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Abstract 

 
 

While a number of unit root testing procedures have been developed to account for nonlinearity 

under the alternative hypothesis of stationarity, almost all available tests assume a linear DGP 

under the unit root null hypothesis. This paper establishes some theoretical results relating to the 

inclusion of nonlinear terms in an ADF regression and proposes two new unit root tests that allow 

the process to be nonlinear under the null hypothesis. More specifically, block and model-based 

bootstrap procedures are developed for smooth transition threshold models. Simulations show 

that the latter is preferred and the model-based bootstrap test delivers a good size performance 

across all specifications, including linear and effectively abrupt transition models. The model-

based test also dominates the standard ADF test in terms of power and an application to the US 

unemployment rate shows that it can overturn conclusions based on an erroneous linearity 

assumption.  
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1. Introduction 

Recent years have witnessed an explosion of interest in the use of nonlinear models for the 

analysis of economic time series, with regime-switching specifications being widely applied due 

to their ability to replicate key characteristics of observed series. Although many varieties of such 

models are available, the threshold autoregressive (TAR) model due to Tsay (1989) and its 

smooth transition autoregressive (STAR) generalization promoted by Teräsvirta (1994) are 

popular choices for empirical analyses. Alongside empirical applications, well-developed tests 

are now available to detect the presence of this type of nonlinearity; see, for example, Hansen 

(1996), Harvey and Leybourne (2007), and Luukkonen, Saikkonen and Teräsvirta (1988). With 

the exception of Harvey and Leybourne (2007), who provide a test for nonlinearity of a STAR 

form when the order of integration is unknown, these tests are based on the assumption that the 

series under analysis is stationary. Indeed, the assumption of stationarity is crucial in this context, 

since the asymptotic distributions of commonly applied nonlinearity test statistics differ when the 

data are generated by a unit root process rather than a stationary one (Caner and Hansen 2001, 

Kılıç, 2004).  

Due to the fundamental role of the order of integration for modelling time series data and 

for the conduct of statistical inference, the first step of empirical time series modelling in 

economics is almost invariantly an examination of the integration order of the series. While the 

popular Augmented Dickey-Fuller (ADF) test performs relatively well for linear time series, a 

number of studies show that its power decreases dramatically for stationary nonlinear series (for 

example, Balke and Fomby, 1997, Pippenger and Goering, 1993). Consequently, an important 

strand of the recent literature has developed unit root tests that are applicable in the context of 

threshold and smooth transition models, with contributions including Enders and Granger (1998), 

Sollis, Leybourne and Newbold (2002), Kapetanios, Shin and Snell (2003) and Seo (2008). 

However, these studies allow for such nonlinearity only under the alternative hypothesis of 

stationarity and hence do not account for any effects that may arise when the process is both 

nonstationary and nonlinear. To our knowledge, the only paper that allows for this case is Caner 

and Hansen (2001), who show that the asymptotic distribution of Wald tests for a unit root 

depend on nuisance parameters when threshold nonlinearity is present under the null. Although 

they examine the performance of asymptotic and bootstrap tests for this case, Caner and Hansen 

(2001) find that these tests do not have good size. Therefore, no satisfactory approach is currently 
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available to test the unit root null hypothesis when the nonstationary process may exhibit 

threshold or smooth transition nonlinearity.  

The present study extends the existing literature by developing tests that are well-sized for 

the null hypothesis of nonstationarity allowing for the presence of STAR-type nonlinearity of 

unknown (logistic or exponential) form. The testing methodology uses modified ADF 

regressions, which are corrected for the nonlinearity under consideration. Although we examine 

modifications based on the inclusion of terms arising from Taylor series approximations to the 

nonlinearity, these do not yield good size when the process under the null is nonlinear. 

Consequently, we develop a model-based bootstrap procedure, which delivers excellent size 

properties in all cases we consider. In terms of power as well as size, this test performs well not 

only for STAR-type nonlinear processes, but also for TAR-type nonlinear and linear processes. 

In addition to providing Monte Carlo evidence, an application to the monthly US unemployment 

rate shows that accounting for nonlinearity plays an important role for the decision on the 

appropriate level of integration for this series.  

The remainder of the paper is organised as follows. After reviewing the literature that 

jointly considers nonstationarity and nonlinearity in Section 2, Section 3 develops our approach 

to testing for unit root in the presence of possible nonlinearity. Monte Carlo experiments, which 

examine empirical size and power characteristics of the new tests, are provided in Section 4. The 

empirical application to US unemployment is presented in Section 5 and Section 6 concludes. 

Proofs are provided in the Appendix. 

 

 

2. Literature Review 

Growing dissatisfaction with the performance of the standard ADF test in the presence of 

nonlinearity has recently led to a number of studies focusing on the interactions between 

nonlinearity and nonstationarity, especially when the (possible) nonlinearity is of the TAR or 

STAR form. 

An early and seminal contribution to this literature is Enders and Granger (1998), who 

propose a two-step procedure to test the null hypothesis of a linear unit root against the 

alternative of a stationary two-regime threshold model. Although their test recognises that the 

threshold value is not identified under the null hypothesis, nevertheless it is less powerful than 
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the standard ADF test even in the presence of substantial asymmetry. Rather than a two-stage 

approach, a number of recent studies, including Bec, Ben Salem and Carrasco (2004), Kapetanios 

and Shin (2006) and Bec, Guay and Guerre (2008), embed a search for the threshold(s) within the 

unit root test procedure, with this approach generally delivering power improvements over the 

linear ADF test. Rather than autoregressive augmentation, Seo (2008) proposes the use of a first-

order test regression with residual autocorrelation taken into account through a residual-based 

block bootstrap, and finds that this approach yields power improvements over the ADF test 

against stationary TAR processes.  

Again in a two-regime TAR context, Caner and Hansen (2001) use a model-based 

bootstrap procedure to test the null hypothesis of nonstationarity in a two-regime threshold 

model, where nonlinearity may apply under either the null or alternative hypothesis. The 

asymptotic null distribution of the test statistic then depends on whether a threshold effect is 

present or not. For this reason, they define two bootstrap procedures, one assuming a threshold 

effect is present (identified threshold bootstrap) and the other under linearity (unidentified 

threshold bootstrap), both for the null hypothesis of a unit root process. However, because their 

Monte Carlo experiments indicate that the size distortions of the unidentified threshold bootstrap 

are less than those of the identified threshold bootstrap even in the presence of nonlinearity, they 

recommend that the unidentified threshold bootstrap method should be employed regardless of 

the extent of nonlinearity under the unit root null hypothesis. 

Another group of studies focuses on stationary STAR models under the alternative 

hypothesis, with the null hypothesis being a linear unit root.  Kapetanios, Shin and Snell (2003) 

propose a test statistic against a globally stationary exponential STAR (ESTAR) process with the 

nuisance parameter problem which arises under the linear and nonstationary null hypothesis 

overcome through a Taylor series approximation. Sollis (2009) applies a similar approach for an 

asymmetric ESTAR process under the alternative, while Eklund (2003) considers a stationary 

logistic STAR (LSTAR) process.  

Although Taylor series approximations are popular when the process has a STAR form 

under the alternative, Sollis, Leybourne and Newbold (2002) take a different approach by testing 

the unit root null hypothesis after estimating the model under the alternative by nonlinear least 

squares. In a similar vein, Kılıç (2003) uses a supremum test statistic, with this obtained by 

searching over relevant transition function parameters that apply under the alternative hypothesis. 

Park and Shintani (2005) allow for a general form of nonlinear regime-switching model under the 
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alternative hypothesis, including TAR, ESTAR and LSTAR forms. Their asymptotic theory is 

based on setting a limit parameter space for the parameters of the transition function, based on the 

empirical values of the transition variable, with the asymptotic distribution of their supremum test 

statistic depending only on the type of transition function and the limit parameter space. Finally, 

Rothe and Sibbersten (2006) take a semi parametric approach to allow for ESTAR nonlinearity 

under the alternative.  

Many of the above studies include Monte Carlo analyses that favour their particular 

approach, but Choi and Moh (2007) undertake a comparison across a range of tests and a variety 

of nonlinear data generating processes (DGPs). They conclude that the distance from 

nonstationarity is the main determinant of power for all tests considered, with the ADF test 

generally having relatively good power when the sample size is small (50 or 100 observations). 

For larger samples, the test of Park and Shintani (2005) performs best overall, which emphasizes 

the importance of allowing flexibility when considering the nature of possible nonlinearity.  

Nevertheless, all the tests proposed except that of Caner and Hansen (2001) assume 

linearity under the null hypothesis of nonstationarity. Although Caner and Hansen (2001) 

establish that the asymptotic distribution of the Wald unit root test changes in the presence of 

TAR nonlinearity under the null and propose a bootstrap unit root test for this case, this test 

suffers from substantial size distortions and they recommend the use of a bootstrap procedure 

based on a linear DGP. Consequently, from a practical perspective, they do not provide a useful 

unit root test for the case when nonlinearity is present under the unit root null. Further, the good 

performance of the Park and Shintani (2005) approach in the study of Choi and Moh (2007) 

points to the benefits of flexibility about the nature of potential nonlinearity.  

The present paper develops bootstrap testing methodologies that permit nonlinearity 

under the null hypothesis of nonstationarity. Although the model-based identified bootstrap of 

Caner and Hansen (2001) suffers size distortions in this case, our approach overcomes these. 

Further, in common with Park and Shintani (2005), our preferred model-based bootstrap is 

flexible about the nature of nonlinearity, allowing for ESTAR and LSTAR forms, including TAR 

models as a limit form of the latter.  
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3. Methodology 

After the nonlinear DGP is outlined in subsection 3.1, subsection 3.2 discusses a unit root test 

approach based on further augmenting the ADF regression for nonlinearity. In the light of the 

theoretical issues discussed in subsection 3.3, the final subsection proposes two bootstrap unit 

root tests to take account of this nonlinear DGP under the null hypothesis.  

 

3.1 The DGP 

Our primary DGP is the first-order LSTAR process given by  

( )( ) ( )1 1 1 2 1 11 ; , ; ,t t L t L L t L t L Ly y F y c y F y c tα γ α γ− − − −Δ = Δ − Δ + Δ Δ +ε

) γ

                      (1) 

where FL is the logistic function 

( ) ( )( )( 1

1 11 exp ,   0L t L t L LF y y cγ
−

− −Δ = + − Δ − >                                               (2) 

with transition variable 1ty −Δ  and parameters Lγ  and  governing its slope and location, 

respectively. As in Caner and Hansen (2001), the transition variable in (1) is a lagged difference 

to ensure stationarity of this variable under both the null and alternative hypotheses. The intercept 

is zero in this DGP, while 

Lc

tε ~ iid N(0, 1).  

Alongside the logistic specification of (2), the exponential transition function can be 

considered, where  replaces  in (1) and is defined by EF LF EF

( ) ( )( )2
1 11 exp ,   0E t E t E EF y y cγ− −Δ = − − Δ − >γ .                                                  (3) 

Although our main focus is (2), the discussion below can be suitably modified for the ESTAR 

case, which is explicitly examined for the model-based bootstrap in subsection 3.4 below. In 

either case, extensions to higher order dynamics in (1), or to a different delay parameter in (2) or 

(3), are straightforward. 

 Clearly, the extent of nonlinearity in the DGP of (1) will depend on the transition function 

parameters in (2). In particular, for very small values of Lγ , such as 0.01 or 0.05, the transition 

function is effectively flat and (1) is near-linear. However, the logistic function acquires the 

familiar S-shape as the slope parameter increases and eventually approaches an indicator function 

for very large values of Lγ , which we capture by Lγ  = 50. Hence, increasing the slope while 
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holding the other parameters constant allows us to consider near-linearity, STAR and TAR type 

nonlinearity within the framework of (1) and (2).  

However, the extent of nonlinearity is also affected by the threshold location parameter, 

Lc 1. More specifically, holding other parameters constant, an increase in  relative to the 

unconditional mean of the process causes it to remain longer in the lower regime (where F

Lc

L ≈ 0) 

and to move less frequently to the upper regime (FL ≈ 1). Consequently, as the threshold 

increases, nearly all observations may fall into the lower regime and for practical purposes the 

model approaches a single-regime one2. In order to capture these effects, our simulations employ 

 = 0.0, 0.5, 1.1, in addition to a range of values for Lc Lγ . 

 

3.2 Linear and Augmented Linear Test Regressions 

The standard ADF test is frequently applied prior to considering nonlinearity. Hence, for data 

generated by (1) and (2), we consider the performance of the ADF test based on the t-ratio of ρ in 

the regression  

              (4) 0 1
1

p

t t i t i
i

y y yδ ρ δ− −
=

Δ = + + Δ +∑ tu

where the lag order p is specified by a data-based technique and  is assumed to be iid (0, tu 2σ ). 

Since the standard ADF test does not allow for nonlinearity, residuals from (4) may inherit 

nonlinear features from the DGP and hence violate the white noise assumption, leading to the 

unreliability of this test in the Monte Carlo experiments of Pippenger and Goering (1993), Balke 

and Fomby (1997) and others.  

As noted in Section 2, a strand of the literature that tests the linear unit root null 

hypothesis against the alternative hypothesis of a stationary STAR process proceeds by 

approximating the nonlinearity through a Taylor series expansion. An analogous approach when 

such nonlinearity is present under the null hypothesis is to augment the linear ADF regression 

using Taylor series terms to take account of the nonlinearity under the null.  Therefore, following 

Luukkonen et al. (1988), the LSTAR form for (1) can be considered through a third-order Taylor 

                                                 
1  The variance of the error terms also affects the form of the true process; see Pippenger and Goering (1993), who 

consider TAR type nonlinearity but it is quite straightforward to interpret their results for STAR type nonlinearity. 
Throughout our study, the disturbance variance is, without loss of generality, set to 1.  

2  Similarly, as the threshold progressively decreases in relation to the unconditional mean, ultimately virtually all 
observations will fall in the upper regime.  As these cases are symmetric, we consider only increasing cL. 
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series approximation around Lγ = 0. Similarly, this augmentation may also capture nonlinearities 

of the ESTAR form. Assuming it is known that autoregressive augmentation of p = 1 is 

appropriate, this leads us to the unit root test regression 

2 3 4
0 1 1 1 1 2 1 3 1 4 1t t t t t ty y y y y yβ ρ β β β β− − − − −Δ = + + Δ + Δ + Δ + Δ + 1tu .                            (5) 

Clearly, the aim of including the Taylor series approximation in (5) is to account for 

nonlinearity in regression (1) and hence to obtain disturbances  with an approximate iid(0, 1tu

2
1σ ) structure. However, the Taylor approximation is derived for 0Lγ → , which is associated 

with weak nonlinearity. Consequently, it may be less adequate as Lγ   increases, corresponding to 

stronger nonlinearity. To illustrate the nature of the approximation, the logistic transition function 

(2) and its Taylor series approximation around Lγ = 0 are graphed in Figure 1 for = 0 and 

various slope parameter values

Lc
3. It is evident from this figure that the difference between the 

logistic function and its approximation is nearly zero for small Lγ  values, irrespective of the 

value of the transition variable 1ty −Δ . Further, across all Lγ  considered, the approximation is also 

good for 1ty −Δ  in the neighbourhood of = 0 (where FLc L = 0.5). However, for values of the slope 

parameter Lγ  substantially larger than 0, the two functions differ substantially when 1ty −Δ  falls 

far below  and hence the true value of FLc L is close to its lower bound of zero. To a lesser extent, 

this also applies when 1ty −Δ  is large relative to . Therefore, correcting the standard ADF 

regression through the inclusion of terms arising from a third-order Taylor series approximation 

of the logistic function around 

Lc

Lγ = 0 may leave nonlinearity effects in the test regression 

disturbance term u1t. 

In addition to (5), we consider the performance of the ADF test modified by the inclusion 

of the true transition function, namely  

            ( )( ) ( )0 2 1 1 1 1 2 1 11 ; , ; ,t t t L t L L t L t L Ly y y F y c y F y cα ρ α γ α γ− − − − −Δ = + + Δ − Δ + Δ Δ + 2tu                (6) 

where  is assumed to be iid(0, 2tu 2
2σ ). This situation is, of course, unrealistic in practice, since 

the transition function is unknown. However, (6) allows us to investigate (in an ideal scenario) 

                                                 
3  The values graphed are obtained analytically, with the ones of the approximate transition function given by the 

third order Taylor series approximation . 33
11 ))(48/1()(25.05.0 LLtLLt cycy γγ −Δ−−Δ+ −−
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how the performance of the ADF test is affected by nonlinearity, when due account is taken of 

this nonlinearity.  

 

Figure 1: Exact (Original) and Taylor Series Approximation Transition 
Functions 

 
Notes: All transition functions have cL = 0, with a third-order Taylor series 
approximation applied around Lγ  = 0. 

 

 Against this background, subsection 3.3 discusses theoretical results related to the use of 

(5) and (6) in conjunction with the asymptotic Dicker-Fuller distribution that applies for a linear 

unit root test regression.  

 
3.3 Asymptotic Distributions

Few theoretical results exist in the literature relating to the asymptotic distribution of unit root 

tests allowing for STAR-type nonlinearity. Indeed, the only results relate to regressions of the 

form  

       ( )( 2
1 11 expt t ty y y ) tρ γ ε− −Δ = − − + ,              (7) 

which is used by Kapetanios et al. (2003) in order to develop a unit root test (using the computed 

t-ratio statistic for ρ = 0) to allow for ESTAR nonlinearity under the alternative hypothesis. For 
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implementation, Kapetanios et al. (2003) approximate the exponential transition function in (7) 

through a Taylor series approximation. Kılıç (2003) develops this approach by allowing Δyt-1 to 

be the transition variable in (7) and employing a supremum approach that searches over the 

unknown (and, under the null hypothesis, unidentified) slope parameter γ . These authors 

establish the asymptotic distributions of their test statistics, which differ from the familiar 

Dickey-Fuller one. 

 However, those authors consider nonlinearity only under the alternative hypothesis, 

whereas our concern is to allow for such nonlinearity under the unit root null hypothesis. The 

following Theorem sheds light on this issue.  

 

Theorem. Assume that yt  is generated by the integrated linear AR(1) process 

      Δyt = 1β Δyt-1 + ut                               (8) 

in which y0 = 0, 1β  < 1, ut ~ iid(0, σ2). Further, when (5) is employed, it is assumed that 

       ∞<= 8
8 ][ μtuE

while for (6) it is assumed that transition function parameters Lγ  and Lc  are given. Then: 

       
[ ]

2,1,

)())((

)()1(1))1((

2
1

21

0

1

0

2

1

0

2

ˆ =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
⎯→⎯

∫∫

∫
i

drrWdrrW

drrWWW
t L

iρ
                      (9) 

                

where  indicates convergence in distributuion, ⎯→⎯L ( )W r  is standard Brownian motion,  (i 

= 1, 2) is the t-ratio statistic computed for the null hypothesis ρ

i
t ρ̂

i = 0 (i = 1, 2) in (5) or (6), as 

appropriate. 

 

This theorem, which is proved in the Appendix, establishes that the inclusion of additional 

variables in the form of either Taylor series expansion terms or values arising from an (arbitrary) 

transition function do not affect the unit root asymptotic distribution when, in fact, these terms 

are irrelevant because the DGP is a linear integrated AR(1) process.  

 This theorem does not, however, show that the asymptotic distribution of (9) applies 

when the true DGP is a nonlinear STAR process in tyΔ . Indeed, to our knowledge, and 
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notwithstanding their widespread use in empirical applications, the asymptotics of integrated 

STAR processes, such as yt in (1), are not yet known. However, Caner and Hansen (2001) study 

the related case of an integrated threshold DGP, which is a limit (as Lγ  → ∞) of the LSTAR 

model of (1) and (2). Employing unit root tests formed from two computed t-ratio statistics, one 

corresponding to each regime, they show (Caner and Hansen, 2001, Theorem 6) that the 

asymptotic distribution of each t-ratio is a mixture of a normal and a Dickey-Fuller distribution. 

The implication is that the unit root distribution for their nonlinear DGP is shifted to the right 

compared with the Dickey-Fuller case, with the ADF distribution of (9) providing an upper 

bound to the true asymptotic rejection probability under the null.  

 The result of Caner and Hansen (2001) suggests that the Dickey-Fuller distribution may 

also provide a bound for the asymptotic distributions of our test statistics in a STAR DGP, 

particularly when the test regression of (6) is employed and hence the nature of the nonlinearity is 

explicitly taken into account (as in Caner and Hansen, 2001, for their DGP). It is also compatible 

with our result, established in the above Theorem, that the Dickey-Fuller distribution applies for a 

linear DGP. Since it is reasonable to anticipate that the true asymptotic distribution in the 

nonlinear STAR case will depend on unknown parameters in the DGP (again, as in Caner and 

Hansen, 2001), a bootstrap approach may be required in practical applications in order to 

approximate this distribution. To this end, the next subsection proposes two bootstrap 

approaches.  

 

3.4 Bootstrap Unit Root Tests 

The bootstrap tests proposed here are designed to account for the impact of any nonlinearity on 

the null distribution of the test statistics. Consequently, these tests aim to account fully for the 

nonlinear dynamics of the DGP (1) in finite samples. Our approach is related to the identified 

threshold bootstrap method proposed by Caner and Hansen (2001), although the test statistic we 

use and the nature of the nonlinearity differ from their case. Two bootstrap procedures are 

examined, with one relating to the use of a third-order Taylor series approximation to the 

transition function, as in (5), and the other based on the ADF regression modified by the 

transition function itself, namely (6).  
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3.4.1 Block Bootstrap 

Accounting for nonlinearity through the Taylor series approximation in (5) is convenient in a 

bootstrap procedure because it does not require the parameters of the transition function to be 

known or explicitly estimated. However, Figure 1 emphasizes the inadequacy of the Taylor series 

approximation for representing a true logistic transition function when the nonlinearity is 

reasonably strong, suggesting that some nonlinear dependence may remain in of (5). Residual-

based bootstrap procedures that employ random resampling of single residuals are consequently 

inappropriate since they rely on residuals  being iid. However, the block bootstrap may be able 

to replicate such patterns of dependence by random sampling of blocks of consecutive 

observations and hence improve the performance of the test.  

1tu

1tu

 Being nonstationary under the null of 1 0ρ = , the sequence ty  cannot be resampled 

directly. Instead, we can resample blocks of tyΔ  or residuals , with the level form of the 

bootstrap DGP then being generated recursively using the resampled blocks. Paparoditis and 

Politis (2003) apply both the difference and residual-based block bootstraps in the context of the 

standard ADF test and show that the latter approach is more powerful. Very recently, Seo (2008) 

extends the residual-based block bootstrap approach to test for a linear unit root against a 

stationary TAR alternative. Such an application, however, is not feasible in our case due to the 

existence of the higher order terms of 

1tu

tyΔ  in (5), which can lead to explosive bootstrap DGPs. 

Moreover, the inadequacy of the Taylor series approximation for representing a true logistic 

transition function in the case of strong nonlinearity is still a deterrent for the recursion, as the 

resultant bootstrap DGP would not mimic the true DGP.  

Therefore, we apply the difference-based block bootstrap approach by resampling blocks 

of tyΔ  and obtain the level form of the bootstrap DGP recursively. The bootstrap algorithm 

proceeds as follows: 

i) Wrap observations {  around a circle, and use the overlapping blocking scheme of 

Künsch (1989) to resample the sequence 

} 2

T
t t

y
=

Δ

{ } 2

T
t t

y
=

Δ . That is, for a given block length 1b T< − , 

construct  blocks as 1T − { }2 1,..., ,b by y y +Δ Δ Δ , { }3 1,..., ,b by y y+ +2Δ Δ Δ , ……, 

{ }11,... , TTT by y −− +Δ Δ Δy , { }22 ,,...., TT by y− +Δ Δ yΔ , ….., { }1,,....,T by y − byΔ Δ Δ . Then draw 
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100Tk
b
+

=  blocks with replacement from the 1T −  blocks and paste these end-to-end to 

form the block bootstrap sample { } 100

2

Tblock
t t

y
+

=
Δ 4. 

ii) Generate the level series of the bootstrap DGP, { } 100*

1

T

t t
y

+

=
, recursively using the block 

bootstrap sample , namely  where block
tyΔ * *

1 ,   2,......., 100block
t t ty y y t T−= + Δ = + *

1 0y = 5. 

iii) Cut the first 100 observations of and estimate the modified ADF regression (5) with the 

sequence {

*
ty

}*

2

T

t t
y

=
Δ . 

iv) Calculate the bootstrap t-statistic for the null hypothesis 1 0ρ = . 

The use of the block bootstrap enables us to generate the bootstrap DGP  from the 

block bootstrap sample , which is obtained by direct sampling of realizations from the true 

DGP of (1) and hence is anticipated to mimic this DGP. Nevertheless, Bühlman (2002) and 

Horrowitz (2003) indicate that the block bootstrap sample might not mimic the true DGP as it 

may generate dependence artifacts where resampled blocks are linked together, resulting in 

corrupted dependence in the bootstrap DGP observations 

*
tyΔ

block
tyΔ

*
tyΔ .  

 

3.4.2 Model-Based Bootstrap 

Rather than using the Taylor series expansion, consider the ADF regression modified using the 

nonlinear transition function as in (6). While the true transition function is unknown in practice, 

this case provides a useful starting point for considering the model-based approach. Also, 

inclusion of the known parameter case in the subsequent Monte Carlo analysis provides a 

benchmark for the performance under other, more realistic, assumptions. 

When all parameters of (1) are assumed known, the model-based bootstrap procedure for 

a given data realisation is described by the following algorithm: 

                                                 
4  Wrapping the data around a circle removes the effect of the first and last b-1 observations of appearing in 

fewer blocks than the remaining observations and hence ensures that each observation has an equal chance of 
appearing in the block bootstrap sample.  

tyΔ

5 Note that the mean of the block bootstrap DGP is not adjusted here. To analyze the effect of mean adjustment, 
is replaced with its mean-adjusted form block

tyΔ ( )block block block
t ty y y yΔ = Δ − Δ − Δ  where blockyΔ  and yΔ  

represent means of the block bootstrap and true DGPs, respectively. Nearly identical results to those reported for 
the case of unadjusted mean point to the insensitivity of the block bootstrap procedure to mean adjustment.  
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i) Imposing the null hypothesis of 2 0ρ = , estimate the remaining parameters of the modified 

ADF regression (6) by OLS conditional on ( ),L Lcγ  to obtain the residuals.  

ii) Draw a random sample with replacement from the residuals and obtain { } 100*
2 3

T

t t
u

+

=
. 

iii) Using the true parameters, generate the level series for the bootstrap DGP, { } 100*

1

T

t t
y

+

=
, 

recursively, as 

( )( ) ( )* * * * * *
1 1 1 1 2 1 1 21 ; , ; ,t t t L t L L t L t L L

*
ty y y F y c y F y c uα γ α γ− − − − −= + Δ − Δ + Δ Δ +                        (10) 

for  where 3,......., 100t T= + * *
1 2 0y y= = . 

iv) Drop the first 100 bootstrap observations and estimate the modified ADF regression (6) by 

OLS conditional on (γL, cL): 

( )* * * *
0 1 1 1 2 11 ( , ) ( , )t t t L L L t L L L ty y y F c y F cδ ρ δ γ δ γ− − −Δ = + + Δ − + Δ + u                                    (11) 

and calculate the t-ratio statistic for ρ = 0.  

v) Repeat steps ii) to iv) to generate B bootstrap replications and use these to calculate the 

bootstrap critical value of the t-statistic for the null hypothesis 0ρ = . 

 

In more realistic scenarios, neither the true lag order nor the parameters or even the 

nonlinear functional form are known. To investigate the case of unknown lag order and 

parameters, we assume that the researcher considers the model under the unit root null hypothesis 

to have the form 
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with a regime-dependent intercept included to allow for any starting value effects, while the lag 

order p and all parameters are unknown6. Following a common practice in empirical analysis, the 

lag order p in (12) is selected from the data using the Schwartz criterion (SBC) in a linear 

autoregressive specification with a maximum of 8 lags, with this lag order maintained for the 

subsequent nonlinear analysis. Using this p, the parameters of (12) are then estimated by 

nonlinear least squares (NLS). Moreover, in order to guarantee global stationarity of the bootstrap 

DGP, we impose the restrictions that the roots of the characteristic equations in both regimes FL = 

                                                 
6  We also investigated the scenario where p = 1 is known, but the transition function parameters are unknown. The 

results are very similar to those reported for the more realistic case of unknown p. 
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0 and FL = 1 are less than one in absolute value7. To ensure sufficient observations are available 

in each regime of the bootstrap DGP for reliable estimation of other parameters,  is restricted 

to be lie between the 5

Lĉ
th and 95th percentiles of the transition variable Δyt-1 when the sample size 

is reasonably large, with this range restricted to the 10th to 90th percentiles of Δyt-1 when a 

relatively small sample (T = 100) is employed.  

The generalization of the bootstrap algorithm above to this case is then relatively 

straightforward. Specifically, the bootstrap DGP in step iii) is generated using the estimates 

, while the modified ADF regression employed in step iv) becomes ( 01 1 02 2ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,i i L cα α α α γ )L

              (11′) ( ) tLLL
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which is estimated by OLS conditional on ˆ ˆ( , )L Lcγ . Full nonlinear estimation in each bootstrap 

replication, which would include the transition function parameters to yield estimates ,ˆL bootγ  and 

, is not performed due to the computational cost involved. Davidson and MacKinnon 

(1999) also find the cost of full re-estimation to be prohibitive for the bootstrap in a nonlinear 

context and adopt an approximation. In our case, a comparison of empirical distributions for the 

bootstrap unit root test statistic obtained using 

,ˆL bootc

ˆ ˆ( , )L Lcγ  and , ,ˆ ˆ( ,L boot L bootc )γ  in (11′) for p = 1 

indicated only trivial differences8 and hence the reported results apply the nonlinear estimates 

obtained from the original data in the B bootstrap replications. 

Finally, we consider the situation where the form of the transition function is unknown, 

with both logistic and exponential cases, namely (2) and (3) respectively, considered plausible. In 

order to capture the data-based decision undertaken in such cases, and following Kesriyeli, 

Osborn and Sensier (2006), we select between these transition functions based on the minimum 

residual sum of squares (SSR). Therefore, for a given data series, { }T
tty 1= , and after selection of 

the AR lag order p via SBC as above, two-dimensional grid searches are undertaken for both 

parameter sets ( ),  L Lcγ and ( ),  E Ecγ of (2) and (3) respectively, with the lowest SSR over these 

                                                 
7  These conditions are sufficient to ensure stationarity; to our knowledge, necessary and sufficient conditions for 

stationarity of the LSTAR model are not yet available in the literature. In some rare cases, especially when T = 
100, a Monte Carlo realization yields initial values for the AR coefficients failing the stationarity conditions. Such 
a realization is discarded. With the stationarity restrictions imposed, NLS estimation is carried out using the 
Newton-Raphson optimization algorithm in the CML subroutine library of GAUSS 5.0. 

8  Simulations were undertaken for T = 100, 300 using 5000 replications setting α1 = 0.5, α2 = -0.1 and cL = 0, with a 
range of slope coefficients.  
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yielding the selected transition function form. This form and the corresponding parameters 

estimated by NLS are then employed in the bootstrap. 

Alongside the possibility of an exponential transition function being selected in the 

application of the bootstrap unit root test, we also examine a stationary ESTAR(1) data 

generating process. The procedure allowing unknown parameters, lag order and functional form9 

of the transition function is also applied for this ESTAR DGP, where the global stationarity 

condition used is that the characteristic roots of the outer regime (FE = 1) are less than one in 

absolute value, allowing a local unit root or even an explosive behaviour in the inner regime 

( )0EF ≈ .  

 

 

4. Monte Carlo Results 

This section analyzes the size and power properties of the tests discussed in Section 3.  

 

4.1 Size Analysis 

Empirical sizes of the tests are investigated using the LSTAR data generating process of (1) and 

(2), for sample sizes T = 100, 300 with transition function parameters Lc = {0, 0.5, 1.1} and Lγ  = 

{0.01, 0.1, 0.3, 0.9, 1.5, 2.5, 50}. These slope values capture near-linear ( 0.01,0.1Lγ = ) and 

TAR-type processes ( 50Lγ = ), in addition to logistic STAR nonlinearity. The same location and 

slope parameter are also applied to investigate the model-based bootstrap test for an ESTAR 

DGP. The coefficients 1α  and 2α  are chosen to guarantee global stationarity of , while also 

varying the strength and nature of the implied AR dynamics. The disturbance variance is set to 

unity and the nominal test size is 5%. 

tyΔ

 

4.1.1 Augmented Linear Procedures 

Table 1 analyzes the empirical sizes for the linear and augmented test regressions discussed in 

Section 3.2, with the DGP being an LSTAR(1) process. To investigate the adequacy of the Taylor 

series approximation to nonlinearity in (5) and the performance of the modified ADF test in (6), 

                                                 
9 We also investigated the case where the functional form of the ESTAR DGP is known, but the parameters and the 

lag order are unknown. Since the results are very similar to those reported for the case of unknown functional 
form, they are not reported.   
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which includes the true transition function, the lag order of one is assumed known. However, a 

data-dependent lag specification is employed for the standard ADF test, in order to allow the 

regression to capture serial correlation arising from the linear misspecification of the nonlinear 

DGP. In this case, the lag order is chosen using SBC from linear autoregressive models to a 

maximum order of p = 12, with the adequacy of the order verified by a Lagrange multiplier (LM) 

test for serial correlation applied at the 5% level. If significant autocorrelation is detected, the lag 

order is increased until the test is passed. The critical values employed are based on a linear 

random walk DGP.  

The empirical rejection frequencies reported in Table 1 employ the linear Dickey-Fuller 

critical values and are obtained using 50,000 replications for sample sizes of T = 100 and T = 

300. In addition to the empirical sizes of the tests, the final column provides an indicator of the 

power of the nonlinearity under consideration. This power measure is the empirical rejection 

frequency obtained by applying the Luukkonen et al. (1988) test for the null hypothesis of 

linearity at a nominal size of 5%, over the 50,000 replications.  

 According to Table 1, regardless of the other parameters, the standard ADF test has good 

size when the slope parameter takes a small value, namely 0.01, 0.1 or (when T = 100) 0.3. In 

such cases, as illustrated in Figure 1, the LSTAR process is close to linear, with this also 

indicated in Table 1 by the power of the nonlinearity being close to the nominal test size. 

However, size distortions appear as Lγ  increases, pointing to stronger nonlinearities, with the 

ADF test always being undersized when substantial nonlinearity is present. Indeed, in a number 

of cases the empirical size is around half or less of the nominal size, so that the conventional 

ADF test attributes nonlinearity to nonstationarity. This is most marked for the larger sample size 

of T = 300, where the empirical size is around 1% when nonlinearity is evident (that is, when the 

power of nonlinearity is very close to unity.  

As a rule of thumb, the size distortions for the ADF test become substantive (say, outside 

the range 0.04 to 0.06) when the power of nonlinearity is above around 44%. However, except 

for cases of near-linearity, size distortions are worse when T = 300 than for T = 100, implying 

that these distortions are an asymptotic issue and do not disappear with larger sample sizes. 

The third-order Taylor series approximation does not improve the size performance of the 

ADF test, at least when the true AR lag order p = 1 is employed for the former. This comment 

also applies when the true transition function is used. Indeed, the Taylor series approximation and 
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the transition function based unit root tests deliver very similar empirical size, with both showing 

a mildly stronger tendency to under-reject the unit root null hypothesis compared to the standard 

ADF test. Consequently, modifying the ADF regression to take account of nonlinearity in the 

DGP is not sufficient to solve the problem of under-rejection, despite this being a consequence of 

the nonlinearity itself. 

These results confirm the anticipated asymptotic distributions for the nonlinear unit root 

tests, as discussed in subsection 3.3. In particular, when the DGP is effectively linear the Dickey-

Fuller distribution continues to apply for the test regressions (5) and (6). However, the presence 

of nonlinearity affects the null distribution of the unit root test statistic, which shifts further to the 

right (leading to greater under-sizing compared with the nominal significance level) as the extent 

of nonlinearity increases. This indicates that the distribution depends on nuisance parameters, 

namely the parameters driving the nonlinearity in the DGP. The smaller empirical size that is 

evident in Table 1 for all three tests when T = 300 is compared with T = 100 is a consequence of 

the stronger evidence of nonlinearity that this larger sample provides, with this nonlinearity 

rendering the asymptotic distribution of the test statistic obtained for a linear DGP less relevant.  

 

 4.1.2 Bootstrap Procedures 

We next turn to the empirical sizes of the bootstrap tests, proposed in Section 3.4, to investigate 

their performance in the presence of STAR nonlinearity. The empirical rejection probabilities, 

calculated from 5000 Monte Carlo replications and 400 bootstrap replications, are reported in 

Tables 2 and 3 for the block bootstrap and the model-based bootstrap, respectively. Due to 

substantial computational costs, this investigation considers the range of slope parameter values 

{0.1, 0.9, 1.5, 2.5, 50}, and hence examines fewer cases of mild nonlinearity compared with 

Table 1. The slope parameter value of 0.1 captures near-linearity in Tables 2 and 3, with the 

remaining values representing increasing degrees of nonlinearity; see the power of nonlinearity 

values in Table 1 for the logistic transition function case. 

The block bootstrap uses the ADF regression modified by the Taylor series 

approximation, namely (5). An important aspect in applying block bootstrap methods is the 

determination of the block length, b. Like Seo (2008), we do not use a data-dependent method to 

determine an optimal b, but rather experiment with different values to investigate whether the test 
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performance depends on the block length. For this purpose, we use 5 and 8 for the sample size of 

T = 100 and 5 and 10 for T = 30010.  

The first inference from Table 2 is the relative insensitivity of the rejection probabilities 

to the block length b, although the longer block length perhaps performs a little better overall. 

Secondly, the results show substantial improvement over the size distortions evident in Table 1 

for the true process shows substantial nonlinearity with Lγ = {0.9, 1.5, 2.5, 50}. Nevertheless, 

some distortions remain for both sample sizes11, perhaps due to the poor fit of the Taylor series 

approximation and the corrupted dependence in the bootstrap DGP resulting from the use of the 

block bootstrap. Further, regardless of the other parameters, the test has good size in the case of 

near-linearity, where Lγ = 0.1. Table 3 shows that the benchmark model-based bootstrap test, 

which assumes the parameters of the DGP (6) are known, works nearly as well as the ADF test in 

Table 1 when there is little nonlinearity ( Lγ = 0.01, 0.1). Indeed, for γL = 0.1, the empirical size 

for the benchmark case in Table 3 (T = 300) is comparable to that of the linear ADF test in Table 

1. Moreover, the benchmark model-based bootstrap test corrects the under-rejections exhibited by 

all non-bootstrap tests in Table 1 for moderate to strong nonlinearity.  

Next, the assumptions of known parameters, known order of the AR process and the form 

of the transition function are progressively removed, with the relevant empirical sizes reported in 

two further sets of results for the LSTAR DGP. With both the lag order and parameter values 

unknown, the test continues to perform well overall, although there is a tendency for over-

rejection in the case of near-linearity ( Lγ = 0.1). This is especially noticeable when T = 100 and 

may be due to the estimation of (effectively) unidentified transfer function parameters. In general, 

the good size performance is maintained even when the investigator has to discriminate between 

LSTAR and ESTAR transition functions12. Finally, the empirical sizes are reported for the case 

                                                 
10 As underlined by Davidson and MacKinnon (2006), if the selected b value is too small, then the block bootstrap 

samples cannot mimic the dependence structure of the original data because of the high number of corruptions that 
occur whenever one block ends and the next starts. On the other hand, if the block length is too large, then the 
block bootstrap samples might be excessively affected by the characteristics of the actual sample. Seo (2008) 
reports results for his block bootstrap test against a stationary TAR alternative with b = 6. 

11 Employing a fourth order Taylor series approximation results in no substantial size improvement above those 
reported. 

12 Some experiments were also conducted using the sequential hypothesis testing approach of Teräsvirta (1994) for 
the selection between LSTAR and ESTAR models. The findings were, however, nearly identical findings to the 
reported based on overall minimum SSR. 
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where the true DGP is ESTAR(1). Although the mild over-rejections become more frequent 

compared to the LSTAR(1) case, in general the bootstrap test continues to work well. 

 Therefore, the results imply that both bootstrap procedures are able to deliver good 

approximations to the asymptotic distributions of the unit root test statistics of (5) and (6) in the 

presence of nonlinearity. However, although the block bootstrap procedure based on (5) does 

relatively well, the model-based bootstrap using (6) is even better. Implementation of data-based 

procedures for lag selection and to discriminate between logistic and exponential transition 

functions, as well as estimation of the transition function parameters, results in relatively mild 

deterioration of this performance compared with the benchmark case of where the form of the 

model is known. These results imply that the model-based bootstrap is able to closely replicate 

the null distribution of the unit root test statistic not only in the presence of substantial 

nonlinearity, but even when such nonlinearity is effectively absent13.  

 

4.2 Power Analysis 
The power properties of the tests are analyzed using a stationary LSTAR DGP: 

( )( ) ( )1 1 1 1 2 1 11 ; , ; ,t t t L t L L t L t L Ly y y F y c y F y cρ α γ α γ− − − − −Δ = + Δ − Δ + Δ Δ + tv                       (13) 

where  is iid N(0, 1). In this specification, it is assumed thattv 0ρ <  and yt follows a nonlinear 

stationary process, with short-term momentum-type dynamics driven by 1ty −Δ . The two extreme 

regimes ( )1; , 0L t L LF y cγ−Δ ≈  and ( )1; , 1L t L LF y cγ−Δ ≈  are then characterised by two different 

stationary autoregressive processes, where the roots of the characteristic equations in both 

regimes are less than one in absolute value. However, depending on the closeness of the roots to 

one, the degree of persistency can differ across regimes, with persistent but stationary (near-unit 

root) process in one regime and a less persistent process in the other regime. To illustrate these 

aspects of the DGPs, Table 4 includes the roots of the characteristic polynomials for each of the 

two regimes implied when the given α1 or α2 is combined with ρ  = -0.05 and ρ  = -0.1. 

                                                 
13 Indeed, the performance of the model-based bootstrap test was also investigated for a number of strictly linear 

cases where , with the estimation issue that arises due to the transition function being constant confronted 
by employing the Moore-Penrose generalized inverse, as in Leybourne, Newbold and Vougas (1996) and Park and 
Shintani (2005). Although detailed results are not reported, the bootstrap test in such cases shows a mildly stronger 
tendency to over-reject the null compared to near-linear cases. Nevertheless, it continues to work well with 
empirical sizes in the range {0.054, 0.062}. This indicates that the model-based bootstrap test is applicable when 
nonlinearity is considered to be possible but has not been established.  

0Lγ =
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The values of ( )1 2, , ,L Lcα α γ  and the sample sizes are identical to those employed in the 

size analysis. Since the power will increase as the process under consideration moves away from 

the null of a unit root, we consider only DGPs in the neighbourhood of the null, with ρ  = -0.05, -

0.1. To control for the size distortions reported in Tables 1 to 3, size-adjusted power is reported. 

Indeed, since the ADF test is under-sized in the presence of substantial nonlinearity, the size-

adjusted power values reported will be higher than those obtained using a nominal 5% size in 

such cases. Nevertheless, it is also obvious that substantive size distortions render the power 

unreliable in practical situations. Consequently, the power analysis examines only cases for 

which the empirical size is in the range {0.04, 0.06}. 

Since the modified ADF test employing the Taylor series approximation provides no 

improvement in size over the standard ADF test in Table 1, while the test using the true transition 

function is infeasible in practice, we examine the power only for the standard ADF test, together 

with the block bootstrap and model-based bootstrap tests. The same data-dependent lag 

specification described in subsection 4.1.1 is employed for the standard ADF test. As the 

empirical sizes of the block bootstrap tests in Table 2 are generally a little better for the longer 

block length, the reported results use b = 8 and 10 for sample sizes of 100 and 300, respectively. 

However, the results are qualitatively unchanged for b = 5. Finally, the power of the model-based 

bootstrap test is simulated only for the most realistic case, where the parameters, the lag order 

and the form of the transition function are unknown. The power analysis employs the same 

number of Monte Carlo and bootstrap replications as employed for size. 

Table 4 reports the results. As may be anticipated, the power of the standard ADF test, 

which assumes linearity, decreases as the nonlinearity under consideration gets stronger. The 

block bootstrap test generally provides lower power than the standard ADF test regardless of the 

distance from nonstationarity. This is in line with results of Paparoditis and Politis (2003) for the 

difference-based block bootstrap approach, and the power loss may be due to sampling random 

blocks of tyΔ , which suffers from overdifferencing, and hence a corrupted dependence structure 

when ty  is a (nonlinear) stationary process as in (13). It should also be noted that little 

comparison between these tests can be made from Table 4 for T = 300, because of the poor size 

performance of the ADF test with this larger sample, except in the effective absence of 

nonlinearity.  
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However, the model-based bootstrap test outperforms both the standard ADF test and the 

block bootstrap test for all cases, whether the DGP is near-linear, or has a nonlinear STAR (or 

TAR) form. It is particularly notable that the model-based bootstrap test does not suffer a power 

loss compared with the ADF test when the process is near-linear, since this is effectively the 

situation for which the ADF test is designed. The clear pattern of the results is that the model-

based bootstrap test has the highest power, while the power of the block bootstrap test is 

generally lower compared to those of the standard ADF test and the model-based bootstrap test. 

In all cases, power depends on the roots of the characteristic equation, with the smallest 

power being obtained for the first DGP, which has α1 = -0.4, α2 = 0.1. Note, in particular, that 

when ρ = -0.05, the larger root in each regime for this DGP is close to unity. Although all other 

DGPs in Table 4 have one regime with a root of at least 0.94 when ρ = -0.05, higher power 

apparently results in these cases because the other regime is further from the nonstationarity 

boundary. It is, of course, unsurprising that power is always substantially larger for T = 300 than 

for T = 100 and (because of its effect on the characteristic roots) when ρ = -0.10 compared with ρ 

= -0.05. 

 

 

5. Application to US Unemployment Rate 

To investigate the validity of the natural rate hypothesis, the model-based bootstrap unit root test 

is applied to the US unemployment rate14. The business cycle asymmetry of unemployment has 

received great attention in the literature, with steep increases during recessions followed by more 

gradual declines during expansions. Recognizing this cyclical asymmetry as a nonlinear 

phenomenon, Bianchi and Zoega (1998), Koop and Potter (1999), Skalin and Teräsvirta (2002), 

Panagiotidis and Pelloni (2003), amongst others, utilize various nonlinear models to examine the 

unemployment rate dynamics. These studies, however, either employ standard unit root tests or 

simply assume stationarity (nonstationarity) based on the natural rate (hysteresis) hypothesis 

prior to their nonlinear analysis. Other studies, including Leybourne et al. (1998), Park and 

Shintani (2005), Gustavson and Österholm (2006), Yılancı (2008) and Franchi and Ordonez 

                                                 
14 The two competing viewpoints about the persistence of the unemployment rate are the natural rate hypothesis due 

to Phelps (1967) and Friedman (1968) and the hysteresis hypothesis introduced by Blanchard and Summers 
(1986). Under the natural rate hypothesis, the unemployment rate is a mean-reverting process, with short-term 
deviations from a constant natural rate being temporary, whereas it is a nonstationary process under the hysteresis 
hypothesis with persistent short-term deviations. 
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(2008), focus on the possibility that the unemployment rate follows a stationary TAR or STAR 

type nonlinear process and apply unit root tests that allow for the alternative of nonlinear mean 

reversion. Only Caner and Hansen (2001), however, allow the possibility that the unemployment 

rate may be nonlinear under the null hypothesis of a unit root.  

Like Caner and Hansen (2001), we examine the US unemployment rate. Specifically, we 

consider the unemployment rate (seasonally adjusted) among males aged 20 and over15, at the 

monthly frequency over the period January 1963 to January 2009. Although a visual inspection 

of the data in Figure 2 does not reveal clear evidence for stationarity, it does suggest the presence 

of nonlinearity, with steep increases ending in sharp peaks and gradual declines.  

The standard ADF test fails to reject a unit root in the US male unemployment rate at the 

10% significance level or lower, with a test statistic of -2.534 obtained using augmentation of 12 

lags16. However, since the ADF test may be misleading in the presence of nonlinearities, as 

shown in the previous section, our analysis relies on the model-based bootstrap test. When 

computing the model-based bootstrap test statistic, the lag length for the autoregressive model of 

the unemployment rate is set equal to that of the ADF test, namely 12.  

Since the transition variable is unknown, the model-based bootstrap unit root test of 

subsection 3.4 is applied separately for each transition variable t dy −Δ  where values 

 are considered for the delay parameter d and  is equal to the selected order p 

of the autoregression. For each d, the functional form of the transition function is also treated as 

unknown, with logistic and exponential forms considered. The test provides evidence of 

stationarity (at the 5% significance level) for delay parameters 1, 2, 3 and 10, all of which 

indicate a LSTAR transition, suggesting different unemployment rate dynamics in expansions 

and recessions. Of these, the strongest evidence of stationarity is provided by d = 1, which yields 

a bootstrap test statistic of -3.971 and p-value of 0.002

max1,.....,d d= maxd

17. Hence, allowing for nonlinearity 

reverses the result of the ADF test. Application of the LM-type linearity test of Luukkonen et al. 

(1988) reinforces the presence of nonlinearity of LSTAR form, with linearity of the 

unemployment rate rejected with a p-value of 0.001. These findings indicate the 

                                                 
15 As in many other studies, the series is constructed as the ratio of the unemployment level to the civilian labour 

force, both obtained from the Bureau of Labor Statistics. 
16 Augmentation was determined using the SBC criterion, to a maximum lag of 12, and checked using the Lagrange 
multiplier (LM) test for residual autocorrelation (at 5% significance level) to order 12. 
17 While this procedure follows much of the literature, nevertheless it should be noted that the use of multiple testing 
here implies that the quoted p-value for the test is unreliable. 
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inappropriateness of the standard ADF test for examining unemployment rates and favour the 

natural rate hypothesis, in line with Caner and Hansen (2001). 

 

 

Figure 2: US Adult Male Unemployment Rate 

 
 

 

6. Conclusions 

This paper contributes to the literature that jointly analyzes nonstationarity and nonlinearity by 

developing a new unit root testing methodology that allows nonlinearity under the null 

hypothesis of a unit root. This case has previously been considered only by Caner and Hansen 

(2001) in the context of a two-regime TAR model; the present paper considers the broader class 

of smooth transition nonlinear autoregressive (STAR) processes, which encompasses the process 

considered in Caner and Hansen (2001) as a limiting case.   

We provide three substantive results. Firstly, we prove that the addition of terms (either 

from a Taylor series expansion or a transition function with given parameters) to an ADF 

regression to account for possible nonlinearity leaves the asymptotic unit root distribution 

unaffected under the unit root null hypothesis when the true data generating process is a linear 

process. Secondly, our simulations show that this does not carry over when the true process is 

nonlinear, with the use of Dickey-Fuller critical values leading to very substantial under-sizing in 

the presence of strong nonlinearity. These results indicate that the true unit root distribution may 
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depend on nuisance parameters, namely the (typically unknown) transition function parameters. 

Thirdly, in the light of these findings, we provide a bootstrap testing methodology that delivers 

correctly sized unit-root tests for STAR processes.  

Two bootstrap approaches, the block bootstrap and a model-based bootstrap, are proposed 

in order to replicate the true null distribution. Although the block bootstrap test has better size 

properties than the standard ADF test, the model-based bootstrap dominates these. It not only 

delivers a test with reliable empirical size, but also has higher power than either the block 

bootstrap or the ADF test. Further, it is flexible in allowing (effectively) linear as well as either 

logistic or exponential STAR nonlinear processes. Our Monte Carlo results indicate that it 

performs well in all cases considered, which include ones that approximate TAR processes. 

 An application to the monthly U.S. male unemployment rate indicates that accounting for 

nonlinearities is important, with the model-based bootstrap test providing empirical support for 

the natural rate hypothesis while the standard ADF test fails to do so. 
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Appendix: Proof of Theorem 1 

 

We consider the linear I(1) process  

1,11 <+Δ=Δ − ββ ttt uyy            (A.1) 

where ut is iid with mean zero and variance 2σ . Equivalently, we can then write 

∑
∞

=
−=

−
=

0
1

11 j
jt

jt
t u

L
u β
β

η                       (A.2) 

with ∑
∞

=

∞<
0

1
j

jβ . Since ut is iid, then tη  defined by (A.2) is a strictly stationary and ergodic 

process with mean zero and variance ( )2 2
0 1/ 1γ σ β= − . Further, denote ξt = η1 + η2 + … + ηt  for 

t = 1, 2, …, T with ξ0 = 0 and, therefore yt = ξt + y0. However, all test regressions we consider 

include an intercept, which takes account of y0, and purely for expositional simplicity we assume 

below that y0 = 0 and hence yt = ξt. 

  

A.1 Regression Augmented with Taylor Series Expansion 

Consider first the unit root test in (5) for the DGP (A.1). Given the assumption ∞<= 8
8 ][ μtuE , 

and applying the Cauchy-Schwartz inequality, it follows that ηt in (A.2) also has finite eighth 

moment. Then re-write (5) as  

ttt uy +=Δ βx '             (A.3) 

where ( ) ( )2 3 4
0 1 1 2 3 4 1 1 1 1 1     ',  1     't t t t ty y y y yβ ρ β β β β − − − − −= = Δ Δ Δ Δtβ x . The deviation of the OLS 

estimator ˆ
Tβ  in (A.3) from the true β  = (0 0 β1 0 0 0)' is 

∑∑
=

−

=

⎟
⎠

⎞
⎜
⎝

⎛
=−
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t
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t
ttT u

1

1

1
'ˆ xxxββ            (A.4) 

and the asymptotic distributions of the elements of ∑
=

T

t
tt

1
'xx  and ∑

=

T

t
tt u

1
x  can be obtained as 

follows.  

1) Elements of 
1

T

t=

′∑ t tx x : 

i) Hamilton (1994, pp.505-506) demonstrates that 
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ii)  Since ( )8
tE η < ∞ , the law of large numbers (LLN) implies that 

1 2
1 0

1

T
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t
t

T η γ−
−

=
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   and 

1
1

1
( ),  2,3,....8

T
pi i
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t

T E iη η−
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=

⎯⎯→ =∑          (A.10) 

           where p⎯⎯→  indicates convergence in probability.  

iii) The asymptotic distribution of 3/ 2 2
1 1

1

T

t t
t

T ξ η−
− −

=
∑  is derived as follows. Firstly, substracting 

and adding terms in ( )2
10 −= tE ηγ , we have 

( )3/ 2 2 3/ 2 2 3/ 2
1 1 1 1 0 0 1

1 1 1

T T T

t t t t t
t t t

T T Tξ η ξ η γ γ ξ− − −
− − − − −
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Using 1 2 1t t tξ ξ η− − −= + , the first term on the right-hand side of this expression can be 

written as 
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 and the results of (ii) then imply that  

 ( ) ( ) ( )3/ 2 2 3/ 2 2
1 1 0 2 1 0

1 1
1
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t t t t p
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Next, let ( )2
1 1 0  t t tk η η γ− −

′= −  and 
1

t

t s
s

K k
=

=∑ . Given that 1tη − is a zero mean, strictly 

stationary and ergodic process, so is ( )2
1 0tη γ− − . It then follows from Phillips (1988) that 
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the sum 1
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Consequently, combining (A.5) and (A.12) through (A.11), then 
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iv) Generalizing the arguments in (iii) yields  
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2) Elements of ∑
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1
x : 

Standard results yield  
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Since ut is iid and ...),,,( 3211 −−−− = tttt uuugη , where ( ).g  is a continuous function, utηt-1 is a 

martingale difference sequence with a finite variance ( )2 2
tEσ η . Hence, from the martingale 

difference sequence CLT, 
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Noting that xt = ( ) ( )'1'1 4
1

3
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111
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2
111 −−−−−−−−−− =ΔΔΔΔ tttttttttt yyyyy ηηηηξ , it is 

straightforward to see from (A.5) to (A.17) that ˆ (1)po=Tβ -β  and hence ˆ
Tβ  is consistent. 

Further, the convergence rates in those expressions imply that the appropriate scaling matrix is 

DT = diag ( )2/12/12/12/12/1 TTTTTT .  

Using these results,  
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where  
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Therefore, 
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TTρ ⎯⎯→ 2v q  where 2v  is the second row of 1−V and, after some matrix 

algebra, 2v  can be shown to equal 
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Consequently,  
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The OLS t  test statistic for 1 0ρ =  in (5) can be written as  
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where ( )0 1 0 0 0 0′ =Te  and ( ) ( ) ( )12 ˆ ˆ6 ' ' 'T t ts T η η−= − − −t T t Tx β x β . From the continuous 

mapping theorem and ( )ˆ (1)po=Tβ -β , it is easy to show that 2 2p
Ts σ⎯⎯→ . Hence,  

( )

( )

21
12 1 1

21 11 2

0 0

1
'

( ) ( )

T
p

T
t

s

W r dr W r dr

β−
− −

=

−⎛ ⎞ ′ ⎯⎯→⎜ ⎟
⎝ ⎠ ⎛ ⎞

− ⎜ ⎟
⎝ ⎠

∑
∫ ∫

T T t t T Te D x x D e .   (A.21) 

Using (A.17) and (A.21) in (A.20) immediately yields the result that 
T

t
1ρ̂

 asymptotically follows 

the ADF distribution of (9). 

 

A.2 Regression Augmented with Transition Function  

In order to obtain the asymptotic null distribution of the 
2

ˆ
T

tρ statistic in the test regression (6), 

which includes an arbitrary logistic transition function 0 0( , )L L LF cγ , re-parameterize this 

regression in the form of (A.3), but now with ( ) ( ) '000' 1
*
2120 βββρβ ==β  and 

( ) '1 111 tttt Fyyy −−− ΔΔ=tx , in which ( )0 0,t L L LF F cγ=  is defined as in (2) for given parameters 

(γ0L, c0L). This parameterization of the test regression is convenient for notational purposes, while 

leaving the unit root test coefficient ρ2 unaffected. The true process is again given by (A.1), with 

0 0y = . Since tF  is a continuous and bounded function of Δyt-1 = ηt-1, it is strictly stationary and 

ergodic with 0 ≤ Ft ≤ 1 and ( )0 1i
tE F≤ ≤ , i = 1, 2, 3, 4.  

The deviations of the OLS estimator Tβ̂  from the true β again has the form of (A.4), with 

elements as follows.  
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         Consider the first term on the right-hand side of this expression, and again noting that 

1 2 1t t tξ ξ η− − −= + , re-write it as 
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       Then inferences from (A.6) and (A.23) imply that  
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′= −  and following analogous steps to those used to obtain 
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2) Elements of 
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∑ tx : 

The results in (A.15) to (A.17) also apply in this case, while the martingale difference 

sequence CLT reveals that 
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From the convergence rates of the elements of ( )ββT −ˆ , the form of the scaling matrix is 

DT = diag ( )2/12/12/1 TTTT . Therefore, analogously to (A.18), 
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and 22h ~ ( ) ( )1/ 22
2 0,1C Nσ . 

From (A.28), and after some matrix algebra, it can be seen that 

2ˆ TTρ

1
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0 1

1 1 1 1
2 2 2 2 2
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L
  

(1 ) ( )
(1 ) 0 0 .

(( ( ) ) ( ( )) (( ( ) ) ( ( ))
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β
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σ σ
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⎛ ⎞
−⎜ ⎟

− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

∫

∫ ∫ ∫ ∫
h  

Therefore, TT 2ρ̂  follows the asymptotic distribution of (A.19) and the ADF distribution of (9) 

follows for the t-ratio in a straightforward way.  
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Table 1: Empirical Size of ADF Test Augmented for Nonlinearity 
  Linear ADF Taylor Series Approximation True Transition Function Power of Nonlinearity 

1α     2α  γ  T = 100 T = 300 T = 100 T = 300 T = 100 T = 300 T = 100 T = 300 

-0.4   0.1 
 
 

c = 1.1 

0.01 
0.1 
0.3 
0.9 
1.5 
2.5 
50 

0.0500 
0.0527 
0.0499 
0.0459 
0.0430 
0.0412 
0.0409 

0.0512 
0.0502 
0.0500 
0.0344 
0.0272 
0.0251 
0.0249 

0.0480 
0.0467 
0.0460 
0.0407 
0.0372 
0.0370 
0.0357 

0.0499 
0.0502 
0.0464 
0.0311 
0.0263 
0.0236 
0.0227 

0.0491 
0.0489 
0.0484 
0.0424 
0.0387 
0.0382 
0.0365 

0.0486 
0.0476 
0.0459 
0.0303 
0.0260 
0.0223 
0.0213 

0.042 
0.046 
0.065 
0.174 
0.259 
0.329 
0.424 

0.048 
0.056 
0.127 
0.518 
0.725 
0.833 
0.917 

0.1   0.8 
 
 

c  = 0 

0.01 
0.1 
0.3 
0.9 
1.5 
2.5 
50 

0.0538 
0.0521 
0.0501 
0.0447 
0.0393 
0.0357 
0.0290 

0.0518 
0.0512 
0.0436 
0.0223 
0.0174 
0.0151 
0.0110 

0.0526 
0.0528 
0.0486 
0.0369 
0.0289 
0.0222 
0.0171 

0.0529 
0.0512 
0.0397 
0.0162 
0.0106 
0.0086 
0.0074 

0.0535 
0.0544 
0.0493 
0.0386 
0.0280 
0.0237 
0.0185 

0.0529 
0.0490 
0.0390 
0.0154 
0.0111 
0.0084 
0.0077 

0.035 
0.041 
0.084 
0.436 
0.640 
0.714 
0.718 

0.041 
0.062 
0.285 
0.968 
0.998 
0.999 
0.999 

  0.6   0.1 
 
 

c = 1.1 

0.01 
0.1 
0.3 
0.9 
1.5 
2.5 
50 

0.0521 
0.0519 
0.0520 
0.0450 
0.0432 
0.0433 
0.0425 

0.0519 
0.0511 
0.0467 
0.0318 
0.0278 
0.0250 
0.0241 

0.0509 
0.0507 
0.0503 
0.0425 
0.0395 
0.0394 
0.0383 

0.0519 
0.0514 
0.0471 
0.0284 
0.0238 
0.0214 
0.0207 

0.0514 
0.0522 
0.0511 
0.0442 
0.0417 
0.0408 
0.0385 

0.0515 
0.0499 
0.0462 
0.0296 
0.0237 
0.0212 
0.0186 

0.036 
0.039 
0.058 
0.158 
0.230 
0.287 
0.366 

0.041 
0.051 
0.129 
0.568 
0.759 
0.851 
0.926 

  0.7  -0.2 
 
 
 

c = 0.5 

0.01 
0.1 
0.3 
0.9 
1.5 
2.5 
50 

0.0526 
0.0504 
0.0502 
0.0353 
0.0313 
0.0256 
0.0212 

0.0520 
0.0497 
0.0376 
0.0167 
0.0121 
0.0111 
0.0103 

0.0495 
0.0489 
0.0455 
0.0300 
0.0212 
0.0172 
0.0136 

0.0513 
0.0498 
0.0361 
0.0133 
0.0085 
0.0071 
0.0061 

0.0509 
0.0529 
0.0474 
0.0315 
0.0218 
0.0169 
0.0138 

0.0486 
0.0482 
0.0364 
0.0120 
0.0086 
0.0073 
0.0062 

0.038 
0.044 
0.106 
0.559 
0.772 
0.857 
0.906 

0.042 
0.070 
0.362 
0.990 
0.999 
1.000 
1.000 

0.5  -0.1 
 
 

c  = 0 

0.01 
0.1 
0.3 
0.9 
1.5 
2.5 
50 

0.0512 
0.0506 
0.0506 
0.0426 
0.0350 
0.0300 
0.0242 

0.0518 
0.0508 
0.0453 
0.0246 
0.0162 
0.0123 
0.0092 

0.0490 
0.0482 
0.0461 
0.0381 
0.0308 
0.0244 
0.0189 

0.0502 
0.0513 
0.0430 
0.0236 
0.0136 
0.0102 
0.0076 

0.0523 
0.0522 
0.0514 
0.0406 
0.0318 
0.0259 
0.0191 

0.0512 
0.0498 
0.0437 
0.0203 
0.0137 
0.0091 
0.0082 

0.038 
0.040 
0.065 
0.250 
0.442 
0.535 
0.576 

0.044 
0.055 
0.161 
0.766 
0.948 
0.984 
0.993 

Notes: All DGPs are LSTAR(1) processes, with true AR and location parameters given in the first column and transition function slope parameters in the second column. 
Columns three to eight report empirical rejection frequencies for the (linear) ADF test and this test augmented for nonlinearity, obtained using 50,000 replications at the 5% 
nominal significance level for sample sizes of T = 100, 300.  The ADF test employs a data-based lag selection criterion with the true lag order employed in other cases. Power 
of nonlinearity is the proportion of replications for which nonlinearity is rejected by the test of Luukkonen et al. (1988) at the 5% level.  
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Table 2: Empirical Size of Block Bootstrap Unit Root Test 
 

 Shorter Block Length Longer Block Length 

1α     2α  γ  T = 100 T = 300 T = 100 T = 300 

-0.4     0.1 
 
 

c = 1.1 

0.1 
0.9 
1.5 
2.5 
50 

0.0474 
0.0446 
0.0400 
0.0410 
0.0414 

0.0524 
0.0430 
0.0414 
0.0438 
0.0406 

0.0450 
0.0384 
0.0346 
0.0368 
0.0416 

0.0462 
0.0396 
0.0472 
0.0394 
0.0376 

0.1     0.8 
 
 

c = 0 

0.1 
0.9 
1.5 
2.5 
50 

0.0540 
0.0598 
0.0594 
0.0598 
0.0638 

0.0518 
0.0530 
0.0606 
0.0658 
0.0598 

0.0523 
0.0568 
0.0574 
0.0640 
0.0582 

0.0510 
0.0482 
0.0570 
0.0550 
0.0550 

0.6     0.1 
 
 

c = 1.1 

0.1 
0.9 
1.5 
2.5 
50 

0.0564 
0.0546 
0.0540 
0.0560 
0.0554 

0.0538 
0.0540 
0.0522 
0.0522 
0.0512 

0.0522 
0.0530 
0.0518 
0.0545 
0.0532 

0.0513 
0.0494 
0.0487 
0.0465 
0.0520 

0.7     -0.2 
 
 

c = 0.5 

0.1 
0.9 
1.5 
2.5 
50 

0.0522 
0.0530 
0.0548 
0.0590 
0.0582 

0.0548 
0.0488 
0.0566 
0.0582 
0.0560 

0.0464 
0.0550 
0.0564 
0.0574 
0.0560 

0.0512 
0.0506 
0.0560 
0.0558 
0.0562 

0.5     -0.1 
 
 

c = 0 

0.1 
0.9 
1.5 
2.5 
50 

0.0522 
0.0448 
0.0422 
0.0488 
0.0430 

0.0568 
0.0500 
0.0450 
0.0488 
0.0524 

0.0474 
0.0455 
0.0480 
0.0444 
0.0480 

0.0516 
0.0496 
0.0426 
0.0456 
0.0476 

Notes: Empirical rejection frequencies are reported using a nominal size 5% with 5000 Monte Carlo 
replications and 400 bootstrap replications for an LSTAR(1) DGP. The shorter block length b is 5 
for both sample sizes, while the longer block length is b = 8 for T = 100 and b = 10 for T = 300. The 
autoregressive and transition function parameters of the DGP are given in the first two columns of 
the table. The analysis assumes the true lag order of one is known, and the block bootstrap is applied 
to an ADF regression augmented by a third order Taylor series approximation to the transition 
function. 
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Table 3: Empirical Size of Model-Based Bootstrap Unit Root Test 

  LSTAR Data Generating Process ESTAR Data Generating 
Process 

  Known Lags &  
Parameters 

Unknown Lags & Parameters; 
Known Form 

Unknown Lags, Parameters  
& Form 

Unknown Lags, Parameters  
& Form 

1α     2α  γ  T = 100 T = 300 T = 100 T = 300 T = 100 T = 300 T = 100 T = 300 

-0.4     0.1 
 
 

c = 1.1 

0.1 
0.9 
1.5 
2.5 
50 

0.0452 
0.0468 
0.0494 
0.0482 
0.0479 

0.0529 
0.0469 
0.0482 
0.0462 
0.0482 

     0.0540 
0.0480 
0.0498 
0.0538 
0.0526 

0.0516 
0.0474 
0.0460 
0.0450 
0.0446 

0.0572 
0.0490 
0.0512 
0.0524 
0.0478 

0.0524 
0.0462 
0.0454 
0.0434 
0.0448 

0.0546 
0.0492 
0.0528 
0.0510 
0.0516 

0.0474 
0.0432 
0.0452 
0.0434 
0.0504 

0.1     0.8 
 
 

c = 0 

0.1 
0.9 
1.5 
2.5 
50 

0.0465 
0.0498 
0.0488 
0.0506 
0.0508 

0.0505 
0.0502 
0.0499 
0.0487 
0.0506 

0.0564 
0.0502 
0.0447 
0.0427 
0.0426 

0.0548 
0.0434 
0.0484 
0.0492 
0.0498 

0.0562 
0.0508 
0.0488 
0.0440 
0.0414 

0.0554 
0.0502 
0.0440 
0.0472 
0.0514 

0.0552 
0.0546 
0.0578 
0.0542 
0.0598 

0.0530 
0.0554 
0.0560 
0.0568 
0.0548 

0.6     0.1 
 
 

c = 1.1 

0.1 
0.9 
1.5 
2.5 
50 

0.0454 
0.0504 
0.0502 
0.0510 
0.0490 

0.0494 
0.0514 
0.0474 
0.0490 
0.0480 

0.0574 
0.0519 
0.0478 
0.0467 
0.0468 

0.0494 
0.0496 
0.0472 
0.0470 
0.0482 

0.0558 
0.0498 
0.0514 
0.0528 
0.0526 

0.0542 
0.0464 
0.0488 
0.0450 
0.0440 

0.0524 
0.0492 
0.0440 
0.0522 
0.0556 

0.0472 
0.0456 
0.0434 
0.0440 
0.0524 

0.7     -0.2 
 
 

c = 0.5 

0.1 
0.9 
1.5 
2.5 
50 

0.0472 
0.0518 
0.0502 
0.0492 
0.0489 

0.0528 
0.0498 
0.0508 
0.0513 
0.0516 

0.0555 
0.0471 
0.0453 
0.0468 
0.0451 

0.0506 
0.0472 
0.0566 
0.0476 
0.0504 

0.0568 
0.0472 
0.0528 
0.0438 
0.0534 

0.0556 
0.0458 
0.0466 
0.0464 
0.0484 

0.0526 
0.0496 
0.0458 
0.0460 
0.0560 

0.472 
0.444 
0.452 
0.426 
0.540 

0.5     -0.1 
 
 

c = 0 

0.1 
0.9 
1.5 
2.5 
50 

0.0488 
0.0494 
0.0498 
0.0504 
0.0496 

0.0496 
0.0503 
0.0500 
0.0487 
0.0499 

0.0552 
0.0482 
0.0448 
0.0432 
0.0458 

0.0546 
0.0440 
0.0454 
0.0438 
0.0466 

0.0582 
0.0466 
0.0430 
0.0448 
0.0456 

0.0554 
0.0422 
0.0466 
0.0472 
0.0462 

0.0532 
0.0586 
0.0564 
0.0556 
0.0544 

0.526 
0.548 
0.552 
0.532 
0.532 

Notes: All DGPs are STAR(1) processes, with true AR and location parameters given in the first column and transition function slope parameters in the 
second column. The remaining columns report empirical rejection frequencies for the model-based bootstrap test of the unit root null hypothesis, obtained 
using 5,000 Monte Carlo replications, 400 bootstrap replications and a nominal significance level of 5% for sample sizes of T = 100, 300.  Lags refers to the 
number of autoregressive lags included in the estimated model, while Form refers to logistic versus exponential transition function. Except for the results in 
the third and fourth columns, the transition function parameters are estimated. 
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Table 4: Power Analysis 

  Linear ADF Test Block Bootstrap Model-Based Bootstrap 

  T = 100 T = 300 T = 100 T = 300 T = 100 T = 300 
Parameters (Roots) γ  ρ = -0.05 ρ = -0.1 ρ = -0.05 ρ = -0.1 ρ = -0.05 ρ = -0.1 ρ = -0.05 ρ = -0.1 ρ = -0.05 ρ = -0.1 ρ = -0.05 ρ = -0.1 

α1 =  -0.4    α2 = 0.1 

(0.96, -0.41) 
(0.93, -0.43)    

(0.94, 0.11) 
(0.89, 0.11) 

c = 1.1 

0.1 
0.9 
1.5 
2.5 
50 

0.114 
0.095 
0.090 
0.080 
0.086 

0.246 
0.214 
0.204 
0.204 
0.211 

0.471 
NALow 
NALow 
NALow 
NALow 

0.959 
NALow 
NALow 
NALow 
NALow 

0.065 
NALow 
NALow 
NALow 
0.061 

0.128 
NALow 
NALow 
NALow 
0.123 

0.350 
NALow 
0.342 
NALow 
NALow 

0.890 
NALow 
0.874 
NALow 
NALow 

0.170 
0.144 
0.147 
0.151 
0.141 

0.329 
0.287 
0.293 
0.303 
0.282 

0.514 
0.454 
0.448 
0.438 
0.474 

0.954 
0.934 
0.931 
0.930 
0.947 

α1 =  0.1     α2 = 0.8 
(0.94, 0.11) 
(0.89, 0.11) 

(0.88 ± 0.19i) 
(0.85 ± 0.28i) 

c = 0 

0.1 
0.9 
1.5 
2.5 
50 

0.268 
0.224 
NALow 
NALow 
NALow 

0.709 
0.640 
NALow 
NALow 
NALow 

0.970 
NALow 
NALow 
NALow 
NALow 

0.999 
NALow 
NALow 
NALow 
NALow 

0.202 
0.263 
0.271 
NAHigh 
0.269 

0.525 
0.641 
0.647 
NAHigh 
0.652 

0.932 
0.955 
0.975 
0.976 
0.971 

1.0 
1.0 
1.0 
1.0 
1.0 

0.349 
0.375 
0.373 
0.371 
0.352 

0.721 
0.761 
0.782 
0.776 
0.755 

0.971 
0.979 
0.982 
0.985 
0.986 

1.0 
1.0 
1.0 
1.0 
1.0 

α1 = 0.6      α2 = 0.1 
(0.80, 0.75) 

(0.75 ± 0.19i)   
(0.94, 0.11)  
(0.89, 0.11) 

c = 1.1 

0.1 
0.9 
1.5 
2.5 
50 

0.216 
0.215 
0.216 
0.203 
0.186 

0.602 
0.635 
0.623 
0.613 
0.578 

0.926 
NALow 
NALow 
NALow 
NALow 

0.999 
NALow 
NALow 
NALow 
NALow 

0.155 
0.192 
0.190 
0.215 
0.206 

0.402 
0.538 
0.517 
0.538 
0.518 

0.863 
0.914 
0.923 
0.914 
0.918 

1.0 
1.0 
1.0 

0.999 
1.0 

0.305 
0.321 
0.340 
0.336 
0.340 

0.660 
0.708 
0.730 
0.737 
0.721 

0.926 
0.955 
0.967 
0.954 
0.958 

1.0 
1.0 
1.0 
1.0 
1.0 

α1 = 0.7  α2 = -0.2 
(0.83 ± 0.14i)  
(0.80 ± 0.24i)   

(0.96, -0.21)  
(0.92, -0.22) 

c = 0.5 

0.1 
0.9 
1.5 
2.5 
50 

0.167 
NALow 
NALow 
NALow 
NALow 

0.488 
NALow 
NALow 
NALow 
NALow 

0.840 
NALow 
NALow 
NALow 
NALow 

0.997 
NALow 
NALow 
NALow 
NALow 

0.108 
0.160 
0.179 
0.191 
0.175 

0.282 
0.432 
0.488 
0.485 
0.457 

0.755 
0.855 
0.892 
0.903 
0.870 

0.996 
0.999 
1.0 
1.0 
1.0 

0.252 
0.267 
0.297 
0.280 
0.282 

0.573 
0.619 
0.660 
0.627 
0.646 

0.860 
0.906 
0.935 
0.927 
0.916 

0.999 
1.0 
1.0 
1.0 
1.0 

α1 = 0.5   α2 = -0.1 
(0.89, 0.56)  

(0.70 ± 0.10i)   
 (0.95, -0.10) 
(0.91, -0.11) 

c = 0 

0.1 
0.9 
1.5 
2.5 
50 

0.158 
0.137 
NALow 
NALow 
NALow 

0.434 
0.365 
NALow 
NALow 
NALow 

0.790 
NALow 
NALow 
NALow 
NALow 

0.998 
NALow 
NALow 
NALow 
NALow 

0.102 
0.108 
0.106 
0.103 
0.110 

0.249 
0.260 
0.291 
0.268 
0.285 

0.692 
0.690 
0.686 
0.705 
0.711 

0.992 
0.995 
0.994 
0.996 
0.996 

0.237 
0.212 
0.209 
0.199 
0.214 

0.517 
0.481 
0.460 
0.476 
0.494 

0.804 
0.754 
0.804 
0.812 
0.793 

0.998 
0.999 
0.999 
1.0 

0.999 
Note: All DGPs are stationary STAR(1) processes, written as in equation (13) of the text, with true parameters, α1, α2 and location parameter c given in the first column and transition function slope 
parameters in the second column. Under each value αi (i = 1, 2), the roots of the characteristic equation are given when this value is used in (13) in conjunction with ρ = -0.05 (first row) and ρ = -0.10 
(second row). Size-adjusted empirical rejection probabilities are reported in the remaining columns, using 50,000 Monte Carlo replications for the standard ADF test, 5,000 Monte Carlo replications 
and 400 bootstrap replications for the bootstrap-based unit root tests. The ADF test employs a data-based lag selection criterion. The block bootstrap uses an ADF regression augmented with one 
autoregressive lag and a third order Taylor series approximation to the transition function, using bootstrap length b = 8 when T = 100 and b = 10 for T = 300. The model-based bootstrap assumes 
unknown parameters, lag order and LSTAR/ESTAR form. NALow indicates that the power is not computed due to undersizing (empirical size less than 0.04), while NAHigh indicates the ones that are 
not computed due to oversizing (empirical size more than 0.06), in relation to the nominal size of 5 %. 
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