẑtz
0
0t

!
�0 =

 
T�1

TX
t=1

ẑt (ẑt � z0t)0
!�

0
1

�

=
1p
T

TX
t=1

ẑt

�
ĥt � h0t

�
=

 
T�1

TX
t=1

ẑt�ht (�c
0
t; �x

0
t)

!
p
T
�
�̂ � �0

�
= A

p
T
�
�̂ � �0

�
+ op(1);

where consistency of �̂ and a ULLN will ensure that T�1
PT

t=1 ẑt
�ht (�c

0
t; �x

0
t) =

A + op(1): In addition, given su¢ cient regularity V̂T = V + op(1); where V =

E [z0tz
0
0t] :

Substituting these results and (30) into (34) we obtain the following expres-
sion

p
T (~� � �0) = V �1

1p
T

TX
t=1

z0t
�
�21t('0)� h0t

�
� V �1A

p
T
�
�̂ � �0

�
+ op(1)

= V �1
1p
T

TX
t=1

z0t
�
�21t('0)� h0t

�
� V �1A 1p

T

TX
t=1

%0te0t + op(1):

Then, we have the following asymptotic expansion

p
T

�
~'� '0
~� � �0

�
=

1p
T

TX
t=1

��
qt
pt

� �
�1t('0)

�21t('0)� z00t�0

��
� �T (�0) + op(1);

(35)

where pt = V �1 (0; z0t) and �T (�0) =

"
0

V �1A 1p
T

PT
t=1 %0te0t

#
. This ex-

pansion is crucial when comparison is made to the corresponding bootstrap
expansion.
Finally, however, since �1t('0) � e1t('0) and �

2
1t('0)� z00t�0 � e2t(�0); we

can write

p
T

�
~'� '0
~� � �0

�
=

1p
T

TX
t=1

��
qt
pt

� �
e1t('0)
e2t(�0)

��
+ op(1)
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where pt = V �1 ([0; z0t]�A%0t) :

.3 Analysis of the Wild Bootstrap Scheme

The bootstrap estimator, denoted ~�
�
; is obtained from bootstrap data generated

as follows.
Following the least squares procedures, de�ned above, which yield ~' and

~�; respectively, generate the following bootstrap data, where Ut are random
variables with zero mean and unit variance:

1. Y �1t = w0t~'+ "
�
1t; where "

�
1t = Ut~�1t and ~�1t = �1t(~'):

2. Y �2t = ẑ0t
~� + "�2t; where "

�
1t = Ut~�2t and ~�2t = �2t(~�) = �21t(~')� ẑ0t~�:

To obtain ~'� regress Y �1t on wt to obtain

p
T (~'� � ~') =

 
T�1

TX
t=1

wtw
0
t

!
1p
T

TX
t=1

wt"
�
1t

= Q̂�1T
1p
T

TX
t=1

wtUt�1t(~'); (36)

where we have used the fact that conditionally on the sample data, in the
bootstrap world 1p

T

PT
t=1 wt"

�
1t is bounded in probability. In particular if E

� (:)

and var�(:) denote expectation and variance in the bootstrap world, respectively,
conditional on the sample data, then E� (wt"�1t) = 0; because E

�(Ut) = 0; and

var�

 
1p
T

TX
t=1

wt"
�
1t

!
=
1

T

TX
t=1

�21t(~')wtw
0
t:

Note that the expansion (36) agrees with the expansion for
p
T (~' � '0) but

with Ut�1t(~') replacing �1t('0) in the right hand side.
To obtain ~�

�
; regress Y �2t on ẑt to obtain

p
T
�
~�
� � ~�

�
= V̂ �1T

1p
T

TX
t=1

ẑt"
�
2t

= V̂ �1T

1p
T

TX
t=1

ẑtUt�2t(~�); (37)

where, again, conditionally on the sample data, in the bootstrap world 1p
T

PT
t=1 wt"

�
2t

is bounded in probability, with

var�

 
1p
T

TX
t=1

ẑt"
�
2t

!
=
1

T

TX
t=1

�22t(
~�)ẑtẑ

0
t:
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Therefore, although (36) is of the same form as (33) but with ~� replacing �0; in
the bootstrap world ẑt will be regarded as �xed, in the de�nition of �2t(~�) for
each simulation of Ut; rather than varying as it is in the de�nition of �2t(�0) =
�21t('0)� ẑ0t�0 employed in (33).
If we were able to observe h0t and so could employ z0t rather than ẑt there

would be no such discrepancy. However, as we do use ẑt strictly speaking the
bootstrap procedure does not satisfy the su¢ cient conditions.
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