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University of Manchester

Richard Hofler †

University of Central Florida

September 9, 2009

Abstract

This article introduces a class of Count Data Stochastic Frontier models which
researchers can use in order to study efficiency in production when the output vari-
able is a count (so that its conditional distribution is discrete). Two members in
this class are studied at length. The first model is suitable whenever unobserved
cross-sectional heterogeneity is not likely to be a problem. Conversely, for those
cases when it must not be ignored, we propose a second model which takes into
account the potential effect of cross-sectional unobserved heterogeneity. A Monte
Carlo study is presented in order to evaluate the merits of these two models in small
samples. Finally, a new approach is proposed to study the relationship between
R&D investment and patents at the firm level. We suggest estimation of the under-
lying production frontier of patents via the Count Data Stochastic Frontier models
proposed here, unlike in previous research based the estimation of the conditional
mean of a count. Estimates of elasticity of patents and the average efficiency in the
production of patents are provided.
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1 Introduction

There is a thriving literature about the estimation of Stochastic Frontiers and average
efficiency scores which has origin in the seminal article by Aigner et al. (1977) (ALS in
what follows). Early contributions developing these models further are Stevenson (1980),
Schmidt and Sickles (1984), Greene (1990), Cornwell et al. (1990) and Battese and Coelli
(1995). The fully parametric flavour of these articles has been recently attenuated with
the intention of reducing the chances of model misspecification. Thus Park et al. (1998),
Sickles (2005) and Park et al. (2007) explore the literature on semiparametric efficiency
bounds in order to propose a efficient panel data method; Martins-Filho and Yao (2007)
present a fully nonparametric estimator of a frontier, while Kumbhakar et al. (2007) use
the local nonlinear least squares method of Gozalo and Linton (2000) in order to propose
a highly adaptable stochastic frontier model. All of these (and other) estimators and
models have been developed with a continuous dependent variable in mind. But there
are situations when the output variable of interest is a count (for example, the number of
patents obtained by a firm or the number of infant deaths in a region) and the mean of
this count is low. It is natural that a researcher facing such a count dependent variable
case would desire to maintain the discrete aspects of production within the analysis,
and therefore the question is whether traditional continuous data methods (with base
on Aigner et al. (1977) and Schmidt and Sickles (1984)) are still suitable in this setting.
We find three reasons why a new model is advisable.

The first argument is implicit in the count data literature. It has been known for
some time that approximating the distribution of a discrete random variable by that
of a continuous random variable can lead to deficiencies (in terms of the quality of
the resulting estimates), since this might represent one of those model misspecifications
discussed in the important article by White (1982) (for comments on this issue see, for
example, Hausman et al. (1984) and the comprehensive reviews by Cameron and Trivedi
(1998) and Winkelmann (2008)). These deficiencies have been the driver of much of the
literature on mean regression of count data and yet, not much work has been devoted
to develop a Count Data Stochastic Frontier model (CDSF hereafter). Therefore, in
order to avoid model misspecifications resulting in inefficient and, probably, inconsistent
estimates, a method supported by discrete distributions is due now.

The second argument is of theoretical nature. As we discuss below, underlying SFM
there is a multiplicative distance function relating output (y), frontier (f) and inefficiency
(0 < d < 1), so that y = fd. In applications, it is customary to transform the model
into logarithms, so that log y = log f + log d (noting that log d < 0). However if y, f and
d are discrete valued, the multiplicative scheme is unlikely to be satisfied. For instace,
let y = 7 and f = 3; then there is not integer value for d solving assumed identity. This
advices the contruction of a new distance function suitable for count data.

The final argument, of empirical nature (but naturally related to the later), is the
non-negligible frequency with which zero values of the count dependent variable are
observed. This is a feature pervading most count data applications, and difficulting
drawing comparisons of goodness of fit between models with continuous distributions
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and those based on a discrete probability distribution. It also has a significant impact
on the applications we have in mind. Firstly, 0 production with positive f is a perfectly
reasonable scenario, but unfeasible with a multiplicative distance function unless f =
d = 0. Secondly, and more importantly, log 0 is not defined and so the logarithmic
transformation of the multiplicative distance function is not defined in such cases. Since
applications hinge on such a transformation, one is left with situations when the method
is undefined for a significant proportion of the sample. Although one could probably
try to circumvent these problems by transforming these 0 observations into a continuous
random variable (by adding a random non-negative, but arbitrarily small, number), this
does not seem a satisfactory strategy, especially when the number of 0 in the sample is
substantial.

To the best of our knowledge, there are only two articles exploring CDSF to date.
The first reference is Fé-Rodŕıguez (2008)1 who explores the estimation of a frontier for
economic bads when output and inefficiency are discrete valued random variables. The
second reference is Hofler and Scrogin (2008). These authors note that the actual effect
of inefficiency on production is equivalent to an underreporting of the final output, and
therefore the Beta-Binomial model for underreported counts (see, for instance, Fader
and Hardie (2000)) is suggested to approximate the production function of an economic
good. Both models are based, in effect, on a Mixed Poisson distribution, but while Hofler
and Scrogin (2008) assume that inefficiency is continuously distributed, Fé-Rodŕıguez
(2008) assumes that output and inefficiency enter the model as count variables. Apart
from incorporating into the analysis the count nature of the data, the strength of these
models is that they can treat unobserved cross-sectional heterogeneity and inefficiency
in production as two separate sources of variation in the data. This is a rare property
in the literature of Stochastic Frontiers, the exception being Greene (2005). This author
pointed out that, in the context of a fully specified model of production, cross-sectional
heterogeneity refers to factors, other than inefficiency, which are directly observable but
explain part of the variation in the sample. Therefore omitting this variable from the
model will bias the estimates in a generally unpredictable way.

Despite their advantages, the models in Fé-Rodŕıguez (2008) and Hofler and Scrogin
(2008) are designed with either an economic good or an economic bad in mind, and
they cannot be used to analyse both types of commodities. This is seemingly irrel-
evant since a researcher could use one method or the other depending on the nature
of the commodity under study. However, it is implicit in the literature that a proper
Stochastic Frontier estimator must be adaptable to commodities of an arbitrary nature
so that a simple transformation within the model (normally a change of sign) is suf-
ficient to capture the nature of the commodity whose frontier one needs to estimate.
From this perspective, neither Fé-Rodŕıguez (2008) nor Hofler present proper Stochastic
Frontier models. Therefore, the purpose of this paper is to provide a proper Count Data
Stochastic Frontier in such a way that the discrete nature of output is preserved.

In section 2, we present the model in its most general form. The starting point is
1An earlier version of this paper is Fé-Rodŕıguez (2007), which was presented at European Workshop

on Efficiency and Productivity Analysis V, Lille, France, 2007.
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the definition of a distance function, suitable for count data, which allows us to progress
toward an econometric CDSF model. The distance function here provided naturally leads
to a Mixed Poisson regression, where the mean parameter happens to be the frontier of
production, while inefficiency appears as an additive random effect.

In section 3, the half normal distribution is suggested as a candidate distribution
to model inefficiency, as it is an adaptable distribution, meaningful from an economic
point of view and which leads to a conditional distribution of output with well defined
moments. This last point is not a trivial one. As we discuss in this article, when output
is an economic bad, other more attractive distributional choices for the random effect
used to model inefficiency (like for example the Gamma distribution) lead to conditional
distributions which have no lower order moments. We will say that these other models do
not treat goods and bads symmetrically and, although applicable for efficiency analysis
in the production of an economic good, they are discarded from consideration in this
article.

Section 4 extends the model in order to account for unobserved cross-sectional hetero-
geneity, and then the performance of both models is evaluated in a limited Monte Carlo
experiment, in Section 6. Section 5 discusses how to produce cross-sectional estimates of
the levels of attained efficiency. Our measure of efficiency is based on the posterior ex-
pected value of the random effect capturing inefficiency -in a fashion similar to Jondrow
et al. (1982)- and it produces unbiased estimates of the average efficiency level in the
sample. It has been pointed out by Wang and Schmidt (2009) that this statistic can be
used to estimate the efficiency level given the distributional choices for inefficiency and
output, and therefore, the estimated distribution arising from our statistics need not to
be confounded with the actual (unconditional) distribution of inefficiency. Furthermore,
estimates like the ones here presented, based on the Jondrow et al. (1982) methodol-
ogy, are a shrinkage toward the mean, so that the estimated distribution will exhibit a
narrower domain than the actual distribution. Although this does not seem to imply a
problem from an empirical perspective (as the estimate of the average efficiency is still
unbiased), researchers must be aware that if inference is to be based on the estimated
distribution of efficiency, comparisons must be done with the distribution of estimated
efficiency conditional on the distribution of actual efficiency, rather than just the latter.

This paper presents an application of our methods to the study of the relationship
between expenditure on research and development (R&D in what follows) and the num-
ber of patents at firm level. This relationship has attracted the attention of economists
because patents may be taken to represent the value of the underlying stock of knowl-
edge in a firm, and therefore knowledge of the production function of patents can help
to estimate important policy measures such as the elasticity of R&D. Previous analy-
ses have put emphasis on approximating the production function of patents via mean
regression models; however this method does not take into account the fact that some
firms will be more efficient than others in handling their expenditure on R&D. Further-
more, it seems intuitively clear that whatever happens at the mean of the distribution
might differ substantially from the behaviour of the distribution in the upper quantiles,
where the actual frontier of production possibilities is likelier to be. Therefore, we try
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to capture that behaviour via our CDSF. Our results are presented in Section 7, and
Section 8 presents some concluding remarks.

2 A model of production in discrete amounts

Consider a collection of competing firms or institutions (i = 1, . . . , n) producing a com-
modity in quantities yi, and suppose that we are interested in the behaviour of output
and efficiency in production, conditional on a number of observed variables. The com-
modity under study could be an economic good (for example, we could be researching
the number of patents awarded to firms), but it could also be an economic bad where,
for instance, the focus of the research could be the number of infant deaths observed in a
group of geographical units. In the first case, agents engaged in production try to max-
imize output, while in the second instance authorities will want to cap the incidence of
the final product. However, and unlike in the typical application, the dependent variable
of interest, y, is a count and its average value is typically low.

Distance Functions

It is well known that underlying ALS-type models there is an implicit distance function
capturing the discrepancies between ideal and actual outputs (see, for example Kumb-
hakar and Lovell (2003)). For continuous data and in the case of, for instance, the
production of an economic bad, this distance function is defined as:

ε(x, y) = sup
λ
{y/λ ≥ h(x)} (2.1)

where h(.) is the production function of a commodity y, so that 1 ≤ ε < ∞ measures
the discrepancy between actual output, y, and ideal output, h(.), given input levels
x. From this distance function it follows that y = f(x)ε(x, y), or equivalently log y =
log(h(x)) + log(ε(x, y)). Aigner et al. (1977) build an econometric model over the last
equality, by letting ε(x, y) = ε be a random variable with domain on the positive real
line, and then assuming that log(h(x;β)) (a parameterization of h(x)) is the conditional
mean of a symmetric-about-zero random variable, (where β is a conformable vector of
scaling constants). A very remarkable feature of this model is that a model for economic
goods can be generated by a simple change of sign in the decomposition of output (so
that log y = log(h(x))−log(ε(x, y))), and both ensuing models are well defined and have,
at least, finite first moments.

In the framework of discrete valued data, it could be argued that both the production
frontier and the variable collecting inefficiency in production ought to be discrete valued
(as the output variable is). However, when h(x), ε(x, y) and y are all discrete valued, the
multiplicative scheme underlying ALS rarely will hold (e.g. the point (h, ε, y) = (7, 4, 3)
is a sensible hypothetical description of production, and yet not admissible through a
multiplicative scheme, since 4× 3 6= 7). Another practical problem arises because when
y is discretely distributed the probability of observing the value 0 is non-negligible (and
the magnitude of this probability can be substantial). Then, log(y) is not defined, and
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the above distance function is not applicable. It is therefore customary to introduce a
new distance function taking the discrete nature of the data into account.

In the context of production of economic bads, Fé-Rodŕıguez (2008) proposed the
following distance function:

ε∗(x, y) = max
l∈N
{y − l ≥ h(x)} ⇒ y = h(x) + ε∗(x, y). (2.2)

where now y, h(.) and ε(.) are discrete valued and output is naturally described as
the convolution of the levels of the production frontier with the level of inefficiency.
Econometric modeling is then straightforward: one only needs to assign discrete proba-
bility distributions to each term, and estimate the resulting convolution by some suitable
method (often Maximum Likelihood).

This approach, however, is not adaptable to economic goods and bads alike since,
unlike with the distance function underlying ALS, a simple change of sign in the right
hand side cannot be used to change the focus from production of economic bads into
production of economic goods. The reason is that by doing so, one could encounter
situations when the distributional choices for h(.) and ε(.), although suitable for economic
bads, do not preclude negative counts of the output variable in the context of economic
goods, unless enough regularity is imposed to ensure that h(x)− ε∗(x, y) ≥ 0. This is at
odds with the assumption of non-negative production.

A New Distance Function

Since none of the above approaches seems satisfactory from an econometric perspective,
in this article we look for a different, more suitable distance function for a proper CDSF.
This is achieved by allowing inefficiency to be continuously distributed, but maintaining
the discrete nature of the output variable. For simplicity, the discussion that follows
focuses on the case of economic goods (the discussion extends to economic bads imme-
diately). Consider again the multiplicative distance function underlying ALS:

u?(x, y?) = inf
u∈[0,1]

{
y?

u
≤ h(x)

}
⇒ y? = h(x)u?(x, y) (2.3)

In the latest scheme none of the quantities h(.), u?(.) or y? are assumed to be discrete
valued, and only u?(.) is restricted to take values on [0, 1] (in the case of economic goods).
This is in contrast with the approach in Fé-Rodŕıguez (2008) (who assumes an additive
distance function with y, h(.) and ε(.) all discrete valued) and it is also in contrast with
ALS in two ways. Firstly, unlike ALS, we do not need to transform the distance function
by taking logarithms (and yet, some regressors could have been transformed that way).
Secondly, it is now assumed that y? is not observed. Instead, we observe the discrete
quantity y = 0, 1, . . ., which is related to y? in such a way that, y = j (a non-negative
integer) with a prescribed probability whenever y? attains a level, say, (a, b] ⊆ R.

The econometric equivalent of (2.3) can then be constructed as follows. Firstly, as
in ALS we assume that inefficiency is directly unobservable. This could be specified
as u = exp(−ε(x, y)) = exp(−ε) where ε behaves as a random variable with domain
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on R+ and with density function f(ε; θ), for some vector of parameters θ. Similarly,
h(x) = exp(x′β) (deterministic) for some vector of parameters2 β. This defines y? as a
random variable on R+. Secondly, the observed value y depends on the levels attained
by y? but not in a deterministic way; because of unexpected contingencies of all kinds,
we assume that for given y? the observed output variable takes values on N with a
prescribed probability. In particular, assume that, conditional on ε, this probability law
is a Poisson distribution, with mass function

P(yi|ui, xi) =
e−λ̃i(λ̃i)yi

yi!
(2.4)

where λ̃ = λu = exp(x′iβ − ε), which is our Count Data model for economic goods.
More generally, we define the class of Count Data Stochastic Frontier (CDSF) models

as those based on the distance function (2.3) -and its equivalent for economic bads- with
mass function:

P(yi|xi, ui) =

{
e−λiui (λui)yi

yi!
for y = 0, 1, . . .

0 otherwise.
(2.5)

where λiui = exp(x′β ± εi) and ε is assumed to follow a certain distribution.

3 Count Data Stochastic Frontier Models (CDSF)

In order to obtain a functioning CDSF we need to select a distribution for the term
u = exp(±ε). There are potentially as many different models for the conditional distri-
bution of output as there are distributions to choose for ε. However, our choice should
result in a model for y with a tractable conditional distribution for the output count vari-
able and whose moments are well defined irrespectively of the nature of the commodity
under analysis. Tractability must be understood in a broad sense. Although estima-
tion via Maximum Likelihood and Method of Moments has traditionally been based on
relatively simple, closed-form distributions and moments, there is a vast literature on
simulation techniques, such as Gaussian Quadrature (see, for instance, Stroud (1971),
Butler and Moffitt (1982), Greene (1990) or, Winkelmann (2008)) or Pseudo Monte
Carlo integration (McFadden (1989), Geweke (1995), Greene (2003), or Gentle (2003))
which allows estimation of parameters in highly flexible, albeit otherwise intractable,
models. The existence or lack of moments is the key property that will allow us to
make informed decisions regarding what distribution to attach to ε, the random variable
capturing inefficiency: as we discussed below, some popular distributional choices lead
to models whose lower order moments might not exist when y is an economic bad. In
this sense, these models treat good and bads asymmetrically.

2The choice of exp(.) as link function is only for convenience, and it ensures that h(.) and u are
non-negative. Other functions are available. Similarly the choice of a single index function for h(.) is for
convenience, as nothing precludes more involved mappings relating x with y∗
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In the search for a suitable distribution for ε, our attention was drawn to the half
normal distribution, whose density function is

f(ε;σε) =
2

σε
√

2π
e
− ε2

2σ2
ε I[0,∞) for σε > 0 (3.1)

This distribution is attractive for a number of reasons. It is moderately adaptable,
thanks to its scale parameter and the varying shape of its density function. Its density
exhibits varying returns to efficiency: the probability of observing inefficiency levels away
from zero has increasing marginal products, up to an inflection point beyond which the
marginal products are still negative but increasing. Finally, this choice will render a
tractable conditional distribution for y that has, at least, well defined first two moments.

With this choice for f(ε;σε), the conditional distribution of y is defined as follows:

P(y|x; θ)

=
ˆ ∞

0

(exp(− exp(x′β ± ε))) exp(y(x′β ± ε))
y!

2
σε
√

2π
exp(− ε2

2σ2
ε

)dε

=
ˆ ∞

0

(exp(− exp(x′β ± εσε
√

2))) exp(y(x′β ± εσε
√

2))
y!

2√
π

exp(−ε2)dε (3.2)

for θ′ = (β′, σε). The change of variable ε = εσ
√

2 led to the second equality. After
some work, it soon becomes apparent that if ε is distributed half normal, then one
cannot obtain a closed form expression for the ensuing distribution of y. However, this
expression is an integral of the type computable -up to a small error- via Gauss-Hermite
quadrature (see Press et al. (1992) or Judd (1998)).

Gaussian Quadrature methods are based on the generation of a set of nodes and
weights which are optimal, so that the integral is accurately approximated. Quadrature
is, in this sense, a deterministic method unlike Monte Carlo integration, and it is not as
demanding in terms of computer power as (Pseudo) Monte Carlo approaches since only
a very small number of points are required in order to obtain accurate approximations
of the underlying integral (with only 10 points can often obtain great accuracy). If we
adopt this technique here, the conditional distribution of y can the be approximated by
the sum:

P(y|x; θ) ≈ P(y|x; θ; ξj)

=
2√
π

J∑
j=1

[
(exp(− exp(x′β ± ξjσε

√
2))) exp(y(x′β ± ξjσε

√
2))

y!

]
wj (3.3)

where ξj are the J nodes (or points in the domain) at which the kernel of the integral
in (3.2) is evaluated, and wj are the corresponding values of the weighting function
exp(−ε2)dε. It is customary to note that, because the underlying integral runs on [0,∞)
(that is, we are assuming the integrand in (3.2) is 0 on R−) only the positive nodes of
Gauss-Hermite quadrature need to be used in the evaluation. Although there is nothing
wrong with that method, an alternative approach which employs all positive and negative
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points of quadrature can be devised. The key step requires noting that, in general, for
some deterministic function g(.), the following identity holds:

P(y|x;β, τ) =
ˆ ∞
−∞

(exp(− exp(x′β ± g(ε)))) exp(y(x′β ± g(ε)))
y!

f(ε; τ)dε (3.4)

for some parameter vector τ . The half normal distribution is, in fact, the distribution of
the absolute value of a normally distributed random variable. Therefore, it follows that
our model may be written as

P(y|x; θ) =
ˆ ∞
−∞

(exp(− exp(x′β ± |ε|))) exp(y(x′β ± |ε|))
y!

1
σ
√

2π
exp(− ε2

2σ2
ε

)dε (3.5)

where the integral is now over the whole R. A change of variable identical to that yielding
equation (3.2) leads to the approximate conditional distribution of y, from which the
log-likelihood may be obtained. The ensuing log-likelihood is

L ∝
n∑
i=1

log
q∑
j=1

P(yi|xi; θ; ξj) (3.6)

where the nodes and weights in the inner sum depend on which of the two methods
has been chosen. When the model is an adequate representation of the underlying data
generation process, maximizing the log-likelihood over θ produces consistent, asymptot-
ically normal and efficient estimates of these parameters, and the standard inferential
procedures (Score, LR and Wald tests) can be applied in the usual manner (White
(1982)).

The moments of the conditional distribution can be obtained now. Given the density
function f(ε;σε), it is not difficult to show (and this is done in Appendix A) that the
transformation exp(+ε) has density and first two moments:

f(u) = f(exp(ε)) =
2

uσε
√

2π
e
− (log(u))2

2σ2
ε I[1,∞) (3.7)

E(u) = eσ
2/2

{
1 + Erf

(
σε√

2

)}
≥ 1 (3.8)

V(u) = e2σ2
ε

{
1 + Erf

(
σε
√

2
)}
−
{
eσ

2
ε/2

{
1 + Erf

(
σε√

2

)}}2

(3.9)

where Erf is the error function, defined in the appendix and I. is an indicator function.
It follows that f(u) is now twice a log-normal distribution with domain on u ≥ 1, and
since the domain of u is restricted to [0, 1] it shifts the parameter λ downwards, causing
the underproduction of counts expected from inefficiency in the production of economic
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goods. Similarly, for the case of economic goods we have:

f(u) = f(exp(−ε)) =
2

uσε
√

2π
e
− (log(u))2

2σ2
ε I[0,1] (3.10)

E(u) = eσ
2
ε/2Erfc

(
σε√

2

)
∈ [0, 1] (3.11)

V(u) = e2σ2
εErfc

(
σε
√

2
)
−
{
eσ

2
ε/2Erfc

(
σε√

2

)}2

. (3.12)

where now and Erfc is the complementary error function (see Appendix A). Note that the
density functions are identical, and they only differ on their domains. Both distributions
have well defined mean and variances, from which it follows that, for u = exp(ε),

E(y|x) = λeσ
2
ε/2

{
1 + Erf

(
σε√

2

)}
(3.13)

V(y|x) = E(y|x) [1 + λW ] (3.14)

where

W =
e2σ2

ε
{

1 + Erf
(
σε
√

2
)}
− eσ2

ε/2
{

1 + Erf
(
σε√

2

)}
eσ2

ε/2
{

1 + Erf
(
σε√

2

)}
and similarly for the case of economic goods. In both cases, the first two moments of
the conditional distribution of y are well defined: they exist and their existence does not
hinge on the value of the parameters. This seemingly trivial property is, however, not
shared by all possible models, as we discuss next.

3.1 A Model with a Gamma random effect

The CDSF model just introduced has a number of strengths. First it is a well behaved
distribution, with well defined first two moments. Also its flexibility permits various
patterns of inefficiency in a sample, thanks to the variance parameter of the mixing dis-
tribution. However, in the same fashion as Greene (1990), we wonder whether additional
flexibility can be achieved by using a two parameter distribution, such as the Gamma
distribution, and whether the resulting conditional distribution for y is a suitable model
for CDSF. The answer is only partially yes, because of the asymmetric treatment of
economic goods and bads.

Suppose that ε has gamma distribution with parameters α > 0 and δ > 0 (so that
f(ε) = δα

Γ(α)ε
α−1e−δε). Then y is conditionally distributed as:

P(y|x) =
ˆ ∞

0

(exp(− exp(x′β ± ε))) exp(y(x′β ± ε))
y!

δα

Γ(α)
εα−1e−δεdε

=
1

Γ(α)

ˆ ∞
0

(exp(− exp(x′β ± ε
δ ))) exp(y(x′β ± ε

δ ))
y!

εα−1e−εdε. (3.15)
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This distribution does not have closed form, but it could be used in practice by approx-
imating the above integral via Gauss-Laguerre quadrature (see Press et al. (1992))3

The problem with this model is that when y is an economic bad, so that u = exp(ε),
the distribution of y might lack moments. Under the assumed gamma distribution, the
density function of the transformation is

f(u) = f(exp(ε)) =
δα

Γ(α)
(log(u))α−1

uδ+1
for u ∈ [1,∞). (3.16)

Consider now, for example, the case when we let δ = α. In this case, moments of order
δ or above won’t exist, since the integral

´∞
1 log(x)/xdx is not convergent. This lack of

moments will then carry over to the conditional distribution of y. This follows from the
well known result that, if Z has a Mixed Poisson distribution with mixing parameter θ,
then its moments are

E(Zr) =
r∑
s=1

S(r, j)E(θj) for j = 1, 2, . . . (3.17)

(see Karlis and Xekalaki (2005)) where S(., .) are Stirling’s numbers of the second kind.
An even more illustrative case is that relating the exponential distribution (a type of
degenerate Gamma distribution). If ε has an exponential distribution, then exp(ε) has
a Pareto distribution on [1,∞)4. It can be shown5 that the expected value and variance
of the ensuing Mixed Poisson model for y is

E(y|x) = λ
θ

θ − 1
(3.18)

V(y|x) = λ
θ

θ − 1

{
1 + λ

{
θ − 1
θ − 2

− θ

θ − 1

}}
(3.19)

In the above equation, θ is a parameter inherited from the exponential distribution of
ε and it is originally assumed non-negative. It is clear that the variance exists if an
only if θ > 2; otherwise only the first moment is well defined (provided θ > 1). Higher
order moments require further restrictions on θ. If θ < 1 then the distribution has no
moments.

The above discussion implies that plausible distributional choices for f(ε) might lead
to ill behaved distributions when y is an economic bad -but not when y is an economic
good6. Because of this, we will say that these distributions do not treat economic goods

3We note at this point that the Normal-Gamma stochastic frontier model (Greene (1990), Greene
(2003)) was originally estimated via Newton-Cotes quadrature and Simulation methods. However, Judd
(1998) reminds us that Gaussian quadrature methods can approximate integrals more accurately than
Newton-Cotes methods. Also it transpires that Gaussian quadrature for a single integral can be as
accurate as (Pseudo) Monte Carlo integration and certainly much less computer intensive. Therefore,
we suggest Gauss-Laguerre quadrature as a third method of estimating Greene’s Normal-Gamma SFM.

4See, among others, Mood et al. (1974)
5A proof of this claim is available from the authors upon request
6We could not find instances where the converse was true, however we do not rule out such a possibility,

since our analysis in this respect has not been exhaustive.
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and bads symmetrically. In practice, these asymmetric models can be implemented
provided that y represents an economic good. However, it is implicit in the literature
that a proper SFM treats goods and bads symmetrically and, therefore, we are reluctant
to include these other models within the class of CDSF discussed in this article.

4 Introducing Cross-Sectional Heterogeneity

Until recently, a recurrent argument regarding the weaknesses of (continuous data) para-
metric stochastic frontier models (whether in their distribution free, as in Schmidt and
Sickles (1984), or ML formats) was their inability to separate inefficiency from what is,
in fact, unmeasured cross-sectional heterogeneity. In the context of a complete econo-
metric model of a production function, this cross-sectional heterogeneity refers to firm
specific characteristics which are unmeasurable and which relate to things other than
inefficiency such as the technology in use.

Because ignored heterogeneity is a form of misspecification, the maximum likelihood
estimator converges to a pseudo-true parameter value distinct from the one of interest
for the researcher and furthermore, the asymptotic variance needs to be adjusted. In our
context, this has implications for the interpretation of the estimated coefficients of the
production function, but also for the estimates of efficiency, all of which will be biased
and inconsistent. The CDSF discussed in the previous section, with its single random
effect, is applicable to those data sets where neglected heterogeneity is not likely to be
an issue; otherwise, this component should be incorporated into the analysis.

In order to capture its effect, this article assumes that unobserved heterogeneity
enters the model additively, so that we introduce a second error component in the mean
of the Mixed Poisson distribution associated with y. Thus, the conditional mean of the
model in equation (2.4) is now:

λ̃ = exp(x′β ± |ε|+ ν) (4.1)

where, ν ∈ R, ν ∼ f(ν; η) (η a vector of real numbers) and E(ν) = 0. The latter
assumption reflects the view that unobserved heterogeneity is likely to accumulate a
variety of positive and negative effects, but on average we do not expect its overall effect
to shift the production frontier in either direction. When affecting the sample, the model
in Section 3 will compound the effect of additive heterogeneity in the random variable
capturing inefficiency; this will result in misleading efficiency estimates (see the following
section) and it is expected that the structural parameters of the conditional mean will
be also biased. We explore this in a simulation experiment in a later section.

There are, of course, many candidates for f(ν; η), but the normal distributionN(0, σ2
ν)

seems a natural choice, and although it won’t facilitate a closed form log-likelihood func-
tion, we still can approximate the ensuing conditional distribution of y via Gauss-Hermite
quadrature, as is shown below. Under the assumption of normality, the conditional dis-
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tribution of y is

P(y|x; θ) =
ˆ ∞
−∞

ˆ ∞
−∞

Po(y|x, ε, ν)
1

σεσν2π
exp

{
−1

2

(
ε2

σ2
ε

+
ν2

σ2
ν

)}
dεdν (4.2)

Po(y|x, ε, ν) =
(exp(− exp(x′β ± |ε|+ ν))) exp(y(x′β ± |ε|+ ν))

y!
(4.3)

where now θ′ = (β′, σε, σν). As before, a simple change of variable allows us to express the
above function in terms of an integral of the form

´
R
´

R h(x1, x2) exp(−x2
1−x2

2), which can
be approximated by Cartesian products of Gauss-Hermite formulas (see Stroud (1971)).
The log-likelihood function that must be maximized is:

L =
n∑
i=1

log(Li) =
n∑
i=1

log
q∑
j=1

q∑
k=1

1
π
Po(yi|xi, ξj , ξk)wjwk (4.4)

with

Po(yi|xi, ξj , ξk)

=
(exp(− exp(x′iβ ±

√
2σε|ξj |+

√
2σνξk))) exp(yi(x′iβ ±

√
2σε|ξj |+

√
2σνξk))

yi!

and where ξj and wj are the nodes and weights from standard Gauss-Hermite quadrature.
The analytical derivatives of L are given by

∂L
∂θ

=
1
π

n∑
i=1

1
Li

q∑
j=1

q∑
k=1

Po(yi|xi, ξj , ξk)(yi − λ̃i,j,k)


xi

±
√

2|ξj |√
2ξk

 (4.5)

where Li was defined in equation (4.4). The gradient of model (3.6) follows from the
above expression in a straightforward manner.

The reader has probably noted the similarity between this and the ALS models in the
sense that the random effects have identical distributions (convoluting a normal and half
normal random variables). For this reason, and given the importance of the contribution
found in Aigner et al. (1977), we judge it appropriate to name this a Poisson-Aigner-
Lovell-Schmidt model despite of its colorful acronym: P.A.L.S..

In our experience with this model, the use of analytical derivatives with maximization
routines such as the BFGS has substantially improved the speed of the algorithms and,
of course, this approach has also facilitated the computation of standard errors via the
Outer Product of Gradients estimator (also called BHHH estimator) -as opposed to
using the minus inverse of the Hessian Matrix. Nonetheless, it is convenient to remark
that, should we wish to construct a likelihood based test of some sort, evidence exists
regarding the diminished small sample properties of OPG-based tests of hypothesis (see,
for example, Orme (1990)).

Because this model nests the PHN, Poisson-Log-Normal (PLN) and Poisson distri-
butions, test of hypothesis can be easily performed by means of likelihood ratios. For
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example, to test the null hypothesis of no-heterogeneity (H0 : σ2
ν = 0), one only needs

to estimate both PHN and PALS models and calculate twice the difference between the
log-likelihoods, which then can be compared with the quantiles of a χ2

1 distribution. The
null hypothesis of no inefficiency (H0 : σ2

ε = 0) would be based on the log-likelihoods of
the PHN and PLN model, and so on. However, in contrast with Aigner et al. (1977),
the ratio of the standard errors of each random effect provides information regarding the
relative importance of inefficiency and heterogeneity in explaining the overdispersion
in the sample (as opposed to measuring the relative importance of inefficiency in the
observed total variation in the sample). Thus,

η =
σε
σν

(4.6)

then η > 1 would point to inefficiency as the main cause of the overdispersion in the
sample, whereas 0 < η < 1 points out the predominance of unobserved heterogeneity.

Finally, it is intuitively clear that adding a second zero-mean random effect in the
model leaves the conditional mean of y in equations (3.11) and (3.13) unaffected; on
the other hand, although the conditional variance is affected by the inclusion, it is still
well defined for both economic goods and bads, and thus this model also treats all
commodities symmetrically.

5 Estimation of Inefficiency

Although the parameters of the production frontier are of interest in themselves, the
ultimate goal of our analysis is to obtain approximate efficiency scores for each individual
in the sample. To attain this goal, we rely on the method found in Jondrow et al. (1982),
by which individual efficiency scores are provided by the posterior expectation E(u|y, x).
From Bayes’ theorem we know that

f(u|x, y) =
P(y|x, u)f(u)

P(y|x)
(5.1)

so that the posterior expected value of u is simply
´
uf(u|x, y)du. As expected, none

of the above models has a closed form for the conditional distribution of u given x, y;
however we may still approximate the relevant integrals by their quadrature approxi-
mations. Thus, the approximate E(y|x) for the Mixed Poisson model with Half Normal
random effect is

ûi = E(ui|xi, yi) ≈
∑J

j=1 e
±ξjσ

√
2Po(yi|xi; ξj)wj∑J

j=1 Po(yi|xi; ξj)wj
(5.2)

and similarly for the double random effect model. The above quantities are unfeasible,
since they depend on the unknown parameters of the model, however feasible estimates
would follow by using the maximum likelihood estimates of β and θ.

At this junction, the remarks by Wang and Schmidt (2009) seem pertinent. The
distributions of u and û are not the same, as can be seen by noting that V(u) =
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V(E(u|x, y)) + E(V(u|x, y)), (and hence, û has smaller variance) but E(u) = E(u|x) =
E(E(u|x, y)). Furthermore, û is a shrinkage7 of u toward its mean. As a result, the lower
and upper tails of the distribution of u will be miss-reported, so that û penalizes out-
standing firms and rewards the least efficient individuals -although the average efficiency
in the sample is correctly approximated. Quoting Wang and Schmidt (2009) this ...does
not mean that there is anything wrong with the estimator since ... it is unbiased in the
unconditional sense E(û− u) = 0. But this characteristic must be taken into account in
applications.

6 Evidence from a Monte Carlo Experiment

In order to evaluate the small sample merits of the above quadrature procedures and to
gain an indication of the sort of biases that neglected unobserved heterogeneity might
induce, we performed a limited Monte Carlo simulation. In our experiment, we generated
data from two models:

DGP1 : P1(y|x, ε) = Poisson(exp(x′β − |ε|)) (6.1)
DGP2 : P2(y|x, ε, ν) = Poisson(exp(x′β − |ε|+ ν)). (6.2)

The covariate vector was x′ = (1, x1, x2), where x1 ∼ Uniform[0, 1] and x2 = ρx1 +√
1− ρ2Vi, where V ∼ Uniform[0, 1], ρ = 0.5, and the vector of parameters β was set

at (0.5; 0.5; 0.5)′. The distributions of ε and ν were N(0, 1). Although we focus our
attention on cases when y is an economic good, similar results were obtained for the
case of economic bads.

Once simulated data sets were available, CDSF models were specified in which the
structural part of the conditional mean λ̃ was correctly specified, so that λ = exp(x′β)8.
We used samples of 500, 1000 and 2000 observations, and each model was estimated 200
times. In each model we used 20 points of quadrature, although we found results to be
rather robust to the number of quadrature points, and indeed 10 points of quadrature
could have been safely used. Simulations were run in Ox v.4. with OxEdit as interface,
and maximization was based on MaxSQP -a maximizer allowing linear restrictions; in
particular σε and σν were restricted to R+, as is natural. The quadrature algorithm in
our simulations was an straightforward adaptation of that in Press et al. (1992). The
mean and standard errors of the estimated parameters for each model are given in the
Tables 1 and 2.

Table 1 collects the results of estimating data generated by a Poisson Half Normal
distribution, so that heterogeneity was not an issue in estimation. The average value of
the estimated parameters is very close to the true parameter value, even for samples of
just 500 observations. The precision with which the parameters are estimated increases
with the sample size, however we do not observe major variations in the average esti-
mated value of the parameters. It is also noticeable that because of the utilization of

7See, for instance, Gourieroux and Monfort (1995))
8In this setting, the Poisson Half Normal (PHN hereafter) model is only appropriate with P1(.), and

it is misspecified if data are produced with P2(.)
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the MaxSQP routine in order to rule out negative variances, the estimated value of σν
returned by the Poisson Normal Half Normal model was systematically zero -which is,
on the other hand, a desirable side effect. As a result, the estimates of the remaining
parameters are identical to those provided by the simpler Poisson Half Normal model,
since PALS reduces to PHN whenever σν = 0.

Table 2 provides information regarding the biases induced by unobserved heterogene-
ity. The upper half of the table collects the average estimated values and standard errors
produced by the Poisson Half Normal model. There is a positive bias, which does not
decrease with the sample size. Thus, the estimated average value of βj (j = 1, 2) is about
40% above its true value. The situation is worse with the estimates of the intercept and
σε. The former exhibits a bias of about +80% while the latter is biased by a value
beyond 100%. Misspecification also affects the standar errors, which are substantially
inflated with respect to those values displayed in Table 1. In dealing with contaminated
data, the single random effect model allocates the excess overdispersion to ε -which was
expected. Even worse, it places the production function at a higher level and exaggerates
the elasticities of each covariate.

The second half of Table 2 presents the results obtained by the correctly specified
PHN. As expected, the average estimate is concentrated about the true parameter value,
although the additional integral in P(y|x) seems to have a cost in terms of larger standard
errors than in the PHN model-but without risking the significance level of the estimated
values. Accuracy improves with the sample size, in terms of a smaller standard error
and increasing proximity to the true parameter values.

In summary, this simulation suggests that when unobserved cross-sectional hetero-
geneity is not a modeling issue, either model is capable of producing very similar and
efficient results. Furthermore the choice of one or the other can be based on considera-
tions such as computer time, since the two random effects model is much more computer
intensive than the single random effect model as it requires q2 points of quadrature to
evaluate the double integral (as opposed to just q points required by PHN). On the other
hand, if there is a suspicion that unobserved heterogeneity might be an issue, then both
models should be computed, and choice of one model or the other should be based on
some inferential procedure. Since the PHN model is nested within the PALS model, the
likelihood ratio test seems an optimal procedure in order to test the suitability of the
former.

7 Application to the Relationship Between Patents and
R&D at Firm Level

In this section we study the relationship between patents awarded to a firm in a given
year and investment in R&D by estimating the production function of patents and, then,
we estimate the population’s average efficiency level in the production of patents.

The relationship between patents and research and development has been studied at
length by a number of authors. Key references are Pakes and Griliches (1980), Hausman
et al. (1984), Hall et al. (1986), Pakes (1986), Griliches (1990) and Wang et al. (1998)
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among others. The general view, which we adopt here, is that annual expenditure in
R&D is a type of investment, and therefore, it enriches the stock of knowledge of a given
firm. This knowledge materializes into new technologies, some of which are registered
and, subsequently, a patent is awarded to the firm in order to protect the firm’s property
rights on the invention . Therefore, patents represent the value of the underlying stock
of knowledge. The authors mentioned above have acknowledged that patents are not
the only output of R&D, and their economic value can be under question, as a large
proportion of granted patents are of little economic value or depreciate too quickly (see
Pakes (1986)). However, as has been pointed out, firms are awarded patents and this
is the product of research and development undertaken within the firm, so that patents
measure the levels of research activities -...even though the information conveyed by an
individual patent may be very small (Hall et al. (1986)).

In the past, a research interest has been the dynamics of R&D expenditure: knowl-
edge stock depreciates over time so contributions of older investment in R&D become
less valuable as time goes by. This article has little to say in this respect, and this sec-
tion looks only the contemporary relationship between investment in R&D and patents
awarded. Our focus is the strength of the relationship between R&D and patents, the
elasticity of patents with respect to R&D investment and the average effectiveness of
the firms in the sample in transforming R&D investment into patents.

Unlike previous research, where the production function was approximated by the
expected value of the number of patents conditional on some function of R&D, in this
article we use the CDSF models described above to approximate the production function
as the curve enveloping the data from above. This curve agrees better with the idea of
the production function as the frontier of production possibilities, capturing maximum
output given the levels of input. Once the production function is estimated, the efficiency
measure discussed in section 5 may be used to evaluate how well firms transform R&D
into patents.

We use 70 pharmaceutical firms from the 1976 wave of the National Bureau of Eco-
nomic Research R&D Masterfile (Hall et al. (1986)) in our analysis. By restricting our
attention to a single industry, we are reducing the chances of neglected inter-industry
heterogeneity (this is of particular importance for obtaining unbiased estimates of the
average efficiency in the sample, since any unobserved heterogeneity will be compounded
in the mixing variable of the underlying conditional Poisson model, thus distorting our
estimates of what proportion of the observed variation in the sample is due to ineffi-
ciency). However it is unclear a priori whether this is sufficient to eliminate other forms
of neglected heterogeneity. This same dataset was used by Wang et al. (1998)9 and it
includes the count of patents for each firm, as well as the R&D expenditure for that
year, and the value of sales in each firm. The summary statistics are in Table 3.

The model we fit assumes that each observation is independently distributed, with
a conditional distribution function given by the general model at the end of Section 2.

9We thank professors Peiming Wang, Iain Cockburn and Martin Puterman for kindly providing us
with their data set
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The structural part of the conditional mean is

λi = exp(β0 + β1 log(R&Di) + β2 log(R&Di)2 + β3 log(Salesi) (7.1)

where we have included a quadratic term in R&D in order to take into account fur-
ther non-linearities. The results produced by our models are given in Table 4. The
table reveals significant differences between the Poisson Half Normal and Normal Half
Normal models, which are supported by a Likelihood Ratio test exceeding the quantile
corresponding to 1% critical region of the χ2

1 distribution (H0 : σν = 0). After discount-
ing unobserved heterogeneity, the PALS model increases the absolute magnitude of σε,
while it places the intercept of the frontier at a lower level. In relative terms, PALS
suggests that the variation in the sample due to inefficiency is larger than that due to
heterogeneity by a factor of 1.17. Thus, despite the fact that the sample contains a
relatively homogeneous population of just pharmaceutical firms, heterogeneity is still a
structural feature in the population, and we conclude that the results of the PHN model
are likely to be biased. The quality of fit is even more apparent in Figures 1 and 2,
where the estimated frontier is drawn against the observed data. It is visually apparent
that the PHN model is unable to produce a sufficiently tight fit at the upper tail of the
distribution of log(R&D), unlike the PALS model which envelopes the data from above
in a manner which truly resembles the frontier which was sought.

The estimated coefficients of log(R&D) and log(R&D)2 can be used in order to
calculate the ratio:

∂λi
∂ log(R&D)

1
λi

= β1 + 2β1 log(R&D) (7.2)

which measures the percentage variation in the frontier as a fraction of the variation in
the logarithm of R&D (it is, therefore, a pseudo elasticity). The average value of this
ratio provided by PHN model is 1.1341 (s.e.: 0.49310) as opposed to the average value of
1.0452 (s.e.: 0.18203) reported by PALS. Given the potential biases inherent in the PHN
we focus our attention on the latter value, which is moderately optimistic regarding the
multiplicative effect of R&D. A simple Wald test does not reject the hypothesis of the
above ratio being equal to 1, and therefore, there is some evidence that we might be
facing a situation of constant returns to R&D.

Table 5 summarizes the estimated posterior distribution of the half normal random
effect, which is the basis for our analysis of efficiency in the sample. Average efficiency is
at levels of 0.59% (PHN) and 0.64% (PALS). The corresponding median values are 0.62
and 0.64. The distribution generated by the PHN model is skewed, suggesting that that
approximately 10% of the sample is unable to achieve efficiency levels above 34% while
at the other end of the spectrum, 25% of the firms in the sample may attain excellent
levels of efficiency, ranging above 70%. However, previous considerations, reinforced
by Figure 1, invite us to reconsider the adequacy of these estimates. In the figure,
the output of those firms with largest investment in R&D lie at further distance from
the estimated frontier than those with lowest R&D expenditure. Since, ultimately, our
estimates of efficiency rely on the vertical distance between the frontier and the observed
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value of output, we conclude that the PHN, (which neglects potential cross-sectional
heterogeneity) is, in this case, penalizing the firms with largest R&D investment. On
the contrary, the PALS provides more balanced evidence. The estimated distribution
of efficiency is fairly symmetric about the mean, and in accordance with the evidence
provided by this model, only 10% of the firms in the sample would attain efficiency
levels below 52%. On the other end, the 99th quantile of the distribution is located at
an efficiency level of 76%. Figure 2 exhibits a much tighter fit in the upper tail of the
sample, and this provides further evidence on the bias of the PHN model caused by
ignored heterogeneity.

Looking at the estimated distribution of efficiency, the PALS model may seem rather
pessimistic regarding the capability of these pharmaceutical firms in order to produce
patents. However, it is necessary to remark on two of the points discussed above. Firstly,
in the way it has been defined, the estimator of efficiency is a shrinkage toward the mean
of u (Wang and Schmidt (2009)), and we would thus expect the upper and lower tails
of the estimated distribution to be more concentrated about the mean (of u) than the
actual distribution of inefficiency. However, this would not explain the low estimated
average efficiency. Perhaps, a more important point relevant to interpreting this result
is the fact that patents are not the only output of R&D, and that their economic value
can be under question. Since not all R&D needs to materialize in patents, it is normal
to expect the estimator in Section 5 to return a low average value of efficiency.

To summarize we find some evidence suggesting that there are contemporary constant
returns to scale of R&D in the production of patents, however, this view is in contrast
with the typically low achievement in terms of transforming R&D into patents. This
latter point need not be surprising, since patents are not the only outcome from R&D
and in some occasions the economic value of patents may be negligible (eliminating the
incentive to apply for a patent).

8 Conclusion

Existing contributions to the area of stochastic frontier analysis have been devised with
a continuous output variable in mind. However, one often encounters situations when
the output variable of interest is a count, so that its probability distribution function
is discrete. While econometricians have been proposing and improving for decades es-
timators for the analysis of mean regression of count data , no attempt has been made
to propose a Stochastic Frontier method for a discrete dependent variables. This article
completes the existing literature by putting forward a proper Count Data Stochastic
Frontier model.

Our discussion has been focused on producing a model that can treat economic goods
and bads symmetrically, in the sense that the ensuing conditional distribution of output
has at least well defined low order moments, and that the existence of these moments is
not subject to the value of the parameters in the model. Whether the final distribution
has lower order moments depends on what distribution has been assumed for the the
random variable that caputures inefficiency in the sample. We have shown that while
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the half-normal distribution does result in a proper CDSF model, other more adaptable
choices (for instance, the gamma distribution) lead to ill behaved distributions for the
output variable.

We have emphasized the role played by unobserved cross-sectional heterogeneity,
and we have shown that when this part of the model is neglected, estimation can be
severely biased. We have shown how to make our models robust to unobserved cross-
sectional heterogeneity in such a fashion that inefficiency and heterogeneity are treated
as separate sources of variation. This is a rather unique feature in the literature of
Stochastic Frontiers, and it is only shared by a handful of model, among which Greene
(2005) is of particular interest.

We have illustrated the scope of our models by applying them to a substantive
problem: the study of the relationship between R&D expenditure and number of patents
awarded to a firm, as an measure of the repercussion of that type on investment on the
accumulation of knowledge in the firm. Our approach is different to that in key early
contributions, not only because of the use of a CDSF model, but because of the emphasis
on estimation of a frontier of production of patents as opposed to a mean regression curve.
Unlike other contributions, we also explore the extent to which R&D is transformed into
patents, via the efficiency measure introduced in this article.

While developing our methods we assumed that inefficiency and heterogeneity are
independently distributed. This might seem a rather restrictive assumption and, indeed,
it will be so in certain occasions. Then, Maximum Likelihood estimation of our models
would return inconsistent estimates. A similar consideration led Smith (2007) to relax
an equivalent assumption in the case of continuously distributed output. He relied on a
copula method in order to capture the magnitude of the correlation between inefficiency
and the regression error in the model. In our context, this approach seems to be equally
attractive and feasible, but if this line of work is followed care should be taken that the
resulting model treats economic goods and bads symmetrically, in the sense we have
emphasized here. Otherwise, one may exploit the assumed normality of the additive
random effects, and modify the models discussed in this article by introducing the per-
tinent bivariate normal distribution. We presume this would still result in symmetric
models, but feeling that this question it is beyond the scope of this article, we leave that
for future research.
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Appendix A: Moments of the density function f(exp(±ε))

We now show how to calculate the first and second moments of the transformation
u = f(exp(±ε)), where ε follows a half normal distribution. Consider first the case
f(exp(−ε)). Then,

E(u) =
2

σ
√

2π

ˆ 1

0
e− log2(u)/2σ2

du =
2

σ
√

2π

ˆ 0

−∞
e−( t2

2σ2−t)dt = eσ
2/2 2√

π

ˆ − σ√
2

−∞
e−s

2
ds

= eσ
2/2Erfc

(
σ√
2

)
∈ [0, 1] (A-1)

where Erfc(.) is the complementary error function and we used the changes of variable

log(x) = t, s = t√
2σ
− σ√

2
and the fact that t2

2σ2 − t =
(

t
σ
√

2
− σ

√
2

2

)2
− σ2

2 . Similar steps
show that

E(u2) = e2σ2
Erfc

(
σ
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2
)

(A-2)

V(u) = e2σ2
Erfc
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σ
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2
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(
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2

)}2

(A-3)

For the case u = exp(ε) the method is identical, but only the range of integration changes
to [1,∞). Thus,

E(u) =
√

2
σ
√
π

ˆ ∞
1

e− log2(u)/2σ2
du = eσ

2/2 2
π

ˆ ∞
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)}
≥ 1 (A-4)

E(u2) = e2σ2
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(
σ
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2
)}

(A-5)
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DGP 1
Poisson-Half Normal

N = 500 N = 1000 N = 2000
Mean S.d Mean S.d Mean S.d

σε 1.0867 0.0249 1.0872 0.0118 1.0790 0.0054
β0 0.5827 0.0205 0.5790 0.0102 0.5785 0.0060
β1 0.5006 0.0296 0.5099 0.0145 0.5008 0.0082
β2 0.4965 0.0248 0.4937 0.0146 0.4946 0.0078

Poisson-Normal-Half Normal

N = 500 N = 1000 N = 2000
Mean S.d Mean S.d Mean S.d

σε 1.0867 0.0249 1.087 0.0118 1.0769 0.0057
σν 0 0 0 0 0.0036 0.0007
β0 0.5827 0.0205 0.5798 0.0102 0.5768 0.0062
β1 0.5005 0.0296 0.5099 0.0145 0.5008 0.0082
β2 0.4964 0.0248 0.4937 0.0146 0.4946 0.0078

Table 1: Monte Carlo Simulation with data generated from DGP 1 (no unobserved
cross-sectional heterogeneity)
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DGP 2
Poisson-Half Normal

N = 500 N = 1000 N = 2000
Mean S.d Mean S.d Mean S.d

σε 2.4760 0.0234 2.4471 0.0106 2.4191 0.0035
β0 1.8974 0.2368 1.8828 0.1196 1.843 0.0458
β1 0.7183 0.6797 0.6894 0.3246 0.7504 0.1064
β2 0.7072 0.6789 0.7158 0.3264 0.7010 0.1279

Poisson-Normal-Half Normal

N = 500 N = 1000 N = 2000
Mean S.d Mean S.d Mean S.d

σε 0.7718 0.3759 0.9698 0.2819 0.8798 0.2338
σν 1.0289 0.0154 0.9984 0.0110 1.0167 0.0087
β0 0.3125 0.2520 0.4851 0.1718 0.4265 0.1436
β1 0.5227 0.0711 0.4879 0.0346 0.5113 0.0201
β2 0.4921 0.0783 0.5047 0.0380 0.4865 0.0223

Table 2: Monte Carlo Simulation with data generated from DGP 2 (Data generated with
unobserved cross-sectional heterogeneity so that PHN is misspecified

Patents Data Set (Wang et al. (1998)); N = 70

Variable
Log(R&D) Log(R&D)2 Log(Sales)

Mean 1.3119 6.0961 4.7089
S.D. 2.0916 6.4831 2.0361
Max 4.9152 24.160 7.8330
Min. -2.9565 0.0017526 0.15272
Quantile 10 -1.7880 0.16201 1.5864
Quantile 25 -0.17530 0.87232 3.6753
Quantile 50 1.3106 3.3642 4.8651
Quantile 75 2.9811 8.9356 6.5212
Quantile 90 4.0113 16.091 7.2076

Table 3: Descriptive Statistics
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Estimated Frontier
Patents Data Set (Wang et al. (1998)); N = 70

Model
Poisson HN Poisson ALS

Estimate S.d Estimate S.d
σε 0.55069 0.049789 0.61073 0.14799
σν - - 0.52349 0.10629
Intercept 1.8769 0.15547 1.8068 0.23520
log R&D 0.82485 0.080673 0.93102 0.10104
log R&D2 0.11788 0.017096 0.043514 0.017577
log sales -0.26867 0.035983 -0.23931 0.051626

Log-likelihood -243.16 - -203.424 -

Mean Efficiency 0.59025 - 0.64553 -

Table 4: Estimated CDSF for the Wang-Cockburn-Puterman data set

Estimated Distribution of Efficiency
Patents Data Set (Wang et al. (1998)); N = 70

Model
Quantile Poisson HN Poisson ALS

1% 0.17894 0.44513
10% 0.34138 0.52682
25% 0.48674 0.60806
50% 0.62999 0.64971
75% 0.71755 0.70467
90% 0.78075 0.73501
99% 0.82606 0.76544

Mean Efficiency 0.59025 0.64553

Table 5: Estimated distribution of the average efficiency score for the Wang-Cockburn-
Puterman data set
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Figure 1: Estimated Frontier (PHN Model)
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Figure 2: Estimated Frontier (PALS Model)
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