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Abstract
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1 Introduction

This article introduces a model of stochastic frontiers applicable to those situation when the
dependent variable is an economic bad measured in discrete (and non-negative) amounts.
The need for such a model arose in a study of infant mortality in England aimed at
detecting what areas in the country were efficient in controlling the levels of infant deaths.
The dependent variable of interest is this study was an economic bad (a commodity with
negative marginal utility), it took values on the set of natural numbers, and the observed
count was typically small.

Existing Stochastic Frontier Methods with roots in the seminal article by Aigner, Lovell
and Schmidt [Aigner et al., 1977] (ALS in what follows) are feasible, but not optimal,
devices for efficiency analysis in this context. From an econometric perspective, these
methods have been developed with continuous random variables in mind, and therefore
they would ignore the discrete nature of the data, which will result in at best inefficient
estimates. From a technical perspective, it is known that associated to ALS methods, there
is distance function (REF) relating output, Y , inefficiency, D ≥ 1 (for economic bads) and
the frontier of production possibilities, Q, via a multiplicative scheme, so that Y = Q×D.
However, if output and inefficiency are discrete valued, a multiplicative scheme such as this
will rarely solve the equality Y = Q×D -for example, if Y = 7 (a prime number) only the
trivial solution is admissible. In view of these problems, this article proposes a theoretical
environment leading to a suitable distance function for the study of the production of bads
measured in discrete amounts. From this environment a class of econometric models is
derived in order to implement of the theoretical distance measure.

The next section is devoted to the development of the theoretical framework. The
analysis in this section borrows from Shephard [Shephard, 1970], Fare, Grosskopf and Lovell
[Fare et al., 1994], [Kumbhakar & Knox Lovell, 2003] to present an axiomatic framework
describing the production of economic bads. The key features of the theoretical model
are minimization of outputs and lack of control as drivers of the production of bads. The
former feature seems to be evident given the negative marginal utility of economic bads,
while the later issue relates to observed positive outputs even when no inputs are present
in the production scheme (for example, infant deaths will be observed even when there
are no risk factors); agents may try to control the amount of economic bad produced by
a given set of inputs, however nothing grants that control be effective, and therefore the
potential loss of utility caused by a fixed level of input may be unbounded. This discussion
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will lead us to analyse the role of ’discreteness’ in the measurement of efficiency and to the
introduction of a new additive distance-function adapted to the new environment.

Section 3 proposes an econometric equivalent of the distance function devised in Sec-
tion 2. The resulting econometric model is a convolution of the two discrete probability
distribution representing the stochastic frontier and the stochastic inefficiency levels. The
basic model does not specify a particular probability distribution for the random variables
involved, but it is argued that models based on convolutions of Mixed Poisson (MP) and
standard Poisson (P) random variables arise naturally. Like ALS these models may be
estimated by Maximum Likelihood, but unlike with ALS and other SFM, they are capable
of separating unobserved heterogeneity from inefficiency. This happens through the inclu-
sion of the mixing parameter in the MP part of the model (see [Hausman et al., 1984] or
[Karlis & Xekalaki, 2005]). Among the class of convolutions of this type, the Delaporte
family of models (Delaporte, [Delaporte, 1962], Ruohonen [Ruohonen, 1989] and Willmot
and Sundt [Willmot & Sundt, 1989]) appears to be a normal choice, and this model is
studied at length in the article.

As with likelihood based SFM, the ones presented here may suffer of a problem of near
identification leading to a loss of precision of the estimates. Riter and Simar [Ritter & Simar, 1997]
and [Bandyopadhyay & Das, 2008] discuss and characterize how, under some limit condi-
tions, the models degenerate into the convolution of two equally distributed random vari-
ables, with the consequent loss of identification in some of the parameters of the models.
Monte Carlo evidence seems to suggest that the issue of near identification may arise in
some extreme cases, but if it does, the models themselves will provide indications of the
potential loss of precision (via the estimated value of the parameters driving unobserved
heterogeneity), so that empirical applications of the models may be safely undertaken.

Section 4 illustrates the application of the Delaporte model to the original problem of
studying efficiency in the production of infant deaths in England. The study sheds light on
the role of social, economic and environment factors to explain infant mortality, and at the
same time, it allows further study of the issue of near identification in practice. Section 5
gives some closing remarks.

2 The Production Technology of Economic Bads

This section formalizes the axiomatic framework within which the production of economic
bads takes place. Convex Duality Theory (see, Blackorby et al ([Blackorby et al., 1978]))
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drives the discussion toward the definition of the production function of economic bads
and the construction of efficiency measure functions, which are the ultimate goals of this
section. The general theoretical framework presented below is valid regardless of whether
outputs are measured in discrete or continuous amounts. However, when it comes to study
efficiency in production, it becomes necessary to distinguish situations where outputs are
measured in discrete amounts from those cases where outputs are measured in continuous
amounts: multiplicative schemes arise naturally in the construction of distance functions
for measuring efficiency in the continuous case; however these schemes will not be able to
accommodate production measured in discrete quantities.

2.1 Technology Set and Production Function

The starting point of the analysis is the definition of the Technology Set, which describes
all the feasible input-output combinations. Let x ∈ RK+ denote a set of inputs which
combine to bring forth a single economic bad in quantities y ∈ R+, where R+ is the set of
non-negative real numbers, and RK =

∏K
k=1 R. The Technology Set has been traditionally

defined as the set S := {(x, y) : x produces y}. The set S satisfies the following restrictions.

Proposition 1 The technology set S satisfies the following assumptions:

S.1 For every (x, y) ∈ S, (i) (cx, y) ∈ S whenever 0 ≤ c ≤ 1 and (ii) (x, cy) ∈ S
whenever 1 ≤ c.

S.2 For all y, (i) (0; y) ∈ S and (ii) if (x; 0) ∈ S then x = 0

S.3 Let (x, y) ∈ S and define y∗ = y∗ (x) = infy {(x, y) ∈ S}. Then (x, y∗(x)) ∈ S for all
x. Similarly, let x∗ = x∗ (x,y) = x supλ≥1 {(λx, y) ∈ S}. Then, (x∗(x,y), y) ∈ S

There are two salient features implicit in the above definition. Firstly the output variable
is a bad and its incidence needs to be minimized. Secondly, there is an inherent lack
of control in this productive process: even in the absence of inputs, non-negative (and
unbounded) outputs are feasible. To see this note that the monotonicity condition S.1
implies that if x can produce y harm, then it also may cause harm beyond that level;
on the other hand, it is not possible to reduce the levels of harm without reducing the
magnitude of risk factors. As it happens in the traditional framework, this assumption
forces increases in inputs to deliver increases in output, thus ruling out, in principle, inputs
with a negative marginal product. Condition, on the other hand, S.2 implies that negative
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bads are producible without any need of inputs -therefore, risk factors may be absent, and
yet economic bads may be observed -in fact, S is not bounded above. Together with S.1,
assumption S.2.i formalizes what we meant by lack of control in the production of bads.
Condition S.2.ii assumes that zero-incidence of a bad can only happen if the inputs are
absent in production. This latter condition may be assumed without loss of generality,
because if there was a value ẏ such that y ≥ ẏ for every (x, y), then S could be re centered,
and defined as S := {(x, y − ẏ) : x produces y}. Condition S.3 ensures that we will be able
to define a production function. This condition defines the set of cluster points of S, and
it establish a lower bound for outputs. Note that convexity is not among the assumptions
introduced above so that outputs could be measured in discrete amounts. It also allows a
rich variety of functional forms for y∗(x) provided that the latter function is monotonically
non-decreasing (as required by condition S.1.i). This latter fact will be relevant when
defining the production function.

Associated to S, there are an input and output sets defined, respectively as X (y) :=
{x : (x, y) ∈ S} and Y (x) := {y : (x, y) ∈ S}. Conditions S.1 − S.3 above carry implicit
the properties satisfied by the input and output sets. In particular we have the following:

Theorem 2 Let X (y) be defined as above, and let S.1− S.4 hold. Then,

X .1 (i) X (0) = {0} and (ii) 0 ∈ X (y) = for every y

X .2 X (y)→ RK+ as y →∞

X .3 x ∈ X (y)⇒ cx ∈ X (y), whenever 0 ≤ c ≤ 1

X .4 X (y) is a closed set.

X .5 X (y) is a convex set.

Proof. X .1, X .2 and X .3 follow directly from the definition of S and its properties. To
prove X .4, let y be arbitrary, and suppose that there exists and adherent point of X (y),
namely x, which is not in X (y). Then, for every ball B

(
x; 1

n

)
we can find a xn = λnx on

the ray from the origin and through x such that, for all n, xn produces y, xn ≥ xn−1, and,
since x does not produce y, xn < x. The sequence {xn} is bounded, monotone increasing
and converges to x, from which follows that x = supn {(xn, y) ∈ S}. By S.3 the point
(x, y) ∈ S so that we have meet a contradiction, and the proof follows. Finally, convexity
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is just a consequence of X .3: if x,x? are arbitrary in X (y) and θ ∈ (0, 1) is also arbitrary,
z = θx + (1− θ) x? is such that (z, y) ∈ S and so convexity follows.

Furthermore S.1 − S.3 define input set as the interval Y(x) = [y(x),∞); as a conse-
quence of this, it is immediate that

Y.1 Y (0) = R+.

Y.2 For every x, Y (x) is a closed set and bounded below -by 0.

Y.3 Y (λx) ⊆ Y (x) whenever λ ≥ 1.

Y.4 If y ∈ Y (x) then λy ∈ Y (x) for λ ≥ 1.

The two sets just described will allow us to introduce the definition of the production
function of economic bads in terms of the boundary of the output set for every input level.

Definition 3 The production frontier of economics bads is the mapping

F (x) := inf
y
{y ∈ Y (x)} = inf

y
{x ∈ X (y)} (1)

In our single-output environment, the production function corresponds with to the output
efficient subset of Y (x) (which includes those y ∈ Y (x) such that y∗ /∈ Y (x) whenever
y ≥ y?). Under the properties of the technology set S, it is straightforward to establish
that the production function is a mapping from RK+ into R+ such that that F (0) = 0.
F (λx) ≥ F (x) whenever λ ≥ 1. It is quasi-convex function, because {x : F (x) ≤ a} is
convex for every a -given the properties of the input set.

2.2 Efficiency Measures

The above definitions and theorems allow the definition of measures of efficiency in the
production of economic bads, which are the key element of this article. The first defini-
tion is an Output-Oriented measure of technical efficiency, partly inspired in the work of
Koopmans (1951), Debreu (1951) and Farrell (1957). In essence we present a convenient
modification of what these authors call a Distance Function

Definition 4 Consider the technology set S ∈ RK+ × R+. An Output-Oriented1 measure
1An input oriented equivalent could be easily defined (in terms or maximal expansion of the input vector,

given an output level), and we leave to the reader the formalization of the result.
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of technical efficiency in the production of economic bads is a mapping

D (x, y) = inf
λ
{λy ∈ Y (x)} (2)

or equivalently
D (x, y) = inf

λ
{λy ≥ F (x)} (3)

The definition establishes that the above distance function is linear in y -this follows
from equation (2)- so that there exits a function D(x) such that D(x, y) = D(x)y. Since,
by definition,d(x, F (x)) = 1, D(x) = 1/F (x). Therefore, a producer observes a quantity y
of an economic bad, resulting from the equality

y = F (x) ·D (x, y) , (4)

The level of (output oriented) technical efficiency is thus D (x, y) ≥ 1 with equality only if
the producer is efficient.

The above measure won’t be suitable if the production of the bad of interest is measured
in discrete amounts. This is due to the the multiplicative scheme underlying D(.): even if
F (.) and D (.) where restricted to be integers themselves, we may not be able to solve the
equality y = F (x)D (x, y) for D (.). The solution is to use an additive scheme instead,
since this naturally accommodates the discrete nature of the output variable. Let Q(x),
with Q : R+ 7→ Z+, denote the production function of the discrete-measured bad. Then
we have the following definition.

Definition 5 Consider the technology set S ∈ RK+ × Z+. An Output-Oriented measure
of technical efficiency in the production of discrete economic bads is a mapping

D∗ (x, y) = min
l∈N
{y − l ∈ Y (x)} (5)

or equivalently
D∗ (x, y) = min

l∈N
{y − l ≥ Q(x)} (6)

In the above definition D∗ (x, y) is integer valued, and linear in y, so that for any m,
D∗ (x, y +m) = D∗ (x, y) + m. Since D∗ (x, Q(x)) = 0 by definition, then for any non-
negative integer y,

y = Q (x) +D∗ (x, y) . (7)
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This equality in D() may be solved exactly for integer valued y, Q(.) and D(.).

3 Econometric Estimation

The focus of what follows is the empirical implementation of the efficiency measures defined
in equations (3) and (6). Throughout, it is assumed that a random sample is available with
observations of Yi (the non-negative quantity of economic bad produced by the ith cross-
sectional unit) and Xi (a k × 1 vector of inputs) for i = 1, . . . , n. Yi could be measured in
discrete or continuous amounts. We shall denote by (yi,xi) an observed pair of values.

Estimation (3) and (6) in practice will require the definition of a parametric econometric
model for the identities found in equations (4) and (7). The first element of each of these
equations is the production function of Yi, which depends on the contribution of a group of
inputs. Let X1i be the k1 subset of elements of Xi collecting these inputs, and let β1 ∈ B1

be a non-observable (although estimable) k1 × 1 vector summarizing the contribution of
each element in X1i. It is useful to imagine that production takes place in two steps.
Initially, the production inputs are transformed via the latent, deterministic mapping2

ρ : Rk1×B1 7→ R+. This mapping represents the expected output given the levels of input.
Expected output will generally disagree with the actual output of the productive process,
mostly due to the fact that productive units are subject to favorable and unfavorable
external events (such as climate and environment) as well as measurement errors; the
overall effect of these disturbances is unpredictable, but one expects the average effect
of these factors to be negligible. Thus, define the probability spaces (R+,F ,PF |X1

(; θ1))
and (R+,F ,PQ|X1

(; θ1)), where F is the σ-field of (Borel) subsets of R+ and PF |X1
(.; θ1)

and PQ|X1
(.; θ1) are associated conditional (on values of X1i) probability measures on

F ×Θ1 with conditional expected value ρ(x1i;β1), where Θ1 is a certain parameter space
augmenting B1 by including, for example, shape or dispersion parameters. Then, ρ(.) is
further transformed by a mapping Fi : F 7→ R+ (in the continuous case) or Qi : F 7→ Z+

(in the discrete case), such that, for any a, F−1
i ([a,∞);β1), Q−1

i (a;β1) are both in F -and
where our notation makes explicitly the dependence on β1 via ρ(.). Thus, the production
functions Fi(x1i;β1) -in the continuous case- and Qi(x1i;β1) -in the discrete case- are
random variables with expected value (conditional on x1i) determined by ρ(x1i;β1).

2For notational simplicity, we use the notation ρ(.) for the conditional expected value of both the
continuous and discrete cases. However, the mapping could be well different in each case. A similar
simplification is done later on, when dealing with the conditional expected value of the inefficiency term
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Inefficiency is the second component explaining observed output levels. Equations
(3) and (6) imply that D(.) and D∗(.) measure the maximal feasible contraction in the
amounts of output for a given level of input. Let X2i be the k2 vector containing the
subset of elements of Xi explaining the inefficiency level at unit i, and let β2 ∈ B2 be
the k2 unobservable vector summarizing the contribution to inefficiency of each element
of X2i. Conditional on X2i, the mean level of inefficiency at unit i would be summarized
by a deterministic mapping, say η : Rk2 × B2 7→ I ⊆ R+ transforming inputs in X2i, into
inefficiency. As it happens with the production function, efficiency may itself be subject
to random variation. In the discrete case (where I coincides with R+), randomness of
inefficiency is captured by the mappingD∗i : F 7→ Z+ (such that,for any a, D∗−1

i (a;β2) ∈ F-
in the probability space (R+,F ,PD∗|X2

(.; θ2)), where PD∗|X2
(.; θ2) has conditional expected

value given by η(.). In the continuous case, a similar setting (but now watching that I =
[1,∞)) allows us to introduce the random variable Di(x2i;β2) defined in the corresponding
probability space with conditional probability PD|X2

(.; θ2). As before, θ2 ∈ Θ2, where the
parameter space is such that B2 ⊆ Θ2.

Finally, the stochastic version of equations (4) and (7) are given by

Yi = Fi (x1i;β1)Di (x2i;β2)

{
Fi (x1i;β1) ∼ PF |X1

(fi|x1i; θ1)
Di (x2i;β2) ∼ PD|X2

(di|x2i; θ2)
(8)

Yi = Qi (x1i;β1) +D∗i (x2i;β2)

{
Qi (x1i;β1) ∼ PQ|X1

(qi|x1i; θ1)
D∗i (x2i;β2) ∼ PD∗|X2

(d∗i |x2i; θ2)
(9)

An statistical model for each case may be now built by careful selection of probability laws
for each of the random variables, and Maximum Likelihood may be employed for estimat-
ing the parameters of the model. However, attention need to be paid only to the latter
model: equation (8) is similar to Stevenson’s ([Stevenson, 1980]) version of the Stochas-
tic Frontier Model firstly treated by Aigner, Lovell and Schmidt ([Aigner et al., 1977])
and Meeusen and van den Broeck ([Meeusen & van den Broeck, 1977]). The relationship
between model (8) and these authors’ models is explained, for example, in Kumhakar
and Lovell ([Kumbhakar & Knox Lovell, 2003]). A logarithmic transformation Yi leads to
log Yi = log(Fi(x1i;β1)) + log(Di(x2i;β2)) and probability functions may be associated to
the transformations of F (.) and D(.). Often, one encounters that researchers’ favorite
distribution for log(F (.)) is a Normal distribution with center determined by the levels of
inputs; several choices have been made for the distribution of the log-inefficiency: the orig-
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inal paper of Aigner, Lovell and Schmidt considered log(Di(x2i;β1)) to be distributed as a
Half Normal Distribution while Greene ([Greene, 1990]) considered a Gamma Distribution
instead; exponential and truncated normal distributions have also been considered by oth-
ers. For comments on these choices and their performance see Kumbhakar and Lovell. In
general, one expect White’s remarks on model selection (White, [White, 1982]) to apply.

3.1 Discrete Outputs

The case of outputs measured in discrete amounts had not been treated up to now, and
therefore it is the second main contribution of this article. From equation (), the output
level Yi is ruled by the convolution of the two random variables Q(.) and D∗(.). Therefore,
for Θ = Θ1

⋃
Θ2, the probability mass function of Yi given xi = x1i

⋃
x2i is

PYi|Xi
(yi|xi; θ) =

yi∑
d∗i=0

PQi|Xi
(yi − ui|xi; θ) ∗ PD∗i |Xi

(d∗i |xi; θ)

=
yi∑
qi=0

PQiXi (qi|x1i; θ1) ∗ PD∗i |Xi
(yi − qi|x2i; θ2) (10)

provided that Qi(.) and D∗i (.) are independent random variables3. The parameters θ1 and
θ2 of the model may be estimated by maximizing the likelihood function

L(β, γ|Y,X) =
n∏
i=1

yi∑
qi=0

PQi|Xi
(qi|x1i; θ1) ∗ PD∗i |Xi

(yi − qi|x2i; θ2) (11)

which only requires explicit definitions of the probability mass functions of Q(.) and D∗(.).
The resulting maximum likelihood estimates, θ̂1 and θ̂2 may be used to obtain predicted
values for Qi(.) and d∗i (.), namely Q̂i(.) = ρ(x1i; β̂1) and D̂∗i (.) = η(x2i; β̂2). As it hap-
pens with the typical stochastic frontier model, however, in order to obtain estimates of
the inefficiency levels an estimator may be built from the posterior expectation of D∗i as
suggested by Jondrow, Lovell, Materov and Schmidt ([Jondrow et al., 1982]). Following

3This assumption is clearly restrictive, although as [Kumbhakar & Knox Lovell, 2003] point out in the
monograph, some authors have found it innocuous. Probably because of this, the assumption underlies
most of the literature on production frontiers; only recently Smith ([Smith, 2007]) has proposed the use of
copula methods in order to relax the restriction. Although we conjecture that a similar approach could be
adopted for our model, we leave the development of such device for later research.
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these authors we have:

D̂∗(yi,xi; θ) = E (D∗i |yi,xi ; θ)

=
∞∑
d∗i=0

d∗iPD∗i |Yi,Xi
(d∗i |yi,xi; θ)

=
yi∑

d∗i=0

d∗i

{
PYi,D∗i |Xi

({Yi = yi} ∩ {D∗i = d∗i } |xi; θ)
PYi|Xi

(yi|xi; θ)

}
(12)

Clearly, Yi = yi ⇔ Qi = yi −D∗i , so that

E (D∗i |yi,xi; θ) =
yi∑

d∗i=0

d∗i

{
PYi,D∗i |Xi

({Qi = yi − d∗i } ∩ {D∗i = d∗i } |xi; θ)
PYi|Xi

(yi|xi; θ)

}

=
yi∑

d∗i=0

d∗i

{
PQi|Xi

(yi − d∗i |xi; θ1) PD∗i |Xi
(d∗i |xi; θ2)

PYi|Xi
(yi|xi; θ)

}

=
yi∑

d∗i=0

d∗iwi (13)

where the weights wi will depend on the particular choice of marginal probability mass
functions.

3.2 Mixed Poisson Models and the Delaporte Distribution

Equation (11) defines a whole family of models for the discrete frontier. Different choices
of distributions for Q(.) and D∗(.) will lead to different models with their own idiosyncrasy,
which should be studied separately. However, certain choices of distributions seem to arise
naturally. This is the case of Mixed Poisson Models.

A random variable, Z, has a Mixed Poisson distribution with mixing parameter α ∈ A,
if f(z) =

∫
A PZ|α(z|α)f(α)dα while PZ|α(z|α) ∼ Poisson(ρα), where f(α) is the density

function of the mixing parameter and ρ is predetermined. Unlike the baseline Poisson dis-
tribution, Mixed Poisson models adapt over(under)dispersion, and this frailty may then be
understood as a form of unobserved heterogeneity. In the present context, the advantage of
Mixed Poisson models will be precisely the ability to identify this heterogeneity as a source
of variation distinct from inefficiency. This is a rather appealing feature of the models and
it is not shared by frequently encountered stochastic frontier models for continuous data.
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The latter models are such that estimates of inefficiency are confounded by unobserved
heterogeneity. This is specially true for those models based on straightforward application
of fixed or random effect panel data models. The exception to the rule is the true fixed
and random effects models by Greene ([Greene, 2005]).

To proceed with the specification of the model, the mixed distribution may be allocated
to either the frontier or the inefficiency terms, depending on the conjectures drawn by the
researcher regarding where the heterogeneity dwells. Then, the remaining term may be
simply assumed to follow a Poisson distribution, since heterogeneity has already been taken
into account. Interestingly, the convolution resulting under these premises is also Mixed
Poisson distributed: the mixing distribution is a shifted (by the average inefficiency) ver-
sion of the original mixing distribution (see Karlis and Xekalaki [Karlis & Xekalaki, 2005]).
Under this specification, the researcher may then obtain parameter estimates for the struc-
tural parts of the average frontier, the efficiency term and the heterogeneity, and studies
of the moments of the model may be done within the general framework of Mixed Poisson
distributions.

Among the family of mixed Poisson models, the most elemental choice is the so called
Delaporte distribution (see [Delaporte, 1962], [Ruohonen, 1989] and Willmot and Sundt
[Willmot & Sundt, 1989]). This model result from convoluting a Negative Binomial dis-
tribution with a Poisson distribution4. It is well known that the Negative Binomial dis-
tribution is, in fact, a Mixed Poisson model with gamma-distributed mixing parameter
α ∼ Gamma(δ, γ) (see [Greene, 2004] or [Hausman et al., 1984]). For identification pur-
poses,it is customary to assumed that α ∼ Gamma(δ, δ) which implies that E(α) = 1 and
var(α) = δ−1. This, in turn, may be interpreted in a regression vein: heterogeneity acts as
a regression error with null expected value and vanishing effect as its variance (determined
by δ) vanishes.

In order to facilitate ML estimation, we shall redefine δ = exp(ξ), so as to satisfy the
restriction δ > 0. In our model, the Delaporte distribution arises in two different ways.
Firstly, one may assume that overdispersion is caused by the frontier term. Then, it follows

4Alternatively, the model may be obtained as a Mixed Poisson model with mixing parameter following
a shifted gamma distribution (see Ruohonen [Ruohonen, 1989])
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that (see for example, [Greene, 2004] or [Hausman et al., 1984])

PQi|Xi,αi (qi|xi, αi) =

{
e−ρiα(ρiα)qi

qi!
for q = 0, 1, . . .

0 otherwise
(14)

PQi|Xi
(qi|xi) =

∫ ∞
0

PQi (qi|xi, αi) f (αi) dαi (15)

=
Γ (qi + δ)
Γ (δ) qi!

(
δ

ρi + δ

)δ ( ρi
ρi + δ

)qi
∼ NB (pi, δ)

where NB (pi, δ) is the negative binomial density with parameter pi = δ
ρi+δ

, Γ (.) is the
gamma function and ρi = exp(x1i;β1). Then, given that the frontier Q(.) has been assumed
to be responsible for the heterogeneity in the data, we let D∗ have a Poisson distribution
(conditional on x2i) with mean parameter given by ηi = exp(x′2iβ2). The resulting Dela-
porte model for (10) is

PYi|Xi
(yi|xi ; θ) =

yi∑
qi=0

Γ (qi + δ)
Γ (δ) qi!

(
δ

ρi + δ

)δ ( ρi
ρi + δ

)qi e−ηiη(yi−qi)
i

(yi − qi)!
(16)

This will be referred to as model DEL-1. Under the assumption of independence of Qi and
D∗i , it follows that E (Yi|Xi) = ρi + ηi and var (Yi|Xi) = ρi

(ρi
δ + 1

)
+ ηi -both the sum of

the conditional expected values and variances of the individual random variables. For this
model, the efficiency measure in (13) has weights given by

wi =

Γ(yi−d∗i+δ)
Γ(δ)(yi−d∗i )!

(
δ

ρi+δ

)δ (
ρi
ρi+δ

)yi−d∗i e−ηiη(d∗i )
i

d∗i !∑yi
d∗i=0

Γ(yi−d∗i+δ)
Γ(δ)(yi−d∗i )!

(
δ

ρi+δ

)δ (
ρi
ρi+δ

)yi−d∗i e−ηiη(d∗i )i
d∗i !

(17)

The coefficient associated to the covariate Xij ∈ Xi = X1i
⋃

X2i, say βj satisfies that

∂E(Yi|Xi)
∂Xij

= βj(ex
′
1iβ1 + ex

′
2iβ2)⇒ βj =

∂E(Yi|Xi)
∂Xij

1
E(Yi|Xi)

which can be interpreted as an elasticity (capturing the percentage variation in the expected
value of Y when the jth input changes by ∂Xj percent). If the associated variable were
categorical, then, is is more appropriate to consider the effect of varying the regressor of
interest by one unit. Suppose, for example, E(Yi|Xi) = eX

′
1iβ1 + eX

′
2iβ2+Ziξ, where Zi is a

13



categorical variable and X1i and X2i have no elements in common. Then,

∆E(Yi|Xi) = eX
′
1iβ1 + eX

′
2iβ2+(Zi+1)ξ − (eX

′
1iβ1 + eX

′
2iβ2+Ziξ) (18)

= eX
′
2iβ2eZiξ(eξ − 1) = E(D∗i |Xi)(eξ − 1) (19)

ξ = log
(

1 +
∆E(Yi|Xi)
E(D∗i |Xi)

)
(20)

=
∆E(Yi|Xi)
E(D∗i |Xi)

+O

{(
∆E(Yi|Xi)
E(D∗i |Xi)

)2
}

(21)

via a Taylor series expansion. Thus, ξ may be approximately interpreted as the expected
ratio of variation in Y given the variation in Zi.

In the model DEL-1 all the unobserved heterogeneity is concentrated in the frontier.
Alternatively, one may assume that overdispersion would be a natural feature of inefficiency
D∗(.), while the differences in the frontier would be driven by observed information an pure
statistic noise. This alternative model, which will be referred to as DEL-2 would be given
by

PYi|Xi
(yi|xi ; θ) =

yi∑
qi=0

Γ (yi − qi + δ)
Γ (δ) (yi − qi)!

(
δ

ηi + δ

)δ ( ηi
ηi + δ

)yi−qi e−ρiρqii
qi!

(22)

For this model the weights of the efficiency measure (13) would be an obvious modification
of those in (17).

3.3 Near Identification

Implementation of the above models would follow from maximization of the corresponding
likelihood functions. However, from a empirical perspective, there is a potential problem
with the identification of the parameters of the Delaporte model. The Negative Binomial
part of the model may collapse to a Poisson law whenever δ → ∞, so that var(α) →
0. Therefore, in the limit one ends up with the convolution of two independent Poisson
distributions. Thus if X1i and X2i contain only intercept terms, we may not find a unique
estimate of the individual coefficients of each intercept. Similarly, if X1i and X2i contain a
single common regressor, there is not unique solution for the score equation of the maximum
likelihood function: if Y ∼ Poisson(a = exβ + exγ), then E(Y |x) = a = exβ + exγ does not
admit a unique solution, so that similar distributions may be generated by using different
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parameter values.
In general, the problem we face is one of Near Identification, similar to those affect-

ing the traditional ALS-type model (see [Bandyopadhyay & Das, 2008]). Bandyopadhyay
and Das define near-identification as a local loss of curvature in the likelihood function,
so that parameter values relatively far from the true parameter value may generate values
of the likelihood function arbitrarily close to the optimum. As discussed in that article,
typical cross-sectional SFM with uncorrelated error components suffer from near identifi-
ability problem. In their opinion this accounts, then, for the lack of precision reported by
[Ritter & Simar, 1997] of the many variations of the ALS model. Thus, typical algorithms
for optimization will provide less precise estimates.

The Delaporte models are also subject to this loss of curvature, which becomes apparent
as δ increases in value. Thus in model DEL-1 we observe that as δ →∞,

∂PYi|Xi
(yi|xi; θ)
∂δ

=
yi∑
qi=0

P(ηi)NB(pi, δ)

×

(
−qi
ρi + δ

+ ln
(

δ

ρi + δ

)
ρi

(ρi + δ)2
+

Γ̇(qi + δ)
Γ(qi + δ)

− Γ̇(δ)
Γ(δ)

)
→ 0 (23)

where Γ̇(.) is the derivative of the gamma function. The result is obvious once we consider
that for any z,

− Γ̇(z)
Γ(z)

= z−1 + c+
∞∑
n=1

[
1

n+ z
− 1
n

]
where c is the Euler-Mascheroni constant5. Very large values of δ will cause the log-
likelihood to be very flat in the direction of its feasible set, so that traditional algorithms
for optimization will struggle to find the optimum. It is convenient to remark that because
the problem is due to a fall in the variance of the mixing parameter in the Mixed Poisson
part of the convolution. It is thus evident that the situation is not a peculiarity of the
Delaporte model, and it will arise whenever we convolute a Poisson and a Mixed Poisson
random variables.

5See Wolfram’s http://mathworld.wolfram.com/GammaFunction.html and references therein
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3.4 Monte Carlo

The magnitude of the identification problem, as well as the small sample merits of the
Delaporte distribution, may be evaluated via a simple Monte Carlo experiment. Data was
generated from the two Delaporte specifications discussed so far. The structural part of
the models were ρi = exp(β1,0 +β1,1X1i) and ηi = exp(β2,0 +β2,1X2i), where X1i ∼ U(0, 2)
and X2i = 0.8Z + 0.9 ∗ X1i (which induced a somehow strong multicollinearity) and Z

is a standard normal random variable. The values of the parameters were set to β1,0 =
β2,0 = 1 and β1,1 = β2,1 = 0.5. The parameter δ = exp(ξ) (which measured the degree of
overdispersion) was set at three different values exp(ξ) = 0.3678, 1, and e. The largest the
value of δ, the lower the level of overdispersion caused by the negative binomial part of the
model, the lower the variance of the mixing parameter and the likelier is the problem of near
identification to arise. Samples of varying size were drawn from the generating processes
DEL-1 and DEL-2, and each sample was estimated by maximizing the likelihood function
associated to models DEL-1 and DEL-2. The experiment was repeated 200 times, and in
each occasion, the Mean Square Error (MSE) of the estimated parameters was retained.
At the end, the average MSE was calculated, and the results for N = 1000 are collected in
Table 1.

Table 1 about here

The first and fourth columns of the table capture the MSE when the estimated model
replicated the underlying DGP, while columns two and three collect the results under
misspecification. Under correct specification of the model the reported MSE is small, as
expected given the general theory of maximum likelihood. Reported MSE oscillate about
5% of the true value of the parameter, but larger values of δ do increase de MSE of the
parameters in the structural parts of the model. The increase is not as large as to substan-
tially compromise the estimated values; in fact, simulations not reported here suggest that
a value of ξ above 4 is required to observe compromising losses of accuracy. Under cor-
rect specification, we observe that variance and square bias share equal proportions of the
MSE, so that, loss of precision with δ is due to increases in bias and variance in the same
proportion. Among the two models, DEL-1 seems to be more sensitive to the variation of
δ than DEL-2.

Under model misspecification (columns 2 and 3), simulations report larger MSE whose
magnitudes are driven by the square bias -as expected. However, it seems that DEL-2 is
more sensitive to model misspecification than DEL-1. This may be due to the fact that
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the base line model for the efficiency frontier is a Poisson model which imposes restrictive
moment conditions reducing the admitted amount of dispersion in the sample.

These results would suggest that, in practice, the estimated value of δ must be observed
as a measure of the accuracy with which the parameters of the model are estimated;
for equally low/moderate ξ researchers may rely on the robustness of DEL-1 for their
inferences.

A single draw of each of the above models was used in order to get an indication of
the ability of the efficiency measure in equation (13) to retrieve the actual density of the
inefficiency. The values of D∗(.) generated by the computer and those values generated by
the DEL-1 and DEL-2 versions of equation (13) were retained, and the Nadaraya-Watson
estimators of these values where plotted against each other. Each of the panels in Figures
1 and 2 collect one such comparison for values of ξ = −1, 1, and 3 -with β.,. as above.

[Figure 1 about here]

[Figure 2 about here]

The estimator seems to provide sufficiently accurate estimates of the underlying distribu-
tion (under no misspecification), even for situations when a notable loss of identification is
suspected. Values provided by the estimator seem to be slightly more concentrated about
the mean, so that the estimator tends to be slightly conservative and this seems to be-
come more so the closer the DGP is to the convolution of two Poisson distributions (large
ξ). Nonetheless, even for ξ = 3 → δ = exp(3) ∼= 20, and var(α) ∼= 0.04 estimates seem
sufficiently reliable.

Finally it is remarked that the method is rather robust to misspecification in the dis-
tribution of the mixing parameter of the Mixed Poisson part of the distribution of Y .
Simulations not reported here show that, provided that the distribution of α has unit ex-
pected value, the ML method returns accurate estimates of the parameters of the model
as well as estimates of the inefficiency. This is particularly true for model DEL-2. Experi-
ments with χ2(1), Exponential(ln(2)) and Weibull(1, 1) all result in successful estimation
of the conditional mean and distribution of the efficiency. The exception to this was the
case when α followed a Uniform(0, 2) distribution, which resulted in a somehow imprecise
estimates of the distribution of the efficiency.
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4 Application: Infant Mortality in England (2001)

In this section, models DEL-1 and DEL-2 are applied to a data set with the aim of exploring
the drivers of infant mortality when aggregated at regional level. The geographical units
of interest are 353 Local Authorities in England and the data refers to the year 2001.

Infant deaths are casualties occurring when a baby is under one year old. It is conjec-
tured that the expected number of infant deaths in a local authority is largely determined
by population size. However, beyond the role of population size there are a number of
factors which are likely to cause observed counts to exceed the expected frontier levels. In
particular these factors may be summarized in three categories: environmental, economic
and educational.

Environmental factors have been associated to the overall health of the population (see,
for example, Tulchinsky and Varavikova [Tulchinsky & Varavikova, 2000], chapter 9). In
particular high emissions of pollutants to the atmosphere can induce respiratory diseases
such as bronchitis, pneumonia, allergies or asthma, as well as interfere with hemoglobin
oxygen carrying capacity, which can seriously affect fetal development. This is the case of
Nitrogen Oxides (NO2, Nitrogen Dioxide, and NO, Nitric Oxide), which are by-products
of fuel consumption and the production of electricity. It is estimated that 50% of emisions
of these gases are due to road traffic, while another 20% is due to the production and
consumption of electricity.

Education and economic deprivation are also likely drivers of inefficiency in the pro-
duction of infant deaths. The latter may explain the population’s ability to access healthy
food and life styles which repercute in the baby’s development while in uterus and later
life. Education levels, in turn, are likely to capture the population’s exposure to elementary
baby-caring measures, as well as its ability for risk management. For example, it is sensi-
ble to conjecture that a well informed population might eliminate more successfully risks
leading to Sudden Infant Deaths (SID) (often avoidable casualties such as asfixia during
sleep or death due to hyperthermia).

A final factor that may be relevant in a analysis of infant mortality is the levels of pres-
sure over medical and public services in the region, measurable through population density.
In principle, one may argue that where population density is high, medical resources are
under higher pressure, slowing the response of public services all things being equal. Slow
response, in turn, may lead to failures to reduce avoidable deaths, with the consequent
increase in reported counts of infant deaths.
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To evaluate these conjectures, a data set was compiled with information downloaded
from the website of the UK Office of National Statistics (ONS). Apart from the counts of
infant deaths in the year 2001, the data set was augmented by including the following vari-
ables. Population levels in 2001, pi was available, as well as the area (in square kilometers)
for each local authority was collected; from these, we calculated population density, di as
the ratio of the two. To capture environmental pollution, the ONS’ Local Area Average of
NOx emissions intensity score, denoted NOsi was considered. This score corresponds to an
8 step scale, where each step represents an interval of emissions of NOx in tonnes per square
kilometer. Higher scores are associated to high levels of emissions. Economic deprivation
was measured via the proportion of the area’s active population receiving unemployment
benefits, ui, and education levels were proxied by the proportion of the population without
academic qualifications, ei.

4.1 Models and Results

The deterministic part of the Delaporte models is given by the following pair of equations:

ρ(x1i;β1) = exp (β10 + β11pi + β12INi + β13IMi + β14ISi) (24)

η(x2i;β2) = exp (β20 + β21NO
s
i + β22ui + β23ei + β24di) (25)

where I is an area identifier (North/Mid/South of England as well as City of London, which
has been excluded) intended to capture other unobserved area characteristics affecting the
levels of the frontier. The estimates of the parameters are reported in Table 2.

[Table 2 about here]

To assess the quality of the estimates, attention is firstly focused on the estimated value
of the parameter ξ; the estimated values returned by DEL-1 and DEL-2 are 2.33 and 0.35
respectively (the latter significant only at 10%). This implies that the magnitudes reported
by DEL-2 are going to be more accurate than those reported by DEL-1 (provided no model
specification in involved).

Model DEL-1 presents an estimated frontier with a higher slope, which may be seen
by looking at the lower level of the intercept and faster growing effect of population size;
thus the model is penalizing less populated local areas with higher inefficiency scores. This
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may be seen also in Figures 3 and 4 showing the estimated frontiers from the models.

[Figure 3 about here]

[Figure 4 about here]

In the plots it is possible to infer the different frontiers for each of the four regions considered
(North, Middle, South and City of London), although the estimated regional effect is only
significant in the case of the South, where the expected number of deaths seems to be
lower than elsewhere in the country. It is visually apparent that DEL-2 envelopes the data
from below in a tighter fashion than DEL-1 does. Therefore, DEL-2 seems to provide an
estimated frontier which is closer to the idea of a frontier for an economic bad. All this
considered, model DEL-2 seems to be a better specification for the analysis.

The coefficients of the determinants of inefficiency are collected in the second part
of the table. The models seem to suggest that there is a structural level of inefficiency,
captured by the negative, but significant, intercept. All the factors considered in the model
contribute to increase the inefficiency, as expected (however, note that the coefficient of NO
score in DEL-2 is not significant). The models, however, do not agree on the magnitude
of the effect of each variable. DEL-1 seems to suggest that economic deprivation has
a less dramatic effect on inefficiency than education levels (coefficients of 0.02 and 0.04
respectively). In the view of this model, and incrase of 1 point in the NO score would
lead to an increase in expected inefficiency of about 5% -in accordance to the expression
for the marginal product given in the previous section. Therefore, DEL-1 suggests that
enviromental pollution is the most important determinant of infant deaths. The conclusions
drawn from DEL-2 are similar: 1 extra point in the NO score would lead to a 6% increase
in the expected inefficiency; the second most important factor would be unemployment
followed by education levels. Finally both models coincide to outline the importance of
population density: all the things being equal, more densely populated areas seem to be
more inefficient than less densely populated areas.

[Figure 5 about here]

Finally, Figure 5 presents kernel density estimates of the estimated inefficiencies for each
of the models. The estimated density of the inefficiencies provided by DEL-2 has a much
longer tail than the density returned by DEL-1. This reflects the well known fact that
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DEL-2 allows for overdispersed counts in the inefficiency term, while DEL-1 imposes the
restriction that the conditional mean of the inefficiency equals the conditional variance, so
that very extreme counts are unlikely.

Overall, results seem to suggest that environmental policies are likely to have a larger
impact on infant mortality that those policies oriented to unemployment or education. It
is unclear, however, which factor, among unemployment or education, should be a priority.
Since DEL-2 is likely to fit the data better than DEL-1, one would think that unemploy-
ment policies facilitating access to income are more likely to contribute to a reduction of
infant mortality than other initiatives oriented to reduce education inequality or population
agglomerations.

5 Conclusion

This article has introduced a model of stochastic frontiers applicable to those situation
when the dependent variable is an economic bad and measured in discrete (non-negative)
amounts. The need for such a model has been justified from a theoretical perspective, by
noting that distance functions on which typical stochastic frontier models are based do
not suit when the dependent variable is a count. The problem is the multiplicative nature
of these schemes which implies that the observed quantity of an output is the result of
augmenting the levels predicted by the production frontier by a factor larger than one (in
the case of economic bads). If output is measured in discrete amounts, then an additive
scheme is needed instead, to be able to capture the discrete nature of both production
frontier and inefficiency levels.

This discussion led us to the new econometric model. As in ALS, the model is also the
convolution of two random variables (one associated to the frontier and another associated
to the inefficiency). The difference is that the associated random variables are discrete
valued and therefore demand discrete probability distributions. Like in ALS, the models
here presented are estimable at least via maximum likelihood methods, and efficiency may
be estimated as in Jondrow et al, via the conditional posterior expectation of the random
variable capturing inefficiency. However, unlike well known stochastic frontier models, ours
can separate unobserved heterogeneity and inefficiency, so that estimates of efficiency are
not contaminated. THe models in this article also share a feature of other likelihood based
stochastic frontiers: the problem of near identification as discussed in Bandyopadhyay and
Das. When the variance of the parameter causing the heterogeneity is too small, the log-
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likelihood becomes too flat about the true value of this parameter, causing a loss of precision
of the estimates. This problem was reported by Ritter and Simar, and this article has tried
to characterize its incidence via Monte Carlo simulations. In the view of the evidence
presented here, however, values of δ beyond 19 are required in order to rises concerns
about the quality of the estimates. From a statistical perspective our model is likely to be
most useful when the range of values taken by the output variable is restricted to a few
dozens (perhaps two or three hundred values). Beyond that, continuous approximations
are likely to be still useful. In this sense, our model is not different to standard count data
models (see comments in Hausman, Hall and Griliches).
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Figure 1: One-shot smoothed histograms of estimated and actual efficiency mass function
for model DEL 1: (β10 = 1, β11 = 0.5, β20 = 1, β21 = 0.5) and ξ = −1 (top figure),ξ = 1
(middle figure) and ξ = 3
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Figure 2: One-shot smoothed histograms of estimated and actual efficiency mass function
for model DEL 2: (β10 = 1, β11 = 0.5, β20 = 1, β21 = 0.5) and ξ = −1 (top figure),ξ = 1
(middle figure) and ξ = 3
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DEL-1 DEL-2
Coefficient S.E. Coefficient S.E.

Frontier
Constant -16.134 (0.97161) -14.146 (0.60275)
Population 1.6086 (0.077672) 1.4344 (0.047355)
North 0.007454 (0.090626 ) -0.057702 (0.079731)
Central -0.024168 (0.089301 ) -0.016373 (0.077307)
South -0.13333 (0.089301 ) -0.16373 (0.079082)

ξ 2.3348 (0.15871) 0.35926 (0.21529)

Inefficiency
Constant -1.1501 (0.54148) -1.2899 (0.52908)
Benefits 0.026299 (0.01488) 0.056498 (0.022244)
Non-qualified 0.042480 (0.010600 ) 0.040188 (0.012695)
Mean NO Score 0.052355 (0.028217) 0.064117 (0.05947)
Pop. Density 0.0222 (0.0027594 ) 0.026281 (0.00044242)

Table 2: Estimates of parameters of the model. The dependent variable is the count of
infant deaths at Local Authority Level. N = 353

Figure 3: Estimated Frontier: Model DEL-1
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Figure 4: Estimated Frontier: Model DEL-2

Figure 5: Estimated Densities for the Infant Mortality Model (DEL-1 solid line, DEL-2
dashed line)
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