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Abstract 
We provide evidence on the sources of co-movement in monthly US and UK stock 
returns by investigating the role of macroeconomic and financial variables in a model 
with time-varying correlations. Cross-country communality in response is uncovered, 
with changes in US Federal Funds rate, UK bond yields and oil prices having negative 
effects in both markets. These effects do not, however, explain the marked increase in 
correlations from around 2000, which we attribute to time variation in the correlations 
of shocks to these markets. A regime-switching model captures this time variation 
well and shows the correlations increase dramatically around 1999-2000. 
 
 
 
I. Introduction 

There is a great deal of interest, and a correspondingly large literature, on the 

relationship between international financial markets. In particular, it is now well 

established that the correlations of returns across international stock markets are not 

only strong, but also time-varying. Important contributions to understanding the 

nature of this phenomenon include Ang and Bekaert (2002), Cappiello, Engle and 

Sheppard (2006), King, Sentana and Wadhwani (1994), Longin and Solnik (2001), 

and Ramchand and Susmel (1998).  

Nevertheless, the question of what drives temporal changes in cross-country 

correlations remains largely unanswered, since few studies incorporate explanatory 

variables in models designed to capture international stock market linkages. This 

omission is surprising, since investors need to understand the causes of co-movements 

in order to evaluate the potential benefits of international portfolio diversification. For 

example, it is often observed that stock markets have become more integrated over 

time. Two plausible explanations are, firstly, that the macroeconomic policies and 

business cycles of countries have become more closely aligned or, secondly, that 

common shocks have become relatively more important over time. In the former case, 

international diversification offers protection against both idiosyncratic shocks and 

changing economic prospects in individual countries. On the other hand, international 
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diversification offers less advantage if common shocks play an increasingly dominant 

role over time. In the light of this, the present paper aims to shed light on the drivers 

of changing correlations between stock market price movements in the US and UK 

since 1980, focusing on the role of macroeconomic effects and, conditional on these, 

on the patterns of conditional shock correlations.  

A long and continuing stream of research, initiated by Fama (1981), has 

examined the role of macroeconomic variables (particularly real activity, inflation and 

interest rates) for stock returns. However, this research has almost exclusively 

considered domestic economic conditions, and hence sheds little light on cross-

country linkages. Nevertheless, there are some important exceptions, including 

Bonfiglioni and Favero (2005), Campbell and Hamao (1992), Canova and De Nicoló 

(2000), and Nassah and Strauss (2000), all of whom allow foreign economic variables 

to affect domestic stock returns. While these studies document the importance of 

international market linkages, especially with the US, and frequently find that foreign 

macroeconomic variables play a role for domestic stock returns, only Bonfiglioni and 

Favero (2005) focus primarily on explaining the changing nature of such links. 

Bonfiglioni and Favero (2005) study monthly German and US (log) stock 

market indices in relation to bond yields and (log) analysts’ forecasts of earnings. 

They propose an innovative methodology that distinguishes between short-run stock 

market interdependence and contagion through the significance, in the equation for 

German stock returns, of dummy variables representing extreme changes in the US 

market. While an incisive contribution, their analysis is nevertheless based on the 

crucial assumption that, after allowing for a small number of periods of extreme 

change, the vector of shocks to the markets is normally distributed with a constant 

covariance matrix. However, in the light of the recent literature concerned with time-

varying conditional correlations across international financial markets, this is a strong 
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assumption. Baele (2005) takes a different approach, by focusing on time-varying 

correlations between the US and European markets through a Markov-switching 

approach, and then, in a second stage, considering the role of economic variables in 

explaining the switches between high and low spillover regimes. Although 

recognising time-varying correlations, this approach does not readily allow analysis of 

the extent to which this time-variation is due to changing economic circumstances or 

to changing levels of stock market integration. Further, the treatment of the regimes as 

observed for the second stage is not valid econometrically1. 

Despite their different methodologies and different sample periods, a common 

finding of both Baele (2005) and Bonfiglioni and Favero (2005) is that cross-market 

spillovers between major markets have generally increased over time, with this being 

indicated in the latter case by the preponderance of identified contagion instances 

occurring at the end of the 1990s and early in the new century. The present paper 

investigates these issues further by directly modelling changes in stock market price 

indices in an international context in terms of their economic determinants, using a 

richer set of explanatory variables than Bonfiglioni and Favero (2005), while 

explicitly considering the existence and nature of time-varying conditional 

correlations using the recent approaches of dynamic conditional correlations (Engle, 

2002)2 and smooth transition conditional correlations (Berben and Jansen, 2005, 

Silvennoinen and Teräsvirta, 2005). The latter is preferred to the Markov-switching 

approach of Ang and Bekaert (2002) and Pelletier (2006), among others, since it 

allows the regime to be modelled as a continuous function of one or more so-called 

transition variables, and hence avoids the two-step approach of Baele (2005). It 
                                          
1 As Pagan (1984) proves that the standard errors need adjustment in regressions with constructed 

regressors. 

2 A similar methodology is proposed by Tse and Tsui (2002). 
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should also be noted that, in modelling conditional correlations, we do not make any 

assumption of causal ordering between the US and UK markets. This contrasts with 

the strong assumption explicitly made by Bonfiglioni and Favero (2005), and 

implicitly by (for example) Canova and De Nicoló (2000)3, that there is no 

contemporaneous feedback from stock market growth in other major countries to that 

in the US4. 

To preview our results, we find substantial communality in responses of US 

and UK stock markets to changes in short-term interest rates, bond yields and oil price 

inflation. In addition, the UK market reacts to exchange rate movements and dividend 

yields from both markets, effects we associate with the role of international investors 

in this market. Nevertheless, these economic determinants fail to explain the increase 

in correlations across these markets in the period from 2000. We also find strong 

statistical evidence for time-varying conditional correlations, which are adequately 

captured by a smooth transition conditional correlation model that implies a strong 

increase in correlations around 2000. 

The organisation of this paper is as follows. Sections II and III, respectively, 

describe the econometric methodology and data we use. Substantive results are then 

reported and discussed in Section IV.  Conclusions in Section V complete the paper, 

with some additional results presented in an Appendix. 

 

 

 
                                          
3 This assumption is implicit in the variable ordering used in a triangular variance decomposition used 

to compute impulse responses. 

4 Such as assumption is more plausible in the context of small open economies, as examined by Bredin 

and Hyde (2008). 
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II. Econometric Methodology  

After outlining our approach for the mean and volatility equations (Section II.A), 

Section II.B describes the time-varying conditional correlation models. Specification 

testing and estimation are then discussed in Sections II.C and II.D. 

 

A. Mean and Volatility Equations 

We model monthly changes in the logarithm of the US and UK stock market price 

indices, which are the corresponding variables to those of Bonfiglioni and Favero 

(2005). Richards (1995) argues that the concept of, and testing for, cointegration 

across international stock markets is problematic, with the econometric issues further 

complicated by the possible presence of a non-constant conditional covariance matrix. 

Therefore, we examine short-run stock price movements, with the consequences of 

economic integration on stock markets captured through the inclusion of appropriate 

variables in the mean equations.  

The mean equation for the two-dimensional vector (yt) of stock price growth 

for the US and UK can be written as 

(1)   yt = Bxt + ut,    t = 1, 2, …, T 

where the explanatory variables xt include the relevant macroeconomic information 

set. Following Bonfiglioni and Favero (2005), Campbell and Hamao (1992), Canova 

and De Nicoló (2000), and Nassah and Strauss (2000), foreign as well as domestic 

variables are allowed to enter both equations, so that no a priori zero restrictions are 

imposed on the matrix B. However, based on the findings of Bonfiglioni and Favero 

(2005), the macroeconomc indicators in xt are assumed weakly exogenous for yt. 

 In line with recent literature on international stock market returns, the 

conditional covariances of the shocks in equation (1) are time-varying, such that  
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(2)   ),0(~| 1 ttt Hu −ℑ  

where 1−ℑt  is all available information at t-1. From equation (2), each univariate error 

process can be written  

(3)   titiiti hu ,
2/1

,, ε= , i = 1, 2 

where )/( 1
2
,, −ℑ= ttitii uEh  and ti,ε  is a sequence of independent random variables with 

mean zero and variance one. As common in empirical analyses, each conditional 

variance is assumed to follow the univariate GARCH(1,1) process 

(4)   1,1
2

1,10, −− ++= tiiitiiitii huh βαα  

with non-negativity and stationarity restrictions imposed.  

 Rather than modelling the off-diagonal elements of Ht directly, the definition 

(5)   2/1
,22,11,12 )( −= tttt hhhρ  

allows the focus to be placed on the conditional correlations ρt. The constant 

conditional correlation (CCC) model assumes that ρt is constant over time, while the 

dynamic conditional correlation (DCC) and smooth transition conditional correlation 

(STCC) models allow distinct patterns of time-variation in ρt. 

 

B. Time-Varying Conditional Correlations 

Engle (2002) specifies the DCC model through the GARCH(1,1)-type process  

(6)   2,1,,)1( 1,1,1,, =β+εεα+β−α−ρ= −−− jiqq tijtjtiijtij   

where 12ρ  is the (assumed constant) unconditional correlation between t,1ε  and t,2ε , 

α  is the news coefficient and β  is the decay coefficient. The quantity q12,t from 

equation (6) is normalized using  

(7)   2/1
,22,11

,12

)( tt

t
t qq

q
=ρ  
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in order to ensure a conditional correlation between -1 and +1. The model is mean-

reverting provided 1<+ βα , while the conditional correlation process in equation (6) 

is integrated when the sum equals 1. However, the latter case violates the assumption 

of a constant unconditional correlation 12ρ , which is embedded in equation (6). 

Rather than assuming a constant unconditional correlation, the STCC model 

developed by Berben and Jansen (2005) and Silvennoinen and Teräsvirta (2005)5 

assumes the presence of two extreme states (or regimes) with state-specific 

correlations. These correlations are, however, allowed to change smoothly between 

the two regimes as a function of an observable transition variable st. More 

specifically, the conditional correlation ρt follows 

(8)   ( )( ) ( )csGcsG ttttt ,;,;1 21 γργρρ +−=  
in which the transition function ( ) 1,;0 ≤≤ csG tt γ  is a continuous function of st, while 

γ and c are parameters. 

Since equation (8) implies ρt = ρ1 when Gt = 0 and ρt = ρ2 when Gt = 1, 

extreme values of the transition function identify the distinct correlations that apply in 

these regimes. A weighted mixture of these correlations applies when 10 << tG . A 

plausible and widely used specification for the transition function is the logistic 

function 

(9)   ( ) ( ) 0,
]exp[1

1,; >
−−+

= γ
γ

γ
cs

csG
t

tt  

where the parameter c locates the midpoint between the two regimes. The slope 

parameter γ determines the smoothness of the change in Gt as a function of st. When 

                                          
5 The model of Berben and Jansen (2005) is bivariate with a time trend as the transition variable, while 

the framework of Silvennoinen and Teräsvirta (2005) is multivariate and their transition variable can be 

deterministic or stochastic. 
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∞→γ , ( )csG tt ,;γ  becomes a step function ( ( ) 0,; =csG tt γ  if cst ≤  and 

( ) 1,; =csG tt γ  if cst > ), and the transition between the two extreme correlation states 

becomes abrupt. In that case, the model approaches a threshold model in correlations. 

An important special case of the STCC model uses time as the transition, 

Ttst /= , which gives rise to the time-varying conditional correlation (TVCC) model 

employed by Berben and Jansen (2005)6. This allows one (smooth) change between 

correlation regimes, and as ∞→γ  captures a structural break in the correlations. This 

transition variable may be particularly relevant in order to capture the effects of 

increasing integration of financial markets over the last twenty years. 

 

C. Specification Tests 

Before applying either the DCC or STCC model, tests are applied to investigate the 

constancy of the conditional correlations in equation (5). Two residual-based tests of 

Bollerslev (1990) are particularly suitable for testing against a DCC specification. The 

first is the Ljung-Box statistic for testing autocorrelation up to m lags in the cross 

product of the standardised residuals ( tr1  and tr 2 ) from the GARCH(1, 1) model of 

equation (4), which under the null hypothesis is asymptotically distributed as 2χ  with 

m degrees of freedom (we use m = 18).  The second is an F test of the significance 

from a regression of the sample values of 11
,1221 −−
ttt hrr  on 1

,12
−

th , 1
,12

2
1,1

−
− tt hr , 1

,12
2

1,2
−

− tt hr  and 

lags 1
,12,2,1

−
−− tktkt hrr  (in which we include k = 1, …, 12). In addition, we apply the 

Lagrange Multiplier (LM) test of Tse (2000), which considers the null hypothesis δ = 

0 in the ARCH-type structure 

(10)   ρ12,t = ρ12 + δ r1,t-1 r2,t-1 

                                          
6 The scaling implied by defining st = t/T aids interpretation; see Berben and Jansen (2005). 
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Under the null hypothesis, the statistic is distributed as 2χ  with 1 degree of freedom7. 

We perform the Tse (2000) test in an estimation of the complete system (including 

mean equations). 

Silvennoinen and Teräsvirta (2005) derive a Lagrange Multiplier test LMCCC 

for the constancy of the correlations against a particular transition variable by 

applying a first-order Taylor series expansion to the STCC transition function (9) and 

then testing the significance of the additional terms that arise compared to a CCC 

specification. After allowing for the effects of macroeconomic variables through the 

mean equation (1), this test is applied using a time transition in the correlations to 

investigate changing conditional correlations associated with globalisation8. 

After estimation, the adequacy of the DCC and STCC models are checked 

using diagnostic tests applied to the standardised residuals from the bivariate system. 

Following Engle (2002), the required standardised residuals ttt rHv 2/1−=  are 

computed through the triangular decomposition of Ht, so that 

   2/1
,11,1,1 / ttt hrv =  

                                          
7 Tse (2000) notes that it may be more natural to use standardised values of ri,t-1 in equation (10), but 

prefers the unstandardised form for analytical tractability. Nevertheless, this choice may affect the 

power of the test. Power may also be affected by applying this two-sided test, in a context where δ is 

positive under the alternative.  

8 Based on previous studies that find co-movements to be stronger in volatile times than in more 

tranquil periods (Ang and Bekaert, 2002; Baele, 2005; Longin and Solnik, 2001; Ramchand and 

Susmel, 1998, among others), we also tested constancy of conditional correlations against a model with 

the conditional variance of the US stock returns as the transition variable. However, constancy was 

rejected more strongly using time and, when the volatility transition model was estimated, it resulted in 

relatively modest improvements in the log likelihood compared with the CCC model. 
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(11)   2/12
,12,11

,12
,12/12

,12,22

,2,2 ))1(())1((
1

tt

t
t

tt

tt h
r

h
rv

ρ
ρ

ρ −
−

−
=  

in which unknown parameters are replaced by their sample analogues. Since ν2t 

depends on the (estimated) dynamic correlations, tests on this are more revealing than 

those on ν1t (Engle, 2002, p.344). We apply the Ljung-Box test to both the 

standardised residuals and the squares of these standardised residuals. 

 

D. Estimation  

We estimate the CCC, DCC and STCC models by quasi-maximum likelihood (QML), 

with robust standard errors (Bollerslev and Wooldridge, 1992) used for the parameter 

estimates. All equations (that is, for the conditional means, volatility and conditional 

correlation) are estimated jointly. Although Engle (2002) and Cappiello et al. (2006) 

use a two step approach for estimation of DCC models, this does not allow for 

computation of QML standard errors that are robust to the violation of the assumption 

of normality in equation (1). Furthermore, through joint estimation taking account of 

(changing) cross-market conditional correlations, we aim for efficiency gains in the 

estimation of the impact of economic information on stock returns9. 

Nevertheless, nonlinear estimation of the resulting models is not always easy 

to achieve and specification of starting values plays a crucial role. The procedure we 

use to obtain starting values is discussed in Appendix 1. 

 

 

 

                                          
9 In practice we estimate the CCC and DCC models using the GARCH wizard in RATS 6.3. The 

reported STCC estimates are obtained using GAUSS, where our programs are adapted from code 

supplied to us by Christos Savva. 



 12

III. Data 

We simultaneously model movements in the monthly index of US and UK stock 

prices using data over the sample 1980m1-2006m6. More precisely, the US stock 

price is the Standard and Poor’s composite index (SP) and the UK stock price is the 

Financial Times All Share Index (FT), with end-of-month values employed for each. 

The starting date of 1980 is selected as it is subsequent to the financial liberalisations 

that occurred during the latter part of the 1970s10. 

As discussed in the Introduction, we investigate interdependence of the 

markets arising from available international information by allowing the 

macroeconomic variables for each country to enter the linear mean equations for both 

countries. The US and UK analyses of Pesaran and Timmermann (1995, 2000) 

provide the benchmark set of explanatory variables we use. More specifically, we 

consider the dividend yield for the corresponding market (SPDY, FTDY), industrial 

production (USIP, UKIP), retail sales volumes (USRS, UKRS), a short interest rate 

(the US Federal Funds Rate, USFF, and the UK 3-month Treasury Bill Rate, UKTB) a 

long bond rate (USLR and UKLR), nominal money stock (USM1 and UKM0), the 

Consumer Price index (USCP and UKRP) and the oil price measured in US dollars 

(OIL). In addition, the exchange rate of US dollars to pounds sterling (ER) is 

considered as an explanatory variable for the UK to reflect the open nature of its 

economy, while one month lagged returns for both markets are also considered as 

possible variables entering the two mean equations. The set of variables is therefore 

sufficiently broad to capture monetary policy and business cycle influences, as well as 
                                          
10 Also, the early/mid-1970s were crisis years in the UK, with accelerating inflation, rising 

unemployment, massive industrial unrest and the first oil price shock (Dow, 1998). In their Markov 

switching model for UK returns, Guidolin and Timmermann (2003) associate one regime, with 

negative mean returns and a large variance, primarily with this period. 
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spillovers between markets and other dynamics. While we aim to use the 

corresponding series for the US and UK, a precise matching is not always possible 

due to data availability. Appendix 2 provides details of the series and data sources. 

Most variables (including stock market prices) are used as growth rates, 

computed as 100 times the first difference of the logarithms. Exceptions are the 

interest rate series and the dividend yield, for which we take first differences, and the 

consumer price indices which are transformed to annual inflation rates. The decision 

to difference the explanatory variables was based on the results of prior unit root tests. 

To match the timing of our monthly stock price data, we also use end-of-

month values for the explanatory variables. Nevertheless, care must be taken in 

relation to the lag at which macroeconomic variables become available. While retail 

sales, consumer prices, money, and US industrial production data for a specific month 

are released during the immediately subsequent month, this is not the case for UK 

industrial production. On the other hand, while contemporaneous oil prices are 

known, in practice we found a lag of one month to have higher significance. 

Therefore, lags of one month are employed for most real activity variables, with UKIP 

lagged by two periods. Financial data on the exchange rate, short and long interest 

rates are available continuously, and contemporaneous end-of-month values are used 

for these variables. Dividend yields are lagged by one month to avoid the simultaneity 

that would result if the current value was employed. 

By using latest data available to the stock market at the end of the month, we 

assume that the macroeconomic indicators are weakly exogenous for stock market 

returns. This assumption is in line Bonfiglioni and Favero (2005) and the timing of 

explanatory variables for regime changes in Baele (2005), as well as with the causal 

ordering made in variance decompositions by Nassah and Strauss (2000) and many 

others. 
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Our sample period includes the stock market crash in October 1987, which 

affects both UK and US stock prices and the corresponding dividend yield series. The 

effect of the Long Term Capital Management crisis in 1998 is marked for the US 

stock price index. To ensure these events do not unduly influence the estimated 

models, we replace these outliers by the average value of the series over the sample 

period, computed excluding the outlier observation. We also remove outliers 

associated with extreme events in the industrial production, retails sales and money 

series (see Appendix 2 for details). 

The column labelled sample cross correlations in Table 4 provides some 

descriptive evidence on the changing correlations of the monthly stock market growth 

series that we model. Over our entire sample period, these markets exhibit a strong 

positive correlation, but over (approximately) five year sub-samples, this correlation 

varies between 0.45 and 0.87. Indeed, the contrast between the correlations for the 

second half of the 1990s and the high correlation in first part of the new century is 

particularly marked11. 

 

IV. Results 

Section IV.A discusses initial results for the mean equations, including the variables 

that survive our selection process, while Section IV.B provides a summary 

comparison of results for different conditional correlation specifications. The final 

Section IV.C then discusses the results obtained using the preferred STCC model. 

 

                                          
11 Goetzmann, Li and Rouwenhorst (2005) examine the correlation structure of world equity markets 

for a period of 150 years and find that correlations between stock markets were relatively high during 

the late nineteenth century, the Great Depression and the late twentieth century. 
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A. Mean Equations  

As already discussed, one aspect of interest in this study is co-movement across the 

US and UK markets that arises from similar responses to available information. 

However, a disadvantage of allowing variables from the other country to influence 

domestic stock market prices is the consequent possible over-parameterisation of the 

mean equations. To avoid this, the set of explanatory variables in each equation is 

reduced by adopting a general to specific approach and eliminating the least 

significant variables one by one in order to achieve the minimum Akaike information 

criteria (AIC). Although undertaken in a single equation setting for each market, the 

possible presence of heteroscedasticity is recognised by using robust standard errors 

to judge the least significant variable. 

For comparison with later results, the OLS estimates of the resulting linear 

models are presented in Table 112, together with heteroscedasticity robust standard 

errors. The UK model explains almost a quarter of the variation in the growth of stock 

market prices. The strongest significance is from the exchange rate, where an 

appreciation of the pound against the dollar (an increase in ER) has a negative impact. 

The implication that a depreciation of the pound is associated with a growth rate of 

UK stock market prices is compatible with international investors requiring higher 

price growth to compensate for the adverse effects of a depreciation on returns 

                                          
12 We also considered using the unanticipated changes in the variables as regressors in our models, 

where the unanticipated component for each series was extracted using an AR(12) model, and 

including the residuals in the linear model. Then we followed a general to specific approach based on 

the AIC to select the specific model. The selected specific model was very similar that obtained using 

the original series, and hence we proceeded with the model based on observed values. 
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measured in dollars13. Another indicator of the role of international investors for the 

UK market is the significance of the US dividend yield, with the opposing signs of 

ΔSPDYt-1 and ΔFTDYt-1 implying that potential investors compare these when 

considering where to invest. 

Nevertheless, domestic economic conditions also play a substantial role for the 

UK market, with changes in the long and short rates and industrial production all 

being individually significant at the 5 percent level and of the anticipated signs. 

However, the presence of lagged UK and US stock price growth is not in line with the 

weak form of the efficient market hypothesis, where it might be noted in particular 

that the former (ΔFTt-1) has a strong positive and significant coefficient. The US 

model, on the other hand, contains fewer variables and explains a substantially lower 

proportion of total variation (around 14 percent), with no role for either past price 

growth or dividend yields. Indeed, unlike the UK, industrial production does not 

survive the variable selection process. Although retail sales does appear, it is not 

significant at even 10 percent, and this variable is consequently dropped from 

subsequent models. Overall, real variables appear to play only a minor role in 

explaining movements in US stock prices. 

However, our main focus of interest is not individual markets but rather their 

co-movements. In this context, two aspects of the results in Table 1 are of interest. 

The first is the negative influence of oil prices, where the almost identical (and 

significant) coefficients imply that co-movement will be stronger when oil price 

changes are large. 

                                          
13 Note, however, that the coefficient on ΔERt is also significantly different from -1, and hence it is 

inappropriate in this model to measure UK stock market price growth net of exchange rate effects. 
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The second aspect is the strong role played by interest rate changes for both 

markets. Not only do both domestic long and short-rates appear (with negative signs) 

in the respective equations, but UK bond rates are highly significant for the US while 

US short-rates have marginal significance of around 6 percent for the UK. Once 

again, the similarity of the coefficients for ΔUKLRt and ΔUSFFt across the two 

equations implies that the common responses of the markets to changes in these 

variables will give rise to co-movement. Indeed, Laopodis (2002) documents stronger 

international correlations for bond prices during the 1990s than the 1980s, and such 

increased correlation for US and UK long rates would further enhance the implied 

communality of stock price movements in Table 114. 

The diagnostic tests for the linear model in Table 1 provides strong evidence 

of time varying conditional volatility (ARCH) in the residuals of the US model. There 

is also evidence of non-normality, especially for the UK, although this is not 

unexpected when modelling stock returns. 

Before moving to the time-varying volatility models we eliminate ΔSPt-1 from 

the FT equation as this is insignificant. Detailed results for the parsimonious linear 

model can be obtained from the authors on request. 

 

B. Model Comparisons 

The CCC, DCC and STCC models outlined in Section III take account of time-

varying volatility, but make differing assumptions about the temporal nature of the 

cross-market conditional correlations. The impact of these differing assumptions are 

summarised in Tables 2, 3 and 4. 
                                          
14 To be specific, the aggregate of the coefficients on US and UK long-term rates in the US equation is 

-3.76, compared with -3.50 in the UK equation (with the latter arising from UK long-term rates alone). 

When the two long-term rates move together, only this aggregate is relevant. 
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Table 2 shows that taking account of volatility in the mean specifications of 

Table 1 through a GARCH(1,1) specification for each market, in conjunction with 

constant cross-market conditional correlations, is not satisfactory. More specifically, 

the Ljung-Box and (particularly) the Bollerslev residual diagnostic tests reject the 

assumption of constant conditional correlations. Although the Tse (2000) test is less 

decisive, it also rejects this assumption at a marginal significance level of 6 percent. 

However, the CCC model is particularly strongly rejected against the STCC model 

with a time transition15. 

In line with these results, the statistics in Table 3, and especially AIC and BIC, 

point to the use of the STCC model in preference to a CCC or DCC specification. 

Further, and not surprisingly, the models with explanatory variables in the mean 

equations are preferred to constant mean specifications, which underlines the 

importance of (domestic and international) macroeconomic conditions in explaining 

movements in the US and UK markets. However, these results shed little light on the 

extent to which these variables explain the apparently time-varying correlation of the 

movements in these markets. 

To gain further insight into this question, Table 4 shows, firstly, the 

correlations between the fitted values from the mean equations of (1) and, secondly, 

the corresponding conditional correlations for each of the CCC, DCC and STCC 

                                          
15 This test was computed using the Ox programs supplied by Annastiina Silvennoinen. The test is 

performed on the residuals from a linear regression including the explanatory variables as the programs 

do not allow all equations of our model to be estimated simultaneously. All the explanatory variables 

were tested as possible STCC transitions for the constant mean model and the results are presented in 

Table A.3.1. However, testing the explanatory variables from the mean model of equation (1) as 

possible STCC transitions in this way is not asymptotically valid, as there may exist conditional mean 

estimation effects that are not accounted for by the test, see Halunga and Orme (2007). 
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models, over both the whole sample period and five year sub-samples. Although these 

do not provide a simple decomposition, nevertheless they provide information about 

the relative contributions of the mean equations and the residual conditional 

correlations to modelling the observed sample cross-correlations. 

Interestingly, over the whole period and irrespective of the particular 

conditional correlation model employed, the mean equation fitted values yield 

correlations around 0.65-0.70, which is similar to the observed correlation. 

Nevertheless, common shocks are also important, with these having a correlation of 

0.61, so that the overall sample correlation of 0.65 cannot be clearly attributed to 

either economic conditions or to conditional correlations unexplained by these. Until 

around 1999, the sub-sample correlations implied by the mean equations remain fairly 

constant, but then fall to around 0.5 in the post-2000 period. In other words, the fitted 

means do quite poorly in capturing the large increase in correlations at the end of the 

sample. The high correlation unexplained by economic conditions is consequently 

manifested by a large increase in the conditional correlations. Despite the CCC model 

being estimated under the assumption of constant conditional correlations, the residual 

series from this model nevertheless show a similar pattern of temporal change in the 

conditional correlations as the time-varying DCC and STCC specifications.  

The conditional correlations shown in Figure 1 for the DCC and STCC 

specifications provides further information on these temporal patterns. In particular, 

the implied correlations grow fairly dramatically from around 0.4 at the beginning of 

the sample to around 0.9 in 2002, which may reflect increasing globalisation and 

integration of stock markets not captured by the explanatory variables in the mean 

equations. Although Cappiello et al. (2006) associate an increase in correlations of 

stock markets in the recent past with the introduction of the euro currency, the 

increase in the bivariate correlation between the US and UK cannot be attributed to 
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this source and appears to be a consequence of broader international financial market 

integration; see also Savva et al. (2005).  

Although the DCC model is not designed to capture a systematic temporal 

pattern in conditional correlations, Table 4 and Figure 1 indicate that, in practice, it 

does so quite well in our case. Nevertheless, the clear pattern in the DCC conditional 

correlations indicates that the STCC model may be a more appropriate specification, a 

conclusion compatible with the AIC and SIC values in Table 2. 

Detailed estimation results are not presented for the CCC or DCC models16. In 

the former case, this is because the CCC assumption is rejected by the data. In the 

DCC case, the estimate for α + β in (6) is on the border of nonstationarity, at 0.9999, 

which appears to violate the assumption of an underlying correlation of shocks that is 

constant over time. Indeed, it is only through this effective nonstationarity that the 

DCC model is able to capture the temporal pattern indicated in Figure 1. It may also 

be noted that the estimated mean equation coefficients and their significance are very 

similar across the CCC, DCC and STCC specifications. 

 

4.3 STCC Results  

The discussion of the previous subsection points to the STCC specification as being 

the most appropriate model for capturing the time-varying conditional correlations 

between the growth rates in US and UK stock market prices. 

The importance of time for capturing the correlations between these markets is 

reinforced by Appendix Table A.3.1, which shows the results of tests for constant 

correlations against time-varying correlations in a constant-mean model. Therefore, in 

this specification, all co-movement is captured by the correlations of the disturbances, 

                                          
16 These may be obtained from the authors on request. 



 21

even when such co-movements could be due to related responses common 

macroeconomic information. Although Table A.3.1 indicates that interest rate 

variables and US consumer price inflation (which is, of course, correlated with 

interest rates) as possible transition variables, nevertheless the p-values point to the 

dominant role of time if a single transition variable is to be selected. 

Therefore, in conjunction with effects of interest rates and other observed 

variables captured through the mean equations, Table 5 presents the estimates of the 

STCC model, described by equations (1), (4), (8) and (9). As shown by the diagnostic 

statistics, this model satisfactorily accounts for the temporal patterns in these returns 

and their correlations. 

By comparing corresponding estimates in Tables 1 and 5, it can be seen that 

modelling change over time in the conditional correlations has some impact on the 

estimated effects and significance of the economic variables in the mean equations. In 

particular, although the lagged value of FT remains significant in the UK equation in 

Table 5, the magnitude of this coefficient is substantially lower than for the OLS 

estimates of Table 1. Further, the US long-term interest rate is now highly significant 

for the US equation in Table 5. Overall, however, the substantive implications of this 

model for the mean remain as for Table 1. 

In terms of the temporal pattern of the conditional correlations, c in Table 5 

defines the middle of the transition period, with this value expressed as a fraction of 

the sample size, and the corresponding estimated mid-point date of May 2000 is also 

indicated17. The results show that the conditional correlation between the two markets 

increases from 0.52 at the beginning of the sample to the substantially higher value of 
                                          
17 It is worth mentioning that Berben and Jansen (2005) for their US-UK model estimate a mid-point of 

March 1983. However, their estimation period is 1980-2000, and hence they apparently do not pick up 

the large increase in correlation we find around 2000. 
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0.90 in the latter part. Indeed, similar conditional correlations are obtained in a 

constant-mean STCC specification (see Appendix Table A.3.2), indicating once again 

that macroeconomic variables account for relatively little of this temporal pattern. 

This temporal pattern for STCC estimated conditional correlations has already 

been noted in relation to Figure 1. It might also be noted that the slope parameter of 

the transition function of 13.4 in Table 5 results in the relatively smooth change over 

time in the cross-market conditional correlations evident in Figure 1. 

 

V. Concluding remarks 

This paper provides two contributions to understanding the nature and causes of co-

movements in monthly US and UK stock prices. Firstly, we examine the role of 

macroeconomic and financial variables for explaining stock price growth and find 

substantial communality in the responses to these variables. In particular, not only are 

domestic variables important, but some interest rate changes affect both markets 

irrespective of the country in which these changes apply. It is plausible that the US 

Federal Funds rate is important for the UK market as a signal of movements in world 

interest rates. Although the role of UK bond rates for the US market is less evident a 

priori, nevertheless it indicates that the US market is open to international influences. 

In general, however, the UK market is affected more by international influences, with 

other significant variables including the dividend yield for the US market, US 

inflation and changes in the dollar/pound exchange rate. Perhaps not surprisingly, 

both markets react significantly to oil price inflation.  

In addition to these cross-country effects, domestic short and long interest 

rates also play a role in explaining stock market returns, while there is a negative 

effect in both markets from oil prices increases. The communality of these effects 
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results in positive correlations between movements in the stock markets in both 

countries. Nevertheless, our results also imply that the increase in correlations 

between these markets in the post-2000 period cannot be explained in terms of their 

responses to economic information. Indeed, our models indicate that economic 

variables alone would point to the cross-market correlations being lower in this period 

than previously, whereas the observed correlations substantially increase. 

The second contribution of this paper is to explore the usefulness of time-

varying conditional correlation models in this context. Although other recent studies 

(including Cappiello et al. 2006, Savva et al., 2005) employ time-varying conditional 

correlation models, to our knowledge the present study is the first that does so while 

also allowing for mean effects due to known macroeconomic information. In our 

context, the dynamic conditional correlation model of Engle (2002) points to 

increasing correlations in the latter part of the sample, but the parameter estimates are 

not compatible with the stationarity assumption that underlies this specification. This 

situation is handled well by the smooth transition conditional correlation specification 

of Silvennoinen and Teräsvirta (2005) using time as the transition variable. The 

resulting STCC specification indicates that the correlations of shocks (unexplained by 

the macroeconomic and financial variables) increase dramatically from around 1999. 

The robustness of our results is verified using constant-mean models that do 

not admit explanatory variables in the mean equations. These yield similar results, 

confirming the high degree of co-movement between the US and UK equity markets 

in recent years. Since the increase in co-movement remains largely unexplained after 

exploring the implications of common responses to observed economic information 

through the mean equations, the increased correlations of shocks appears to be a 

manifestation of increased globalisation. 
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Table 1: OLS Estimates of Mean Models for US and UK Stock Prices 

Variable ΔSPt ΔFTt 
Constant 0.7213 [0.2299] -0.0244 [0.4599] 
ΔUSRSt-1 0.3275 [0.2121]  
ΔUSLRt -1.1260 [0.5731]  
ΔUSFFt -0.4121 [0.2140] -0.3547 [0.1910] 
ΔUSCPt-1  0.1555 [0.0968] 
ΔOILt-1 -0.0621 [0.0252] -0.0697 [0.0275] 
ΔUKLRt -2.6305 [0.7597] -3.5021 [0.8712] 
ΔUKTBt  -1.0649 [0.4688] 
ΔFTt-1  0.4523 [0.1790] 
ΔSPt-1  -0.1404 [0.1167] 
ΔFTDYt-1  11.9207 [3.7722] 
ΔSPDYt-1  -6.7356 [2.7762] 
ΔUKIPt-2  0.5662 [0.2294] 
ΔERt  -0.3148 [0.0695] 
s 3.7569 3.7772 
AIC 5.5038 5.5328 
SIC 5.5747 5.6748 

2R  0.1392 0.2413 
Diagnostics   
Autocorrelation 0.5495 0.8237 
ARCH 0.0000 0.1634 
Normality 0.0655 0.0016 
Notes: Values in square brackets are heteroscedasticity-robust standard errors; 
results for the diagnostic tests are presented as p-values. Diagnostic tests for 
autocorrelation and ARCH are (single equation) Lagrange multiplier tests using 
lags 1 to 12 inclusive. 
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Table 2: Tests of Constant Conditional Correlations 
 

Tests against DCC model  
 
Ljung Box test 

 
32.29 (0.020) 

 
Bollerslev test 2.923 (0.0003) 

 
Tse LM statistic 3.476 (0.062) 

Test against STCC model 
 
t/T transition 
 

 
 

19.47 (0.0000) 
 

Notes: The Ljung-Box statistic tests autocorrelation up to 18 lags in the 
cross products of the GARCH standardised residuals, distributed as χ2 
with 18 degrees of freedom.  Bollerslev’s (1990) residual based diagnostic 
is the F test from a regression of 11
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1

,,1,1, ,..., −
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−
−− tjitjtitjitjti hrrhrr .  The Tse (2000) test is 

the Lagrange Multiplier statistic for constant correlations, distributed as χ2 
with 1 degree of freedom. Figures in the parentheses are p-values. Tests 
against a single transition STCC model are those of Silvennionen and 
Teräsvirta (2005), distributed as χ2 with 1 degree of freedom.  

 
 
 

Table 3: Log Likelihood and Information Criteria Values  
 

 Log-Likelihood AIC SIC 
Models with explanatory variables   
CCC -1645.14 10.492 10.764 
DCC -1631.31 10.411 10.695 
STCC -1626.40 10.393 10.434 
Constant mean models    
CCC -1706.69 10.791 10.897 
DCC -1695.12 10.724 10.842 
STCC -1688.76 10.697 10.716 
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Table 4: Mean Equation and Conditional Correlations over Sub-Samples 

 

   Fitted Mean Correlations Conditional Correlations 

 

No. 

of obs

Sample 
Cross 

Correlations

CCC DCC STCC  CCC  DCC STCC 

1980m1-2006m6 318 0.656 0.662 0.651 0.693 0.619 0.602 0.606 

1980m1-1984m12 60 0.509 0.680 0.662 0.710 0.457 0.492 0.518 

1985m1-1989m12 60 0.668 0.721 0.691 0.741 0.606 0.522 0.518 

1990m1-1994m12 60 0.664 0.737 0.728 0.754 0.582 0.634 0.518 

1995m1-1999m12 60 0.449 0.716 0.713 0.742 0.459 0.497 0.596 

2000m1-2006m6 78 0.867 0.501 0.495 0.528 0.855 0.804 0.864 

 
Notes: All models are estimated using data over the sample 1980m1-2006m6, using the same variables in the mean equations (see Section IV.A), 
but making different assumptions about conditional correlations. Mean equation correlations are computed using the fitted values from (1), over the 
indicated sub-sample periods. Conditional correlations for the CCC model are computed as the simple correlations of the residuals from the mean 
equations, standardized using the estimated conditional volatility. The DCC model conditional correlations are the sub-sample average of the 
estimated conditional correlations ρt of (7). The STCC conditional correlations are obtained using the estimated values from (8) and (9) with time as 
the transition variable. 
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Table 5: Model Estimates with Smooth Transition 
Conditional Correlations in Time 

 
 ΔSPt ΔFTt 
a. Mean equations   
Constant 0.8443 [0.1904]  0.3128 [0.3186] 
ΔFTt-1    0.2526 [0.1093] 
ΔFTDYt-1    8.0769 [2.6158] 
ΔSPDYt-1  -3.5870 [1.4812] 
ΔUKTBt   -1.0225 [0.4228] 
ΔUKLRt  -2.4112 [0.7343] -3.6162 [0.8274] 
ΔUSLRt   -1.7081 [0.5716]  
ΔUSFFt   -0.4584 [0.2255]     -0.3781 [0.1767] 
ΔOILt-1   -0.0507 [0.0243] -0.0613 [0.0257] 
ΔERt         -0.2778 [0.0511] 
ΔUKIPt-2     0.4078 [0.1627] 
ΔUSCPt-1    0.1355 [0.0711] 
b. Volatility equations   
Constant    0.4760 [0.2402]  1.4469 [0.8443] 

2
1, −tir     0.0639 [0.0222]  0.0658 [0.0320] 

1, −tih     0.8959 [0.0236]   0.8281 [0.0613] 

c. Correlation equation (time transition)  
1ρ  0.5175 [0.0527] 

2ρ  0.8997 [0.0340] 
γ  13.431 [6.5918] 
c  0.7701 [0.0220] (Date: 2000:m5) 
AIC 10.393 
SIC 10.434 
Diagnostics   

)18,( ,tivLB   16.38 (0.566) 18.69 (0.411) 

)18,( 2
,tivLB  17.23 (0.507) 14.51 (0.695) 

Notes: Values in square brackets are robust standard errors (Bollerslev-Wooldridge, 
1992). The sample period is January 1980 to June 2006 (318 observations). LB(., 18) is 
the Ljung-Box statistic for testing autocorrelation up to 18 lags calculated for both the 
standardized residuals νi,t, see equation (11), and the squared standardized residuals, both 
distributed as χ2 with 18 degrees of freedom under the null hypothesis (where 18 is 
approximately the square root of 318). Figures in parentheses are p-values. 
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Figure 1: Monthly time-varying conditional correlations from DCC specification 

(DCCx) and fitted time transition for STCC model (STCCx), both with explanatory 

variables in mean equation. 

 

 

Appendix 1: Initialisation of the Nonlinear Estimation 

 

An important practical issue in nonlinear modelling is the selection of starting values 

for the estimation. Starting values for the DCC models are based on linear estimates 

for the mean equations with all parameters in the GARCH part of the equation 

initialised as 0.05. For the correlation parameters, the news parameter α  is initialised 

at 0.05. While we experimented with different values for the decay parameter, the 

likelihood maximum was achieved with β  initialised at 0.05. 

As far as the (single transition) STCC models are concerned, we use starting 

values from OLS estimation of the mean equations (1) and initial univariate estimates 

of the volatility equation (4) to obtain estimates of the respective parameters and also 
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the associated series r1,t, r2,t, h11,t and h22,t. Using these, we perform a grid search18 

where we select initial values for the remaining parameters as those that minimise the 

square of the distance between the cross products of the standardised residuals and the 

implied correlations, namely  
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We also estimate the STCC-GARCH models conditional on OLS results for the mean 

equations and then apply the iterative procedure of Silvennoinen and Teräsvirta 

(2005) that separates the parameters of the GARCH, correlation volatility and 

transition function(s)19. For the STCC model without explanatory variables in the 

mean equations, the results reported are obtained using these initial values, as this 

resulted in the higher log likelihood values than other initialisations20. 

                                          
18 See Sensier, Osborn and Öcal (2002) for an example of grid search techniques applied to nonlinear 

estimation. 

19 This procedure was applied using Ox programs supplied by Annastiina Silvennoinen. These 

programs are written such as that the returns are the residuals from a filtered time series, they do not 

allow for the computation of QML standard errors. 

20 For instance, the grid search gave a first best initial estimate for the time threshold of 0.15. However, 

the highest log likelihood value was obtained using 0.75, which was the estimate obtained from the Ox 

program. 
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Appendix 2: Data 

Table A.1: Variable Descriptions and Sources 
Name Variable Description Source Code 
SP Standard and Poors’ composite index (EP), 

NSA 
Datastream USS&PCOM 

SPDY Standard and Poors’ 500 composite: 
dividend yield (EP), NSA 

Datastream S&PCOM(DY) 

USFF Federal Funds Rate Market Rate, (EP), 
NSA 

GFD _FFYD 

USLR 10-year Bond Constant Maturity Yield, 
(EP), NSA 

GFD IGUSA10D 

USIP Industrial production index, SA FRED INDPRO 
USRS Total retail trade (Volume), SA OECD SLRTTO01 

.IXOBSA 
USM1 M1 Money Stock, SA FRED M1SL 
USCP Consumer Price Index for All Urban 

Consumers: All Items, NSA 
FRED CPIAUCNS 

FT Financial Times all share index (EP), NSA Datastream UKFTALL. 
UKDY F.T. all share index: dividend yield-(EP), 

NSA 
Datastream FTALLSH(DY)

ER US $ TO £1 (WMR), exchange rate (EP), 
NSA 

Datastream USDOLLR. 

OIL West Texas. Intermediate Oil Price (EP), 
US$/Barrel, NSA 

GFD __WTC_D 

UKTB Treasury bills: average discount rate, NSA ONS AJNB 
UKLR Gross interest yield on 2.5% Consols, (EP) 

NSA 
Datastream UKCONSOL 

UKM0 
M0 wide monetary base (EP): level £M, SA ONS AVAE 

UKRS Retail sales volume index, SA Datastream UKRETTOTG 
UKIP Industrial production volume index, SA ONS CKYW 
UKRP Retail price index, NSA Datastream UKCONPRCF 
Notes: EP – end of period; SA – seasonally adjusted; NSA – not seasonally adjusted; ONS – Office for 
National Statistics; FRED – Federal Reserve Economic Data (http://research.stlouisfed.org/fred/); GFD 
– Global Financial Database (http).  
 

Table A.2: Outliers Removed 

 
UK US 

Stock Market Prices 1981m9, 1987m10 1987m10, 1998m8 
Dividend Yields 1981m9, 1987m10, 

1998m1 
1987m10 

Industrial Production 2002m6 N/A 
M0/1 1999m12, 2000m1 2001m9 

Retail Sales 1979m6 1987m1, 2001m10 
 

Appendix 3: Additional Results 
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Table A.3.1: Tests of Constant Conditional Correlations  
in Constant Mean Model 

Test Statistic p-value 
Tests against DCC model   
Ljung Box test 29.56  0.042 
Bollerslev test 2.007 0.017 
Tse test 8.866 0.003 

Tests against STCC model   
ΔFTt-1 transition 1.424 0.232 
ΔSPt-1 transition 0.007 0.932 
ΔFTDYt-1 transition 0.260 0.610 
ΔSPDYt-1 transition 0.003 0.952 
ΔUKTBt transition 9.393 0.002 
ΔUKLRt transition 9.200 0.002 
ΔUSLRt transition 0.449 0.502 
ΔUSFFt  transition 4.490    0.034 
 ΔOILt-1 transition 0.002 0.962 
ΔERt transition  0.846 0.357 
ΔUKIPt-2  transition 3.475 0.062 
ΔUSCPt-1 transition 10.01 0.001 
ΔUSRSt-1 transition 0.289 0.590 
t/T transition           15.53 8.0904e-005 
Notes: See Table 2. 
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Table A.3.2: Constant Mean STCC-GARCH Model  

 
 

 ΔSPt ΔFTt 
a. Mean equations   
Constant    0.9423 [0.2168]     1.0714 [0.2205] 
b. Volatility equations titti hrE ,1

2
, )/( =ℑ −   

Constant    0.6487 [0.3512]     1.6799 [0.8645] 
2

1, −tir     0.0679 [0.0230]     0.0813 [0.0367] 

1, −tih     0.8887 [0.0235]     0.8236 [0.0554] 

c. Correlation equation  ),;/()),;/(1( 21 cTtGcTtG ttt γργρρ +−=  

1ρ                  0.5633 [0.0468] 

2ρ                  0.8813 [0.0210] 
γ                  31.739 [22.759] 
c                0.7600 [0.0152] (Date: 2000:m2) 
AIC                        10.697 
SIC                        10.716 
Diagnostics   

)18,( ,tivLB   16.44 (0.562) 8.989 (0.960) 

)18,( 2
,tivLB  17.92 (0.461) 16.72 (0.542) 

           Notes: See Table 5. 
 

 


