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Abstract

In this article Local Linear Regression with asymmetric kernels is applied to the problem of
estimating the average local treatment effect in a Regression Discontinuity design. In these de-
signs identification of the treatment effect is possible in a neighborhood of a cut-off point in the
assignment variable. In order to avoid model misspecification nonparametric regression methods
have been suggested. However, since identification happens at the cut-off point, nonparametric es-
timators with good boundary properties are necessary. Nonparametric methods are typically used
with symmetric kernels. At the boundary, these kernels are known to have part of their window
width devoid of data. This leads to small sample biases and (in the case of the Nadaraya-Watson
estimator) to a loss of efficiency. The use of Local Linear Regression corrects the asymptotic loss
of efficiency but it does not eliminate the finite sample bias due to the use of a symmetric kernel.
It has been pointed out that asymmetric kernels can be used with Local Linear Regression to
circumvent both problems. These kernels can be chosen to match the support of the regression
function, thus distributing all their weight only in the domain of the function. As a consequence
the effective sample size used by the nonparametric estimator is increased and the boundary bias
problem is avoided even with finite samples. This article establishes the asymptotic normality of
the estimator of the local average treatment effect when local linear regression with asymmetric
kernels is used in applications, and the small sample properties of the ensuing statistics are studied
in a Monte Carlo Experiment.
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1 Introduction

This article explores the use of local linear regression with asymmetric kernels for the

estimation of treatment effects in a Regression Discontinuity (RD) design. Regression

Discontinuity (Thistlethwaite and Campbell (1960)) is a quasi-experimental program

evaluation technique applicable when the probability distribution describing allocation

into treatment is suspected to have a discontinuity at a known cut-off level of certain

continuous running or assignment variable. When a program of these characteristics is

perfectly implemented, researchers can observe to a great extent the selection process.

Then, under certain weak uniformity conditions, a comparison of the conditional means

of outcomes of treatment between recipients and non-recipients is sufficient to identify

the average effect of the intervention within a small neighborhood of the cut-off point.

What makes the method specially attractive is that local identification is possible even

when treatment effects vary across individuals or there is selection into treatment due to,

for instance, anticipated gains. Thus RD has become very popular among practitioners,

and one finds numerous applications including van der Klaauw (1996), Angrist and

Lavy (1999)), Ludwig and Miller (2007) or Almond et al. (2010) to mention but a

representative few.

In RD designs, the cut-off point splits the region of estimation in two (or more)

intervals with known bounds and it is at these bounds where the treatment effect is

identifiable. Therefore, valid inference of the causal effect requires, firstly, estimators

with good boundary properties and, secondly, the correct specification of the conditional

mean of the outcome and assignment variables in a neighborhood of the cut-off points.

To reduce the likelihood of model misspecification, Hahn et al. (1999) and Porter (2003)

proposed the use of nonparametric regression methods. Among these estimators, Local

Linear Regression (LLR) with symmetric kernels has been widely used. This estimator is

consistent, asymptotically normal distributed and it circumvents the so called boundary

bias problem: its bias vanishes at a similar rate at the boundary and interior of the

regions of estimation. In contrast, the bias of the popular Nadaraya-Watson estimator

disappears at a slower rate at the boundary and so larger sample sizes are required in

this region to obtain a given level of accuracy ( Fan (1993), Wand and Jones (1994) or

Ruppert and Wand (1994)).

The boundary bias thus described is an asymptotic problem. In finite samples, at

the boundary, symmetric kernels typically used in LLR still have part of the kernel

window devoid of data, leading to the introduction of a small sample bias. Using kernels

with a bounded support (such as uniform, triangular or Epanechnikov kernels) could, in
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principle, ameliorate the problem. However Seifert and Gasser (1996) have shown that

the LLR estimator with a compact kernel has unbounded unconditional variance in finite

samples, unlike LLR based on Gaussian kernels, which suggest this kernels can result

in fairly imprecise estimates. In a series of papers, Brown and Chen (1999) and Chen

(2000, 2001) study kernel selection when estimating conditional moments with bounded

support. They show that using gamma and beta densities as kernels in LLR has a number

of advantages. These kernels match the support of the regression function. This has two

implication. Firstly, it implies that no weight is allocated beyond the boundaries of the

support (thus eliminating small sample biases). Secondly the whole sample is effectively

used by the estimator, thus increasing the stability statistic. Unlike LLR with kernels

of bounded support, the LLR estimator with Beta and Gamma kernels has a bounded

finite sample variance. Furthermore, at the boundary, the rate of convergence to the true

regression equals to that exhibited by standard LLR. These gamma and beta kernels are

reparameterised so that their shape and scale depends on a smoothing parameter as well

as the point at which estimation takes place. As a result these kernels adapt the amount

of smoothing to the location of estimation. Chen (2001) shows through simulations that,

at the boundary, these new methods have biases at least comparable to those obtained

with a Gaussian kernels while the variance is substantially smaller across the domain of

the curve and so the new estimators are preferred in accordance to a mean square error

criterion. Given that in RD designs identification of treatment effect is possible at the

boundary, the theoretical results in Chen (2001) suggest that gamma and beta kernels

can contribute to more accurate estimation of the local treatment effect, and therefore

this article explores the magnitude of that contribution.

The structure of the paper is as follows. In section 2 we obtain the asymptotic

distribution of the modified estimator of the treatment effect. This section extends

the results in Chen (2001), by establishing the asymptotic normality of the LLR with

Gamma and Beta kernels. Given the type of problem under study, our results specialize

to the case of estimation at the boundary. However our results can be modified in a

straightforward fashion to obtain the asymptotic normality of the estimator anywhere

else in the domain or the regression function1 The asymptotic Mean Square Error of

the estimator is used to obtain the optimal value of the bandwidth parameter, and

we show that its rate of convergence to 0 is identical to that derived from LLR with

symmetric kernels. Section 3 collects the results of a Monte Carlo experiment devised

to compare the performance of the new estimators with previous statistics considered

1However we anticipate that the rate of convergence of the estimator in the interior is likely to differ
from that obtained at the boundary. See Chen (2001).
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in the literature. The results suggest that the estimator of treatment effects based on

LLR with gamma and beta kernels are moderately robust to the value of the smoothing

parameter, and they tend to dominate previous estimators in terms of Mean Square

Error. Section 4 concludes.

2 Nonparametric Estimation of a Regression Discontinuity with

Asymmetric Kernels.

Consider a researcher who is interested in measuring the effect that an intervention

has on an outcome variable yi ∈ R. The intervention has been designed in such a way that

the probability of allocation into treatment depends on the levels of the running variable

z. The researcher has a sample of i = 1, . . . , n independent observations (yi, zi, xi)
n
i=1,

where xi is a binary indicator of allocation into treatment such that xi = 1 if the

individual has received treatment, while xi = 0 otherwise. What characterises a RD

design is that the indicator xi is a random variable whose probability distribution, P (xi =

1|zi) = E(xi|zi), is discontinuous at zo, a known threshold or cut-off point in the range

of z. A particular case of this setting is the so called Sharp RD design, where the

probability distribution of xi is degenerated at zo so that P (xi = 1|zi) jumps from 0 to

1 at the threshold. Although we do not make explicit reference to this case, our results

can be extrapolated in a natural manner.

For each individual in the sample there are two potential outcomes: yi1 if the indi-

vidual receives treatment and yi0 otherwise. Both outcomes are not observed simulta-

neously. Therefore, the model for the observed outcome is

yi = yi0 + xi(yi1 − yi0) = αi + xiβi

where βi = (yi1 − yi0) captures the effect of the intervention and it is the object of

interest.

Hahn et al. (1999, 2001) formalize the conditions under which the treatment effect is

(locally) identifiable at the threshold zo in a RD design. These are summarized on the

following assumption.

Assumption 2.1 (Hahn et al. (1999)). Let m+ = m+(zo) = limz→z+o E(y|z), m− =

m−(zo) = limz→z−o E(y|z) and suppose that (i) p+ = p+(zo) = limz→z+o E(x|z), p− =

p+(zo) = limz→z−o E(x|z) exist and p+ 6= p−, and assume that (ii) E(αi|z = zo) is
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continuous in z at zo and βi = β for all i. Then,

β =
m+ −m−

p+ − p−
. (2.1)

If βi varies across individuals and it also holds that (iii) E(βi|z = zo) is continuous at

zo and (iv) x is independent of βi given z near zo, then

E(βi|z = zo) =
m+ −m−

p+ − p−
. (2.2)

Finally, if conditions (i) and (ii) hold, and if (v) (βi, x(z)) are jointly independent of z

near zo and (vi) there exists an ε > 0, such that x(zo + e) ≥ x(zo − e) for all 0 < e < ε,

then,

lim
e→0+

E(βi|x(zo + e)− x(zo − e) = 1] =
m+ −m−

p+ − p−
. (2.3)

Under Assumption 2.1., the quantity m+ − m−/p+ − p− locally identifies βi in a

variety of situations, including homogeneous and heterogeneous treatment effects. More

interestingly, conditions i, ii and v ensure that identification of treatment effect is pos-

sible even when individuals self-select into treatment (due to, for example, anticipated

gains from treatment).

Estimation of the treatment effect in this setting requires estimates of the limits m+,

m−, p+ and p−. To avoid too strong parametric assumptions and reduce the chances

of model misspecification, Hahn et al. (1999) suggested estimating these quantities via

Local Linear Regression (LLR). Thus, the estimator of m+(zo) is the value of a solving

the weighted least squares problem

arg min
a,b

n−1
n∑
i=1

(yi − a− b(zi − zo)Kh

(
zi − zo
h

)
I(zi > zo) (2.4)

where Kh = h−1K(.) is a kernel function distributing weights across the sample points,

h = h(n) is a bandwidth parameter regulating the width of the kernel and such that

h → 0 as n → ∞. I(.) is an indicator function taking the value 1 when the condition

inside the brackets is true. Therefore, unlike standard LLR, only sample points above

(below) the cut-off point zo are used in the estimation of m+ and p+ (m− and p−). The

estimator of βi is then,

β̂i =
m̂+ − m̂−

p̂+ − p̂−
(2.5)

What makes LLR specially attractive in a RD framework is its boundary bias prop-
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erties. The order of the bias of the LLR at points within one bandwidth of the boundary

is equal to O(h2) while the order of this bias is O(h) when using the better known

Nadaraya-Watson estimator. As a result, the NW estimator requires larger amounts of

data in order to attain a given level of precision. In a RD discontinuity identification of

treatment effect is possible at the cut-off point, which generates two regions with a least

one well defined upper/lower bound. Thus, estimators with good boundary properties

seem particularly important.

At the core of the boundary bias problem is the fact that part of the window of the

kernel weight is allocated beyond the boundary of the region of estimation. With finite

samples, when estimating a regression function at a boundary point, typical symmetric

kernels used in nonparametric regression (such as the Gaussian kernel) will allocate a

portion of the window width in a region outside the support of the regression function.

The problem can be mitigated using a kernel with compact support, such as Epanech-

nikov or Triangular kernels. However, as shown by Seifert and Gasser (1996) the LLR

estimator with a compact kernel has unbounded unconditional variance in finite sam-

ples, unlike LLR with a Gaussian kernel. This suggest these kernels can lead to imprecise

estimates.

Chen (2001) has shown that it is possible to find kernels that, matching the support of

the regression function, distribute all their weight only on this region and, furthermore,

when used in a LLR setting, these kernels produce estimators that retain the bounded

finite sample variance of the LLR with a Gaussian kernel. The two kernels considered

by Chen (2001) are

KB
zo,b(zi) =

z
zo/b
i (1− zi)(1−zo)/b

B
(
zo
b + 1, 1−zo

b + 1
) (2.6)

KG
zo,b(zi) =

z
zo/b
i e−zi/b

b
zo
b

+1Γ
(
zo
b + 1

) (2.7)

where B(., .) is the beta function and b = b(n) > 0 is a smoothing parameter satisfying

b → 0 as n → ∞. Here KB(.) is a beta density with parameters r = zo/b + 1 and

s = 1−zo/b+1, while KG(.) is a gamma density with parameters r = b and s = zo/b+1.

These parameterizations locate the mode of the density at zo. Furthermore, the shape

of these densities depends on the values of their parameters, and these parameters are

functions of zo and the smoothing parameter b, so that for fixed b, these kernels provide

a kind of locally adaptive smoothing approach.

The domain of the gamma kernel is [0,∞) while the domain of the beta kernel is
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[0, 1]. In practice the regions generated by the cut-off point in a RD design will rarely

equal to these intervals so these kernels would not match the support of the regression

function at the outset. However, since the cut-off values are known to the researcher, it

is always possible to map the different regions onto the intervals [0,∞) or [0, 1] (leaving

y unaltered). Thus, for example, if the region of interest is [a, b], (a, b finite), then

z−a/b−a is a mapping onto [0, 1]. By matching the support of the regression function,

LLR based on these kernels will use all the sample points in that region but no weight

will be allocated outside the boundaries of the interval, thus increasing the effective

sample size without incurring in a boundary bias problem in small samples. In practice,

it seems clear that the Gamma kernel will be required when the (transformed) domain of

the regression has only a lower bound, while the beta kernel would be more appropriate

if upper and lower bounds are known to the domain of the conditional moment. However

both procedures could be used in any application. More specifically, in the case of the

beta kernel researchers can let the bounds coincide with the observation with a largest

and smallest abscissa.

We present next the asymptotic properties of the ensuing estimator. Prior to that,

we introduce some notation and a few assumptions. Following Chen (2001), we define

the point z in the support of zi to be a boundary point if:

1. z/b→ κ, when using gamma kernel

2. z/b→ κ or (1− z)/b→ κ when using a beta kernel.

for some κ ≥ 0. The following properties of the asymmetric kernels above will be

necessary to obtain the asymptotic distribution of the estimator of βi.

Property 2.1 (Chen (2001)). Let ξ be a random variable with density function (2.7)

and let z be a point in the range of zi. Define pl(z) = E(ξ − z)l. Then

1. If ξ has the density (2.7), p2(z) = bz + 2b2 and pl(z) = O(b2) for l ≥ 3. In

particular, if z is a boundary point, p2(z) = b2(2 + κ). Furthermore, KG
z,b(zi)

2 =

Ab(z)Kz′,b′(zi). If zo is a boundary point, then Ab(z) = b−1Γ(2κ+ 1)/22κ+1Γ2(κ+

1) + o(b−1).

2. If ξ has the density (2.6), p2(z) = bx(1− x) + O(b2) and pl(z) = O(b2) for l ≥ 3.

In particular, if z is a boundary point, p2(z) = b2(2 + κ). Furthermore, at the

boundary, KB
z,b(zi)

2 = b−1Γ(2κ+ 1)/22κ+1Γ2(κ+ 1) + o(b−1)
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The key aspect of the above properties is that the moments p2(.) and K()2 coincide for

both kernels at the boundary. These two moments ultimately characterize the asymp-

totic distribution of the LLR with asymmetric kernels (as will be seen in the Appendix),

and therefore, the coincidence of these quantities at the boundary will lead to estimators

with identical asymptotic distribution. The claim is proved below.

In order to introduce the main result of the paper, we require the satisfaction of the

following assumptions.

Assumption 2.2 Let V = [−M,M ], 0 < M < ∞, be a neighborhood of zo. The

following assumptions are true

1. The running variable, z, has marginal density f(z), bounded, positive and twice

continuously differentiable in V.

2. The conditional expectations m(z), p(z), σ2(z) = var(y|z) and η(z) = cov(y, x|z)
are twice continuously differentiable at V \zo. Their left limits and first and second

derivatives exist and are uniformly bounded on [zo −M, zo), and similarly, the right

limits of m(z), p(z) and its first and second derivatives exist and are uniformly

bounded on (zo, zo +M ].

3. m(zi), σ
2(zi) and η(zi) satisfy the expansion,

ζ(zi) = g(zi)− g+(z)− g′+(z)− 1

2
m′′+(z)(zi − z)2

where supz<zi<z+Mb |ζ(zi)| = o(b2), for 0 < M < ∞ and where g(.) stands for m,

σ2 or η.

4. E
[
(y −m(z))2+δ|z

]
and E

[
(x− p(z))2+δ|z

]
are uniformly bounded on V, for δ >

0.

5. b→ 0, nb→∞ as n→∞.

The conditions above are standard in the literature (Hahn et al. (1999); Porter

(2003)). Assumption 2.3 ensures the satisfaction of a suitable Lyapounov condition,

and weaker than the condition found in Hahn et al. (1999). Unlike in other sources con-

tinuous differentiability of second order is imposed on η, σ2 and m (through assumption

2.2.3 above) , in order to approximate these quantities on a neighborhood of the cut-off

point. Hahn et al. (1999) do not require such restriction and their results use only the

dominated convergence theorem.
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Lemma 2.1 Let m̂+(zo) be a LLR estimator of m+(zo) with the gamma or beta kernels

defined in equations (2.7) and (2.6), let the point zo be the boundary point of the support

of the regression function and assume that b2
√
nb → % > 0. Then, under assumptions

2.1, 2.2. and property 2.1,

√
nb
{
m̂+(zo)−m+(zo)

}
− %m′′+(zo) ∼ N

(
0,
σ2+(zo)

2f(zo)

)
. (2.8)

The proof is given in the Appendix. The expression of the asymptotic bias and variance

is particularly simple, and it does not depend on nuisance parameters. This is possible

because we use specific kernel, and our results specialize to particular values of z (namely

0 and 1) that satisfy the boundary conditions. In accordance to the above lemma, one

can easily derive the expression of the Mean Square Error of this estimator and from

this, the optimal value of the smoothing parameter b, which is given by,

b∗ =

{
σ+2(zo)

2f(zo)m′′+2(zo)

}1/5

n−1/5 = Cn−1/5 (2.9)

Thus the optimal smoothing parameter converges to 0 at the same rate than h in the

standard nonparametric regression with symmetric kernels. However, the magnitude of

the constant C will in general we distinct to that accompanying the theoretically optimal

value of h, so that estimations based on equal h and b are not directly comparable.

From the lemma we see that, as in the case of LLR with symmetric kernels, the bias

of the estimator depends on the curvature of the (limit) of the regression function in a

neighborhood of the boundary point. If m(.) is linear in this neighborhood, the estimator

will be unbiased and optimal bandwidth will tend to ∞; as the complexity of the design

increases and the bias increases, the optimal value of the bandwidth gets progressively

smaller. Finally, since b∗ depends on unknown moments, the usual problems associated

to bandwidth selection apply here as well (see, for example, Hart (1997)). Ludwig

and Miller (2007) and Imbens and Lemieux (2008) discuss several data-driven methods

devised with a RD design in mind, all of which are applicable here.

With assumptions 1 and 2 in place, it is now possible to establish the main result of

the paper.

Theorem 2.1 Let assumptions 2.1 and 2.2 hold, b2
√
nb → %, 0 ≤ % < ∞, and assume

that Kx,b(zi) is either the gamma or beta density in equation (2.7). Then, at zo

√
nb

(
m̂+ − m̂−

p̂+ − p̂−
− m+ −m−

p+ − p−

)
→ N (λ, τ) (2.10)
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where,

λ = %

(
1

p+ − p−
(m′′+ −m′′−)− m+ −m−

(p+ − p−)2
(p′′+ − p′′−)

)
(2.11)

and

τ =
1

2f

(
1

(p+ − p−)2
(σ2

+ − σ2
−)

− 2
m+ −m−

(p+ − p−)3
(η+ − η−)

+
(m+ −m−)2

(p+ − p−)4
(p+(1− p+)− p−(1− p−))

)
(2.12)

where f and all the limits of the conditional expectations are evaluated at the cut-off

point zo = 0.

3 Monte Carlo.

This section collects the result of a Monte Carlo experiment devised to compare the

performance of the estimator of βi under different choices kernel. A fuzzy RD setting

was designed where the probability of assignment to treatment was given by:

P(xi|zi) =

{
(1 + exp(−(z − µ`)/s`))−1 for zi ≤ zo
(1 + exp(−(z − µh)/sh))−1 for zi > zo

(3.1)

where (µ`, s`) = (7, 1), (µh, sh) = (4, 1) and zi is the running variable and the cut-off

value is zo = 5. Three specifications were used to generate the outcome variable:

DPG 1: yi = β0 + β1zi + β2ixi + εi (3.2)

DPG 2: yi =
1

1 + exp(β0 + β1zi + β2ixi + εi))
(3.3)

DGP 3: yi = β0(z∗i − 5)3(1− xi) +
(
β1(z∗i − 5)3 + β2

)
xi + εi (3.4)

where xi is the indicator of treatment and zi, z
∗
i were the running variables defined as:

zi ∼ N(5, 1) (3.5)

z∗i ∼

{
Beta(1, 5) whenever z∗i ≤ 5

Beta(5, 1) whenever z∗i > 5
(3.6)
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The treatment effects in each model were estimated using the statistic described in the

previous section, using four different kernels: Gaussian, Epanechnikov, Gamma and

Beta.

Each regression function exhibits different levels of curvature in a neighborhood of

the cut-off point. In DGP 1, β0 = β1 = 1 and ε ∼ N(0, 1). The treatment effect is

captured by β2i = 1 + ν2 where νj ∼ N(0, 0.25). Thus, DGP 1 exhibits heterogeneous

treatment effects, with a mean value of 1. This model is linear, and therefore the

regression function is estimated free of bias by the LLR (since m′′(z) = 0 for all z). As

a result, when estimating the limits m+ and m−, the value of the optimal bandwidth

converges to ∞ as m′′(z)→ 0.

In DGP 2, β0 = −6, β1 = 1 and β2i = 1 + ν3, νj ∼ N(0, 0.25), and ε ∼ N(0, 1).

Treatment effect is once again heterogeneous across individuals. The regression function

combines two logistic functions, with a discontinuity at z = 5. The value of the discon-

tinuity at z = 5 is 0.23106 (which corresponds with the average treatment effect). The

value of the slope of the regression function changes only moderately in a neighborhood

of the threshold, and so departure from a linear specification is not totally obvious in

this neighborhood. Thus, when estimating m+ and m−, large bandwidths will tend to

yield more accurate estimates.

Finally, in DGP 3, β0 = β1 = β2 = −2 and and ε ∼ N(0, 1). The treatment effect is

capture by β2. In this case we have homogeneous treatment effects across individuals.

What characterises this model is the change of the sign of the second derivatives of

the regression function at the threshold, so that the function switches from a convex to

a concave mapping. Thus this model is relatively more complex to estimate than the

previous two specification and the fast change of the second derivatives about zo will

require smaller bandwidths than in the previous two cases.

It has been commented that the estimator in (2.5) can locally identify the treatment

effect even in the presence of selection into treatment. Therefore, to simulate selection

into treatment we forced xi = 1 whenever zi ≤ 5 and εi < m where m = 1.645, the 90

quantile of the standard normal distribution.

Rather than using a single value of the bandwidth to estimate each model, arrays

of values were considered instead. Estimation of the treatment effect in models 1 and 2

was based on h, b = c = 0.3 + j ∗ 0.1, with j = 3, . . . , 40, while for model 3 h, b = c =

0.1 + j ∗ 0.02, with j = 1, . . . , 90.

Samples of 500, 1000 and 2000 observations were drawn 10.000 times for each design

and the treatment effect was estimated using each of the four different kernels. The

mean squared bias, MSE = R−1
∑10.000

j=0 (τ̂ − τ)2 was calculated as a measure of overall
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performance. Figures 1 to 9 summarize the results of the simulation.

The curves depicted in figures 1 to 3 describe the variation of log(MSE) as a function

of the bandwidth parameter when data are generated from the linear specification in

DGP 1. The performance of all four estimators improves (at decreasing rates) as the

magnitude of the smoothing parameter increases. It thus seems that the reduction in

the bias in the numerator of the statistics (as the magnitude of the smoothing parameter

increases) dominates the behaviour of the estimator. As expected, increasing the sample

size leads to a reduction of the average value of log(MSE). All four estimators attain

almost identical log(MSE) for very large values of the bandwidth parameters. However,

for moderate values of the smoothing parameters, it is possible to establish a clear

ranking amount all four methods. The LLR with beta kernel clearly dominates the

other estimators. The Gamma and Gaussian kernels lead to comparable performance

in terms of log(MSE), but the LLR is comparatively much worse if the Epanechnikov

kernel is used.

When the logistic mode (DGP 2) is considered, the estimators perform worse when

the magnitude of the bandwidth is small. As the amount of smoothing increases, the

precision of the estimators increases, but only up to a point, beyond which the mean

square error begins to increase. This is clearer for N = 2000. In this case, all four meth-

ods attain a minimum error at log(MSE) ≈ 3.2. However, this minimum is attained

at different values of the smoothing parameter. The optimal value of b is about 0.7

when using the beta kernel and approximately 2 if using the gamma kernel. In contrast

with this, the optimal value of h was attained at 1.5 and 2.7 if using the Gaussian and

Epanechnikov kernels, respectively. Once again, when a small bandwidth parameter was

used in all four methods, then the LLR with Beta kernel would be the most reliable

estimator, followed by the Gamma, Gaussian and Epanechnikov kernels. Large band-

widths, on the other hand, will make the performance of the four methods comparable

(although, for large N, the Gaussian kernel seem to be the least accurate among the

estimators).

When data were generated with the cubic model (DGP 3), the value of the smooth-

ing parameter leading to the optimal performance was significantly smaller than in the

previous two cases. Again, all four methods attained a comparable minimum log(MSE):

This minimum value was located at about -0.3 for N = 500, -0.6 for N = 1000 and -0.85

for N = 2000. However all estimators required different values of the smoothing param-

eter to obtain their best performance. Thus, for N = 2000, the optimal value of b was

0.12 for the LLR-Gamma estimator and 0.25 for the LLR-Beta estimator. Similarly, the

optimal h was 0.15 and 0.37 for the LLR-Gaussian and LLR-Epanechnikov estimators
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respectively. Outside these values, is is difficult to establish a ranking among the esti-

mators. If researchers would be oversmoothing the data, then the LLR-Beta estimator

dominates all of the other methods, followed by the LLR-Epanechnikov, LLR-Gamma

and LLR-Gaussian estimators. For small to moderate amounts of smoothing, then the

LLR-Beta estimator tends to dominate the others, while the Gaussian and Gamma ker-

nels generate estimates of comparable quality. The LLR-Epanechnikov estimator, on

the other hand, can behave quite poorly. In general, the Gamma and Beta kernels lead

to more stable estimation, and their log(MSE) curves change less dramatically with b

than those of the Gaussian and Epanechnikov kernels.

The results suggest that all four methods described here can provide comparable

accuracy. However, for this to happen, researchers must be able to estimate the optimal

value of the smoothing parameter with great accuracy. Otherwise, all four estimators

behave quite differently. In practice, this is not a minor point, since the problem of

optimal bandwidth selection is largely unresolved. To illustrate the problem, we repeated

the experiment using model 3 and a Gaussian kernel with N = 2000, but in this occasion,

the amount of smoothing was selected using simple Cross-Validation, which is one of the

better know data-driven selectors. The mean bandwidth was 1.41, with a median value of

0.1345. The distribution of bandwidths was wide and heavily skewed. The median value

of 0.13 was close to the optimal value of 0.15 mentioned above, however the Gaussian

kernel is only marginally preferred to the Gamma kernels is a neighborhood about 0.13.

Given the difficulty of choosing the amount of smoothing in practice, the question

is which of the above methods is most reliable. Our experiment seems to favour the

LLR-Beta. This estimator dominates the others in most settings, and it seems to be

less sensitive to the amount of smoothing in the sample. The LLR-Gamma estimator

exhibits, for small bandwidths, a performance comparable to that achieved by the LLR-

Gaussian estimator. However, if oversmoothing, Gamma kernel is, again, less sensitive

to the choice of bandwidth parameter. The LLR-Epanechnikov, on the other hand, can

be quite inaccurate, and its performance varies widely with the magnitude of h, making

it the least preferred of the methods.

4 Conclusion

This article has discussed the use of Local Linear Regression (LLR) with asymmetric

kernels in order to estimate the effect of a policy, intervention or treatment in a Regres-

sion Discontinuity design. Following Chen (2001), gamma and beta kernels have been

proposed to replace symmetric kernels in the LLR. These kernels circumvent the prob-
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lem of boundary bias even in finite samples (by distributing their weight only within the

support of the regression function) and they increase the effective amount of data used

by the estimator (by matching the support of the regression function), thus making the

LLR more stable.

The article provides the expressions of the approximate large sample bias and vari-

ance of the estimator and, in doing so, results in Chen (2001) have been extended by

establishing the asymptotic normality (at the boundary) of the LLR estimator with a

gamma and beta kernels. Although the results are circumscribed to the boundary of

the distribution of the running variable, a similar approach could be used to prove the

asymptotic normality of these estimator at any point of the domain of the regression

function. The asymptotic distribution of the estimators allowed us to obtain the theo-

retically optimal value of the smoothing parameter. It turns out that the optimal rate

of convergence to 0 is O(n−1/5), which is the rate commonly exhibited when the LLR

estimator is combined with symmetric kernels.

A Monte Carlo experiment was used to evaluate the performance of the new method

and study the impact of the amount of smoothing. Two are the main findings of our

simulation. Firstly, the new estimators can dominate existing methods based on Gaus-

sian or Epanechnikov kernels in a variety of scenarios and, secondly, we found that

the new methods are less sensitive to the magnitude of the bandwidth parameter than

LLR based on Gaussian or Epanechnikov kernels, making them attractive methods for

empirical applications.

Although our results focus on beta and gamma kernels, other choices of kernel are

available. Scaillet (2004) has used Inverse Gaussian and Reciprocal Inverse Gaussian

kernels for density estimation. Other choices might be also feasible. However an study

of alternative asymmetric kernels and their peformance is beyond the scope of the present

article, and it is left for future consideration.
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A Proofs

This appendix contains the proofs of the main results. We first obtain the asymptotic

distribution of m̂+ at the boundary. The asymptotic distribution of the estimators of

m−, p+ and p− is obtained identically, and so the proof concerning these cases is omitted.

Define

y∗i = yi −m+(z) +m′+(z)(zi − z) = yi − Z ′iθ,

where Z ′i = (1, (zi − z)), θ = (m+(z),m′+(z))′ and yi = m(zi) + ui. Here the point

z = zo is the boundary on which estimation of m+(z) is taking place and equals 0 or 1,

depending on the kernel employed. Define Z as the n× 2 matrix with rows Z ′i, K is the

diagonal matrix with elements Kz,b(zi)I(zi > z) and let M and u be n× 1 matrices with

elements m(zi) and ui respectively. The design points, zi have been normalized to fall

within [0,∞) (when using Gamma kernels) or [0, 1] (if using a beta kernel); this can be

done without loss of generality. Finally let e′1 = (1, 0).

The estimator of m+ that solves equation (2.4) can be written as:

m̂+(z)−m+(z) = e′1(Z ′KZ)−1Z ′K(M + u− Zθ)

= e′1(Z ′KZ)−1Z ′K(M − Zθ)

+e′1(Z ′KZ)−1Z ′Ku (A-1)

Lemma A.1 Under assumptions 2.1, 2.2 and property 2.1,

e′1(Z ′KZ)−1Z ′K(M − Zθ) = b2m′′+(z) + op(1) (A-2)

at z, regardless of whether a beta or gamma kernel is used in the estimation.

Proof. Consider first the LLR with the gamma kernel. The matrix Z ′KZ/n has

typical element

Sl(z) = n−1
n∑
i=1

Kz,b(zi)I(zi > z)(zi − z)l

17



for l = 0, 1, 2. Chen (2001) shows that Sl(z) = E(Sl(z)) + op(1), where

E (Sl(z)) =

∫ ∞
0

Kz,b(zi)(zi − z)lf(zi)dzi

= E(f(ξi)(ξi − z)l)

= E

{(
f(z) + f ′(z)(zi − z) +

f ′′(z)

2
(ξi − z)

)
(ξi − z)l

}
+O(b2)

= f(z)pl(z) + f ′(z)pl+1(z) +
f ′′(z)

2
pl+2(z) +O(b2) (A-3)

where ξi is a random variable with density Kz,b(.). The third equality follows since

pl = O(b2) for l ≥ 2. From this expression Chen provides the asymptotic approximation

to the elements in (Z ′KZ/n)−1 (see Chen (2001), pg. 322). Secondly, n−1Z ′K(M −Zθ)
has typical element

n−1
∑
i

Kz,b(zi)I(zi > z)(zi − z)l(m(zi)−m+(z)−m′+(z)(zi − z))

for l = 0, 1. From assumption 2.2.3 it follows that

E

{
1

n

∑
i

Kz,b(zi)I(zi > z)(zi − z)l(m(zi)−m+(z)−m′+(z)(zi − z))

}

= E

{
1

n

∑
i

Kz,b(zi)I(zi > z)(zi − z)l
(

1

2
m′′+(z)(zi − z)2 + ζ(zi)

)}

=
1

2
m′′+(z)E(f(ξi)(ξi − z)2+l) + o(b2)E(f(ξi)(ξi − z)l)

=
1

2
m′′+(z)

(
f(z)p2+l(z) +O(b2)

)
+ o(b2)

(
f(z)pl + f ′(z)pl+1 +

f ′′(z)

2
pl+2 +O(b2)

)
=

1

2
m′′+(z)f(z)p2+l(z) + o(1) for l = 0, 1. (A-4)
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The variance of each of these terms is such that,

var

(
1

n

∑
i

Kz,b(zi)I(zi > z)(zi − z)l
{

1

2
m′′+(z)(zi − z)2 + ζ(zi)

})

≤ 1

n
E

{
K2
z,b(zi)I(zi > z)(zi − z)4+2l 1

4

(
m′′+(z)

)2}
+

{
o(b2)

}2 1

n
E
{
K2
z,b(zi)(zi − z)2l

}
∝ Ab(z)

n
E
{

(ξi − z)4+2lf(ξi)
}

+
{
o(b2)

}2 Ab(z)

n
E
{

(ξi − z)2lf(ξi)
}

=
Ab(z)

n
O(b2) +

{
o(b2)

}2 Ab(z)

n
E
{
f(z)p2l(z) +O(b2)

}
(A-5)

At the boundary, Ab(z) = O(1/b) and so the first term above is o(1), while for l = 0, 1,

the second term is o(1/nb). Therefore the above variance is bounded by a quantity of

order o(1). The result then follows from (A-4), since p2(z) = b2(2 + (z/b)) → b2(2 + κ)

at the boundary (see property 2.1). However, since z = 0, the above simplifies to

p2(0) = 2b2, and the result then follows.

The above results depend on the kernel density only through pj(z). However, in

the boundary, property 2.2 establishes that the Beta and Gamma kernels have identical

moments p1 and p2 (up to a negligible term) and therefore the expression of the bias

above coincides in both cases.

Proof of Lemma 2.1.

We only need to establish a Central Limit Theorem for the second term in equation

(A-1). Begin by noting that the term n−1Z ′Ku has elements Tl(z) =
∑n

i=1Kz,b(zi)I(zi >
z)(zi − z)lui, for l = 0, 1 with zero mean and conditional variance,

var(Tl(z)|z1, . . . , zn) =
1

n
E
(
K2
z,b(zi)I(zi > z)(zi − z)2lσ2(zi)

)
=

Ab(z)

n
E
(
f (ξi)σ

2(ξi)(zi − z)2l
)

=
Ab(z)

n

[
f(z)σ2+(z)p2l(z) +O(b2)

]
=

Γ(2κ+ 1)

nbΓ2(κ+ 1)22κ+1
f(z)σ2+(z)p2l(z) + o(1) (A-6)
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for l = 0, 1. Let λ = (λ1, λ2)′ be such that λ′λ = 1, and consider,

√
nbλ′

Z ′Ku

n
=

n∑
i=1

tni√
n

where

tni =
√
bλ1Kz,b(zi)I(zi > z)ui +

√
bλ2Kz,b(zi)I(zi > z)(zi − z)ui

A sufficient Lyapounov condition is

lim
n→∞

n∑
i=1

E

∣∣∣∣ tni√n
∣∣∣∣2+δ

= lim
n→∞

1

n2+δ/2

n∑
i=1

E |tni|2+δ = lim
n→∞

n−1−δ/2E|tni|2+δ = 0,

and from this it follows that

|tni|2+δ = E
∣∣∣√bλ1Kz,b(zi)I(zi > z)ui +

√
bλ2Kz,b(zi)I(zi > z)(zi − z)ui

∣∣∣2+δ

≤ 21+δE
∣∣∣√bλ1Kz,b(zi)I(zi > z)ui

∣∣∣2+δ
+ 21+δE

∣∣∣√bλ2Kz,b(zi)I(zi > z)(zi − z)ui
∣∣∣2+δ

Now, the first term is such that,

E |Kz,b(zi)ui|2+δ = |u|2+δ
i

∫ ∞
0
|Kz,b(zi)|2+δf(zi)dzi (A-7)

Note that

Kz,b(zi)
2+δ =

z
(2+δ)z/b
i e−(2+δ)zi/b

bz(2+δ)/b+(2+δ)Γ(2+δ)(z/b+ 1)

Γ((2 + δ)z/b+ 1)(2 + δ)−(2+δ)z/b−1

Γ((2 + δ)z/b+ 1)(2 + δ)−(2+δ)z/b−1

= A∗b(z)K
∗
x,b(zi), (A-8)

where now,

A∗b(z) =
(2 + δ)

−(2+δ)z
b Γ

(
(2+δ)z
b + 1

)
b1+δΓ(2+δ)

(
x
b + 1

)
K∗x,b(zi) =

zk−1
i e−zi/θ

θkΓ(k)
for θ =

b

(2 + δ)
and k =

(2 + δ)z

b
+ 1

so that p1(z) = 1 and p2(z) ∝ zb(2 + δ) + b2. Given the boundary condition z/b→ κ ,

A∗b(z) ∼
(2 + δ)−(2+δ)κΓ((2 + δ)κ+ 1)

b1+δΓ(2+δ)(κ+ 1)
= O(1/b1+δ). (A-9)
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Thus, at the boundary,

E |Kz,b(zi)ui|(2+δ) = |u|(2+δ)
i A∗b(z)E {f(ξi)}

= |u|(2+δ)
i A∗b(z)f(z) + |u|(2+δ)

i A∗b(z)f
′(z) +O(1/bδ)

= O(1/b1+δ) (A-10)

and similarly,

E |Kz,b(zi)(zi − z)ui|(2+δ) = |ui|(2+δ)A∗b(z)E
{
f(ξi)(ξi − z)(2+δ)

}
= |ui|(2+δ)A∗b(z)f(z)p(2+δ)(z) +O(b2)

= O(1/b1+δ)O(b2) = o(1) (A-11)

Therefore,

lim
n→∞

1

n1+δ/2
E|tni|2+δ ≤ lim

n→∞

b(2+δ)/2

n1+δ/2

(
O

(
1

b1+δ

)
+ o(1)

)
= o(1)

provided that nb→∞ from which it follows that

√
nb
{
m̂(x)+ −m(x)+

}
−
√
nb

2
(2 + κ)m′′+(x)b2 ∼ N

(
0,

σ2+(x)Γ(2κ+ 1)

22κ+1Γ(κ+ 1)f(x)

)
(A-12)

Noting that, by definition, z = 0 (so that κ = 0), the lemma follows. Once again, the

above result depends on the type of kernel only through pl(z) for l = 0, 1, 2, and by

property 2.2 it folows that the one can extrapolate the conclusion to the case of a LLR

with a beta kernel.

Proof of Theorem 2.1.

To prove the theorem, we first establish the covariance between m̂+(z) and p̂+(z).

Consider firstly the terms n−1Z ′Ku and n−1Z ′Kv and note that,

E

(
1

n

n∑
i=1

Kz,b(zi)(zi − z)lui
1

n

n∑
i=1

Kz,b(zi)(zi − z)lvi|z1, . . . , zn

)

=
1

n
E
{
K2
z,b(zi)(zi − z)2lη(zi)

}
=

Ab(z)

n

(
f(z)η+(z)p2l(z) +O(bl+1)

)
(A-13)
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The final expression for the covariance between m̂+ and p̂+ follows from A-1, A-3 and

results in page 322 of Chen (2001).

With the expression for the bias and the central limit theorem one deduces that

√
nb

(
(m̂+ − m̂−)− (m+ −m−)

(p̂+ − p̂−)− (p+ − p−)

)
→ N

((
τm

τp

)
,

(
λm λmp

λmp λp

))
(A-14)

where τm = b2
√
nb

2 (2 + κ)(m′′+(z) − m′′−(z)), λm = f−1(z)C(σ2
+(z) − σ2

−(z)), λmp =

Cf−1(z)(η+(z) − η−(z)), and similarly for the remaining terms. Finally, a Taylor ex-

pansion (see Hahn et al. (1999) or proposition 1 in Porter (2003)), yields,

√
nb

(
m̂+ − m̂−

p̂+ − p̂−
− m+ −m−

p+ − p−

)
→ N (λ, τ) (A-15)

where,

λ =
b2
√
nb

2
(2 + κ)

(
1

p+ − p−
(m′′+ −m′′−)− m+ −m−

(p+ − p−)2
(p′′+ − p′′−)

)
(A-16)

and

τ =
C

f(z)

(
1

(p+ − p−)2
(σ2

+ − σ2
−)

− 2
m+ −m−

(p+ − p−)3
(η+ − η−)

+
(m+ −m−)2

(p+ − p−)4
(p+(1− p+)− p−(1− p−))

)
(A-17)

for C = Γ(2κ+1)
Γ2(κ+1)22κ+1 . The result then follows by noting that κ is the limit of z/b (if

using gamma kernels or if estimation is done using beta a beta kernel in the boundary

about 0) or (1− z)/b (if estimation is done with the beta kernel within a neighborhood

of 1). In either case, κ = 0.
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Figure 5: log(MSE). Model 2, N=1000, R=10.000
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Gaussian Kernel
Gamma Kernel

b b b b b b b b b b
b b b b b b

b b b b b b b b b
b b b b b b b b b b b b b b b b b

b b b b b b b b
b

Beta Kernel

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r
r r r r r r r r r r r r r r r r r

r
Epanechnikov Kernel

26



-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bandwidth Parameter

Figure 9: log(MSE). Model 3, N=2000, R=10.000
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