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Abstract

This paper extends the analyses of Godfrey and Orme (1996), on the behaviour of
parametric conditional moment tests in the presence unconsidered local alternatives,
to that of kernel-based tests of conditional moment restrictions. Particular attention
is paid to tests of separate moment conditions. The theoretical results presented
in this paper provide a method of identifying whether, or not, a given test will be
sensitive to a particular type of (unconsidered) local model misspeci�cation and how
any such sensitivity manifests itself. Insensitivity helps isolate possible sources of
misspeci�cation, whilst a characterisation of the sensitivity can aid the construction
of robust procedures.

1 Introduction

This paper is concerned with testing the adequacy of a speci�ed parametric model (also
called the null model), with the motivation being to provide an analysis of a particular class
of (non-parametric based) statistical procedures which can be used for this purpose. The
class of tests considered is, itself, a subset of a much larger collection of procedures that
have been proposed as �consistent� tests of (particular) Conditional Moment (hereafter
CM) restrictions. They are described as consistent because the technology employed en-
sures that each test procedure will be consistent against all model misspeci�cations which
induce failure in any of the CM restriction(s) that they are designed test. For example,
a consistent test of a speci�ed regression functional form is consistent against any failure
of that speci�cation. Thus, these procedures can equivalently be called consistent tests
for the failure of particular CM restriction(s). The CM restrictions under scrutiny can
be, either, explicit in the estimation of parametric models (e.g., the conditional zero mean
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Dissertation at the University of Manchester. He thanks Javier Hidalgo and Len Gill for helpful comments
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assumption for the error in a regression model) or implied by the parametric model (but
not directly exploited in the estimation of key parameters).

Following the in�uential papers by Bierens (1982, 1990), two approaches have been
taken (broadly speaking): those which employ smooth kernel-based based methods, or
those which employ integral transforms. For example, and to name but a few, Eubank
and Spiegelman (1990), Härdle and Mammen (1993), Fan and Li (1996), Zheng (1996),
Ellison and Ellison (2000) and Hsiao and Li (2001), adopt the former, whilst Bierens
and Ploberger (1997), Stute (1997), Stinchcombe and White (1998), Whang (2000, 2001),
adopt the latter. Initially, and for the most part, the particular focus has been regres-
sion functional form through testing the assumed parametric mean speci�cation of the
dependent variable of interest. However, Hong (1993), Zheng (1994) and Hsiao and Li
(2001) describe consistent tests for conditional heteroskedasticity in parametric regression
models, which assume correct regression functional form. Stinchcombe and White (1998)
consider a consistent test of the information matrix equality, conditional on regressors,
in a fully speci�ed parametric model and Whang (2001) develops tests of more general
CM restrictions in order to assess the validity of parametric assumptions. These can be
viewed as examples of testing CM restrictions that are implied by the speci�ed null model
which, as such, might be exploited for post-estimation inferential purposes (e.g., in the
calculation of parameter estimate standard errors). More recently, Delgado, Dominguez
and Lavergne (2006) develop consistent tests (both smooth kernel and integral transform
based) of the multiple CM restrictions that de�ne a speci�ed parametric model; their
framework encompasses all extremum estimation methods, such as generalised method of
moments and quasi maximum likelihood.

The above, and related literature, provides applied workers with, potentially, an array
of what we shall term Consistent Conditional Moment (hereafter CCM) tests (joint or sep-
arate) which might be employed, post estimation, to assess the validity of CM restrictions
(simultaneously or separately) explicit in, or implied by, a speci�ed parametric model.
However, the analyses to date (and to the best of our knowledge) provide no general the-
oretical framework for describing the sensitivity of separate CCM tests to the failure of
other CM restrictions that they are not speci�cally designed to test. For example, if the
joint test proposed by Delgado et al (2006) is disaggregated into a procedure which assesses
the signi�cance of separate tests of the individual CM restrictions employed in estimation
(as they suggest in their Example 1), then the e¤ect of one source CM restriction failure
on the behaviour of each separate CCM test has not been identi�ed. In addition, when
assessing the validity of CM restrictions not employed in estimation the e¤ect of general
model misspeci�cation on the asymptotic behaviour of the appropriate CCM test has not
been analysed.

From a practical point of view, results about such sensitivity (or insensitivity) could
be of use if a researcher wishes to employ a CCM test to identify and characterise the
failure of particular CM restrictions; e.g., correct regression functional form, conditional
homoskedasticity and/or conditional symmetry. In such a situation, and as a complement
to the consistency property of the CCM test (against its own particular CM restriction
failure), it would be desirable, and useful, to know whether the test remains insensitive
to alternative model misspeci�cations of the model (that it was not designed to test)
and, if not, how it might (potentially) be made robust.1 Therefore, evidence concerning
the behaviour of these tests under di¤erent sources of misspeci�cation is important. As
an example, a particular point of departure is the result in Godfrey and Orme (1996,
Example 4.3) which demonstrates that, in the general linear model, a parametric test for
heteroskedasticity (e.g., Koenker�s, 1981, test) is insensitive to local (regression) functional
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form misspeci�cation (or omitted variables): is there similar insensitivity for CCM tests
of conditional homoskedasticity?

With these issues in mind, this paper employs asymptotic local analysis in order to
provide some qualitative guidance as to the sensitivity of CM restriction tests to uncon-
sidered local alternatives.2 Attention is restricted to a class of smooth kernel-based tests,
although the �asymptotic local�methodology could also be used to analyse tests based
on integral transforms. As in Godfrey and Orme (1996), and because the speci�ed model
is parametric, the approach taken is to allow misspeci�cation by entertaining (hypothet-
ical) alternative parametric models (i.e., sources of misspeci�cation) to characterise the
true (but unknown) data generation process which: (i) are local generalisations of the
speci�ed parametric model, and (ii) could imply violations of all, some or none of the
CM restrictions under test. The more general parametric model is simply a convenient
arti�cial device, or analytical tool, which can be used to investigate the e¤ect of di¤er-
ent types of misspeci�cation and is consistent with existing Monte Carlo studies in the
literature, all of which provide evidence on the power of these CCM test procedures by
considering generalisations of the estimated parametric model; see, for example, Zheng
(1996), Whang (2000), Ellison and Ellison (2000), Hsiao and Li (2001) and Delgado et al
(2006), amongst many others. The resulting asymptotic local analysis is new since (i) it
provides an analytical framework in which to place these Monte Carlo studies; (ii) it sheds
light on the e¤ect of di¤erent sources of misspeci�cation; and, (iii) it requires a treatment
of the (potentially) di¤ering rates of convergence of the parameter estimator, when the
speci�ed null model is correct and under the entertained local alternatives, in order to
identify sources of asymptotic local sensitivity. In particular, existing analyses are silent,
regarding (ii), because only local violations of the speci�c CM restrictions under test have
been considered and not sources of local model misspeci�cation which might lead to such
violations.

Intuition suggests that CCM tests should be sensitive to all misspeci�cations which
imply a failure of any of the particular CM restrictions under test. Indeed, under various
scenarios described by Godfrey and Orme (1996), where certain parametric tests are shown
to be insensitive to local alternatives, it is found the �corresponding� CCM tests are
sensitive; but not in all cases. Moreover the analysis suggests how a CCM test might be
made robust to (unconsidered) local alternatives. Section 2 contains the main result of
the paper. Some implications are discussed in Section 3, and some Monte Carlo evidence
on the e¢ cacy of the theoretical predictions is presented in Sections 4 and 5. Section 6
concludes.

2 The Asymptotic Behaviour of the Test Statistic

In order not to obfuscate the substantive conclusions, independently and identically dis-
tributed data and continuous conditioning/regressor variables are assumed (as in Delgado
et al (2006)) and the ensuing analysis extends existing studies of local power of kernel-
based test statistics (e.g., Zheng, 1996). Thus, let fWigni=1 be a simple random sample
drawn on a random variableW from an unknown Data Generation Process (DGP), and let
the continuous random variable X 2 Rk be a subvector ofW with probability density f(:).
The asymptotic behaviour of any test criterion, constructed under some null hypothesis,
will depend upon the true (but, in general) unknown DGP.
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2.1 The True DGP & Assumptions

The unknown DGP is indexed by a (p� 1) parameter vector partitioned as ' =
�
�0; 
0

�0 2
��� � Rp; with true value '0 =

�
�00; 


0
0

�0
; and is de�ned by a parametric model in terms

of the estimation criterion Qn('); which yields ~' � argmax'Qn('): Throughout, unless
stated otherwise, expectations are taken with respect the true DGP. It is assumed that
standard regularity conditions support the following assumptions:

Assumption A

1. ~'� '0
p! 0; and '0 lies in the interior of the compact and convex parameter space

�� � � Rp:

2.
p
n@Qn('0)=@' = Op(1):

3. @2Qn(')=@'@'0 � J(')
p�! 0; uniformly in '; with J(') = O(1); continuous in ';

and J ('0) is negative de�nite.

These are su¢ cient for our purposes, in this paper, and covers standard estimation
procedures, such as nonlinear least-squares, instrumental variables, generalized method of
moments, or pseudo-maximum likelihood. In addition, the following conditional moment
restrictions are satis�ed

E ["(W ;'0)jX] = 0 a:s: (1)

where "(W ;') is a (m� 1) vector of �generalised errors�, with typical element "r(W ;');
r = 1; :::;m: It is possible, for example, that (1) is exploited explicitly in the de�nition of
Qn('); see Delgado et al (2006). Whether or not this is the case, all (or a subset of) the
conditional moment restrictions of (1) are to be tested after estimation of the speci�ed, or
null, model, which is obtained by (erroneously) assuming that 
 = 0: Thus, we imagine
that the unknown DGP is a generalisation of the speci�ed null model and that observations
on X are available for estimation, and testing, of the null speci�cation.

In order to introduce some necessary notation and additional assumptions, which af-
ford the relatively straightforward investigation of the asymptotic behaviour of smooth

kernel-based test statistics, let Kij = K

�
Xi �Xj

h

�
; K(:) : Rk ! R be a kernel func-

tion, where h = h(n) is a positive bandwidth parameter. De�ne tij(') = ("(Wi;') �
"(Wj ;'))Kij ; (m� 1) ; i; j = 1; :::; n; where � denotes the Hadamard product (i.e., tij(�)
has typical element "r(Wi; �)"r(Wj ; �)Kij); !rs(W ;') = "r(W ;')"s(W ;'); r; s = 1; :::;m;
and, C(X;') = E ["(W ;')"(W ;')0jX] ; (m�m) ;which has typical element �rs(X;') =
E [!rs(W ;')j X]. The CCM test procedures rely on the properties of the following second
order degenerate U-Statistic:

Tn(') =
1

n(n� 1)hk
nX
i=1

X
j 6=i

tij('):

In order to develop the substantive results, standard assumptions that appear in this
literature will be adopted, as described variously in the articles referred to in Section 1
and/or in the U-Statistics literature.

Firstly, certain smoothness conditions are employed, by restricting functions of interest
to the following class:

De�nition L�; � > 0; is the class of functions l(:) : Rk ! R satisfying the following: 9
� > 0 such that for all x 2 Rk; supkdk�� jl(x+ d)� l(x)j = kdk � L(x) and l(:) and
L(:) have �nite moments of order � (or are bounded if � = +1).
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Assumption B

1. K(:) is even, bounded, integrates to 1 and limkuk!1 kukk jK(u)j = 0:

2. h! 0 as n!1; such that nhk !1:3

3. f(:) 2 L1:

4. "r(W ;'0), r = 1; :::;m; satis�es the following:

(a) E ["r(W ;'0)jX] = 0:
(b) E [!rs(W ;'0)jX] 2 L4:

(c) E
h
j"r(W ;'0)j4 jX

i
2 L2:

It is assumed, for simplicity of exposition, that K(:) is a symmetric density function,
although this is not strictly necessary. Assumption B is su¢ cient for the following:



�1=2
0 nhk=2Tn('0)

d! N(0; Im); (2)

where


0 = 2E [fC(X;'0)� C(X;'0)g f(X)]
Z
K2 (u) du

has typical element 2E
�
�2rs(X;'0)f(X)

� R
K2 (u) du; r; s = 1; :::;m; and is �nite and

positive de�nite. This result is the multivariate generalisation of Hall�s (1984) Central
Limit Theorem for a second order degenerate U -Statistic.

In addition, the following assumptions are su¢ cient to justify the asymptotic expan-
sions employed to obtain the limit distribution of the CCM test indicator:4

Assumption C

For all r = 1; :::;m; and each w; "r (w; �) is thrice di¤erentiable in '; and let
gr(W ;') = @"r(W ;')@'; (p� 1) ; with typical element fgrt(W ;')g ; t = 1; :::; p;
Gr(W ;') = @

2"r(W ;')=@'@'
0, (p� p) ;

Fr(W ;') = @vecGr(W ;')=@';
�
p2 � p

�
;

satisfying:

1. E [j"r(W ;'0)j jX] 2 L2:

2. For all t = 1; :::; p : (i) E[jgrt(W ;'0)j8=3] < 1; (ii) E [grt(W ;'0)jX] 2 L8=3; (iii)
E[jgrt(W ;'0)j jX] 2 L2; and, (iv) E[jgrt(W ;'0)j2 jX] 2 L2:

3. (i) E[kGr(W ;'0)k8=3] <1; and, (ii) sup' kGr(W ;')k < M(W ), for all r; E[M(W )] <
1 with �(X) = E[M(W )jX] 2 L2:

4. (i) Fr(W ;') is continuous in ', for each w; and, (ii) sup' kFr(W ;')k < P (W ); for
all r; E[P (W )] <1 with E[P 2(W )jX] <1:

Some remarks on Assumption C are appropriate. First, rather than the primitive
assumptions above, one could appeal to rather high-level assumptions via uniform laws
of numbers, as described by Newey (1991, Corollary 4.1) and Newey and Powell (2003,
Lemma A2). Second, armed with Assumptions A, B, C1 C2(i),(ii) and C3, and under the

true DGP (if it were known), it is then straightforward to show that ~
�1=2nhk=2Tn(~')
d!
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N(0; Im) where ~
 is any consistent estimator for 
0: For example, under some additional

dominance assumptions, it can be shown that
2

n(n� 1)hk
Pn
i=1

P
j 6=i tij(~')tij(~')

0 will be

consistent for 
0: Thirdly, the additional restrictions embodied in C2(iii),(iv) and C4 (in-
cluding thrice di¤erentiability of "r(W ;')) are slightly stronger than required in previous
analyses of local power. This is partly because (1) is rather general but more importantly
because (parametric) local generalisations of the speci�ed null model are to be investigated
directly, rather than (non-parametric) local failure of the conditional moment condition,
(1). This distinction is discussed further in Section 2.3.

Suppose, however, that the researcher does not have knowledge of Qn(') and, instead,
employs a misspeci�ed a model that erroneously sets 
 = 0; yielding the estimator '̂ =
(�̂
0
; 00)0; which solves max'Qn(') subject to 
 = 0; see Section 2.2. What e¤ect will

this have on smooth kernel-based statistics, and associated test procedures, constructed
from Tn('̂) and designed to test whether (1) holds, but with 
0 = 0? This is the general
question that is addressed in the Sections 2.2 and 2.3, below, and the following example
illustrates a particular situation that we have in mind:

Example 1 Suppose W 0 = (Y;X 0) and the true DGP is characterised by the regres-
sion E[Y jX] = g(X); for some (scalar) function g(X); such that E[U jX] = 0 a:s: and
E[U2jX] = �20 a:s:; where U = Y � g(X). (This generalises the case of omitted variables
in which g(X) = X 0�0 + Z

0
0; where Z = E[Z�jX] for a vector of �omitted variables�
Z�) However, the researcher performs a linear regression of Y on X and then constructs
a CCM test of conditional homoskedasticity. To place this within the context of the pre-
ceding discussion, let z(X) = g(X) �X 0�0 � Z; where Pr [jg(X)�X 0�j > 0] = 1 for all
�: On this basis, de�ne the scalar generalised error "(W ;') = (Y �X 0� � 
Z)2 � �2;
so that there exists a '0 satisfying E["(W ;'0)jX] = 0 a:s:, with '0 = (�0; �2; 
): There-
fore, hypothetically speaking, this moment restriction a¤ords an asymptotically valid test of
conditional homoskedasticity based on Tn(~'); where ~'0 = (~�

0
; ~�2; ~
) derives from a linear

regression of Y on (X 0; Z); and (moreover) nhk=2Tn(~') retains its limit null distribution.
In our story, however, the speci�ed (null) model imposes the restriction of 
 = 0 and de-
livers the estimator �̂

0
= (�̂

0
; �̂2); following a (linear) least squares estimation of Y on X

alone; from which the test indicator constructed from Tn('̂) is employed in order to assess
the adequacy of the conditional homoskedasticity assumption. The question we wish to
address is �how sensitive will this latter procedure be to misspeci�ed regression functional
form, as characterised by 
 6= 0?�

2.2 The Null DGP and Test Procedure

The true DGP is unknown to the researcher. Rather, the speci�ed null model imposes
the restrictions of H
 : 
 = 0 in Qn(') giving QHn (�) � Qn('H); where 'H = (�0; 00)0:

This yields the estimator '̂ = (�̂
0
; 00)0, �̂ = argmax�QHn (�); satisfying plimn!1 '̂ = '� =�

�0�; 0
0�0 ; and �� = �0 if the null model is true. Indeed, by (1), if the null model is true

then EH ["H (W ; �0) jX] = 0 a:s:; where "H (W ; �) = " (W ;'H) and expectations denoted
EH [:] ; respect the null DGP. In the light of this, the �consistent�kernel-based test statistic
is designed to test

H0 : E ["H (W ; ��) jX] = 0 a:s:, for some �� 2 �; (3)

against the (implicit) alternative5 of

H1 : E ["H (W ; �) jX] 6= 0 a:s:, for all � 2 �; (4)
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rather than the alternative of 
 6= 0: In order to construct a consistent one-sided procedure,
the test is based on the scalar indicator Vn('̂); rather than Tn('̂) directly, where

Vn('̂) =
1

n(n� 1)hk
nX
i=1

X
j 6=i

vij('̂) = Tn('̂)
0� (5)

vij('̂) = "̂0i"̂jKij ; "̂i = "(Wi; '̂) = "H(Wi; �̂):

and � = (1; :::; 1)0 is the (m� 1) sum vector; see, for example, Delgado et al (2006).
By (1), but under H
 : 
 = 0; (3) holds with �� = �0 and Assumptions A-C(i),(ii),C3

imply that plimn!1 Vn('̂) = 0, because (3) is true. Furthermore,

nhk=2Vn('̂)=
p
�0

d�! N(0; 1) (6)

where

�0 = 2E
h
f(X) kCH(X; �0)k2

i Z
K2 (�) d� (7)

in which CH(X; �0) = EH
�
"H (W ; �0) "H (W ; �0)

0 jX
�
and kAk2 = tr (A0A) =

P
r

P
s a

2
rs

for any matrix A = farsg : If �̂n denotes any consistent estimator of �0; then the statistic
nhk=2Vn('̂)=

p
�̂n

d�! N(0; 1); under the null model of H
 : 
 = 0: As noted previously,
under some additional dominance conditions, the choice

�̂n =
2

n(n� 1)hk
nX
i=1

X
j 6=i

v2ij('̂)

is consistent for �0 and leads to the asymptotically valid and relatively simple-to-compute
statistic

Jn =
Pn
i=1

P
j 6=i vij('̂)q

2
Pn
i=1

P
j 6=i v

2
ij('̂)

A consistent, one-sided test procedure, with nominal signi�cance level � � 100%; is to
reject H0; in favour of H1; when Jn > c�; where c� satis�es 1 � �(c�) = � and �(:) is
the standard normal distribution function. Several studies, however, have found that such
critical values are unreliable, because of slow convergence depending upon the choice of
bandwidth, h; and number of conditioning variables, X: To try and improve �nite sample
behaviour, bootstrap procedures could (or should) be employed (tailored to the particular
test and null hypothesis under consideration) and these will be described in Section 4.2. 6

The consistency of the test procedure based on Jn derives from the fact that, under the
true DGP, plimn!1 Vn('̂) = E[f(X) kb(X;'�)k2], where b(X;'�) = E[" (W ;'�) jX] =
E["H (W ; ��) jX]; thus, whenever (4) holds; plimn!1 Vn('̂) = E[f(X) kb(X;'�)k2] > 0
implying a that a one-sided test procedure rejects the null for large values of Jn: It is
in this sense that the test procedure is a consistent test of (3) against (4): However, this
does not ensure that the procedure will be powerful against all sources of null model
misspeci�cation. The question is, then, �when might tests based on (5), with (4) as the
implicit alternative, be relatively insensitive to other (unconsidered) departures from the
speci�ed null model?�. Following, for example, Godfrey and Orme (1996) the framework
of local alternatives, laid out below, allows an investigation of this.
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2.3 Asymptotic Local Analysis

In order to derive the Op(1) limit distribution of nhk=2Vn('̂) under the true DGP, local gen-
eralisations of the null model are considered. Due to the convergence rate of nhk=2Vn('̂);
the true (but unknown) DGP is characterised by the Pitman sequence of 
0 = �=

p
nhk=2,

0 � k�k < 1; '00 =
�
�00; 


0
0

�
; with the speci�ed null model emerging when � = 0 and

where the dependence of '0 on n is suppressed for notational convenience. By partition-
ing � into separate sub-vectors the impact of a number of unconsidered local alternatives
can be identi�ed. However, some care is needed since, for � 6= 0; the sequence of alterna-
tives converges to the null model at a slower rate than

p
n; implying

p
n(�̂� �0) 6= Op(1),

in general (unlike the situation in Godfrey and Orme, 1996). The following is proved in
the Appendix.

Theorem 1 De�ne the following: J('0) =
�
J�� J�

J
� J



�
; � =

�
J�1�� J�
�
��

�
; d (X;') =

E

�
@"(W ;')

@'0

���� X� and �('0) = E hkd(X;'0)�k2 f (X)i :
Under the true DGP characterised by 
0 = �=

p
nhk=2, 0 � k�k < 1; and Assumptions

A-C

nhk=2Vn('̂)
d! N (�0;�0)

Jn
d! N(�

�1=2
0 �0; 1)

where �0 = limn!1 �('0) and �0 = limn!1 �
0
0� is de�ned at (7).

This result articulates the sensitivity of smooth kernel-based test statistics, nhk=2Vn('̂);
to local model misspeci�cation. The statistic will be insensitive if, and only if, �0 =
limn!1 �('0) = 0: From Assumption B3, nhk=2Vn('̂) will thus be insensitive to local
misspeci�cation if and only if d(X;'0)� = o(1); a:s:; for all � 6= 0:

Remark 1 Writing d�(X;') =
�
@"(W ;')

@�0

���� X� and d
(X;') � @"(W ;')@
0

���� X� ; the sen-
sitivity is decomposed into two parts since d(X;'0)� = d�(X;'0)J

�1
�� J�
� � d
(X;'0)�:

This decomposition is reminiscent of that obtained by Godfrey and Orme (1996, equation
(17)), with d
(X;'0)� providing the �direct� e¤ect and d�(X;'0)J

�1
�� J�
� the �indirect�,

or estimation, e¤ect generated by the local inconsistency of �̂: However, the crucial di¤er-
ence is that d(X;'0) is a conditional expectation, not �unconditional� as in Godfrey and

Orme�s analysis. Because �0 = limn!1E
h
kd(X;'0)�k2 f (X)

i
; it is, of course, exactly

this di¤erence which helps deliver the consistency of CCM tests, against certain sources of
misspeci�cation, where the corresponding parametric test is inconsistent. Notice also that
the distribution of X will also e¤ect the sensitivity of the test to non-zero �:
Proposition 1, in the Appendix, shows that (in general)

p
nhk=2(�̂��0) = Op(1): However,

if J�
 = o(1) then
p
n(�̂ � �0) = Op(1) and �('0) = E

h
kd
(X;'0)�k2 f (X)

i
; for all

� 6= 0:

The proof of Theorem 1, in the Appendix, provides a relatively direct veri�cation
of the result. An alternative strategy, under local generalisations of the speci�ed null
model, would be: (i) de�ne �� = �0+ J�1�� J�

0; (ii) expand nh

k=2Vn('̂) about �� yielding
nhk=2Vn('̂) = nh

k=2Vn('�) + op(1); (iii) show that nh
k=2Vn('�) = nh

k=2Vn('0) + �('0) +
op(1): Existing analyses of asymptotic local power, for example, in Zheng (1996, Section 4)
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or Hsiao and Li (2001, Section 3), do not entertain this last stage and thus di¤er from the
approach taken here. These, and other, studies have only been concerned with failure of the
CM restriction under test and have therefore taken the null to be E ["H(W ; ��)jX] = 0;

a:s:; where �̂ � ��
p! 0; with local alternatives being E ["H(W ; ��)jX] = cnl(X); cn =

O(n�1=2hk=4) in which l(X) is some unknown function. This obviates the need to address
the local inconsistency of �̂ since, under this sequence, nhk=2V ('̂) = nhk=2Vn('�) + op(1),
where '0� = (��; 0

0):Writing u = "H(W ; ��)�cnl(X); and substituting for "H(W ; ��); yields
nhk=2Vn('�)

d! N(��;�0); where �� = E
h
f(X) kl(X)k2

i
: Notice that �� is unknown, so

that this result is silent about the e¤ects of di¤ering sources of local model misspeci�cation
which might induce violations of E ["H(W ; ��)jX] = 0; a:s:

The motivation of this paper is quite di¤erent in that sources of local model misspec-
i�cation, which may (or may not) lead to local CM restriction violations, are of concern.
In this sense, Theorem 1 re�nes the asymptotic local analysis summarised in the previous
paragraph. It might, therefore, be useful to relate Theorem 1 to existing results in the
literature. To do so, consider an expansion of b(X;'�); as de�ned above, about '� = '0:
Because b(X;'0) = 0; by (1), and imposing su¢ cient regularity on the conditional distri-
bution of W given X so that @b(X;'0)=@' = E[d(X;'0)jX]; we obtain

b(X;'�) = d(X;'0) ('� � '0) + o(k'� � '0k):

For local model misspeci�cation, and following Kiefer and Skoog (1985), ('� � ') can be
approximated by �=

p
nhk=2 and making this substitution gives b(X;'�) �= d(X;'0)�=

p
nhk=2 �

l(X)=
p
nhk=2; for large n. Thus, to the same order of approximation, �0 = ��, and the

result in Theorem 1, re�ects the induced local misspeci�cation of the moment condition
under test. The following example illustrates:

Example 2 Consider Zheng�s (1996) test for misspeci�ed (regression) functional form,
assuming that the null speci�cation is a linear regression of Y on X. As in Example 1 and
in order to exploit Theorem 1, the �true�DGP is expressed as E[Y jX] = X 0�0+ 
0z(X);
where z(x) = g(x) � x0�0 for some unknown scalar function g(:). When 
0 = 0; the true
DGP is a member of the speci�ed family of models, but when 
0 6= 0 it is not with, in
particular, 
0 = 1 yielding E[Y jX] = g(X): For 
0 = �=

p
nhk=2; the true DGP describes

local generalisations of the speci�ed null model that we wish to exploit. De�ne Qn(') =
n�1

Pn
i=1(Yi �X 0

i� � 
Zi)2; Zi = z(Xi); so that ~� � �0
p! 0 and ~
 � 
0

p! 0; under this
�true�DGP. The speci�ed (null) model is obtained by setting 
 = 0, in Qn('); yielding the
least squares estimator �̂; and �� = �0+��1xx�xz
0 = (1�
0)�0+��1xx�xg
0; where �xx =
E [XX 0] ; �xz = E [z(X)X] and �xg = E[g(X)X]: Furthermore, if "(W ;') = Y �X 0��
Z
and Zheng�s test is carried out with "(W ; '̂) = "H(W ; �̂) = Y �X 0�̂; then it is easily shown
that E ["H (W ; ��) jX] =

�
z(X)�X 0��1xx�xz

�

0 =

�
g(X)�X 0��1xx�xg

�

0: Therefore, un-

der local generalisations of the speci�ed, with 
0 = �=
p
nhk=2, 0 � j�j < 1; the moment

condition under test will also be locally misspeci�ed (to exactly the same order of approx-
imation) as E ["H (W ; ��) jX] = n�1=2h�k=4l(X) with l(X) =

�
g(X)�X 0��1xx�xg

�
� =�

z(X)�X 0��1xx�xz
�
�: This is consistent with Zheng (1996, Section 4) and is also in ac-

cord with n�1=2h�k=4d(X;'0)�; because d(X;'0) = � (X 0; Z 0) and � =
�
��1xx�xz�
��

�
:
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3 Applications

As noted in the Introduction, the results of Godfrey and Orme (1996, Example 4.3) show
that a parametric test for heteroskedasticity (e.g. Koenker�s, 1981, test) is insensitive to
local (regression) functional form misspeci�cation (or omitted variables). This is also true
of a CCM test for conditional heteroskedasticity, as follows. The scenario is as described
in Examples 1 and 2, and de�ne Qn(') = �n�1

Pn
i=1fln�2 + (Yi �X 0

i� � 
Zi)
2 =�2g,

with '0 =
�
�0; �2; 


�
: The speci�ed null model, which imposes 
 = 0; yields �̂

0
= (�̂

0
; �̂2)

and "̂ = "H(W ; �̂) = (Y �X 0�̂)2 � �̂2 = Û2 � �2; say, where here (and in what follows)
Û = Y �X 0�̂: An asymptotically valid (scalar) test statistic is

Hn �
Pn
i=1

P
j 6=i vij('̂)q

2
Pn
i=1

P
j 6=i v

2
ij('̂)

(8)

vij('̂) = (Û2i � �2)(Û2j � �̂2)Kij

as discussed in Section 2.2. Under these assumptions, and where 
0 = �=
p
nhk=2, 0 �

j�j <1; it is straightforward to show that (in the notation of Theorem 1)

d (X;'0) =
�
00;�1; 00

�
� =

24 ��1xx�xz�0
��

35
where �xx and �xz are de�ned as before and d(X;'0) and � are partitioned conformably
giving d(X;'0)� = 0: Thus, an application of Theorem 1 yields �0 = 0; so that the CCM
test for conditional heteroskedasticity is insensitive to local regression function misspeci-
�cation, of the order n�1=2h�k=4:

An intuitive demonstration of this result runs as follows. With 
0 6= 0; �̂ � ��
p! 0;

where �� = �0 + �
�1
xx�xz
0; and �̂

2 � �2�
p! 0 where �2� = E[U2� ]; U� = Y � X 0��: We

can write U� = U + (Z �X 0��1xx�xz)
0 = U + ~Z
0; say, so that �
2
� = �

2
0 + 


2
0E[

~Z2]; and
E[U2� jX] = �20 + 
20E[ ~Z2jX]: This yields E

�
U2� � �2�jX

�
= 
20(E[

~Z2jX]� E[ ~Z2]) = O(
20)
which is o(n�1=2h�k=4); under the speci�ed local alternatives, and thus not detectable at
this order of approximation.

The above conclusion is useful (and extends to the case where, under the null, the con-
ditional variance is parametrically speci�ed as E[U2jX] = �(X; �0) > 0) since it suggests
a CCM test for misspeci�ed functional form, de�ned as

Fn �
Pn
i=1

P
j 6=i vij('̂)q

2
Pn
i=1

P
j 6=i v

2
ij('̂)

(9)

vij('̂) = ÛiÛjKij

and a CCM test for misspeci�ed conditional heteroskedasticity, Hn (de�ned previously),
might be carried out separately in order to identify these two possible sources of mis-
speci�cation (Theorem 1 of Zheng, 1996, ensures that Fn is robust to conditional het-
eroskedasticity - local or otherwise). Moreover, asymptotically justi�ed inferences can be
obtained from the inspection of the separate tests, Fn and Hn; respectively, if they are
also asymptotically independent (under the null), since then the overall signi�cance level
of the (induced) test is simply 1�(1��F )(1��H); where, for example, �F is the marginal
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signi�cance level of Fn. From (2), or the results of Delgado et al (2006), and under the
null of 
0 = 0; asymptotic independence arises if and only if EH

�
U
�
U2 � �20

�
jX
�
= 0

or, equivalently EH
�
U3jX

�
= 0; i.e., conditional symmetry. Thus a test of conditional

symmetry would also be a test of asymptotic independence. Another reason for, perhaps,
wishing to test the assumption of conditional symmetry of the errors is when a wild boot-
strap procedure is to be employed in conjunction with Fn; see Li and Wang (1998). In
this case, the (symmetric) wild bootstrap scheme advocated by Davidson and Flachaire
(2001,2008), for example, might be expected to provide improved inferences (over other
schemes) when the (true) error distribution is also conditional symmetric; see MacKinnon
(2006, p.S7).

Following estimation of the speci�ed null model in Example 1, a CCM test of condi-
tional symmetry is based on

Sn �
Pn
i=1

P
j 6=i vij('̂)q

2
Pn
i=1

P
j 6=i v

2
ij('̂)

vij('̂) = Û3i Û
3
jKij :

However, in this case, an application of Theorem 1, with "(W ;') = (Y �X 0� � 
Z)3 ;
reveals that d (X;'0) � = 3�

2
0

�
Z �X 0��1xx�xz

�
� under local alternatives 
0 = �=

p
nhk=2,

0 � j�j < 1: Thus, whilst (clearly) being insensitive to conditional heteroskedasticity,
the limit distribution of Sn has a non-centrality parameter, �0; that is proportional to
that of Fn . Thus asymptotic local theory predicts that Sn will be highly sensitive to
local regression function misspeci�cation, unlike the corresponding parametric test for

symmetry based on the indicator
1

n

Pn
i=1 Û

3
i ; see Godfrey and Orme (1994).

This feature of the test, it might be argued, is unfortunate in that it could reject
conditional symmetry because of regression function misspeci�cation and not asymmetry
in the error distribution, per se. However, the results in Section 2.3 also provide a possible
solution. Rather than "H(W ; �̂) = Û3 as the basis for the test, employ "H(W ; �̂) =
Û3 � 3�̂2Û : The so-modi�ed statistic is

SMn �
Pn
i=1

P
j 6=i vij('̂)q

2
Pn
i=1

P
j 6=i v

2
ij('̂)

(10)

vij('̂) = (Û3i � 3�̂2Ûi)(Û3j � 3�̂2Ûj)Kij :

Clearly, under correct regression functional form, this statistic remains robust to het-
eroskedasticity. Theorem 1 implies, also, that it will be insensitive to both (locally) mis-
speci�ed regression functional form and conditional heteroskedasticity, as follows.

The true DGP is now characterised by a simple linear regression model of Y = X 0�0+

10Z + U; with Z as before, E[U jX] = 0 a:s: and E[U2jX] = �20 + 
20S, a:s:; S = S(X)
some scalar function of X: Estimation would employ

Qn(') = �n�1
nX
i=1

n
ln(�2 + 
2Si) +

�
Yi �X 0

i� � 
1Zi
�2
=(�2 + 
2Si)

o
;

Si = S(Xi); with '0 =
�
�0; �2; 
0

�
; 
0 = (
1; 
2) : Here, then,

"(W ;') =
��
Y �X 0� � 
1Z

�3 � 3(�2 + 
2S)(Y �X 0� � 
1Z)
�
;
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so that E["(W ;'0)jX] = 0 a:s:: The speci�ed null model (imposing 
 = 0) yields "̂ =
"H(W ; �̂) = Û

3 � 3�̂2Û , which is then employed to construct SMn in (10). It immediately
follows that

d (X;'0) = (0
0; 0; 00; 0):

Therefore the modi�ed test, (10), is asymptotically insensitive to local misspeci�cation of
the regression and error variance functions.

As before, the result may also be substantiated as follows. Again we can write U� =
U + ~Z
10; where, in this case, �

2
� = E[U

2
� ] = �

2
0 + 
20E[S] + 


2
10E[

~Z2]: Hence we have

E
�
U3� � 3�2�U�jX

�
= 3(�20 + 
20S)
10E[

~ZjX] + 
310E[( ~Z3jX]
�3(�20 + 
20E[S] + 
210E[ ~Z2])
10E[ ~ZjX]

= 3
10
20(S � E[S])E[ZjX] +O(j
10j3):

When the individual misspeci�cations are O
�
n�1=2h�k=4

�
; i.e., 
0 = O

�
n�1=2h�k=4

�
; the

above conditional expectation is o(n�1=2h�k=4) and thus negligible relative to the order of
approximation being employed.

In summary, and to the order of approximation considered in this paper, the asymp-
totic analysis implies the following: a CCM test of correct regression functional form
should be robust to heteroskedasticity, but its power (against incorrect regression func-
tional form) may be sensitive to heteroskedasticity and the regressor distribution, although
not to the error distribution. The CCM test of conditional homoskedasticity, should be
relatively ine¤ective at detecting incorrect regression functional form and its power against
heteroskedasticity may be sensitive to the regressor and error distribution (through the in-
�uence of moments of order 4). The modi�ed CCM test of conditional symmetry is robust
to heteroskedasticity, under correct regression functional form, but only locally insensitive
to both regression misspeci�cation and heteroskedasticity. Its power against asymmetry
in the error distribution may be sensitive to the regressor distribution and moments of
order 4 and 6 in the error distribution.

4 Monte Carlo Design

4.1 Data Generation

In order to provide some evidence on the quality of the predictions derived from the
preceding asymptotic local theory, the actual �nite sample behaviour of separate CCM
tests (designed to detect incorrect functional form, heteroskedasticity and skewness) are
investigated using a Monte Carlo experiment. The design employs generalisations of the
following linear regression model

Yi = �1Xi1 + �2Xi2 + �3X3 + �"i = X
0
i� + �"i; "i iid (0; 1); i = 1; :::; n (11)

in which Xi1 = 1; Xi3 = �Xi2+
p
1� �2Vi with Xi2 and Vi being either iid N(0; 1) random

variables or iid standardised �22 random variables which are combined with "i being either
iid N(0; 1) random variables or iid standardised �22 random variables. The speci�cation
in (11) is the null model, which is estimated by OLS order that the various tests, de�ned
in Section 4.2 below, can be carried out. There particular (true) parameter values chosen
were �0j = 1; j = 1; 2; 3; �0 = 0:5 and �0 = 1; which gives a population R2 of 75% for
(11), and sample sizes considered are n = 50; 100; 200: This shall be referred to as DGP0.
However, all the CCM test statistics considered are invariant to

�
�00; �0

�
when the true

DGP is a member of the family described by (11).
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Using the same distributional assumptions for (Xi1; Xi2; "i) and the same values for�
�00; �0; �0

�
; alternative DGPs are de�ned in the following way:

1. DGP1 : Yi = X 0
i�0 +

1
2Xi1Xi2 + �0"i:

2. DGP2 : Yi = jX 0
i�0j

1=3 + �0"i:

3. DGP3 : Yi = (X 0
i�0)

1=3 + �0"i:
7

4. DGP4 : Yi = X 0
i�0 + �0

q
1 +X2

i1"i:

5. DGP5 : Yi = X 0
i�0 +

1
2Xi1Xi2 + �0

q
1 +X2

i1"i:

6. DGP6 : Yi = jX 0
i�0j

1=3 + �0

q
1 +X2

i1"i:

7. DGP7 : Yi = (X 0
i�0)

1=3 + �0

q
1 +X2

i1"i:

In order to accommodate Theorem 1, within a uni�ed framework, each of the above can
be regarded as particular members of the following family, which de�nes generalisations
of (11),

Y = X 0� + 
1z(X) + �
q
1 + 
2X

2
1";

where z(X) = E[Y jX]�X 0�0 and E[Y jX] is speci�ed by DGP1�DGP7; respectively; e.g.,
for DGP5; z(X) = X 0�0+

1
2X1X2; � = �0; and 
1 = 
2 = 1: All of these (DGP1�DGP7)

represent misspeci�cations of (11): DGP1�DGP3 being misspeci�ed regression functional
form; DGP4; neglected heteroskedasticity; and, DGP5�DGP7 joint misspeci�cation. Note
that under DGP1; or DGP5 (misspeci�ed functional form) and multivariate normality for
(Xi1; Xi2) ; OLS estimation of (11) still yields consistent estimators for the �j , but not
when the regressor values are realisations of �2 random variables.

The �nite sample behaviour of test statistics, constructed after estimation of (11),
is investigated by employing 10; 000 arti�cial samples of (Y;X1; X2) generated according
DGP0; and 5; 000 arti�cial samples for each of DGP1 to DGP7: The results are reported
in Section 5.8

4.2 Test Statistics

OLS estimation of (11) yields estimators �̂j and residuals Ûi = Yi � �̂0 � �̂1Xi1 � �2Xi2;
from which �̂2 = n�1

Pn
i=1 Û

2
i : Based on these quantities, each CCM test statistic has the

following common structure

Jn =
Pn
i=1

P
j 6=i êiKij êjq

2
Pn
i=1

P
j 6=i ê

2
iK

2
ij ê

2
j

(12)

where Kij = exp

 
�1
2

P2
m=1

�
Xim �Xjm

hm

�2!
and hm = �0sd(Xj)=n

1=6; where sd(Xj)

is the standard deviation of regressor j: However, since sd(Xj) = 1; j = 1; 2; a common
h = hm = �0=n

1=6 is employed with �0 = 0:5; Li and Wang (1998).9 Sampling experiments
were also conducted for �0 = 1 and �0 = 2 to assess sensitivity to choice of bandwidth
and these results are summarised in Section 5.

For each separate test statistic, êi is de�ned as follows:
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1. Functional Form: êi = Ûi; yielding Fn:

2. Heteroskedasticity: êi = Û2i � �̂2; yielding Hn:

3. Skewness: êi = Û3i ; yielding Sn:
Two further test statistics are also considered:

4. Since the null hypothesis of the heteroskedasticity test is one ofH0 : E
�
U2 � �2jX

�
=

0; a:s:; this can be exploited yielding the statistic

HKn =
Pn
i=1

P
j 6=i êiKij êj

�̂n
q
2
Pn
i=1

P
j 6=iK

2
ij

; êi = Û
2
i � �̂2; �̂n = n

�1
nX
i=1

Û4i � �̂4

which is rather like a Koenker-type (Studentised) variant of the heteroskedasticity
test statistic. 10

5. Fn and Sn are robust to neglected heteroskedasticity. According to the analysis of
Section 3, Hn and HKn should both be �relatively�ine¤ective in diagnosing misspec-
i�ed regression function form, but this not so for Sn. In view of this, the modi�ed
version of the skewness statistic, as described in Section 3 and denoted SMn ; is also
examined. This employs êi = Û3i � 3�̂2Ûi, in (12), and (like Hn and HKn ) should be
�relatively�insensitive to both misspeci�ed regression functional form and neglected
heteroskedasticity.

As noted at the end of Section 2.2, a test procedure which uses these statistics in con-
junction with critical values from a standard normal distribution is, in general, unreliable.
In order to guard against this, bootstrap, procedures are employed as follows.

4.3 Bootstrap Tests

1. For Hn and HKn a simple nonparametric (residual resampling) bootstrap procedure
(denoted BS) is employed, which respects the test�s null hypothesis of homoskedas-
ticity. The resulting bootstrap test procedures shall also be denoted Hn and HKn ,
respectively. Speci�cally, B arti�cial samples of size n are generated from

Y �i = �̂0 +X
0
i�̂ + U

�
i ; i = 1; : : : ; n; (13)

where U�1 ; U
�
2 ; : : : ; U

�
n is a random sample drawn with replacement from Û1; Û2; :::; Ûn,

and for each arti�cial sample the CCM heteroskedasticity test statistics, described
above, are constructed. In each case, if these arti�cially generated test statistics are
denoted by J �n1;J �n2; : : : ;J �nB, the p-value of Jn (= Hn; or HKn ) can be estimated
by11

PVBS =

PB
b=1 1 (J �nb > Jn)

B
:

The null hypothesis (of homoskedasticity) is then rejected when PVBS � �, where
� is the desired signi�cance level.

Since the test statistics under consideration are asymptotic pivots, this bootstrap
test procedure delivers asymptotically valid inferences but has an Error in Rejection
Probability (ERP) which is of smaller order in n than that of the asymptotically
valid test procedure which employs �(:) as the reference distribution; see Beran
(1988).
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Although not pursued here, if an auxiliary assumption of normality for the "i in (11)
is imposed, then the Monte Carlo methods of Dufour, Khalaf, Bernard and Genest
(2004) can be employed to obtain �exact� �nite sample inferences by generating
the U�i in (13) from a standard normal distribution. However, if the normality
assumption is wrong, this yields an ERP which is of the same order in n as that of the
asymptotically valid test procedure which employs �(:) as the reference distribution;
see Godfrey, Orme and Santos-Silva (2006) for an analysis of this in the context of
parametric tests for heteroskedasticity.

2. In order to maintain some robustness to heteroskedasticity, the test procedures for
each of Fn; Sn and SMn employ a wild bootstrap scheme (denoted WBS) using the
method of Davidson and Flachaire (2008); see Li and Wang (1998) for a detailed
justi�cation of the wild bootstrap in this context. The resulting test procedures shall
also be denoted Fn; Sn and SMn ; respectively. Speci�cally, the required B arti�cial
samples of size n are generated from

Y �i = �̂0 +X
0
i�̂ + Ûi�i; i = 1; : : : ; n; (14)

where �i are iid and symmetric with two-point discrete distribution de�ned by
Pr (�i = �1) = Pr (�i = 1) = 0:5: The arti�cially generated test statistics are de-
noted by J �n1;J �n2; : : : ;J �nB, and the p-value of Jn can be estimated by

PVWBS =

PB
b=1 1 (J �nb > Jn)

B
:

The relevant null hypothesis (correct regression functional form or conditional sym-
metry) is then rejected when PVWBS � �, where � is the desired signi�cance level.
This symmetric wild bootstrap scheme respects a null hypothesis of error symmetry
for Sn and SMn and is thus an appropriate resampling scheme in this case. Symmetry
is not, however, part of the null hypothesis for Fn but, even so (and although Be-
ran�s arguments are not applicable here), this procedure will deliver asymptotically
valid inferences (in both cases) with an ERP which is of the same order in n as
that of the asymptotically valid test procedure which employs �(:) as the reference
distribution. On the other hand, and as noted previously, when the true errors are
also conditionally symmetric one might expect improved inferences from employing
this, rather than any other, wild bootstrap scheme and, more generally, Davidson
and Flachaire (2008, p.169) conclude that �in most practical contexts [whether of
not the true error distribution is symmetric], use of [this] wild bootstrap with con-
strained residuals should provide satisfactory inference�and the evidence provided
by Davidson, Monticini and Peel (2007), is also in agreement with this.

For each of the above two bootstrap procedures the number of bootstrap samples
generated was B = 400 across all DGPs.
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5 Monte Carlo Results

5.1 Homoskedastic errors

[Insert Table 1 about here]

Table 1 reports the rejection frequencies (in percentages) for each of the test proce-
dures under DGP0 at nominal signi�cance levels of 10%; 5% and 1%. These are based
on 10; 000 replications of sample data and B = 400 bootstrap samples for each of the
procedures. The top half of the Table summarises the results for Normal errors, combined
with either Normal or Chi-Square regressors. Here, the regression function is correctly
speci�ed and the errors are homoskedastic and symmetric, thus all entries are estimated
(actual) signi�cance levels. In this case, all procedures deliver estimated signi�cance levels
which are in close agreement with the desired nominal levels, for both sets of regressors.
Like Li and Wang (1998), since we have tailored the bootstrap to the speci�c parametric
model under test (rather than employing a more general asymptotically valid bootstrap
scheme), we get much better results than those reported by Delgado et al (2006). The
lower half of Table 1 reports rejection frequencies under (asymmetric) Chi-Square errors,
again combined with either Normal or Chi-Square regressors. In this case, the entries for
Fn, Hn and HKn are in accord with asymptotic theory, being estimated signi�cance levels
which are very close to the desired nominal levels across both sets of regressors - these
procedures should be asymptotically insensitive to asymmetry of the errors. The entries
for Sn and SMn are estimated powers (which increase with n). These procedures exhibit
relatively higher power under asymmetric regressors and (interestingly) SMn is the more
powerful, of the two, under both regressor distributions; see, also, the discussion of Table
2b below.

Tables 2 reports the rejection frequencies of all test procedures, at the 5% nominal
signi�cance level only, when there is misspeci�ed regression functional form, under both
Normal and Chi-Square, homoskedastic, errors. These are based on 5; 000 replications of
sample data and B = 400 bootstrap samples. Firstly, under DGP1 �DGP3 (misspeci�ed
regression functional form, homoskedasticity and possibly asymmetric errors) in Table 2,
the entries for Fn are estimated powers, which increase with n and which are relatively
stable across the two error distributions, for a given set of regressors. However, although
asymptotically negligible for parametric tests, the direct in�uence of the regressor density
on the O(1) sampling behaviour of this CCM tests is self-evident from Theorem 1 and
is re�ected in Table 2 in that, for a given error distribution, Fn is more powerful when
the regressors are Chi-Squared, rather than Normal. Furthermore, it is most powerful at
detecting DGP3 and least powerful at detecting DGP2: The top half of Table 2 (normal
errors) also illustrates, vividly, the lack of robustness of the (unmodi�ed) CCM test of con-
ditional symmetry, to misspeci�ed regression functional form: for both sets of regressors:
consistent with the prediction of Section 3, the rejections rates of Sn are only slightly less
than the power estimates obtained for Fn:

[Insert Table 2 about here]

5.1.1 Misspeci�ed Regression Functional Form

To illustrate the level of sensitivity/insensitivity that the remaining procedures exhibit to
(unconsidered) misspeci�ed regression functional form, Table 2a reports the increases in
rejection rates (to the nearest integer), of all the test procedures, under DGP1 � DGP3
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(relative to DGP0) employing Fn as benchmark; that is, the di¤erence between the cor-
responding entries in Tables 1 and 2, with that for Fn providing a guide to the severity
of the perceived misspeci�cation. Firstly, and as noted above, the increase in rejection
frequencies reported in Table 2a show that Fn has relatively more power under Chi-
Square regressors. Second, Hn is relatively ine¤ective (compared with Fn), under each
of DGP1 � DGP3; with HKn exhibiting remarkable insensitivity under both symmetric
and asymmetric regressors. For example, under DGP3, Normal regressors and errors; the
increase in the rejection rate of Fn is 48; at n = 100; whilst that of Hn is (virtually) 0.
However, Hn is more sensitive to DGP1 : with Chi-Square regressors and Normal errors
the corresponding increases are 61 and 15; respectively, but the latter (for Hn) is still
only one-quarter of that for Fn: Across all regressor/error con�gurations Hn and HKn are
quite insensitive to DGP2 and DGP3; with rejection frequencies very close to 5% when
compared with the power of the Fn procedure. Turning, now, to SMn the results in Table
2a indicate that it is fairly insensitive under Normal errors (in accord with the predictions
of Section 2.3) with increases in rejection frequencies (over those in Table 1) being 18 at
most (which occurs with Chi-Square regressors and n = 200; compared with an increase
of 88 for Fn) but much less than this elsewhere. The increases for Sn, under Normal
errors, again re�ect the fact it is not (locally) robust to misspeci�ed regression functional
form. Finally, and for completeness, the increase in rejection rates of SMn are also provided
under Chi-Square errors (in the bottom half of Table 2a), and some of these are relatively
large and negative suggesting that, although locally robust under normality, misspeci�ed
regression functional form can reduce the power of this procedure to detect skewness.

[Insert Table 2a about here]

5.1.2 Asymmetric Errors

The sensitivity of all procedures to asymmetric errors, and in particular, Sn and SMn ; is
summarised in Table 2b which provides the increases in the rejections frequencies under
Chi-square errors, over those obtained under Normal errors, for each of DGP0 � DGP3.
The entries for SMn in Table 2b can be used as a guide to the perceived severity of the error
distribution asymmetry. The entries under DGP0 illustrate the (previously) noted robust-
ness of Fn, Hn and HKn to asymmetry of the error distribution, and also the relatively
higher power of SMn in detecting such asymmetry. The entries under DGP1 �DGP3 also
provide evidence on the relatively benign e¤ect that asymmetry still has on the sampling
behaviour of Fn, Hn and HKn under misspeci�ed regression functional form. However,
under any given DGP1 �DGP3 and regressor combination, the increase in rejection fre-
quencies for Sn is always less than that for SMn ; indicating that the latter is more powerful
a detecting asymmetric errors.12 For example, focussing on n = 100; and under Normal
regressors, the changes in rejection frequencies of Sn are (approximately) �13; 5 and 19,
across DGP1; DGP2 and DGP3; respectively. The corresponding changes for SMn are 64;
64 and 25: For Chi-Square regressors, these are 22; 28 and �18; for Sn; and 30; 71 and
56 for SMn : Thus, under misspeci�ed regression functional form, not only can the rejec-
tion rate of Sn actually fall when the errors change from Normal to Chi-Square, but it
is always dominated by SMn which (as a consequence of its asymptotic local robustness
to misspeci�ed regression functional form) always exhibits positive power. Under Normal
regressors, the power of SMn is una¤ected by DGP1 and DGP2; but is under DGP3: Under
Chi-Square regressors, its power is not unduly a¤ected by DGP2; but is by DGP1 and
DGP3:

[Insert Table 2b about here]
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5.2 Heteroskedastic errors

Table 3 reports the rejection frequencies for each of the test procedures under DGP4
(heteroskedasticity and, possibly, asymmetric errors) and DGP5 � DGP7 (misspeci�ed
regression functional form, heteroskedasticity and possibly asymmetric errors); again, at
the 5% nominal signi�cance level, based on 5; 000 replications of sample data and B = 400
bootstrap samples. Under DGP4; the entries for Hn and HKn are powers and show that
Hn is much more powerful (at detecting heteroskedasticity) than HKn and both are less
powerful under Chi-Square errors. This latter result is to be expected since Chi-Square
errors will in�ate the asymptotic variance of the numerator inHn: However, (interestingly)
the regressor distribution has negligible impact on power. As expected, the entries for Fn
under DGP4 show that it is quite robust to heteroskedasticity and skewness of the errors,
but marginally less so with Chi-Square regressors. Similarly, SN and SMn are robust to
heteroskedasticity, under Normal errors.

[Insert Table 3 about here]

5.2.1 Misspeci�ed Regression Functional Form

By comparing the entries under DGP5 � DGP7; with those under DGP4, the e¤ect of
regression speci�cation error can be gauged and, as with Table 2a in the homoskedastic
case, this is facilitated by Table 3a which reports the increases in rejection frequencies for
the heteroskedastic case. Here, and similar to Table 2a, the entries for Hn reveal that its
behaviour remains fairly insensitive to DGP6 and DGP7; and only mildly so to DGP5;
i.e., its power to detect heteroskedasticity is largely undiminished. Note, though, that
a comparison of the entries for Fn in Table 3a with those in Table 2a show that Fn is
less powerful under this form of heteroskedasticity than with homoskedastic errors (the
increases reported in Table 3a are less than those in Table 2a). This is to be expected,
since (relative to the homoskedastic case) it is easily seen that the variance in the limit
distribution of the test indicator will be larger. (A similar result holds for SMn : compare
the rejection frequencies under DGP4 and Chi-Square errors in Table 3 with those in Table
1.) As in the homoskedastic case, and as expected, Fn is more powerful with Chi-Square
regressors. This is in direct contrast to the previously noted behaviour of Hn; which
remains relatively insensitive to the regressor distribution but which is less powerful under
Chi-Square errors.

Turning now to the skewness tests, and whereas the power of Hn is not overly in�u-
enced by DGP5 � DGP7; the power of SMn to detect asymmetry in the errors (as with
homoskedastic errors) is particularly sensitive to DGP7; with both sets of regressors, and
DGP5 with Chi-Square regressors. Moreover, under the null of symmetry, comparing the
entries in the top half of Table 3a with those in Table 2a show that SMn is less robust to
misspeci�ed regression functional form under heteroskedastic errors.

[Insert Table 3a about here]

5.2.2 Asymmetric Errors

Table 3b summarises the e¤ect of asymmetric errors by reporting the changes in rejection
frequencies under Chi-Square errors, relative to those obtained under Normal errors for
each of DGP4�DGP7: Under DGP4 this shows, as in the homoskedastic case, that SMn is
more powerful than Sn; and (by comparing these with the entries under DGP in Table 2b)
con�rms that both are less powerful under heteroskedastic errors. Comparing entries for
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SMn under DGP5 �DGP7; with those under DGP4; shows the sensitivity of the modi�ed
skewness test. The behaviour of Fn is not overly a¤ected by the error distribution, whilst
the negative entries for Hn con�rm that it is less powerful under Chi-Square errors. The
sensitivity of the power of SMn has the same qualitative features as those found under
homoskedastic errors: it is particularly sensitive to DGP7; with both sets of regressors,
and DGP5 with Chi-Square regressors.

[Insert Table 3b about here]

5.3 Summary

The main features to emerge from the Monte Carlo experiments, concerning the sensitivity
of the tests procedures considered, can be summarised as follows:

1. The sampling behaviour of Fn is very good under the null of correct regression
functional form, being robust to heteroskedasticity and asymmetry of the errors.
Although not a¤ected by asymmetry of the error distribution, its power is a¤ected by
heteroskedasticity and/or the distribution of the regressors (as O(1) theory predicts).

2. HKn is remarkably robust to regression function misspeci�cation, but lacks power
to detect heteroskedasticity relative to Hn: The latter is less robust, but still quite
insensitive even when Fn suggests quite severe (non-local) regression function mis-
speci�cation. The power of Hn to detect heteroskedasticity does not appear to be
unduly sensitive the regressor distribution, in the experiments considered here, but
it is sensitive to the error distribution (as O(1) theory predicts).

3. The skewness test, Sn; is robust to heteroskedasticity but very sensitive to misspec-
i�ed regression functional form. Under correct regression function speci�cation, it is
much less powerful at detecting asymmetry than the modi�ed procedure, SMn (which
is also robust to heteroskedasticity) under both homoskedastic and heteroskedastic
errors and across both regressor distributions. SMn is relatively insensitive to regres-
sion function misspeci�cation, (compared with Sn and Fn) under symmetric errors,
but less so under heteroskedasticity.

The above summarise the results when the bandwidth was h = �0=n1=6; with �0 = 0:5:
Some experiments were also conducted with �0 = 1 and �0 = 2; to assess the in�uence
of bandwidth selection.13 Although previous studies (e.g., Zheng, 1996) have indicated
that bandwidth selection can adversely a¤ect estimated signi�cance levels when asymptotic
critical values are employed, this appears not to be the case with the bootstrap procedures
employed here. Li & Wang (1998) reported the same �ndings but for a wild bootstrap
procedure with Fn only. Generally, all procedures have estimated signi�cance levels close
to the desired level for all three values of �0; although Fn can be a little oversized under
heteroskedasticity (DGP4) when �0 = 1 or 2: On the other hand, under misspeci�cation
the sensitivity of the various procedures generally increase with �0: This is, however,
explicable given Theorem 1. As �0 increases, so does h for any given n: But given that
the DGPs are �xed in the Monte Carlo experiments, the e¤ect is that the perceived
misspeci�cation becomes �less local�, so sensitivity increases.

6 Conclusion

The theoretical literature provides applied workers with, potentially, an array of Consis-
tent Conditional Moment (CCM) tests (joint and/or separate) which might be employed,
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post estimation, to assess the validity of particular CM restrictions explicit in, or implied
by, an assumed parametric model; e.g., correct regression functional form, conditional
homoskedasticity, conditional information matrix equalities, etc. Each CCM procedure
is designed to be consistent against any model misspeci�cation which induces failure of
the CM restriction(s) under test. This paper contributes to this literature by providing a
general theoretical treatment which describes the asymptotic behaviour of separate CMM
tests under various sources of local model misspeci�cation; i.e., local generalisations of
the speci�ed (or null) model. Firstly this uni�es and re�nes existing results. Secondly,
it provides a basis for considering whether CCM test procedures might be constructively
employed in a multiple comparison procedure, of the type discussed by Bera and Jarque
(1982). Thirdly, the general formulae provided a¤ord an examination of any new proce-
dure that can be interpreted as a CCM test; for example, the test of conditional symmetry
considered in this paper. Fourthly, and similarly in spirt to Bera and Yoon (1993), Bera,
Montes-Rojas and Sosa-Escudero (2009), the results suggest how a CCM test might be
modi�ed in order to reduce its sensitivity to sources of misspeci�cation it is not designed
to test.

As in Delgado et al (2006), an particular example explored in this paper is a model
where the dependent variable has a parametrically speci�ed conditional mean and con-
ditional variance. Two separate CCM tests, for each part of this model speci�cation
(regression and conditional variance functional form), have been developed in the liter-
ature. Whilst, by construction, the CCM test of regression functional form is robust to
conditional heteroskedasticity, the application of Theorem 1 in this paper shows that the
CCM test of conditional variance functional form is asymptotically ine¤ective in detecting
(local) regression functional form misspeci�cation. These two CCM tests are also asymp-
totically independent under conditional symmetry (of the dependent variable). Moreover,
the general results in this paper indicate how a CCM test of conditional symmetry can
be constructed, but which remains asymptotically robust to (local) regression and condi-
tional variance misspeci�cation. Such a test might be employed to test the assumption of
asymptotic independence between the CCM test of regression functional form and that of
conditional variance functional form.

Against �xed (i.e., non-local) regression function speci�cation error, one would expect
the various CCM tests considered, here, to consistent. But this o¤ers no useful guidance,
to applied workers, on the relative performance of individual tests in a practical (�nite
sample) situation. As a possible way forward, the asymptotic local analysis employed in
this paper provides a theoretical approximation to the sampling behaviour for the various
tests when misspeci�cation is not overwhelming. A such, one can interpret the results
obtained as follows: (a) relative to the (correct) regression functional form CCM test,
one can expect the conditional variance and modi�ed conditional symmetry CCM tests to
be quite ine¤ective at detecting regression speci�cation error, but not so the unmodi�ed
conditional symmetry test which might be nearly as powerful as the regression functional
form CCM test; (b) the regression functional form CCM test and heteroskedasticity CCM
test should be robust to skewness (local or otherwise) under their respective nulls; and,
(c) the regression functional form CCM test and modi�ed-skewness CCM test should be
robust to heteroskedasticity (local of otherwise) under their respective nulls.

Broadly speaking, the Monte Carlo evidence supports these predictions, but also un-
covers other interesting behaviour. In particular, (and as predicted by the O(1) asymptotic
theory) the power of the functional form CCM test is insensitive to the error distribution
but is sensitive to the regression distribution. On the other hand, asymptotic theory
predicts that the power of the heteroskedasticity test should be sensitive to the error dis-
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tribution (through kurtosis) as well as the regressor distribution, although our Monte Carlo
experiments suggest relative insensitivity to the latter. Furthermore, the raw (unstuden-
tised) version of the heteroskedasticity test, Hn, is more powerful than the studentised
version Hkn: A further theoretical examination of the sensitivity/insensitivity of these tests
to the distribution of the regressors might prove useful, but is beyond the scope of the
current paper.

Finally, the asymptotic analysis employs local alternatives which converge to the null
at the rate n1=2hk=4. This follows most of the related work in the literature and, in so
doing, a¤ords a uni�cation of existing results. However, future research could generalize
this method to other type of alternatives of interest (e.g., high frequency local alternatives
as in Fan and Li, 2000) and other testing methodologies (such as those based on integral
transforms, as in Whang, 2001).

Notes
1As, for example, advocated by Bera and Yoon (1993) and Bera, Montes-Rojas and Sosa-Escudero

(2009), for parametric tests. Indeed, Zheng�s (1996) CCM for regression functional form misspeci�cation
is, by construction, robust to heteroskedasticity.

2The term unconsidered local alternative was coined by Godfrey and Orme (1996) in order to refer to any
alternative hypothesis locally distinct from that implicit alternative against which a particular Conditional
Moment Test has highest power (see Davidson and MacKinnon, 1987).

3See Silverman (1986). For ease of exposition attention is restricted to deterministic h: Data driven
bandwidths are often used in practice, but their use does not change the conclusions of this paper (at least
to a �rst order approximation); see, for example, Delgado et al (2006).

4Although the focus here is on independent data, primitive assumptions can also be stated for the
weakly dependent data case which yield, e¤ectively, the same �rst order results, provided "(W ; �0) is a
martingale di¤erence; see, for example, Fan and Li (1999) and Hsiao and Li (2001).

5See Davidson and MacKinnon (1987, p.1305).
6Delgado et al (2006) proposed a generally applicable bootstrap scheme which exhibited varaible quality

in their sampling experiments. However, for the tests considered in our Monte Carlo experiments more
familiar bootstrap schemese can be applied which seem to yield quite close aggreement bewteen desired
and actual signi�cance levels.

7Where x1=3 � s(x) jxj1=3 ; with s(x) = 1; x > 0; and s(x) = �1; x � 0:
8Results were obtained using GNU Octave v.3.0.3. Copyright c
 2008 John W. Eaton and others.
9To be consistent with previous notation, Kij should be devided by h2; however this is irrelevant when

constructing the test statistic.
10This does assume that the regression model errors are also homokurtic.
11See Broman and Ca¤o (2003).
12This characteristic could also be illustrated by reporting rejection frequencies that employ empirical

critical values obtained from the sampling experiments that provided the entries for the top half of Table
2.
13Details are available from the authors upon request.
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A Proof of Theorem 1
First, a description of the asymptotic behaviour of (�̂ � �0) will be required. As noted, and unlike the
situation in standard parametric inference where the Pitman sequence is O(n�1=2); in this case

p
n(�̂� �0)

is not Op(1); in general. Unless stated otherwise, de�nitions are as given in the main text:

Proposition 1 Under Assumption A, B2 and the local sequence of alternatives, 
0 = �=
p
nhk=2, 0 �

k�k <1;
p
nhk=2 ('̂� '0) =

�
J�1�� J�
�
��

�
+ op(1):

Proof. A mean value expansion of
p
nhk=2@Qn('̂)=@� = 0 about '̂ = '0 yields

0 =
p
nhk=2@Qn('0)=@� +

�
@2Qn(�')=@�@�

0�pnhk=2(�̂ � �0)� �@2Qn(�')=@�@
0� �;
where �' is the usual mean value (which may be di¤erent for each row of @Qn(')=@'). By Assumption A2,p
n@Qn('0)=@' = Op(1) so that (because h! 0)�

@2Qn(�')=@�@�
0�pnhk=2(�̂ � �0) = �@2Qn(�')=@�@
0� � + op(1)

implying that
p
nhk=2(�̂ � �0) = Op(1) and �̂

p�! �0; since @2Qn(�')=@''0 is Op(1), by Assumption A3.
Indeed, Assumption A3 implies @2Qn(�')=@'@'0 � J('0) = op(1); and hence

p
nhk=2(�̂ � �0) = J�1�� J�
� + op(1); (15)

so that

p
nhk=2 ('̂� '0) =

�
J�1�� J�
�
��

�
+ op(1) (16)

= � + op(1):

Remark 2 J�
� = o(1); for all � 6= 0; if and only if J�
 = o(1); in which case (of course)
p
n(�̂ � �0) =

�J�1��
p
n@Qn('0)=@� + op(1) = Op(1):

The following proves Theorem 1; a more detailed derivation can be found at:
http://personalpages.manchester.ac.uk/sta¤/chris.orme/

Proof of Theorem 1. De�ne "̂ir � "r(Wi; '̂); "
0
ir � "r(Wi;'0); gir(') � gr(Wi;'); Gir(') � Gr(Wi;');

Fir(') � Fr(Wi;') and let Tn(') have typical element Tnr('); so that

nhk=2Tnr('̂) = nhk=2Tnr('0)

+2
nhk=2

n(n� 1)hk
nX
i=1

X
j 6=i

"0irKij("̂jr � "0jr) +
nhk=2

n(n� 1)hk
nX
i=1

X
j 6=i

("̂ir � "0ir)Kij("̂jr � "0jr):

= nhk=2Tnr('0) + 2T1nr + T2nr; say.

It su¢ ces to show that T1nr = op(1); whilst T2nr = E
h
jdr(X;'0)0�j

2
f(X)

i
+ op(1) :

1. T1nr : write

"̂jr � "0jr = gjr('0)
0('̂� '0) +

1

2
('̂� '0)

0Gjr('0)('̂� '0)

+
1

6
vec(('̂� '0)('̂� '0)

0)0Fjr(�'
(r))('̂� '0)
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where �'(r) is a �mean value� such that



�'(r) � '0


 � k'̂� '0k = Op(n

�1=2h�k=4): Substituting

this expression into T1nr yields

T1nr = hk=4

8<:
p
n

n(n� 1)hk
nX
i=1

X
j 6=i

"0irKijgjr('0)
0

9=; �n
+
1

2
�0n

8<: 1

n(n� 1)hk
nX
i=1

X
j 6=i

"0irKijGjr('0)

9=; �n
+
1

6
vec(�n�

0
n)
0

8<: 1

n(n� 1)hk
nX
i=1

X
j 6=i

"0irKijFjr(�'
(r))

9=; ('̂� '0);
where �n =

p
nhk=2('̂� '0) = � + op(1) = Op(1): First, under Assumptions B1-4b and C2(i)&(ii),

the results from Powell, Stock and Stoker (1989, Lemma 3.1) and Zheng (1996, Lemma 3.3b) imply
thatp

n

n(n� 1)hk
Pn

i=1

P
j 6=i "

0
irKijgjr('0) = Op(1): Second, Assumptions B1-4b , C3(i), and Powell,

Stock and Stoker (1989, Lemma 3.1) imply that
1

n(n� 1)hk
Pn

i=1

P
j 6=i "

0
irKijGjr('0) = op(1):

Finally, Assumptions B1-3, C1 and C4 imply

E

24sup
'







 1

n(n� 1)hk
nX
i=1

X
j 6=i

"0irKijFjr(')








35 � 1

n(n� 1)

nX
i=1

X
j 6=i

E[h�k
��"0ir��KijP (Wj)]

= O(1)

so that
1

n(n� 1)hk
Pn

i=1

P
j 6=i "

0
irKijFjr(�'

(r)) = Op(1) by Markov�s Inequality.

Thus, T1nr = op(1):

2. T2nr : write

"̂ir � "0ir = gir('0)
0('̂� '0) +

1

2
('̂� '0)

0Gir(~'
(r))('̂� '0)

where ~'(r) is a �mean value� such that



~'(r) � '0


 � k'̂� '0k = Op(n

�1=2h�k=4): Substituting

this expression into T2nr yields

T2nr = �
0
n

8<: 1

n(n� 1)hk
nX
i=1

X
j 6=i

gir('0)Kijgjr('0)
0

9=; �n +Rn; say

First, Assumptions B1-3, C2(ii)&(iv), and Powell, Stock and Stoker (1989, Lemma 3.1) imply that

�0n

8<: 1

n(n� 1)hk
nX
i=1

X
j 6=i

gir('0)Kijgjr('0)
0

9=; �n = E h��dr(X;'0)0���2 f(X)i+ op(1);
with E

�
jdr(X;'0)�j

2 f(X)
�
= O(1); and dr(X;') = E[@"r(W ;')=d'

0jx]; r = 1; :::;m: Second,
Assumptions B1-3, C2(iii),C3(ii), ('̂� '0) = Op(n�1:2h�k=4) and Markov�s Inequality ensure that
Rn = op(1):

Thus, T2nr = E
h
jdr(X;'0)0�j

2
f(X)

i
+ op(1):

The assumptions ensure that �('0) = E
�
kd(X;'0)�k

2 f (X)
�
= O(1); and continuous in '0, so that

limn!1 �('0) = �0 exists. By (2), (ii) nh
k=2Tn('0)

0�=
p
�0
0�

d! N(0; 1) and due to the local alternatives
limn!1 �

0
0� = �0: The result then follows, noting that: (i)
Pm

r=1 jdr(X;'0)
0�j2 = kd(X;'0)0�k

2, and (ii)
the dominance conditions which ensure that ensure that �̂n is consistent under the null, also ensure that

�̂n � �0
p! 0 under the local alternatives so that Jn d! N(�

�1=2
0 �0; 1):
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Table 1: Rejection Frequencies, DGP0

Nom inal S ign i�cance Levels
n = 50 n = 100 n = 200

10% 5% 1% 10% 5% 1% 10% 5% 1%

NORMAL ERRORS

Normal Regressors
Fn 10:82 5:20 1:31 10:91 5:94 1:57 9:50 5:04 1:19

Hn 10:10 4:86 1:03 9:93 5:00 1:29 10:26 5:29 1:23

HK
n 9:90 5:04 1:09 9:95 5:05 1:21 10:20 5:36 1:43

Sn 10:62 5:51 1:39 10:99 5:80 1:34 10:16 5:25 1:09

SMn 10:51 5:66 1:61 10:63 5:57 1:39 10:29 5:52 1:24

Chi-Square Regressors
Fn 10:89 5:56 1:42 10:28 5:25 1:36 10:21 5:17 1:34

Hn 10:11 5:12 1:29 10:50 5:61 1:42 9:98 4:95 1:02

HK
n 9:65 4:81 1:22 10:42 5:37 1:19 9:99 4:91 1:10

Sn 11:01 5:74 1:53 9:71 5:25 1:24 10:62 5:47 1:22

SMn 10:29 5:32 1:43 10:22 5:64 1:48 10:25 5:36 1:19

CHI-SQUARE ERRORS

Normal Regressors
Fn 9:31 4:78 1:24 8:86 4:31 0:99 9:04 4:31 0:64

Hn 11:07 6:30 1:82 11:15 5:70 1:45 9:87 5:01 1:25

HK
n 8:35 4:30 0:94 9:16 4:59 1:24 9:30 4:70 1:04

Sn 18:48 8:97 1:85 37:40 21:72 5:53 76:03 59:92 27:43

SMn 55:74 42:70 21:21 79:03 68:80 46:70 96:09 92:80 81:04

Chi-Square Regressors
Fn 9:90 5:02 1:06 9:20 4:44 0:79 8:98 4:36 0:71

Hn 11:18 5:91 1:74 10:35 5:73 1:59 9:68 4:86 1:29

HK
n 8:62 4:44 0:99 9:32 4:56 0:99 9:33 4:55 1:04

Sn 36:33 22:20 7:90 69:16 51:25 22:13 96:40 91:59 70:36

SMn 67:06 54:16 30:44 90:56 84:11 64:79 99:10 98:07 93:89
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Table 2: Rejection Frequencies, 5% Sign i�cance Level, Homoskedastic ity

DGP1 DGP2 DGP3
n = 50 100 200 50 100 200 50 100 200

NORMAL ERRORS

Normal Regressors
Fn 19:78 37:86 70:22 12:56 19:14 38:46 28:16 53:34 88:50

Hn 12:48 18:72 31:50 5:84 5:70 6:50 4:88 5:24 5:74

HK
n 4:20 5:18 11:04 4:70 5:30 5:96 4:56 4:58 5:30

Sn 20:28 35:30 58:92 12:44 16:98 29:42 26:44 42:32 68:28

SMn 7:60 7:60 9:60 6:30 6:10 5:06 7:38 7:52 6:90

Chi-Square Regressors
Fn 37:62 66:64 92:94 15:70 26:28 48:70 62:02 92:98 99:90

Hn 13:08 20:44 35:40 4:48 4:22 4:66 4:02 3:28 4:20

HK
n 5:14 4:60 7:02 4:90 5:02 5:24 3:74 3:54 4:56

Sn 32:68 55:08 80:80 13:38 20:76 34:12 50:46 77:94 96:00

SMn 12:46 16:92 23:42 5:48 5:96 6:10 11:22 11:78 13:62

CHI-SQUARE ERRORS

Normal Regressors
Fn 23:90 41:84 72:00 15:24 22:98 41:26 32:20 60:32 90:56

Hn 16:82 20:20 24:88 8:26 6:74 7:14 8:52 7:34 7:00

HK
n 3:90 5:18 6:84 4:30 4:20 4:32 5:08 5:54 6:14

Sn 13:42 22:56 46:98 12:34 22:22 46:66 37:60 61:46 86:30

SMn 51:00 71:60 89:18 45:70 69:80 91:30 21:34 32:52 56:22

Chi-Square Regressors
Fn 42:56 69:66 93:18 16:82 30:02 49:94 65:44 91:84 99:70

Hn 12:90 17:46 21:50 5:98 4:66 5:00 8:00 7:14 7:14

HK
n 4:78 6:08 6:44 4:30 4:10 4:84 6:12 6:28 6:04

Sn 51:76 77:30 94:22 22:22 48:38 83:72 42:88 59:70 77:62

SMn 35:52 47:28 63:92 51:90 77:26 94:48 47:22 67:86 86:48
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Table 2a: Increase in Rejection Frequencies, 5% Sign i�cance Level, Homoskedastic ity
Sensitiv ity to M issp eci�ed Regression Functional Form

DGP1 DGP2 DGP3
n = 50 100 200 50 100 200 50 100 200

NORMAL ERRORS

Normal Regressors
Fn 15 32 65 7 13 33 23 48 83

Hn 8 14 26 1 1 1 0 0 0

HK
n �1 0 6 0 0 1 0 0 0

Sn 15 30 54 7 11 24 21 37 63

SMn 2 2 4 1 1 0 2 2 1

Chi-Square Regressors
Fn 32 61 88 10 21 44 56 88 95

Hn 8 15 30 �1 �1 0 �1 �2 0

HK
n 0 �1 2 0 0 0 �1 �2 0

Sn 27 50 75 8 16 29 45 73 91

SMn 7 11 18 0 0 1 6 6 8

CHI-SQUARE ERRORS

Normal Regressors
Fn 19 38 68 10 19 37 27 56 86

Hn 11 14 20 2 1 2 2 2 2

HK
n 0 1 2 0 0 0 1 1 1

Sn 4 1 �13 3 1 �13 29 40 26

SMn 8 3 �4 3 1 �2 �21 �36 �37

Chi-Square Regressors
Fn 38 65 89 12 26 46 60 87 95

Hn 7 12 17 0 �1 0 2 1 2

HK
n 0 2 2 0 0 0 2 2 1

Sn 30 26 3 0 �3 �8 21 8 �14
SMn �19 �37 �34 �2 �7 �4 �7 �16 �12
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Table 2b : Increase in Rejection Frequencies, 5% Sign i�cance Level, Homoskedastic ity
Sensitiv ity to Asymmetric Errors

DGP0 DGP1 DGP2 DGP3
n = 50 100 200 50 100 200 50 100 200 50 100 200

Normal Regressors
Fn 0 �2 �1 4 4 2 3 4 3 4 6 2

Hn 1 1 0 4 1 �7 2 1 1 4 2 1

HK
n �1 0 �1 0 0 �4 0 �1 �2 1 1 1

Sn 3 16 55 �7 �13 �12 0 5 17 11 19 18

SMn 37 63 87 43 64 80 39 64 86 14 25 49

Chi-Square Regressors
Fn �1 �1 �1 5 3 1 1 4 1 3 �1 0

Hn 1 0 0 0 �3 �14 2 0 0 4 4 3

HK
n 0 �1 0 0 1 �1 �1 �1 0 2 3 1

Sn 16 46 86 19 22 13 9 28 50 �8 �18 �18
SMn 49 78 93 23 30 41 46 71 88 36 56 73
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Table 3a: Increase in Rejection Frequencies, 5% Sign i�cance Level, Heteroskedastic ity
Sensitiv ity to M issp eci�ed Regression Functional Form

DGP5 DGP6 DGP7
n = 50 100 200 50 100 200 50 100 200

NORMAL ERRORS

Normal Regressors
Fn 7 17 37 4 9 19 13 30 58

Hn 6 14 12 �1 0 1 �2 �5 �4
HK
n �1 1 7 �1 �1 1 �2 �3 �6

Sn 5 14 24 2 6 8 8 16 23

SMn 2 5 6 2 2 2 4 7 12

Chi-Square Regressors
Fn 20 40 67 5 12 27 36 65 88

Hn 5 11 10 �1 �1 �3 �6 �9 �10
HK
n 0 2 0 �1 0 �4 �3 �5 �12

Sn 16 27 42 5 7 12 27 41 57

SMn 7 10 17 2 2 4 9 15 26

CHI-SQUARE ERRORS

Normal Regressors
Fn 10 19 39 5 11 20 18 34 61

Hn 4 16 13 1 0 0 2 1 1

HK
n 0 0 1 �1 �1 �2 2 2 4

Sn 2 5 14 0 2 5 13 15 9

SMn 10 4 �3 8 6 3 �9 �16 �19

Chi-Square Regressors
Fn 23 43 73 7 11 27 44 66 86

Hn 2 7 10 �2 0 �2 1 4 4

HK
n 0 1 2 �2 �1 �1 0 1 1

Sn 25 28 16 2 3 5 11 �1 �17
SMn �9 �23 �28 2 �2 �2 5 2 2
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Table 3b : Increase in Rejection Frequencies, 5% Sign i�cance Level, Heteroskedastic ity
Sensitiv ity to Asymmetric Errors

DGP4 DGP5 DGP6 DGP7
n = 50 100 200 50 100 200 50 100 200 50 100 200

Normal Regressors
Fn �1 �1 �1 1 1 1 0 1 0 4 3 3

Hn �5 �17 �33 �8 �25 �32 �3 �17 �35 �1 �12 �28
HK
n �5 �13 �37 �4 �15 �43 �5 �13 �40 �1 �9 �27

Sn 3 12 32 0 3 22 1 8 29 7 11 18

SMn 26 50 76 34 48 68 33 54 77 14 27 45

Chi-Square Regressors
Fn �1 1 0 2 3 5 0 0 �1 6 2 �2
Hn �6 �20 �34 �8 �23 �34 �7 �18 �34 1 �6 �20
HK
n �3 �9 �28 �3 �10 �26 �4 �10 �25 0 �3 �14

Sn 12 30 60 20 31 24 9 27 53 �4 �12 �14
SMn 38 63 81 23 30 36 38 59 75 34 49 57
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