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Abstract

While a number of unit root testing procedures have been developed to account for nonlinearity
under the alternative hypothesis of stationarity, almost all available tests assume a linear DGP
under the unit root null hypothesis. This paper establishes some theoretical results relating to the
inclusion of nonlinear terms in an ADF regression and proposes two new unit root tests that allow
the process to be nonlinear under the null hypothesis. More specifically, block and model-based
bootstrap procedures are developed for smooth transition threshold models. Simulations show
that the latter is preferred and the model-based bootstrap test delivers a good size performance
across all specifications, including linear and effectively abrupt transition models. The model-
based test also dominates the standard ADF test in terms of power and an application to the US
unemployment rate shows that it can overturn conclusions based on an erroneous linearity

assumption.
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1. Introduction

Recent years have witnessed an explosion of interest in the use of nonlinear models for the
analysis of economic time series, with regime-switching specifications being widely applied due
to their ability to replicate key characteristics of observed series. Although many varieties of such
models are available, the threshold autoregressive (TAR) model due to Tsay (1989) and its
smooth transition autoregressive (STAR) generalization promoted by Terdsvirta (1994) are
popular choices for empirical analyses. Alongside empirical applications, well-developed tests
are now available to detect the presence of this type of nonlinearity; see, for example, Hansen
(1996), Harvey and Leybourne (2007), and Luukkonen, Saikkonen and Terdsvirta (1988). With
the exception of Harvey and Leybourne (2007), who provide a test for nonlinearity of a STAR
form when the order of integration is unknown, these tests are based on the assumption that the
series under analysis is stationary. Indeed, the assumption of stationarity is crucial in this context,
since the asymptotic distributions of commonly applied nonlinearity test statistics differ when the
data are generated by a unit root process rather than a stationary one (Caner and Hansen 2001,
Kilig, 2004).

Due to the fundamental role of the order of integration for modelling time series data and
for the conduct of statistical inference, the first step of empirical time series modelling in
economics is almost invariantly an examination of the integration order of the series. While the
popular Augmented Dickey-Fuller (ADF) test performs relatively well for linear time series, a
number of studies show that its power decreases dramatically for stationary nonlinear series (for
example, Balke and Fomby, 1997, Pippenger and Goering, 1993). Consequently, an important
strand of the recent literature has developed unit root tests that are applicable in the context of
threshold and smooth transition models, with contributions including Enders and Granger (1998),
Sollis, Leybourne and Newbold (2002), Kapetanios, Shin and Snell (2003) and Seo (2008).
However, these studies allow for such nonlinearity only under the alternative hypothesis of
stationarity and hence do not account for any effects that may arise when the process is both
nonstationary and nonlinear. To our knowledge, the only paper that allows for this case is Caner
and Hansen (2001), who show that the asymptotic distribution of Wald tests for a unit root
depend on nuisance parameters when threshold nonlinearity is present under the null. Although
they examine the performance of asymptotic and bootstrap tests for this case, Caner and Hansen

(2001) find that these tests do not have good size. Therefore, no satisfactory approach is currently



available to test the unit root null hypothesis when the nonstationary process may exhibit
threshold or smooth transition nonlinearity.

The present study extends the existing literature by developing tests that are well-sized for
the null hypothesis of nonstationarity allowing for the presence of STAR-type nonlinearity of
unknown (logistic or exponential) form. The testing methodology uses modified ADF
regressions, which are corrected for the nonlinearity under consideration. Although we examine
modifications based on the inclusion of terms arising from Taylor series approximations to the
nonlinearity, these do not yield good size when the process under the null is nonlinear.
Consequently, we develop a model-based bootstrap procedure, which delivers excellent size
properties in all cases we consider. In terms of power as well as size, this test performs well not
only for STAR-type nonlinear processes, but also for TAR-type nonlinear and linear processes.
In addition to providing Monte Carlo evidence, an application to the monthly US unemployment
rate shows that accounting for nonlinearity plays an important role for the decision on the
appropriate level of integration for this series.

The remainder of the paper is organised as follows. After reviewing the literature that
jointly considers nonstationarity and nonlinearity in Section 2, Section 3 develops our approach
to testing for unit root in the presence of possible nonlinearity. Monte Carlo experiments, which
examine empirical size and power characteristics of the new tests, are provided in Section 4. The
empirical application to US unemployment is presented in Section 5 and Section 6 concludes.

Proofs are provided in the Appendix.

2. Literature Review

Growing dissatisfaction with the performance of the standard ADF test in the presence of
nonlinearity has recently led to a number of studies focusing on the interactions between
nonlinearity and nonstationarity, especially when the (possible) nonlinearity is of the TAR or
STAR form.

An early and seminal contribution to this literature is Enders and Granger (1998), who
propose a two-step procedure to test the null hypothesis of a linear unit root against the
alternative of a stationary two-regime threshold model. Although their test recognises that the

threshold value is not identified under the null hypothesis, nevertheless it is less powerful than



the standard ADF test even in the presence of substantial asymmetry. Rather than a two-stage
approach, a number of recent studies, including Bec, Ben Salem and Carrasco (2004), Kapetanios
and Shin (2006) and Bec, Guay and Guerre (2008), embed a search for the threshold(s) within the
unit root test procedure, with this approach generally delivering power improvements over the
linear ADF test. Rather than autoregressive augmentation, Seo (2008) proposes the use of a first-
order test regression with residual autocorrelation taken into account through a residual-based
block bootstrap, and finds that this approach yields power improvements over the ADF test
against stationary TAR processes.

Again in a two-regime TAR context, Caner and Hansen (2001) use a model-based
bootstrap procedure to test the null hypothesis of nonstationarity in a two-regime threshold
model, where nonlinearity may apply under either the null or alternative hypothesis. The
asymptotic null distribution of the test statistic then depends on whether a threshold effect is
present or not. For this reason, they define two bootstrap procedures, one assuming a threshold
effect is present (identified threshold bootstrap) and the other under linearity (unidentified
threshold bootstrap), both for the null hypothesis of a unit root process. However, because their
Monte Carlo experiments indicate that the size distortions of the unidentified threshold bootstrap
are less than those of the identified threshold bootstrap even in the presence of nonlinearity, they
recommend that the unidentified threshold bootstrap method should be employed regardless of
the extent of nonlinearity under the unit root null hypothesis.

Another group of studies focuses on stationary STAR models under the alternative
hypothesis, with the null hypothesis being a linear unit root. Kapetanios, Shin and Snell (2003)
propose a test statistic against a globally stationary exponential STAR (ESTAR) process with the
nuisance parameter problem which arises under the linear and nonstationary null hypothesis
overcome through a Taylor series approximation. Sollis (2009) applies a similar approach for an
asymmetric ESTAR process under the alternative, while Eklund (2003) considers a stationary
logistic STAR (LSTAR) process.

Although Taylor series approximations are popular when the process has a STAR form
under the alternative, Sollis, Leybourne and Newbold (2002) take a different approach by testing
the unit root null hypothesis after estimating the model under the alternative by nonlinear least
squares. In a similar vein, Kili¢ (2003) uses a supremum test statistic, with this obtained by
searching over relevant transition function parameters that apply under the alternative hypothesis.

Park and Shintani (2005) allow for a general form of nonlinear regime-switching model under the



alternative hypothesis, including TAR, ESTAR and LSTAR forms. Their asymptotic theory is
based on setting a limit parameter space for the parameters of the transition function, based on the
empirical values of the transition variable, with the asymptotic distribution of their supremum test
statistic depending only on the type of transition function and the limit parameter space. Finally,
Rothe and Sibbersten (2006) take a semi parametric approach to allow for ESTAR nonlinearity
under the alternative.

Many of the above studies include Monte Carlo analyses that favour their particular
approach, but Choi and Moh (2007) undertake a comparison across a range of tests and a variety
of nonlinear data generating processes (DGPs). They conclude that the distance from
nonstationarity is the main determinant of power for all tests considered, with the ADF test
generally having relatively good power when the sample size is small (50 or 100 observations).
For larger samples, the test of Park and Shintani (2005) performs best overall, which emphasizes
the importance of allowing flexibility when considering the nature of possible nonlinearity.

Nevertheless, all the tests proposed except that of Caner and Hansen (2001) assume
linearity under the null hypothesis of nonstationarity. Although Caner and Hansen (2001)
establish that the asymptotic distribution of the Wald unit root test changes in the presence of
TAR nonlinearity under the null and propose a bootstrap unit root test for this case, this test
suffers from substantial size distortions and they recommend the use of a bootstrap procedure
based on a linear DGP. Consequently, from a practical perspective, they do not provide a useful
unit root test for the case when nonlinearity is present under the unit root null. Further, the good
performance of the Park and Shintani (2005) approach in the study of Choi and Moh (2007)
points to the benefits of flexibility about the nature of potential nonlinearity.

The present paper develops bootstrap testing methodologies that permit nonlinearity
under the null hypothesis of nonstationarity. Although the model-based identified bootstrap of
Caner and Hansen (2001) suffers size distortions in this case, our approach overcomes these.
Further, in common with Park and Shintani (2005), our preferred model-based bootstrap is
flexible about the nature of nonlinearity, allowing for ESTAR and LSTAR forms, including TAR

models as a limit form of the latter.



3. Methodology

After the nonlinear DGP is outlined in subsection 3.1, subsection 3.2 discusses a unit root test
approach based on further augmenting the ADF regression for nonlinearity. In the light of the
theoretical issues discussed in subsection 3.3, the final subsection proposes two bootstrap unit

root tests to take account of this nonlinear DGP under the null hypothesis.

3.1 The DGP
Our primary DGP is the first-order LSTAR process given by

Ay, = Ay, (I_FL (Ayt—l;yL’cL ))+ Ay, F (Ayt—l;yL’cL)-’-gt (1)

where F7 is the logistic function

-1

F, (AyH) = (1+exp(_7L (AyH _CL))) > 7.>0 (2)

with transition variable Ay, , and parameters y, and ¢, governing its slope and location,
respectively. As in Caner and Hansen (2001), the transition variable in (1) is a lagged difference
to ensure stationarity of this variable under both the null and alternative hypotheses. The intercept
is zero in this DGP, while &, ~ iid N(0, 1).

Alongside the logistic specification of (2), the exponential transition function can be

considered, where F, replaces F, in (1) and F is defined by

FE(AyH):l_eXp(_VE(AyH_CE)Z)a 7e>0. 3)

Although our main focus is (2), the discussion below can be suitably modified for the ESTAR
case, which is explicitly examined for the model-based bootstrap in subsection 3.4 below. In
either case, extensions to higher order dynamics in (1), or to a different delay parameter in (2) or
(3), are straightforward.

Clearly, the extent of nonlinearity in the DGP of (1) will depend on the transition function

parameters in (2). In particular, for very small values of y,, such as 0.01 or 0.05, the transition

function is effectively flat and (1) is near-linear. However, the logistic function acquires the

familiar S-shape as the slope parameter increases and eventually approaches an indicator function

for very large values of y,, which we capture by y, = 50. Hence, increasing the slope while



holding the other parameters constant allows us to consider near-linearity, STAR and TAR type
nonlinearity within the framework of (1) and (2).
However, the extent of nonlinearity is also affected by the threshold location parameter,

c, ', More specifically, holding other parameters constant, an increase in c, relative to the

unconditional mean of the process causes it to remain longer in the lower regime (where F; = 0)
and to move less frequently to the upper regime (F; = 1). Consequently, as the threshold
increases, nearly all observations may fall into the lower regime and for practical purposes the
model approaches a single-regime one”. In order to capture these effects, our simulations employ

¢, =0.0, 0.5, 1.1, in addition to a range of values for y, .

3.2 Linear and Augmented Linear Test Regressions

The standard ADF test is frequently applied prior to considering nonlinearity. Hence, for data
generated by (1) and (2), we consider the performance of the ADF test based on the #-ratio of p in
the regression

Ay, =6,+py,  + ié}Ay,_i +u, 4)
where the lag order p is specified by a data-based technique and u, is assumed to be iid (0, o).

Since the standard ADF test does not allow for nonlinearity, residuals from (4) may inherit
nonlinear features from the DGP and hence violate the white noise assumption, leading to the
unreliability of this test in the Monte Carlo experiments of Pippenger and Goering (1993), Balke
and Fomby (1997) and others.

As noted in Section 2, a strand of the literature that tests the linear unit root null
hypothesis against the alternative hypothesis of a stationary STAR process proceeds by
approximating the nonlinearity through a Taylor series expansion. An analogous approach when
such nonlinearity is present under the null hypothesis is to augment the linear ADF regression
using Taylor series terms to take account of the nonlinearity under the null. Therefore, following

Luukkonen et al. (1988), the LSTAR form for (1) can be considered through a third-order Taylor

The variance of the error terms also affects the form of the true process; see Pippenger and Goering (1993), who
consider TAR type nonlinearity but it is quite straightforward to interpret their results for STAR type nonlinearity.
Throughout our study, the disturbance variance is, without loss of generality, set to 1.

Similarly, as the threshold progressively decreases in relation to the unconditional mean, ultimately virtually all
observations will fall in the upper regime. As these cases are symmetric, we consider only increasing c;.



series approximation around y, = 0. Similarly, this augmentation may also capture nonlinearities

of the ESTAR form. Assuming it is known that autoregressive augmentation of p=1 is

appropriate, this leads us to the unit root test regression
Ay, =B+ Py + BAY,, + ﬁZAyt—lz + ﬂ3Ayt—l3 + IB4Ayt—l4 Tu,. (5)

Clearly, the aim of including the Taylor series approximation in (5) is to account for
nonlinearity in regression (1) and hence to obtain disturbances u, with an approximate iid(0,
0,”) structure. However, the Taylor approximation is derived for y, — 0, which is associated
with weak nonlinearity. Consequently, it may be less adequate as y, increases, corresponding to

stronger nonlinearity. To illustrate the nature of the approximation, the logistic transition function

(2) and its Taylor series approximation around y,= 0 are graphed in Figure 1 for ¢,= 0 and

various slope parameter values®. It is evident from this figure that the difference between the

logistic function and its approximation is nearly zero for small y, values, irrespective of the
value of the transition variable Ay, ,. Further, across all y, considered, the approximation is also
good for Ay, | in the neighbourhood of ¢, = 0 (where F; = 0.5). However, for values of the slope
parameter y, substantially larger than 0, the two functions differ substantially when Ay, , falls
far below ¢, and hence the true value of F} is close to its lower bound of zero. To a lesser extent,
this also applies when Ay, , is large relative to c¢,. Therefore, correcting the standard ADF

regression through the inclusion of terms arising from a third-order Taylor series approximation

of the logistic function around y,= 0 may leave nonlinearity effects in the test regression

disturbance term u;;.
In addition to (5), we consider the performance of the ADF test modified by the inclusion

of the true transition function, namely
Ay, =ay+pyy oy, (1 —F, (A 37,.¢, )) + A, F (A3 7.0,) + iy, (6)

where u,, is assumed to be iid(0, o,”). This situation is, of course, unrealistic in practice, since

the transition function is unknown. However, (6) allows us to investigate (in an ideal scenario)

3 The values graphed are obtained analytically, with the ones of the approximate transition function given by the
third order Taylor series approximation 0.5+ 0.25(Ay, , —¢, )y, —(1/48)(Ay, , —¢,)’7; -



how the performance of the ADF test is affected by nonlinearity, when due account is taken of

this nonlinearity.

Figure 1: Exact (Original) and Taylor Series Approximation Transition

Functions
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Notes: All transition functions have ¢; = 0, with a third-order Taylor series
approximation applied around y, = 0.

Against this background, subsection 3.3 discusses theoretical results related to the use of
(5) and (6) in conjunction with the asymptotic Dicker-Fuller distribution that applies for a linear

unit root test regression.

3.3 Asymptotic Distributions

Few theoretical results exist in the literature relating to the asymptotic distribution of unit root
tests allowing for STAR-type nonlinearity. Indeed, the only results relate to regressions of the

form
Ay, = py, (1=exp(-73,.))+ 2., (7)
which is used by Kapetanios et al. (2003) in order to develop a unit root test (using the computed

t-ratio statistic for p = 0) to allow for ESTAR nonlinearity under the alternative hypothesis. For
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implementation, Kapetanios et al. (2003) approximate the exponential transition function in (7)
through a Taylor series approximation. Kili¢ (2003) develops this approach by allowing Ay, to
be the transition variable in (7) and employing a supremum approach that searches over the
unknown (and, under the null hypothesis, unidentified) slope parameter y. These authors
establish the asymptotic distributions of their test statistics, which differ from the familiar
Dickey-Fuller one.

However, those authors consider nonlinearity only under the alternative hypothesis,
whereas our concern is to allow for such nonlinearity under the unit root null hypothesis. The

following Theorem sheds light on this issue.

Theorem. Assume that y, is generated by the integrated linear AR(1) process
Ay, = ,Bl Ay +uy ®)

in which yy =0,

ﬂl| <1, u; ~ iid(0, 6*). Further, when (5) is employed, it is assumed that
E[u; ] = pt <o
while for (6) it is assumed that transition function parameters y, and ¢, are given. Then:

1 vy —1]-way[w)ar
t, ——— 0 ,i=12 9)

2 | 1 2
\/ o)y dr- U W(r)er

where ——> indicates convergence in distributuion, W(r) is standard Brownian motion, t 5 (@

=1, 2) is the t-ratio statistic computed for the null hypothesis p; = 0 (i = 1, 2) in (5) or (6), as
appropriate.

This theorem, which is proved in the Appendix, establishes that the inclusion of additional
variables in the form of either Taylor series expansion terms or values arising from an (arbitrary)
transition function do not affect the unit root asymptotic distribution when, in fact, these terms
are irrelevant because the DGP is a linear integrated AR(1) process.

This theorem does not, however, show that the asymptotic distribution of (9) applies

when the true DGP is a nonlinear STAR process in Ay,. Indeed, to our knowledge, and
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notwithstanding their widespread use in empirical applications, the asymptotics of integrated
STAR processes, such as y; in (1), are not yet known. However, Caner and Hansen (2001) study
the related case of an integrated threshold DGP, which is a limit (as y, — o) of the LSTAR

model of (1) and (2). Employing unit root tests formed from two computed #-ratio statistics, one
corresponding to each regime, they show (Caner and Hansen, 2001, Theorem 6) that the
asymptotic distribution of each #-ratio is a mixture of a normal and a Dickey-Fuller distribution.
The implication is that the unit root distribution for their nonlinear DGP is shifted to the right
compared with the Dickey-Fuller case, with the ADF distribution of (9) providing an upper
bound to the true asymptotic rejection probability under the null.

The result of Caner and Hansen (2001) suggests that the Dickey-Fuller distribution may
also provide a bound for the asymptotic distributions of our test statistics in a STAR DGP,
particularly when the test regression of (6) is employed and hence the nature of the nonlinearity is
explicitly taken into account (as in Caner and Hansen, 2001, for their DGP). It is also compatible
with our result, established in the above Theorem, that the Dickey-Fuller distribution applies for a
linear DGP. Since it is reasonable to anticipate that the true asymptotic distribution in the
nonlinear STAR case will depend on unknown parameters in the DGP (again, as in Caner and
Hansen, 2001), a bootstrap approach may be required in practical applications in order to
approximate this distribution. To this end, the next subsection proposes two bootstrap

approaches.

3.4 Bootstrap Unit Root Tests

The bootstrap tests proposed here are designed to account for the impact of any nonlinearity on
the null distribution of the test statistics. Consequently, these tests aim to account fully for the
nonlinear dynamics of the DGP (1) in finite samples. Our approach is related to the identified
threshold bootstrap method proposed by Caner and Hansen (2001), although the test statistic we
use and the nature of the nonlinearity differ from their case. Two bootstrap procedures are
examined, with one relating to the use of a third-order Taylor series approximation to the
transition function, as in (5), and the other based on the ADF regression modified by the

transition function itself, namely (6).

12



3.4.1 Block Bootstrap

Accounting for nonlinearity through the Taylor series approximation in (5) is convenient in a
bootstrap procedure because it does not require the parameters of the transition function to be
known or explicitly estimated. However, Figure 1 emphasizes the inadequacy of the Taylor series
approximation for representing a true logistic transition function when the nonlinearity is

reasonably strong, suggesting that some nonlinear dependence may remain in u,, of (5). Residual-

based bootstrap procedures that employ random resampling of single residuals are consequently
inappropriate since they rely on residuals #,, being iid. However, the block bootstrap may be able
to replicate such patterns of dependence by random sampling of blocks of consecutive
observations and hence improve the performance of the test.

Being nonstationary under the null of p, =0, the sequencey, cannot be resampled
directly. Instead, we can resample blocks of Ay, or residuals #,, with the level form of the
bootstrap DGP then being generated recursively using the resampled blocks. Paparoditis and
Politis (2003) apply both the difference and residual-based block bootstraps in the context of the
standard ADF test and show that the latter approach is more powerful. Very recently, Seo (2008)
extends the residual-based block bootstrap approach to test for a linear unit root against a
stationary TAR alternative. Such an application, however, is not feasible in our case due to the
existence of the higher order terms of Ay, in (5), which can lead to explosive bootstrap DGPs.
Moreover, the inadequacy of the Taylor series approximation for representing a true logistic
transition function in the case of strong nonlinearity is still a deterrent for the recursion, as the
resultant bootstrap DGP would not mimic the true DGP.

Therefore, we apply the difference-based block bootstrap approach by resampling blocks

of Ay, and obtain the level form of the bootstrap DGP recursively. The bootstrap algorithm
proceeds as follows:

thz around a circle, and use the overlapping blocking scheme of

1) Wrap observations {Ayt}
T
=

Kiinsch (1989) to resample the sequence {Ay,} .. That is, for a given block length b<T -1,

construct  7—1  blocks as {Ayz,...,Ayb,AybH}, {Ay3,...,Ayb+1,Ayb+2}, ...... ,

{AyT_bH,...Anyl,AyT}, {AyT_b+2,....,AyT,Ay2}, I {AyT,....,Ayb_l,Ayb}. Then draw

13



_T+100

k blocks with replacement from the 7 —1 blocks and paste these end-to-end to

block }T“OO 4
=2

form the block bootstrap sample {Ayt

T+100

i1) Generate the level series of the bootstrap DGP, { yt*} , recursively using the block

t=1

block

bootstrap sample Ay"**, namely y," =y, +Ay"**, t=2,.....,T+100 where y,"=0".

1i1) Cut the first 100 observations of yt* and estimate the modified ADF regression (5) with the
T
sequence {Ay, },=z'
1v) Calculate the bootstrap z-statistic for the null hypothesis p, =0.

The use of the block bootstrap enables us to generate the bootstrap DGP Ay,” from the

block

block bootstrap sample Ay,”*", which is obtained by direct sampling of realizations from the true

DGP of (1) and hence is anticipated to mimic this DGP. Nevertheless, Bithiman (2002) and
Horrowitz (2003) indicate that the block bootstrap sample might not mimic the true DGP as it

may generate dependence artifacts where resampled blocks are linked together, resulting in

corrupted dependence in the bootstrap DGP observations Ay,".

3.4.2 Model-Based Bootstrap
Rather than using the Taylor series expansion, consider the ADF regression modified using the
nonlinear transition function as in (6). While the true transition function is unknown in practice,
this case provides a useful starting point for considering the model-based approach. Also,
inclusion of the known parameter case in the subsequent Monte Carlo analysis provides a
benchmark for the performance under other, more realistic, assumptions.

When all parameters of (1) are assumed known, the model-based bootstrap procedure for

a given data realisation is described by the following algorithm:

* Wrapping the data around a circle removes the effect of the first and last b-1 observations of Ay, appearing in

fewer blocks than the remaining observations and hence ensures that each observation has an equal chance of
appearing in the block bootstrap sample.
> Note that the mean of the block bootstrap DGP is not adjusted here. To analyze the effect of mean adjustment,

Ay"**is replaced with its mean-adjusted form Aj/tb[“k = Aythl{wk —(A)_/b’“k —A)_/) where Ay™* and Ay

t

represent means of the block bootstrap and true DGPs, respectively. Nearly identical results to those reported for
the case of unadjusted mean point to the insensitivity of the block bootstrap procedure to mean adjustment.

14



1) Imposing the null hypothesis of p, =0, estimate the remaining parameters of the modified

ADF regression (6) by OLS conditional on (]/L,CL) to obtain the residuals.

T+100

i1) Draw a random sample with replacement from the residuals and obtain {uzt*}H

T+100

2

1i1) Using the true parameters, generate the level series for the bootstrap DGP, { yt*}t_1

recursively, as
Y =va el (1 —F (Ay:—1;7L’CL ))+ Ay, F, (Ay:—l;yL’CL ) iy, (10)
for t=3,....... ,T+100 where yl*=y2*=0.

iv) Drop the first 100 bootstrap observations and estimate the modified ADF regression (6) by
OLS conditional on (yz, c):
Ay, =0+ p Yy + 8y (1= FL(r,¢,)) + SOV F(7,.¢) +u, (11)
and calculate the #-ratio statistic for p=0.

v) Repeat steps ii) to iv) to generate B bootstrap replications and use these to calculate the

bootstrap critical value of the ¢-statistic for the null hypothesis 0 =0.

In more realistic scenarios, neither the true lag order nor the parameters or even the
nonlinear functional form are known. To investigate the case of unknown lag order and
parameters, we assume that the researcher considers the model under the unit root null hypothesis

to have the form
P P
Ay, = (0‘01 + Zailj(l _FL(Ayt—l;yL’CL))+(aO2 + Zaizj(l _FL(Ayz—1;7LaCL))+ u, (12)
P P

with a regime-dependent intercept included to allow for any starting value effects, while the lag
order p and all parameters are unknown®. Following a common practice in empirical analysis, the
lag order p in (12) is selected from the data using the Schwartz criterion (SBC) in a linear
autoregressive specification with a maximum of 8 lags, with this lag order maintained for the
subsequent nonlinear analysis. Using this p, the parameters of (12) are then estimated by
nonlinear least squares (NLS). Moreover, in order to guarantee global stationarity of the bootstrap

DGP, we impose the restrictions that the roots of the characteristic equations in both regimes F; =

% We also investigated the scenario where p = 1 is known, but the transition function parameters are unknown. The
results are very similar to those reported for the more realistic case of unknown p.
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0 and F; = 1 are less than one in absolute value’. To ensure sufficient observations are available
in each regime of the bootstrap DGP for reliable estimation of other parameters, ¢, is restricted
to be lie between the 5™ and 95™ percentiles of the transition variable Ay.; when the sample size
is reasonably large, with this range restricted to the 10™ to 90™ percentiles of Ay.; when a
relatively small sample (7 = 100) is employed.

The generalization of the bootstrap algorithm above to this case is then relatively
straightforward. Specifically, the bootstrap DGP in step iii) is generated using the estimates
(&y15 0G50, 7,5 €, ), While the modified ADF regression employed in step iv) becomes

Ayl =py, + (501 + Zp; 5.Av,., j(l —F,(7,,6,))+ (502 + iaz,,Ay” JFL (P,6)+u, (117
which is estimated by OLS conditional on (y,,¢,). Full nonlinear estimation in each bootstrap
replication, which would include the transition function parameters to yield estimates 7, ,,, and

€, poor» 18 Mot performed due to the computational cost involved. Davidson and MacKinnon

(1999) also find the cost of full re-estimation to be prohibitive for the bootstrap in a nonlinear
context and adopt an approximation. In our case, a comparison of empirical distributions for the

bootstrap unit root test statistic obtained using (7,,¢,) and (¥, ,,,»C; 4o,) in (117) for p =1

indicated only trivial differences® and hence the reported results apply the nonlinear estimates
obtained from the original data in the B bootstrap replications.

Finally, we consider the situation where the form of the transition function is unknown,
with both logistic and exponential cases, namely (2) and (3) respectively, considered plausible. In
order to capture the data-based decision undertaken in such cases, and following Kesriyeli,

Osborn and Sensier (2006), we select between these transition functions based on the minimum
residual sum of squares (SSR). Therefore, for a given data series, {y,} , and after selection of
the AR lag order p via SBC as above, two-dimensional grid searches are undertaken for both

parameter sets (7,, ¢, )and (y,, ¢, )of (2) and (3) respectively, with the lowest SSR over these

These conditions are sufficient to ensure stationarity; to our knowledge, necessary and sufficient conditions for
stationarity of the LSTAR model are not yet available in the literature. In some rare cases, especially when 7 =
100, a Monte Carlo realization yields initial values for the AR coefficients failing the stationarity conditions. Such
a realization is discarded. With the stationarity restrictions imposed, NLS estimation is carried out using the
Newton-Raphson optimization algorithm in the CML subroutine library of GAUSS 5.0.

Simulations were undertaken for 7= 100, 300 using 5000 replications setting &; = 0.5, o= -0.1 and ¢; = 0, with a
range of slope coefficients.
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yielding the selected transition function form. This form and the corresponding parameters
estimated by NLS are then employed in the bootstrap.

Alongside the possibility of an exponential transition function being selected in the
application of the bootstrap unit root test, we also examine a stationary ESTAR(1) data
generating process. The procedure allowing unknown parameters, lag order and functional form’
of the transition function is also applied for this ESTAR DGP, where the global stationarity
condition used is that the characteristic roots of the outer regime (Fr = 1) are less than one in

absolute value, allowing a local unit root or even an explosive behaviour in the inner regime

(FE zO).

4. Monte Carlo Results

This section analyzes the size and power properties of the tests discussed in Section 3.

4.1 Size Analysis

Empirical sizes of the tests are investigated using the LSTAR data generating process of (1) and

(2), for sample sizes 7'= 100, 300 with transition function parameters ¢, = {0, 0.5, 1.1} and y, =
{0.01, 0.1, 0.3, 0.9, 1.5, 2.5, 50}. These slope values capture near-linear (7, =0.01,0.1) and
TAR-type processes (7, =50), in addition to logistic STAR nonlinearity. The same location and
slope parameter are also applied to investigate the model-based bootstrap test for an ESTAR
DGP. The coefficients ¢, and «, are chosen to guarantee global stationarity of Ay, , while also

varying the strength and nature of the implied AR dynamics. The disturbance variance is set to

unity and the nominal test size is 5%.

4.1.1 Augmented Linear Procedures
Table 1 analyzes the empirical sizes for the linear and augmented test regressions discussed in
Section 3.2, with the DGP being an LSTAR(1) process. To investigate the adequacy of the Taylor

series approximation to nonlinearity in (5) and the performance of the modified ADF test in (6),

’ We also investigated the case where the functional form of the ESTAR DGP is known, but the parameters and the
lag order are unknown. Since the results are very similar to those reported for the case of unknown functional
form, they are not reported.
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which includes the true transition function, the lag order of one is assumed known. However, a
data-dependent lag specification is employed for the standard ADF test, in order to allow the
regression to capture serial correlation arising from the linear misspecification of the nonlinear
DGP. In this case, the lag order is chosen using SBC from linear autoregressive models to a
maximum order of p = 12, with the adequacy of the order verified by a Lagrange multiplier (LM)
test for serial correlation applied at the 5% level. If significant autocorrelation is detected, the lag
order is increased until the test is passed. The critical values employed are based on a linear
random walk DGP.

The empirical rejection frequencies reported in Table 1 employ the linear Dickey-Fuller
critical values and are obtained using 50,000 replications for sample sizes of 7= 100 and 7 =
300. In addition to the empirical sizes of the tests, the final column provides an indicator of the
power of the nonlinearity under consideration. This power measure is the empirical rejection
frequency obtained by applying the Luukkonen er al. (1988) test for the null hypothesis of
linearity at a nominal size of 5%, over the 50,000 replications.

According to Table 1, regardless of the other parameters, the standard ADF test has good
size when the slope parameter takes a small value, namely 0.01, 0.1 or (when 7 = 100) 0.3. In
such cases, as illustrated in Figure 1, the LSTAR process is close to linear, with this also
indicated in Table 1 by the power of the nonlinearity being close to the nominal test size.

However, size distortions appear as J, increases, pointing to stronger nonlinearities, with the

ADF test always being undersized when substantial nonlinearity is present. Indeed, in a number
of cases the empirical size is around half or less of the nominal size, so that the conventional
ADF test attributes nonlinearity to nonstationarity. This is most marked for the larger sample size
of T'= 300, where the empirical size is around 1% when nonlinearity is evident (that is, when the
power of nonlinearity is very close to unity.

As a rule of thumb, the size distortions for the ADF test become substantive (say, outside
the range 0.04 to 0.06) when the power of nonlinearity is above around 44%. However, except
for cases of near-linearity, size distortions are worse when 7' = 300 than for 7"= 100, implying
that these distortions are an asymptotic issue and do not disappear with larger sample sizes.

The third-order Taylor series approximation does not improve the size performance of the
ADEF test, at least when the true AR lag order p = 1 is employed for the former. This comment

also applies when the true transition function is used. Indeed, the Taylor series approximation and
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the transition function based unit root tests deliver very similar empirical size, with both showing
a mildly stronger tendency to under-reject the unit root null hypothesis compared to the standard
ADF test. Consequently, modifying the ADF regression to take account of nonlinearity in the
DGP is not sufficient to solve the problem of under-rejection, despite this being a consequence of
the nonlinearity itself.

These results confirm the anticipated asymptotic distributions for the nonlinear unit root
tests, as discussed in subsection 3.3. In particular, when the DGP is effectively linear the Dickey-
Fuller distribution continues to apply for the test regressions (5) and (6). However, the presence
of nonlinearity affects the null distribution of the unit root test statistic, which shifts further to the
right (leading to greater under-sizing compared with the nominal significance level) as the extent
of nonlinearity increases. This indicates that the distribution depends on nuisance parameters,
namely the parameters driving the nonlinearity in the DGP. The smaller empirical size that is
evident in Table 1 for all three tests when 7'= 300 is compared with 7= 100 is a consequence of
the stronger evidence of nonlinearity that this larger sample provides, with this nonlinearity

rendering the asymptotic distribution of the test statistic obtained for a linear DGP less relevant.

4.1.2 Bootstrap Procedures
We next turn to the empirical sizes of the bootstrap tests, proposed in Section 3.4, to investigate
their performance in the presence of STAR nonlinearity. The empirical rejection probabilities,
calculated from 5000 Monte Carlo replications and 400 bootstrap replications, are reported in
Tables 2 and 3 for the block bootstrap and the model-based bootstrap, respectively. Due to
substantial computational costs, this investigation considers the range of slope parameter values
{0.1, 0.9, 1.5, 2.5, 50}, and hence examines fewer cases of mild nonlinearity compared with
Table 1. The slope parameter value of 0.1 captures near-linearity in Tables 2 and 3, with the
remaining values representing increasing degrees of nonlinearity; see the power of nonlinearity
values in Table 1 for the logistic transition function case.

The block bootstrap uses the ADF regression modified by the Taylor series
approximation, namely (5). An important aspect in applying block bootstrap methods is the
determination of the block length, . Like Seo (2008), we do not use a data-dependent method to

determine an optimal b, but rather experiment with different values to investigate whether the test
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performance depends on the block length. For this purpose, we use 5 and 8 for the sample size of
T=100 and 5 and 10 for 7=300".

The first inference from Table 2 is the relative insensitivity of the rejection probabilities
to the block length b, although the longer block length perhaps performs a little better overall.
Secondly, the results show substantial improvement over the size distortions evident in Table 1

for the true process shows substantial nonlinearity with y, = {0.9, 1.5, 2.5, 50}. Nevertheless,

some distortions remain for both sample sizes'', perhaps due to the poor fit of the Taylor series
approximation and the corrupted dependence in the bootstrap DGP resulting from the use of the
block bootstrap. Further, regardless of the other parameters, the test has good size in the case of

near-linearity, where y, = 0.1. Table 3 shows that the benchmark model-based bootstrap test,

which assumes the parameters of the DGP (6) are known, works nearly as well as the ADF test in

Table 1 when there is little nonlinearity (y, = 0.01, 0.1). Indeed, for y, = 0.1, the empirical size

for the benchmark case in Table 3 (7= 300) is comparable to that of the linear ADF test in Table
1. Moreover, the benchmark model-based bootstrap test corrects the under-rejections exhibited by
all non-bootstrap tests in Table 1 for moderate to strong nonlinearity.

Next, the assumptions of known parameters, known order of the AR process and the form
of the transition function are progressively removed, with the relevant empirical sizes reported in
two further sets of results for the LSTAR DGP. With both the lag order and parameter values
unknown, the test continues to perform well overall, although there is a tendency for over-
rejection in the case of near-linearity (7, = 0.1). This is especially noticeable when 7'= 100 and
may be due to the estimation of (effectively) unidentified transfer function parameters. In general,

the good size performance is maintained even when the investigator has to discriminate between

LSTAR and ESTAR transition functions'?. Finally, the empirical sizes are reported for the case

' As underlined by Davidson and MacKinnon (2006), if the selected 5 value is too small, then the block bootstrap
samples cannot mimic the dependence structure of the original data because of the high number of corruptions that
occur whenever one block ends and the next starts. On the other hand, if the block length is too large, then the
block bootstrap samples might be excessively affected by the characteristics of the actual sample. Seo (2008)
reports results for his block bootstrap test against a stationary TAR alternative with b = 6.

" Employing a fourth order Taylor series approximation results in no substantial size improvement above those
reported.

'> Some experiments were also conducted using the sequential hypothesis testing approach of Terésvirta (1994) for
the selection between LSTAR and ESTAR models. The findings were, however, nearly identical findings to the
reported based on overall minimum SSR.
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where the true DGP is ESTAR(1). Although the mild over-rejections become more frequent
compared to the LSTAR(1) case, in general the bootstrap test continues to work well.

Therefore, the results imply that both bootstrap procedures are able to deliver good
approximations to the asymptotic distributions of the unit root test statistics of (5) and (6) in the
presence of nonlinearity. However, although the block bootstrap procedure based on (5) does
relatively well, the model-based bootstrap using (6) is even better. Implementation of data-based
procedures for lag selection and to discriminate between logistic and exponential transition
functions, as well as estimation of the transition function parameters, results in relatively mild
deterioration of this performance compared with the benchmark case of where the form of the
model is known. These results imply that the model-based bootstrap is able to closely replicate
the null distribution of the unit root test statistic not only in the presence of substantial

nonlinearity, but even when such nonlinearity is effectively absent'.

4.2 Power Analysis
The power properties of the tests are analyzed using a stationary LSTAR DGP:

Ay, =py ,+tady,, (I_FL (AyH;?/LaCL))"' Ay, F, (Ayt—l;}/L’cL)+vt (13)

where v, is iid N(0, 1). In this specification, it is assumed that p <0 and y, follows a nonlinear
stationary process, with short-term momentum-type dynamics driven by Ay, ;. The two extreme
regimes F, (Ay,_;;7,,¢,)=0 and F,(Ay,_;7,,c,)=1 are then characterised by two different

stationary autoregressive processes, where the roots of the characteristic equations in both
regimes are less than one in absolute value. However, depending on the closeness of the roots to
one, the degree of persistency can differ across regimes, with persistent but stationary (near-unit
root) process in one regime and a less persistent process in the other regime. To illustrate these
aspects of the DGPs, Table 4 includes the roots of the characteristic polynomials for each of the

two regimes implied when the given a; or a, is combined with p =-0.05 and p =-0.1.

13 Indeed, the performance of the model-based bootstrap test was also investigated for a number of strictly linear
cases where 7, =0, with the estimation issue that arises due to the transition function being constant confronted

by employing the Moore-Penrose generalized inverse, as in Leybourne, Newbold and Vougas (1996) and Park and
Shintani (2005). Although detailed results are not reported, the bootstrap test in such cases shows a mildly stronger
tendency to over-reject the null compared to near-linear cases. Nevertheless, it continues to work well with
empirical sizes in the range {0.054, 0.062}. This indicates that the model-based bootstrap test is applicable when
nonlinearity is considered to be possible but has not been established.
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The values of (¢, a,,7,,c,) and the sample sizes are identical to those employed in the

size analysis. Since the power will increase as the process under consideration moves away from

the null of a unit root, we consider only DGPs in the neighbourhood of the null, with p =-0.05, -

0.1. To control for the size distortions reported in Tables 1 to 3, size-adjusted power is reported.
Indeed, since the ADF test is under-sized in the presence of substantial nonlinearity, the size-
adjusted power values reported will be higher than those obtained using a nominal 5% size in
such cases. Nevertheless, it is also obvious that substantive size distortions render the power
unreliable in practical situations. Consequently, the power analysis examines only cases for
which the empirical size is in the range {0.04, 0.06}.

Since the modified ADF test employing the Taylor series approximation provides no
improvement in size over the standard ADF test in Table 1, while the test using the true transition
function is infeasible in practice, we examine the power only for the standard ADF test, together
with the block bootstrap and model-based bootstrap tests. The same data-dependent lag
specification described in subsection 4.1.1 is employed for the standard ADF test. As the
empirical sizes of the block bootstrap tests in Table 2 are generally a little better for the longer
block length, the reported results use » = 8 and 10 for sample sizes of 100 and 300, respectively.
However, the results are qualitatively unchanged for » = 5. Finally, the power of the model-based
bootstrap test is simulated only for the most realistic case, where the parameters, the lag order
and the form of the transition function are unknown. The power analysis employs the same
number of Monte Carlo and bootstrap replications as employed for size.

Table 4 reports the results. As may be anticipated, the power of the standard ADF test,
which assumes linearity, decreases as the nonlinearity under consideration gets stronger. The
block bootstrap test generally provides lower power than the standard ADF test regardless of the
distance from nonstationarity. This is in line with results of Paparoditis and Politis (2003) for the
difference-based block bootstrap approach, and the power loss may be due to sampling random

blocks of Ay, , which suffers from overdifferencing, and hence a corrupted dependence structure
when y, is a (nonlinear) stationary process as in (13). It should also be noted that little

comparison between these tests can be made from Table 4 for 7= 300, because of the poor size
performance of the ADF test with this larger sample, except in the effective absence of

nonlinearity.
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However, the model-based bootstrap test outperforms both the standard ADF test and the
block bootstrap test for all cases, whether the DGP is near-linear, or has a nonlinear STAR (or
TAR) form. It is particularly notable that the model-based bootstrap test does not suffer a power
loss compared with the ADF test when the process is near-linear, since this is effectively the
situation for which the ADF test is designed. The clear pattern of the results is that the model-
based bootstrap test has the highest power, while the power of the block bootstrap test is
generally lower compared to those of the standard ADF test and the model-based bootstrap test.

In all cases, power depends on the roots of the characteristic equation, with the smallest
power being obtained for the first DGP, which has a; = -0.4, a; = 0.1. Note, in particular, that
when p = -0.05, the larger root in each regime for this DGP is close to unity. Although all other
DGPs in Table 4 have one regime with a root of at least 0.94 when p = -0.05, higher power
apparently results in these cases because the other regime is further from the nonstationarity
boundary. It is, of course, unsurprising that power is always substantially larger for 7= 300 than
for 7= 100 and (because of its effect on the characteristic roots) when p = -0.10 compared with p

=-0.05.

5. Application to US Unemployment Rate

To investigate the validity of the natural rate hypothesis, the model-based bootstrap unit root test
is applied to the US unemployment rate'*. The business cycle asymmetry of unemployment has
received great attention in the literature, with steep increases during recessions followed by more
gradual declines during expansions. Recognizing this cyclical asymmetry as a nonlinear
phenomenon, Bianchi and Zoega (1998), Koop and Potter (1999), Skalin and Terésvirta (2002),
Panagiotidis and Pelloni (2003), amongst others, utilize various nonlinear models to examine the
unemployment rate dynamics. These studies, however, either employ standard unit root tests or
simply assume stationarity (nonstationarity) based on the natural rate (hysteresis) hypothesis
prior to their nonlinear analysis. Other studies, including Leybourne et al. (1998), Park and

Shintani (2005), Gustavson and Osterholm (2006), Yilanci (2008) and Franchi and Ordonez

' The two competing viewpoints about the persistence of the unemployment rate are the natural rate hypothesis due
to Phelps (1967) and Friedman (1968) and the hysteresis hypothesis introduced by Blanchard and Summers
(1986). Under the natural rate hypothesis, the unemployment rate is a mean-reverting process, with short-term
deviations from a constant natural rate being temporary, whereas it is a nonstationary process under the hysteresis
hypothesis with persistent short-term deviations.
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(2008), focus on the possibility that the unemployment rate follows a stationary TAR or STAR
type nonlinear process and apply unit root tests that allow for the alternative of nonlinear mean
reversion. Only Caner and Hansen (2001), however, allow the possibility that the unemployment
rate may be nonlinear under the null hypothesis of a unit root.

Like Caner and Hansen (2001), we examine the US unemployment rate. Specifically, we
consider the unemployment rate (seasonally adjusted) among males aged 20 and over'’, at the
monthly frequency over the period January 1963 to January 2009. Although a visual inspection
of the data in Figure 2 does not reveal clear evidence for stationarity, it does suggest the presence
of nonlinearity, with steep increases ending in sharp peaks and gradual declines.

The standard ADF test fails to reject a unit root in the US male unemployment rate at the
10% significance level or lower, with a test statistic of -2.534 obtained using augmentation of 12
lags'®. However, since the ADF test may be misleading in the presence of nonlinearities, as
shown in the previous section, our analysis relies on the model-based bootstrap test. When
computing the model-based bootstrap test statistic, the lag length for the autoregressive model of
the unemployment rate is set equal to that of the ADF test, namely 12.

Since the transition variable is unknown, the model-based bootstrap unit root test of

subsection 3.4 is applied separately for each transition variable Ay, , where values

d=1,....,d™ are considered for the delay parameter d and d™" is equal to the selected order p

of the autoregression. For each d, the functional form of the transition function is also treated as
unknown, with logistic and exponential forms considered. The test provides evidence of
stationarity (at the 5% significance level) for delay parameters 1, 2, 3 and 10, all of which
indicate a LSTAR transition, suggesting different unemployment rate dynamics in expansions
and recessions. Of these, the strongest evidence of stationarity is provided by d = 1, which yields
a bootstrap test statistic of -3.971 and p-value of 0.002'". Hence, allowing for nonlinearity
reverses the result of the ADF test. Application of the LM-type linearity test of Luukkonen et al.
(1988) reinforces the presence of nonlinearity of LSTAR form, with linearity of the

unemployment rate rejected with a p-value of 0.001. These findings indicate the

15 As in many other studies, the series is constructed as the ratio of the unemployment level to the civilian labour
force, both obtained from the Bureau of Labor Statistics.

'® Augmentation was determined using the SBC criterion, to a maximum lag of 12, and checked using the Lagrange

multiplier (LM) test for residual autocorrelation (at 5% significance level) to order 12.

"7 While this procedure follows much of the literature, nevertheless it should be noted that the use of multiple testing

here implies that the quoted p-value for the test is unreliable.
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inappropriateness of the standard ADF test for examining unemployment rates and favour the

natural rate hypothesis, in line with Caner and Hansen (2001).

Figure 2: US Adult Male Unemployment Rate

19660 1972 1978 1884 1990 1996 2002 2008

6. Conclusions

This paper contributes to the literature that jointly analyzes nonstationarity and nonlinearity by
developing a new unit root testing methodology that allows nonlinearity under the null
hypothesis of a unit root. This case has previously been considered only by Caner and Hansen
(2001) in the context of a two-regime TAR model; the present paper considers the broader class
of smooth transition nonlinear autoregressive (STAR) processes, which encompasses the process
considered in Caner and Hansen (2001) as a limiting case.

We provide three substantive results. Firstly, we prove that the addition of terms (either
from a Taylor series expansion or a transition function with given parameters) to an ADF
regression to account for possible nonlinearity leaves the asymptotic unit root distribution
unaffected under the unit root null hypothesis when the true data generating process is a linear
process. Secondly, our simulations show that this does not carry over when the true process is
nonlinear, with the use of Dickey-Fuller critical values leading to very substantial under-sizing in

the presence of strong nonlinearity. These results indicate that the true unit root distribution may
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depend on nuisance parameters, namely the (typically unknown) transition function parameters.
Thirdly, in the light of these findings, we provide a bootstrap testing methodology that delivers
correctly sized unit-root tests for STAR processes.

Two bootstrap approaches, the block bootstrap and a model-based bootstrap, are proposed
in order to replicate the true null distribution. Although the block bootstrap test has better size
properties than the standard ADF test, the model-based bootstrap dominates these. It not only
delivers a test with reliable empirical size, but also has higher power than either the block
bootstrap or the ADF test. Further, it is flexible in allowing (effectively) linear as well as either
logistic or exponential STAR nonlinear processes. Our Monte Carlo results indicate that it
performs well in all cases considered, which include ones that approximate TAR processes.

An application to the monthly U.S. male unemployment rate indicates that accounting for
nonlinearities is important, with the model-based bootstrap test providing empirical support for

the natural rate hypothesis while the standard ADF test fails to do so.
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Appendix: Proof of Theorem 1

We consider the linear /(1) process
Ayt:ﬂlAyt—l-i-ut: |ﬂ|<1 (Al)

where u, is iid with mean zero and variance o. Equivalently, we can then write

7, l_ﬁl gﬁl " (A2)

with Z‘ﬂ{ ‘ <oo. Since u; is 1id, then 77, defined by (A.2) is a strictly stationary and ergodic
=0

process with mean zero and variance y, =/ (1 - B’ ) Further, denote &= n; + i + ... + 1, for

t=1,2, ..., Twith & = 0 and, therefore y, = & + yo. However, all test regressions we consider
include an intercept, which takes account of yy, and purely for expositional simplicity we assume

below that yo = 0 and hence y; = &,.

A.1 Regression Augmented with Taylor Series Expansion

Consider first the unit root test in (5) for the DGP (A.1). Given the assumption E[u; | = u, <oo,

and applying the Cauchy-Schwartz inequality, it follows that #, in (A.2) also has finite eighth

moment. Then re-write (5) as

Ay, =x,'"B +u, (A.3)
where |3=( By o B B B ﬁ4)', X, :(1 Vo Ay, AVE A Ayf_l)'. The deviation of the OLS

estimator ﬁT in (A.3) from the true p =(00 4,00 0)'is
T L7
_ (Z x J Sxu (A4)
t=l1 t=l1

T T
and the asymptotic distributions of the elements of ZX,X,’ and ZX,M, can be obtained as

t=1 t=1

follows.
L !
1) Elements of thxt :
t=l1

1) Hamilton (1994, pp.505-506) demonstrates that

30



1

73/224 1 ;_ W( )d (A.5)

1 IBI 0
T ”2277, ——T (1) (A.6)
1-4
T 1
T2y &~ (A.7)
; 1 (- ﬂl ’ {
1 c L o’ 2
T2, ——(1/2) (1) =70 |+ 7 (A-8)
=1 (1 -5 )
i1) Since E (77,8) <0, the law of large numbers (LLN) implies that
T
Tﬁlzﬂﬂz —7, (A9)
t=1
and
T . .
Ty n. —L>E(@m), i=23,..8 (A.10)

t=1

where —2— indicates convergence in probability.

T
iii) The asymptotic distribution of 7' 224_177,_12 is derived as follows. Firstly, substracting

t=1

and adding terms in y, = E (77371 ), we have

T T
T_mZéfﬂ?Hz = T_3/2Z§t—l (77t 1 70)+T 3/27026%71 .
t=1 t=1 =1

Using &, =¢,,+1,,, the first term on the right-hand side of this expression can be

written as

T T T T
% (n =7)=T"" 2L (n. " —r)+T" (Zm_f —%Zm_lzj
t=1 t=1

t=1 t=1

and the results of (ii) then imply that

T T
TN (n. 7 =7) =T 2 &L (n.=7)+o,(1). (A1)
t=1 t=1

Next, let £, :(77[71 n. —;/0) and K, :zks . Given that 77, is a zero mean, strictly

s=1

stationary and ergodic process, SO is (77t_12 — 7/0). It then follows from Phillips (1988) that
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the sum T ’IZKHk,’ converges to a stochastic integral. The convergence of
t=1

T
T ’IZKHkt' requires convergence of all elements to some stochastic integrals. Since

=1 =1 (773_]2 7/0)
s=1
T (:t—z
— 71 i1
T ; (77“‘_12 _7/0) (77: 1 i 70)

this implies that

TIZT:LZZ(U” - )=OP(1)

t=1

and, therefore,

T
T_MZSZH (77r712 _70):0;7 (1) (A.12)
t=1
Consequently, combining (A.5) and (A.12) through (A.11), then
T
TP E Ay, —>Wyo j w(r (A.13)
t=1 1

iv) Generalizing the arguments in (iii) yields

T_3/Zi§”m 1 _>WE n') jW dr,i=34. (A.14)
1= 1 0
T
2) Elements of ZX,M, :
t=1
Standard results yield
T*“iut —L 5 N, 5*) =W () (A.15)

t=1

2

(w@y -1). (A.16)

T
Ty ué  —4(1/2) 1 o
t=1 -

1
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Since u, is iid and 7, = g(u, ,, u, ,, u, 5,...), where g(.) is a continuous function, u7., is a
martingale difference sequence with a finite variance ¢’E (77,2 ) Hence, from the martingale

difference sequence CLT,

T‘”ziu,nf_l—L—)N(O, Bl )=cE@) )., i=1234. (A17)

t=1

Noting  that  x,= (1 Vi Ay AV AV Ay;‘—l)' = (1 & M M M 7714—1)" it s
straightforward to see from (A.5) to (A.17) that ﬁT-B =0,() and hence ﬁT is consistent.

Further, the convergence rates in those expressions imply that the appropriate scaling matrix is
Dy = diag(T”z T TV U2 2 Tl/z)

Using these results,

T By
Tp,
. T1/2 R B T B B T
DB, -PB)= %TA ﬂl) :(DTIZXtXt'Dle(DTIZXt uzj
T By =0 =0 A8
I, (A9
T”zﬂu"
1
L qu:|:V1 Vz} {‘h}
V)" 'V, q,
where
o 1
1 _— W(r)dr 0
1_ﬂ1£
1 2 1
(o2 O 2
VvV =| — W(r)dr (r) dr 0 ,
S\l IR
2
0 0 7_
1-5
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= £ £(n)
o o’ j~ (r)d O-E(ﬂt3)j W (r))d GE(U’4).I[(W( )
) = 1 ﬂll_ﬂlzo I") r l_ﬂl 0( I") r l_ﬂl 0 r r
£(n’) £(n’) £(n’)

(O'ZE(77,4))1/2 W(l)
q T (W () -1) |, a, =| (PE@) W (1) |
(EmH) " w(1)

1/2
(o%7,) w(1)
Therefore, Tﬁlr#"’zq wherev, is the second row of V'and, after some matrix

algebra, v, can be shown to equal

(=) [w (r)ar 2
{ ~(1-4) 000 0

U((iW(r)dr}z —.(i:(W(r))z dr} o’ [(‘(i;W(r)drjz —_(i:(W(r))z dr}

Consequently,

1/2)(w @y -1)- W(l)j W (r)dr
Tp, —t>(1-5) . (A.19)

1

j w(r)) dr—[ j W(r)dr]

0

The OLS ¢ test statistic for p, =0 in (5) can be written as

- TPy (A.20)

Pir -1
2 - - '
St eT( ZX x,'D j Cr
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where e, =(0 1 0 0 0 0)and s, :(T—6)_l(77t - X, '|A3T)'(77t - X, 'ﬁT). From the continuous

mapping theorem and (ﬁT - B) =0,(1), it is easy to show that s, —2—>c". Hence,

\/steT(DTlixtxt‘Dle_ e, —~ /1 (1= ‘)1 - (A.21)
. \/ [ (W(r))zdr—U W(r)drj

0

Using (A.17) and (A.21) in (A.20) immediately yields the result that 7, asymptotically follows

the ADF distribution of (9).

A.2 Regression Augmented with Transition Function

In order to obtain the asymptotic null distribution of the ¢, statistic in the test regression (6),
27

which includes an arbitrary logistic transition function F,(y,,,c,,), re-parameterize this
regression in the form of (A.3), but now with p= (ﬂo 0, B B )’z (0 0 4 0)' and
x,=(y,, Av,, Ay, F) ,inwhich F,=F, ( YoL>Co L) is defined as in (2) for given parameters

(yo» cor)- This parameterization of the test regression is convenient for notational purposes, while
leaving the unit root test coefficient p, unaffected. The true process is again given by (A.1), with

¥, =0. Since F, is a continuous and bounded function of Ay.; = .1, it is strictly stationary and

ergodic with 0 < F, < 1 and OgE(Ft")gl,iz 1,2, 3, 4.

The deviations of the OLS estimator ﬁT from the true p again has the form of (A.4), with

elements as follows.
T

1) Elements of thxt':
t=1

The asymptotic distributions of (A.5) to (A.7) continue to apply, while the Law of Large
Numbers (LLN) and boundness of F; imply that

T
") Fn,—>C, (A.22)

t=1

r
T Fonl,—t=C (A.23)

t=1
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T‘lianf_l —C, (A.24)
t=1
where
1/2 1/2 1/2 1/2
G :E(F; nt—l)S(E(F;z)) (E(Urzfl)) <o, ( :E(F; ntz—l)S(E(EZ)) (E(77r471)) <o

and C, :E(Ez 77t2—1)S(E(F;A‘))I/Z(E(I]il))l/z o

T
Further, to derive the asymptotic distribution of 7 22;_1 F,n,_, , we re-write it as
t=1

T T o
T73/22§t—1 E . = T73/2Z§z—l (E - _E(E 77;—1)) +T73/ZZ§’_1 E(E 77;—1)
=1 1=l

t=1

and from (A.22) it becomes

T T T
T_3/2Z‘§H Fn., = T_3/2Z S (F; /e Co) + T_3/2Coz S (A.25)
t=1 t=1 t=1

Consider the first term on the right-hand side of this expression, and again noting that

& =&, +m,,, re-write it as

T T T T
T73/22§t—1 (F; i _Co) = Tfs/zzé_z (E i _Co)+T73/2 (ZE 77z—12 - COZ’?HJ-
t=1 t=1

t=1 t=1

Then inferences from (A.6) and (A.23) imply that

T T
T2Y & L (F —C)=T"Y &, (Fn,, ~Cy)+o,(1).
pam t=1

Now setting £, :(77[_] Fn_—-C, )' and following analogous steps to those used to obtain

(A.13) above, it can be seen that

T 1
Ty E L F —Hﬁco [wyar. (A.26)
t=1 -

1 0

T
2) Elements of thut :
=1

The results in (A.15) to (A.17) also apply in this case, while the martingale difference

sequence CLT reveals that

T
Ty o, —i (0" ) ) (A.27)

t=1
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From the convergence rates of the elements of (ﬁT - B), the form of the scaling matrix is

Dr= a’iag(T”2 T 1" T”z). Therefore, analogously to (A.18),

D, (B, —B)=(DTIZT:xtXt'DT1j D}lixt ur—L{V‘ VZ} [h‘} (A.28)

vV, V,| |h,
where
1
1 %jW(r)dr -1 1
V= 2 1(1) , V=G| -o o ’
o o 5 ——\W(r)dr ——|W (r)dr
S (r)ar —Z () ar gl g
_ﬂl() (1_131) 0
o _sciC, C-C
V3: 1 12 : g l 2 ’
C -C, C,
O'W(l) 5 1/2
h=| o (W(l)z 1) and hzz[zzlj,inwhich hﬂ{oz[la 2—2C1+C2D N(0.1)
2(1-a;) : /

and h,~(c°C,)"” N(0,1).

From (A.28), and after some matrix algebra, it can be seen that

A= B)[ W (r)dr ,
0 _(l_ﬂl) 0 0|h

o([Wrydry = [ () dr o ([W(r)dr) - [ (r)) dr

Tﬁzr L

Therefore, 7p,, follows the asymptotic distribution of (A.19) and the ADF distribution of (9)

follows for the #-ratio in a straightforward way.

37



Table 1: Empirical Size of ADF Test Augmented for Nonlinearity

Linear ADF Taylor Series Approximation True Transition Function Power of Nonlinearity

a, a, Ve T=100 T =300 T=100 T =300 T=100 T=300 T=100 T=300
0.01 0.0500 0.0512 0.0480 0.0499 0.0491 0.0486 0.042 0.048
04 01 0.1 0.0527 0.0502 0.0467 0.0502 0.0489 0.0476 0.046 0.056
0.3 0.0499 0.0500 0.0460 0.0464 0.0484 0.0459 0.065 0.127
0.9 0.0459 0.0344 0.0407 0.0311 0.0424 0.0303 0.174 0.518
c=11 15 0.0430 0.0272 0.0372 0.0263 0.0387 0.0260 0.259 0.725
25 0.0412 0.0251 0.0370 0.0236 0.0382 0.0223 0.329 0.833
50 0.0409 0.0249 0.0357 0.0227 0.0365 0.0213 0.424 0.917
0.01 0.0538 0.0518 0.0526 0.0529 0.0535 0.0529 0.035 0.041
01 08 0.1 0.0521 0.0512 0.0528 0.0512 0.0544 0.0490 0.041 0.062
0.3 0.0501 0.0436 0.0486 0.0397 0.0493 0.0390 0.084 0.285
0.9 0.0447 0.0223 0.0369 0.0162 0.0386 0.0154 0.436 0.968
c=0 15 0.0393 0.0174 0.0289 0.0106 0.0280 0.0111 0.640 0.998
25 0.0357 0.0151 0.0222 0.0086 0.0237 0.0084 0.714 0.999
50 0.0290 0.0110 0.0171 0.0074 0.0185 0.0077 0.718 0.999
0.01 0.0521 0.0519 0.0509 0.0519 0.0514 0.0515 0.036 0.041
06 0.1 0.1 0.0519 0.0511 0.0507 0.0514 0.0522 0.0499 0.039 0.051
0.3 0.0520 0.0467 0.0503 0.0471 0.0511 0.0462 0.058 0.129
0.9 0.0450 0.0318 0.0425 0.0284 0.0442 0.0296 0.158 0.568
c=11 15 0.0432 0.0278 0.0395 0.0238 0.0417 0.0237 0.230 0.759
25 0.0433 0.0250 0.03%4 0.0214 0.0408 0.0212 0.287 0.851
50 0.0425 0.0241 0.0383 0.0207 0.0385 0.0186 0.366 0.926
0.01 0.0526 0.0520 0.0495 0.0513 0.0509 0.0486 0.038 0.042
0.7 -0.2 0.1 0.0504 0.0497 0.0489 0.0498 0.0529 0.0482 0.044 0.070
0.3 0.0502 0.0376 0.0455 0.0361 0.0474 0.0364 0.106 0.362
0.9 0.0353 0.0167 0.0300 0.0133 0.0315 0.0120 0.559 0.990
15 0.0313 0.0121 0.0212 0.0085 0.0218 0.0086 0.772 0.999
c=05 25 0.0256 0.0111 0.0172 0.0071 0.0169 0.0073 0.857 1.000
50 0.0212 0.0103 0.0136 0.0061 0.0138 0.0062 0.906 1.000
0.01 0.0512 0.0518 0.0490 0.0502 0.0523 0.0512 0.038 0.044
05 -0.1 0.1 0.0506 0.0508 0.0482 0.0513 0.0522 0.0498 0.040 0.055
0.3 0.0506 0.0453 0.0461 0.0430 0.0514 0.0437 0.065 0.161
0.9 0.0426 0.0246 0.0381 0.0236 0.0406 0.0203 0.250 0.766
c=0 15 0.0350 0.0162 0.0308 0.0136 0.0318 0.0137 0.442 0.948
25 0.0300 0.0123 0.0244 0.0102 0.0259 0.0091 0.535 0.984
50 0.0242 0.0092 0.0189 0.0076 0.0191 0.0082 0.576 0.993

Notes: All DGPs are LSTAR(1) processes, with true AR and location parameters given in the first column and transition function slope parameters in the second column.
Columns three to eight report empirical rejection frequencies for the (linear) ADF test and this test augmented for nonlinearity, obtained using 50,000 replications at the 5%
nominal significance level for sample sizes of 7'= 100, 300. The ADF test employs a data-based lag selection criterion with the true lag order employed in other cases. Power
of nonlinearity isthe proportion of replications for which nonlinearity is rejected by the test of Luukkonen et al. (1988) at the 5% level.
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Table 2: Empirical Size of Block Bootstrap Unit Root Test

Shorter Block Length Longer Block Length
o, a, V4 T=100 T =300 T=100 T=300
04 01 0.1 0.0474 0.0524 0.0450 0.0462
0.9 0.0446 0.0430 0.0384 0.0396
15 0.0400 0.0414 0.0346 0.0472
c=11 25 0.0410 0.0438 0.0368 0.03%4
50 0.0414 0.0406 0.0416 0.0376
01 08 0.1 0.0540 0.0518 0.0523 0.0510
0.9 0.0598 0.0530 0.0568 0.0482
15 0.0594 0.0606 0.0574 0.0570
c=0 25 0.0598 0.0658 0.0640 0.0550
50 0.0638 0.0598 0.0582 0.0550
06 0.1 0.1 0.0564 0.0538 0.0522 0.0513
0.9 0.0546 0.0540 0.0530 0.0494
15 0.0540 0.0522 0.0518 0.0487
c=11 25 0.0560 0.0522 0.0545 0.0465
50 0.0554 0.0512 0.0532 0.0520
07 -02 0.1 0.0522 0.0548 0.0464 0.0512
0.9 0.0530 0.0488 0.0550 0.0506
15 0.0548 0.0566 0.0564 0.0560
=05 25 0.0590 0.0582 0.0574 0.0558
50 0.0582 0.0560 0.0560 0.0562
05 -01 0.1 0.0522 0.0568 0.0474 0.0516
0.9 0.0448 0.0500 0.0455 0.0496
15 0.0422 0.0450 0.0480 0.0426
c=0 25 0.0488 0.0488 0.0444 0.0456
50 0.0430 0.0524 0.0480 0.0476

Notes: Empirical rejection frequencies are reported using a nominal size 5% with 5000 Monte Carlo
replications and 400 bootstrap replications for an LSTAR(1) DGP. The shorter block length 5 is 5
for both sample sizes, while the longer block length isb =8 for T'=100and » = 10 for T = 300. The
autoregressive and transition function parameters of the DGP are given in the first two columns of
the table. The analysis assumes the true lag order of one is known, and the block bootstrap is applied
to an ADF regression augmented by a third order Taylor series approximation to the transition
function.

39



Table 3: Empirical Size of Model-Based Bootstrap Unit Root Test

LSTAR Data Generating Process

ESTAR Data Generating

Process
Known Lags & Unknown Lags & Parameters; Unknown Lags, Parameters Unknown Lags, Parameters
Parameters Known Form & Form & Form
o, o, e 7=100 7=300 7=100 7=2300 T =100 7=2300 7=100 7=2300
04 01 0.1 0.0452 0.0529 0.0540 0.0516 0.0572 0.0524 0.0546 0.0474
0.9 0.0468 0.0469 0.0480 0.0474 0.0490 0.0462 0.0492 0.0432
15 0.0494 0.0482 0.0498 0.0460 0.0512 0.0454 0.0528 0.0452
c=11 25 0.0482 0.0462 0.0538 0.0450 0.0524 0.0434 0.0510 0.0434
50 0.0479 0.0482 0.0526 0.0446 0.0478 0.0448 0.0516 0.0504
01 08 0.1 0.0465 0.0505 0.0564 0.0548 0.0562 0.0554 0.0552 0.0530
0.9 0.0498 0.0502 0.0502 0.0434 0.0508 0.0502 0.0546 0.0554
15 0.0488 0.0499 0.0447 0.0484 0.0488 0.0440 0.0578 0.0560
c=0 25 0.0506 0.0487 0.0427 0.0492 0.0440 0.0472 0.0542 0.0568
50 0.0508 0.0506 0.0426 0.0498 0.0414 0.0514 0.0598 0.0548
06 01 0.1 0.0454 0.0494 0.0574 0.0494 0.0558 0.0542 0.0524 0.0472
0.9 0.0504 0.0514 0.0519 0.0496 0.0498 0.0464 0.0492 0.0456
15 0.0502 0.0474 0.0478 0.0472 0.0514 0.0488 0.0440 0.0434
c=11 25 0.0510 0.0490 0.0467 0.0470 0.0528 0.0450 0.0522 0.0440
50 0.0490 0.0480 0.0468 0.0482 0.0526 0.0440 0.0556 0.0524
07 -02 0.1 0.0472 0.0528 0.0555 0.0506 0.0568 0.0556 0.0526 0.472
0.9 0.0518 0.0498 0.0471 0.0472 0.0472 0.0458 0.0496 0.444
15 0.0502 0.0508 0.0453 0.0566 0.0528 0.0466 0.0458 0.452
c=05 25 0.0492 0.0513 0.0468 0.0476 0.0438 0.0464 0.0460 0.426
50 0.0489 0.0516 0.0451 0.0504 0.0534 0.0484 0.0560 0.540
05 -01 0.1 0.0488 0.0496 0.0552 0.0546 0.0582 0.0554 0.0532 0.526
0.9 0.0494 0.0503 0.0482 0.0440 0.0466 0.0422 0.0586 0.548
15 0.0498 0.0500 0.0448 0.0454 0.0430 0.0466 0.0564 0.552
c=0 25 0.0504 0.0487 0.0432 0.0438 0.0448 0.0472 0.0556 0.532
50 0.0496 0.0499 0.0458 0.0466 0.0456 0.0462 0.0544 0.532

Notes: All DGPs are STAR(1) processes, with true AR and location parameters given in the first column and transition function slope parameters in the
second column. The remaining columns report empirical rejection frequencies for the model-based bootstrap test of the unit root null hypothesis, obtained
using 5,000 Monte Carlo replications, 400 bootstrap replications and a nominal significance level of 5% for sample sizes of 7= 100, 300. Lagsrefersto the
number of autoregressive lags included in the estimated model, while Form refers to logistic versus exponential transition function. Except for the resultsin
the third and fourth columns, the transition function parameters are estimated.

40




Table 4: Power Analysis

Linear ADF Test Block Bootstrap M odel -Based Bootstrap
7 =100 7 =300 7 =100 T =300 7 =100 7 =300
Parameters (Roots) Y | p=-005 p=-01 | p=-005 p=-01 | p=-005 p=-01 | p=-005 p=-0.1 p=-005 p=-01| p=-005 p=-01
a;= -0.4 0,=0.1 0.1 0.114 0.246 0471 0.959 0.065 0.128 0.350 0.890 0.170 0.329 0.514 0.954
0.9 0.095 0.214 NALow NALow NALow NALow NALow NALoW 0.144 0.287 0.454 0.934
(0.96,-0.41)  (0.94,0.11) : : : Low Low Low Low ' ' ' :
15 0.090 0.204 NA NA NA NA 0.342 0.874 0.147 0.293 0.448 0.931
(093,-043) (089,011 | 55 | (oo 0.204 NALY  NAL | oNAbor NALY | NALow NALoW 0151 0303 | 0438 0.930
c=11 50 0.086 0.211 NALY NALY 0.061 0.123 NALY NALOW 0.141 0.282 0.474 0.947
o= 01 a4 =0.8 0.1 0.268 0.709 0.970 0.999 0.202 0.525 0.932 1.0 0.349 0.721 0.971 1.0
0.9 0.224 0.640 NALow NALow 0.263 0.641 0.955 1.0 0.375 0.761 0.979 1.0
(094,011)  (088+0.19) | 15 | NpLow NALOY NALOY NALOY 0271 0.647 0975 1.0 0373 0782 0.982 10
(089,011) (085+0.28) | 5,5 | NpLow NALOY NALOY NALOY NAHO AR 0.976 1.0 0371 0.776 0.985 1.0
c=0 50 NALow NALY NALY NALY 0.269 0.652 0.971 10 0.352 0.755 0.986 1.0
0y =0.6 ay=0.1 0.1 0.216 0.602 0.926 0.999 0.155 0.402 0.863 1.0 0.305 0.660 0.926 1.0
(0.80,0.75) (094, 0.11) 0.9 0.215 0.635 NALow NALoW 0.192 0.538 0.914 1.0 0.321 0.708 0.955 1.0
© 2540 19) (0'89’ o 11) 15 0.216 0.623 NALow NALow 0.190 0.517 0.923 1.0 0.340 0.730 0.967 1.0
D= O 25 0.203 0.613 NALow NALow 0.215 0.538 0.914 0.999 0.336 0.737 0.954 1.0
c=11 50 0.186 0.578 NALow NALow 0.206 0.518 0.918 1.0 0.340 0.721 0.958 1.0
a =07 0p=-0.2 0.1 0.167 0.488 0.840 0.997 0.108 0.282 0.755 0.996 0.252 0.573 0.860 0.999
(083+014)  (0.96,-0.21) 09 | NA™™ NALow NALow NALow 0.160 0.432 0.855 0.999 0.267 0.619 0.906 1.0
0.80 4 0.2 4’. 092 0.2 15 | NALw NALow NALow NALow 0.179 0.488 0.892 1.0 0.297 0.660 0.935 1.0
(080£024)  (0.92,-022) | 55 | ppLow NAL NAL NAL 0191 0.485 0.903 1.0 0280 0627 0.027 1.0
c=05 50 NALow NALow NALow NALow 0.175 0.457 0.870 1.0 0.282 0.646 0.916 1.0
o, =05 a=-0.1 0.1 0.158 0.434 0.790 0.998 0.102 0.249 0.692 0.992 0.237 0.517 0.804 0.998
(0,89, 0.56) (0,95, -0.10) 0.9 0.137 0.365 NALoW NALoW 0.108 0.260 0.690 0.995 0.212 0.481 0.754 0.999
07040100 (001 -0 | L3 | NA™" NA"" NA-" NA-" 0.106 0.291 0.686 0.994 0.209 0.460 0.804 0.999
(0.70+£0.10)  (091,-011) | 55 | NpLow NALOY NALOY NALOY 0.103 0.268 0.705 0.996 0199 0476 0.812 10
c=0 50 NAL" NALY NALY NALY 0.110 0.285 0.711 0.996 0.214 0.494 0.793 0.999

Note: All DGPs are stationary STAR(1) processes, written as in equation (13) of the text, with true parameters, a;, a, and location parameter ¢ given in the first column and transition function slope
parameters in the second column. Under each value o; (i = 1, 2), the roots of the characteristic equation are given when this value is used in (13) in conjunction with p = -0.05 (first row) and p = -0.10
(second row). Size-adjusted empirical rejection probabilities are reported in the remaining columns, using 50,000 Monte Carlo replications for the standard ADF test, 5,000 Monte Carlo replications
and 400 bootstrap replications for the bootstrap-based unit root tests. The ADF test employs a data-based lag selection criterion. The block bootstrap uses an ADF regression augmented with one
autoregressive lag and a third order Taylor series approximation to the transition function, using bootstrap length » = 8 when 7 = 100 and 4 = 10 for T = 300. The model-based bootstrap assumes

unknown parameters, lag order and LSTAR/ESTAR form. NA* indicates that the power is not computed due to undersizing (empirical size less than 0.04), while NA™9" indicates the ones that are
not computed due to oversizing (empirical size more than 0.06), in relation to the nominal size of 5 %.
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