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1 Introduction

In a recent paper Aliprantis et al. [2] provide an existence proof of a minimax point for a
strategic (normal) form game. This theorem is useful as it has found applications in game
theory (see for example Fudenberg-Maskin [5], Myerson [6], Thomas [7] among others).

Our objective is to extend the above result of Aliprantis et al. [2] to an asymmetric
information game. To this end we introduce the notions of ex-ante and interim minimax
point and prove the existence of such points.

Although the idea of the proof is the same with that in [2] the introduction of asym-
metric information necessitates the use of some non trivial theorems. In particular, we
make use of Diestel’s theorem on weak compactness on the space of Bochner integrable
functions and the Kuratowski measurable selection theorem.

As the deterministic result proved in [2] has found interesting applications in repeated
games, we think that our new results will be of interest and applicable to a framework of
repeated games with asymmetric information. Obviously, our new general setting includes
as a special case the result in [2].

2 Mathematical preliminaries

2.1 Notation

IR denotes the set of real numbers.
IR+ = {x ∈ IR : x ≥ 0}.
IR++ = {x ∈ IR : x > 0}.
ĪR = IR ∪ {−∞, +∞}.
2A denotes the set of all subsets of the set A.

2.2 Definitions

If X and Y are sets, the graph of the set-valued function (or correspondence), Φ : X → 2Y

is denoted by GΦ = {(x, y) ∈ X × Y : y ∈ Φ(x)}. Let (T, T , µ) be a complete, finite
measure space, and X be a separable Banach space. The set-valued function Φ : T → 2X

is said to have a measurable graph if GΦ ∈ T ⊗ β(X), where β(X) denotes the Borel
σ-algebra on X and ⊗ denotes the product σ-algebra. A correspondence Φ : T → 2X from
a measurable space (T, T , µ) into a topological space X is said to be lower measurable if
{t ∈ T : Φ(t) ∩ V 6= ∅} ∈ T for every V open in X.

If X and Y are topological spaces, Φ : X → Y is said to be upper-semi-continuous if the
set {x ∈ X : Φ(x) ⊂ V } is open in X for every open subset V of Y ; Φ is said to be lower
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semi-continuous if the set {x ∈ X : Φ(x) ∩ V 6= ∅} is open in X for every open subset V
of Y .

Let (T, T , µ) be a finite measure space and X be a Banach space. Following Diestel-Uhl
(1977) (see [4]) the function f : T → X is called simple if there exist x1, x2, . . . , xn in
X and α1, α2, . . . , αn in T such that f =

∑n
i=1 xiχαi , where χαi(t) = 1 if t ∈ αi and

χαi(t) = 0 if t /∈ αi. A function f : T → X is said to be µ -measurable if there exists a
sequence of simple functions fn, : T → X such that limn→∞ ‖fn(t)− f(t)‖ = 0 for almost
all t ∈ T . A µ-measurable function f : T → X is said to be Bochner integrable if there
exists a sequence of simple functions {fn : n = 1, 2, . . .} such that

lim
n→+∞

∫

T
‖fn(t)− f(t)‖ dµ(t) = 0.

In this case we define for each E ∈ T the integral to be
∫
E f(t) dµ(t) = limn→+∞

∫
E fn(t) dµ(t).

It can be shown [see Diestel-Uhl (1977), Theorem 2, p.45 [4]] that if f : T → X is a µ-
measurable function, then f is Bochner integrable if and only if

∫
T ‖f(t)‖ dµ(t) < ∞. It is

important to note that the Dominated Convergence Theorem holds for Bochner integrable
functions. In particular, if fn : T → X, (n = 1, 2, . . .) is a sequence of Bochner integrable
functions such that limn→+∞ fn(t) = f(t) for almost all t ∈ T , and ‖fn(t)‖ ≤ g(t) for al-
most all t ∈ T (where g : T → IR is an integrable function), then f is Bochner integrable
and limn→+∞

∫
T ‖fn(t)− f(t)‖ dµ(t) = 0.

For 1 ≤ p < ∞, we denote by Lp(µ,X) the space of equivalence classes of X-valued
Bochner integrable functions x : T → X normed by

‖x‖p =
(∫

T
‖x(t)‖p dµ

) 1
p

.

It is a standard result that normed by the functional ‖ · ‖ above, Lp(µ,X) becomes a
Banach space [see [4], p. 50]. Recall that a correspondence Φ : T → 2X is said to be inte-
grably bounded if there exists a map h ∈ L1(µ, IR) such that sup{‖x‖ : x ∈ Φ(t)} ≤ h(t)
for almost all t ∈ T .

A Banach space X has the Radon-Nikodym Property with respect to the measure space
(T, T , µ) if for each µ-continuous measure G : T → X of bounded variation there exists
g ∈ L1(µ,X) such that G(E) =

∫
E g(t) dµ(t) for all E ∈ T .

X∗ stands for the topological dual space of (X, ‖ · ‖). As usual ‖ · ‖∗ stands for the
norm dual on X∗ (i.e., ‖x∗‖∗ := sup{< x, x∗ > : x ∈ X, ‖x‖ ≤ 1}, where < x, x∗ >:=
x∗(x)). By weak compactness and weak continuity we mean with respect to the weak
topology σ(L1(µ,X), L∞(µ,X∗)), where L∞(µ, X∗) is the dual of (L1(µ,X), ‖ ·‖1). Recall
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that σ(L1(µ,X), L∞(µ,X∗)) is defined as the weakest topology on L1(µ,X) for which all
functionals

x ∈ L1(µ,X) →
∫

Ω
< x(ω), p(ω) > dµ, where p ∈ L∞(µ,X∗),

are continuous.

2.3 Theorems

We now collect some interesting results, which will be of fundamental importance in this
paper. We begin with a result on weak compactness known as Diestel’s Theorem. This
theorem is a consequence of the celebrated theorem by James on weakly compact sets.

Diestel’s Theorem: Let T be an arbitrary measure space, X be a Banach space and
K : T → 2X be an integrably bounded, non-empty, weakly compact and convex valued
correspondence. Then, the set

K̃ = {f ∈ L1(µ, X) : f(t) ∈ K(t) for almost all t ∈ T}

is weakly compact in L1(µ,X).

Proof: see Yannelis (1991).

Kuratowski and Ryll-Nardzewski Measurable Selection Theorem Let (T, T ) be
a measurable space, X be a separable metric space and Φ : T → 2X be lower measur-
able, closed, non-empty valued correspondence. The, there exists a measurable function
f : T → X such that f(t) ∈ Φ(t) for all t ∈ T .

Proof: See Castaing and Valadier [3].

Berge’s Maximum Theorem Let X be a topological space and Φ : T → 2X be a
continuous correspondence with non-empty compact values, and suppose that f : T×X →
IR is continuous. Define the “value function” m : T → IR by

m(t) = max
x∈Φ(t)

f(t, x),

and the correspondence µ : T → 2X of maximizers by

µ(t) = {x ∈ Φ(t) : f(t, x) = m(t)}.

Then, the value function m is continuous, and the “argmax” correspondence µ is upper
semi-continuous with compact values.
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3 The strategic game with asymmetric information

Let (Ω,F , µ) be a finite measure space denoting the states of nature of the world, let I
be the set of players, which may be any finite or infinite set, and Y be a separable Banach
space denoting the strategy sets. A strategic game with asymmetric information
G = {(Xi,Fi, ui, qi)i∈I} is a set of quadruples (Xi,Fi, ui, qi), where for each player i,

1. Xi : Ω → 2Y is the random strategy set,

2. Fi is a measurable partition3 of (Ω,F) denoting the private information of player
i,

3. ui : Ω×∏
i∈I Y → IR is the random payoff function,

4. qi : Ω → IR++ is the prior of player i (i.e., qi is a Radon-Nikodym derivative having
the property that

∫
ω∈Ω qi(ω) dµ(ω) = 1).

As usual if x ∈ ∏
i∈I Y , then for each player i, we write x = (x−i, xi), where x−i =

(x1, . . . , xi−1, xi+1, . . .).

The σ-field of events discernable by every player is the “coarse” σ-field
∧

i∈I Fi, which
is the largest σ-algebra contained in each Fi. While, players by pooling their information,
discern the events in the “fine” σ-field

∨
i∈I Fi, which denotes the smallest σ-algebra

containing all Fi.

We denote by L1(µ, Y ) the space of equivalence classes of Y -valued Bochner integrable
functions x : Ω → Y .

For each player i ∈ I define the set of all Bochner integrable and Fi measurable selections
from the strategy set of player i, i.e.,

LXi = {xi ∈ L1(µ, Y ) : xi(·) isFi−measurable and xi(ω) ∈ Xi(ω) for almost all ω ∈ Ω},

and let LX =
∏

i∈I LXi . Similarly, for each player i ∈ I, we define LX−i =
∏

j∈I\{i} LXj

and we notice that for each i, LX = LX−i × LXi .

For each player i, the ex-ante expected payoff vi : LX−i × LXi → IR is defined by

vi(x−i, xi) =
∫

ω∈Ω
ui(ω, x−i(ω), xi(ω))qi(ω)dµ(ω).

3By an abuse of notation we will still denote by Fi the σ-algebra that the partition Fi generates.
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For each player i, denote by EFi(ω) the event in Fi containing the realized state of nature

ω. Suppose that for all ω,
∫

ω′∈EFi (ω)
qi(ω′) dµ(ω′) > 0. For each player i, given EFi(ω),

the interim expected payoff Vi : Ω× LX−i × LXi → IR is defined by

Vi(ω, x−i, xi) =
∫

ω′∈EFi (ω)
ui(ω′, x−i(ω′), xi(ω′))qi(ω′|EFi(ω))dµ(ω′),

where

qi(ω′|EFi(ω)) =

{
0 if ω′ /∈ EFi(ω)

qi(ω
′)∫

ω′∈EFi (ω)
qi(ω′) dµ(ω′) if ω′ ∈ EFi(ω).

4 Definitions of ex-ante and interim minimax point

We now introduce the definitions of a minimax point in the context of an asymmetric
information game, by considering the ex-ante as well as the interim case.

The minimax payoff of player i gives the maximal punishment that all the other players
can inflict on him. Using the notation above the maximal punishment that the players
I \ {i} can inflict to player i is represented by actions in the set LX−i , i.e., this is the set
containing all the private information strategies of the players I \ {i}. The best player i
can do is to maximize her payoff based on her own private information. This leads to the
following definitions.

Definition 4.1. The ex-ante minimax point of a strategic game with asymmetric in-
formation G is the sequence of extended real numbers v∗ = (v∗1, v

∗
2, . . .), where for each

player i we have
v∗i = inf

x−i∈LX−i

sup
xi∈LXi

vi(x−i, xi).

We shall say that the ex-ante minimax point is attainable, if v∗i is attained for each
player i, i.e.,

v∗i = min
x−i∈LX−i

max
xi∈LXi

vi(x−i, xi). (1)

Similarly, we define the interim minimax point for which the actions are made after
all players have received their own private information, that is, at an interim stage.

Definition 4.2. The interim minimax point of a strategic game with asymmetric in-
formation G is the sequence of extended real valued functions

V ∗(·) = (V ∗
1 (·), V ∗

2 (·), . . .), where for each player i we have

V ∗
i (·) : Ω → ĪR

ω → V ∗
i (ω) = inf

x−i∈LX−i

sup
xi∈LXi

Vi(ω, x−i, xi).
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We shall say that the interim minimax point is attainable, if for each player i, we have

V ∗
i (·) : Ω → ĪR

ω → V ∗
i (ω) = min

x−i∈LX−i

max
xi∈LXi

Vi(ω, x−i, xi). (2)

Definitions 4.1 and 4.2 do not take into account the fact that players I \ {i} may co-
operate against player i. Even if, an explicit cooperation is not allowed, player i may not
know this. Therefore, the worst punishment player i may expect to receive is when the
others cooperate against him. This idea can be formalized by assuming that players in
I \ {i}, pool their own private information. In other words, the strategy vector x−i(·) is
assumed to be

∨
j∈I\{i}Fj-measurable.

On the other hand, the least severe punishment that player i may expect to receive
is when all the other players use the common knowledge information strategies, that is
the strategy vector x−i(·) is

∧
j∈I\{i}Fj-measurable.

To this end, define for each fixed player i and each j ∈ I \ {i} the sets4

Lp

Xj
−i

= {xj ∈ L1(µ, Y ) : xj(·) is
∨

j∈I\{i}
Fj−measurable and xj(ω) ∈ Xj(ω) µ− a. e.},

Lc
Xj
−i

= {xj ∈ L1(µ, Y ) : xj(·) is
∧

j∈I\{i}
Fj−measurable and xj(ω) ∈ Xj(ω) µ− a. e.}.

Let Lp
X−i

=
∏

j∈I\{i} Lp

Xj
−i

and Lc
X−i

=
∏

j∈I\{i} Lc
Xj
−i

.

Observe, that if the players had used the common knowledge information strategies
or the private information (i.e., Fj), then since Lc

X−i
and LX−i are subsets of Lp

X−i
, the

punishment inflicted to player i would have been less severe. Indeed, the larger the set,
the bigger the punishment. Notice that, since for each i, j ∈ I, with j 6= i,

Lc
X−i

⊆ LX−i ⊆ Lp
X−i

,

it follows that

inf
x−i∈Lc

X−i

sup
xi∈LXi

vi(x−i, xi) ≥ inf
x−i∈LX−i

sup
xi∈LXi

vi(x−i, xi)

≥ inf
x−i∈Lp

X−i

sup
xi∈LXi

vi(x−i, xi).

Definitions 4.1 and 4.2 can be formulated in terms of the sets Lp
X−i

and Lc
X−i

and the
existence theorem 6.1 and 6.2 remain valid.

4The apexes “p” and “c” stand respectively for “pool” and “common” information.
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As noted above, player i maximizes her payoff using her own private information, i.e.,
xi(·) is Fi-measurable. For each player i ∈ I, we call an action x satisfying (1) an ex-ante
optimizer for the ex-ante minimax value v∗i . Similarly, we call an action x satisfying (2)
an interim optimizer for the interim minimax value V ∗

i . Clearly optimizers, if they exist,
may be different for different players.

The example below shows that if the minimax point is attainable, the sets of ex-ante
and interim optimizers may differ.

Example 4.3. Consider the 2-person asymmetric information game with two equiprobable
states of nature, that is Ω = {ω1, ω2} and µ(ω1) = µ(ω2) = 1

2 , and where the players’
characteristics are given as follows

F1 = {{ω1}, {ω2}} and F2 = {ω1, ω2}
X1(ω1) =

[
0,

1
2

]
; X1(ω2) = [0, 1] and X2(ω1) = X2(ω2) = [0, 1]

u1(ω1, x1(ω1), x2(ω1)) = x1(ω1) + x2(ω1) and u1(ω2, x1(ω2), x2(ω2)) = x1(ω2)− x2(ω2)
u2(ω, x1(ω), x2(ω)) = x1(ω) + x2(ω) for all ω ∈ Ω.

The ex-ante minimax point is attainable; indeed,

v∗1 = min
x2∈LX2

max
x1∈LX1

[
1
2
u1(ω1, x1(ω1), x2(ω1)) +

1
2
u1(ω2, x1(ω2), x2(ω2))

]
=

= min
x2∈LX2

max
x1∈LX1

[
1
2
x1(ω1) +

1
2
x2(ω1) +

1
2
x1(ω2)− 1

2
x2(ω2)

]
=

= max
x1∈LX1

[
1
2
x1(ω1) +

1
2
x1(ω2)

]
=

3
4
, and similarly

v∗2 = 1.

Also, the interim minimax point is attainable but it differs form the ex-ante one;
indeed,

V ∗
1 (ω1) = min

x2∈LX2

max
x1∈LX1

µ(ω1)
µ(ω1)

u1(ω1, x1(ω1), x2(ω1)) =

= min
x2∈LX2

max
x1∈LX1

[x1(ω1) + x2(ω1)] =
1
2
;

V ∗
1 (ω2) = min

x2∈LX2

max
x1∈LX1

µ(ω2)
µ(ω2)

u1(ω2, x1(ω2), x2(ω2)) =

= min
x2∈LX2

max
x1∈LX1

[x1(ω2)− x2(ω2)] = 0, and finally
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V ∗
2 (ω1) = V ∗

2 (ω2) = min
x1∈LX1

max
x2∈LX2

[
µ(ω1)

µ(ω1, ω2)
u2(ω1, x1(ω1), x2(ω1))+

+
µ(ω2)

µ(ω1, ω2)
u2(ω2, x1(ω2), x2(ω2))

]
=

= min
x1∈LX1

max
x2∈LX2

[
1
2
x1(ω1) +

1
2
x2(ω1) +

1
2
x1(ω2) +

1
2
x2(ω2)

]
= 1.

Nevertheless, if the payoff functions are not continuous or if the random strategy sets
are not compact, the set of ex-ante and interim optimizers may be empty, as the examples
in the next section show.

5 Examples of non-existence of equilibrium

As in the deterministic case (see [2]), one can easily show that without, either compactness
of the strategy sets or continuity of the payoff functions, an equilibrium may not exist.

Example 5.1. Consider the 2-person asymmetric information game with two equiprobable
states of nature, that is Ω = {ω1, ω2} and µ(ω1) = µ(ω2) = 1

2 . The players’ characteristics
are given as follows:

F1 = {{ω1}, {ω2}} and F2 = {ω1, ω2}
X1(ω1) = (0, +∞); X1(ω2) = (0, 1) and X2(ω1) = X2(ω2) = (0, +∞)

u1(ω1, x1(ω1), x2(ω1)) = x1(ω1) + x2(ω1) and u1(ω2, x1(ω2), x2(ω2)) = x1(ω2)− x2(ω2)
u2(ω, x1(ω), x2(ω)) = x1(ω) + x2(ω) for all ω ∈ Ω.

It is easy to see that the ex-ante minimax point is as follows

v∗1 = inf
x2∈LX2

sup
x1∈LX1

[
1
2
u1(ω1, x1(ω1), x2(ω1)) +

1
2
u1(ω2, x1(ω2), x2(ω2))

]
=

= inf
x2∈LX2

sup
x1∈LX1

[
1
2
x1(ω1) +

1
2
x2(ω1) +

1
2
x1(ω2)− 1

2
x2(ω2)

]
=

= sup
x1∈LX1

[
1
2
x1(ω1) +

1
2
x1(ω2)

]
= +∞, and similarly

v∗2 = +∞

9



It is easy to see that the interim minimax point is as follows

V ∗
1 (ω1) = inf

x2∈LX2

sup
x1∈LX1

µ(ω1)
µ(ω1)

u1(ω1, x1(ω1), x2(ω1)) =

= inf
x2∈LX2

sup
x1∈LX1

[x1(ω1) + x2(ω1)] = +∞;

V ∗
1 (ω2) = inf

x2∈LX2

sup
x1∈LX1

µ(ω2)
µ(ω2)

u1(ω2, x1(ω2), x2(ω2)) =

= inf
x2∈LX2

sup
x1∈LX1

[x1(ω2)− x2(ω2)] = −∞, and finally

V ∗
2 (ω1) = V ∗

2 (ω2) = inf
x1∈LX1

sup
x2∈LX2

[
µ(ω1)

µ(ω1, ω2)
u2(ω1, x1(ω1), x2(ω1))+

+
µ(ω2)

µ(ω1, ω2)
u2(ω2, x1(ω2), x2(ω2))

]
=

= inf
x1∈LX1

sup
x2∈LX2

[
1
2
x1(ω1) +

1
2
x2(ω1) +

1
2
x1(ω2) +

1
2
x2(ω2)

]
= +∞

Therefore, since the random strategy sets are not compact, even if the random payoff
functions are continuous, the set of ex-ante as well as interim optimizers is empty.

The example below shows that the continuity assumption of the payoff functions cannot
be dispensed with.

Example 5.2. Consider the 2-person asymmetric information game with two equiprobable
states of nature, that is Ω = {ω1, ω2} and µ(ω1) = µ(ω2) = 1

2 , and where the players’
characteristics are given as follows

F1 = {{ω1}, {ω2}} and F2 = {ω1, ω2}
X1(ω1) =

[
0,

1
2

]
; X1(ω2) =

[
1
2
, 1

]
and X2(ω1) = X2(ω2) = [0, 1] .

Thus, the random strategy sets are compact , but the payoff functions are not contin-
uous and defined by

u1(ω1, x1(ω1), x2(ω1)) =
{

x1(ω1) if x1(ω1) ∈
[
0, 1

4

)
−x1(ω1) if x1(ω1) ∈

[
1
4 , 1

2

]
,

u1(ω2, x1(ω2), x2(ω2)) =
{

x1(ω2) if x1(ω2) ∈
[

1
2 , 3

4

)
−x1(ω2) if x1(ω2) ∈

[
3
4 , 1

]
, finally for all ω ∈ Ω

u2(ω, x1(ω), x2(ω)) =
{

x2(ω) if x2(ω) ∈ (0, 1)
1
2 if x2(ω) ∈ {0, 1}.
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It is easy to see that the ex-ante minimax point is as follows

v∗1 =
1
2

and v∗2 = 1,

while for the interim minimax point, we have

V ∗
1 (ω1) =

1
4

V ∗
1 (ω2) =

3
4

and

V ∗
2 (ω1) = V ∗

2 (ω2) = 1

Hence, the set of ex-ante as well as interim optimizers is empty.

By imposing compactness and continuity in the weak topology, we will be able to prove
the existence of an ex-ante and an interim minimax point in the next section.

6 Existence Theorems

6.1 Assumptions

We now list the main assumptions needed to prove that an ex-ante as well as an interim
minimax point is attainable.

(A.1) For each i, Xi : Ω → Y is Fi-lower measurable, non-empty, integrably bounded,
closed, weakly compact and convex valued correspondence,

(A.2) For each x ∈ ∏
i∈I Y and for each player i ∈ I, ui(·, x) : Ω → IR is F-measurable.

Moreover, for all ω and for all i, ui(ω, ·) :
∏

i∈I Y → IR is weakly jointly continuous and
integrably bounded.

6.2 Theorems

Theorem 6.1. Assume that (A.1) and (A.2) hold. Then the ex-ante minimax point is
attainable.

Theorem 6.2. Assume that (A.1) and (A.2) hold. Then the interim minimax point is
attainable.

Clearly, the theorem in the deterministic case, proved by Aliprantis et al. in [2], can
be viewed as a corollary of ours. Indeed, in the special case of full information, i.e., when
the private information of each player is represented by the σ-algebra of all singletons, the
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interim expected payoff function reduces to be the ex-post one. Therefore, theorem 6.2
includes as a special case a version of the existence of a deterministic minimax point, in
[2].

6.3 Proof of the Theorem 6.1

First, we observe that:

Claim 6.3. If (A.1) holds, then LX is non-empty and weakly compact.

Proof: We first prove that LX is non-empty. Since, for each fixed i, Xi is Fi-measurable,
all the conditions of Kuratowski and Ryll-Nardzewski Measurable Selection Theorem (see
[1] p. 600) are satisfied and hence there exists an Fi-measurable function x∗i : Ω → Y
such that x∗i (ω) ∈ Xi(ω) for almost all ω ∈ Ω. Therefore, we just need to show that
x∗i ∈ L1(µ, Y ), that is x∗i is a Bochner integrable function. But this follows directly from
the assumption that Xi is integrably bounded. Thus, for all i, LXi is non-empty, and so
is LX =

∏
i∈I LXi .

We are now ready to prove that LX is weakly compact. First, notice that for all i ∈ I,
LXi is a weakly closed subset of the weakly compact set {xi ∈ L1(µ, Y ) : xi(ω) ∈
Xi(ω) for almost all ω ∈ Ω}, (recall Diestel’s theorem, see [8]). Therefore, for each fixed i,
LXi is weakly compact, since it is weakly closed subset of a weakly compact set. Conse-
quently, the set LX =

∏
i∈I LXi is also weakly compact by Tychonoff’s Theorem. 2

Claim 6.4. Assume that (A.1) and (A.2) hold, then for each i and ω, the functions vi(·)
and Vi(ω, ·) are weakly continuous.

Proof: See Yannelis (1991, p.191).

We can now complete the proof of the theorem by applying the Berge Maximum Theorem,
which obviously holds for a continuous correspondence between two general topological
spaces, in particular it holds with the weak topology. For each fixed player i, consider the
constant correspondence Φi : LX−i → 2LXi defined by

φi(x−i) = LXi ∀x−i ∈ LX−i .

Obviously Φi(·) is weakly continuous (because it is constant), non-empty and weakly
compact-valued correspondence (by Claim 6.3).

Notice that the graph of Φi coincides with LX . In fact:

GrΦi = {(x−i, xi) ∈ LX−i × LXi : xi ∈ Φi(x−i)} =
= {(x−i, xi) ∈ LX−i × LXi : xi ∈ LXi} =
= LX−i × LXi = LX .
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Define the function fi : GrΦi = LX → IR by

fi(x−i, xi) = vi(x−i, xi).

By Claim 6.4, fi(·) is weakly continuous.

From Claims 6.3 and 6.4 it follows that all conditions of the Berge Maximum Theorem
are satisfied and hence the value function mi : LX−i → IR defined by

mi(x−i) = max
xi∈Φi(x−i)

fi(x−i, xi) =

= max
xi∈LXi

vi(x−i, xi)

is weakly continuous and the correspondence µi : LX−i → 2LXi of maximizers, defined by

µi(x−i) = {xi ∈ LXi : vi(x−i, xi) = mi(x−i)}
has non-empty and weakly compact values.

Thus, by virtue of the weak compactness of set the LX−i , the weakly continuous func-
tion mi attains its minimum over LX−i . 2

6.4 Proof of the Theorem 6.2

The proof is in the same spirit of the Theorem 6.1. It suffices to define the functions used in
the proof of the previous theorem as follows: for all ω ∈ Ω, define gi(ω, ·) : LX−i×LXi → IR
by

gi(ω, x−i, xi) = Vi(ω, x−i, xi).

The value function mi(ω, ·) : LX−i → IR is defined, for all ω ∈ Ω, by

mi(ω, x−i) = max
xi∈Φi(x−i)

gi(ω, x−i, xi) =

= max
xi∈LXi

Vi(ω, x−i, xi).

The correspondence µi(ω, ·) : LX−i → 2LXi of maximizers is defined, for all ω ∈ Ω, by

µi(ω, x−i) = {xi ∈ LXi : Vi(ω, x−i, xi) = mi(ω, x−i)}.
One can follow the steps of the previous theorem to conclude the proof. 2

Open question: The separability assumption plays an important role to apply the Ku-
ratowski and Ryll-Nardzewski Measurable Selection Theorem. We do not know if the
existence theorem can be proved without the separability assumption on the strategy
space.
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