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Abstract

This paper develops a framework for the construction and analysis of
parametric misspecification tests for GARCH models, based on standard
first order asymptotic theory. Here, the GARCH model is defined to be a
regression model in which the errors, under the null, are conditionally het-
eroskedastic according to a GARCH process and it is this latter assump-
tion which is the subject of misspecification tests. The principal finding
is that estimation effects from the correct specification of the conditional
mean (regression) function can be asymptotically non-negligible. This im-
plies that certain procedures, such as the asymmetry tests of Engle and
Ng (1993) and the non-linearity test of Lundbergh and Teréisvirta (2002),
are asymptotically invalid. A second contribution is the proposed use of
alternative tests for asymmetry and/or non-linearity which, it is conjec-
tured, should enjoy improved power properties. A Monte Carlo study
supports the principal theoretical findings and also suggests that the new
tests have fairly good size and very good power properties, when com-
pared with tests of Engle and Ng (1993) and Lundbergh and Terésvirta
(2002).

JEL Classification: C12, C22

1 Introduction
A great deal of research has been undertaken on modelling volatility clustering

in financial and economic time series, in which the GARCH model of Boller-
slev (1986) represents a benchmark specification. The subsequent literature
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has provided generalisations by, for example, allowing for possible asymmetric
and/or non-linear behaviour. Prominent among these are: the EGARCH model
of Nelson (1990); the GJR model of Glosten, Jagannathan and Runkle (1993);
the TGARCH model of Zakoian (1994); and, the Smooth Transition GARCH
(STGARCH) model of Hagerud (1997) and Gonzalez-Rivera (1998).

Notwithstanding these developments, the parametric GARCH model re-
mains a popular choice among applied workers. Therefore, and as noted by
Lundbergh and Ter#dsvirta (2002), it is important to perform misspecification
tests to assess the adequacy of the parametric model being employed. In this pa-
per, the GARCH model is defined to be a regression model in which the errors,
under the null, are conditionally heteroskedastic according to a GARCH process
and the parametric tests are ones which might be used to detect misspecification
in the assumed GARCH process for the errors. Developing misspecification tests
has not been a neglected area of research. Bollerslev (1986) suggested a natural
score type test for testing a GARCH model against a higher order GARCH
model. Asymmetry tests were proposed by Engle and Ng (1993), and these are
now widely used in empirical finance. Li and Mak (1994) constructed a test for
the adequacy of a GARCH (p, ¢) model with a null hypothesis that the squared
standardised error process is serially uncorrelated. Lundbergh and Terésvirta
(2002) proposed tests of (i) no remaining ARCH in standardised errors; (ii)
linearity; and, (iii) parameter constancy. All these procedures are important
inferential tools for empirical researchers who are interested in obtaining accu-
rate forecasts of financial volatility, in order to take the appropriate decisions
on portfolio selection, asset management or pricing derivative assets.

However, in this paper it is argued that, on closer inspection, the standard
first order theory employed to justify the asymptotic validity of such procedures
has sometimes been misinterpreted. To establish this, a unifying framework for
the construction and analysis of parametric misspecification tests in GARCH
models, based on the conditional moment principle and first order asymptotic
analysis, is developed. This provides a useful contribution in at least two re-
spects.

Firstly, and most significantly, the theory predicts that the limit null dis-
tribution of the relevant test indicators must take account of asymptotically
non-negligible estimation effects which arise due to the estimated conditional
mean (regression) parameters in the null GARCH(p, ¢) model. (The importance
of estimation effects was addressed by Durbin, 1970, when testing for serial cor-
relation with lagged dependent variables.) This issue has been, apparently,
overlooked in the GARCH testing literature because in the null GARCH(p, q)
model, under conditional symmetry of the errors, the estimated conditional
mean parameters are asymptotically orthogonal to estimated conditional het-
eroskedasticity parameters. In particular, and because of this orthogonality, it
appears that the conditional mean estimation effects have been simply (but er-
roneously) assumed away, for example, by Engle and Ng (1993) and Lundbergh
and Ter#svirta (2002).!

The second contribution proposes “new” tests for asymmetry and/or non-
linearity. It is conjectured that these test procedures should have better power
properties against the types of alternative models considered by both Engle and

L Although, the issue of estimation effects from the conditional heteroskedasticity parame-
ters has been ackowledged; see, for example, Li and Mak (1994) and Lundbergh and Terésvirta
(2002).



Ng (1993) and Lundbergh and Terdsvirta (2002) in their Monte Carlo exper-
iments, since their construction takes into account the recursive nature of the
conditional heteroskedasticity (whereas the test procedures of Engle and Ng,
1993, and Lundbergh and Terisvirta, 2002, do not). The results of a small
Monte Carlo study reveal that the new tests do indeed have good size proper-
ties and very good power, when compared with the tests of Engle and Ng (1993)
and Lundbergh and Terésvirta (2002).

This paper is organized as follows, with supporting Lemmas and Proposi-
tions, together with all proofs, relegated to Appendices. Section 2 describes the
null GARCH model, and briefly discusses Quasi Maximum Likelihood (QML)
estimation. Section 3 describes a framework for constructing a particular class
of parametric misspecification tests. In Section 4 the tests proposed by Lund-
bergh and Terdsvirta (2002) and Engle and Ng (1993) are reviewed and new
asymptotically valid tests for asymmetry and non-linearity are introduced. Sec-
tion 5 presents some Monte Carlo evidence in support of the theoretical findings
and Section 6 concludes.

2 The Null GARCH(p, ¢) Model

The regression model for the variable of interest, y;, is defined as
Yt :m(wt;¢0)+€0t7 tzlva (1)

where wy = (y}_1,2}), Ye-1 = (L Y1, Ye—1)" € R, 24 = (241,00, 208)” € RE
are exogenous variables, @, = (©g1, -+, o,) is the true parameter vector and the
conditional mean (regression) function, m (wy; ¢,) , is possibly non-linear.? The
error {eg, Ft}, where Fy_1 = o ((yt,hz;), (yt,g,zgfl) 7...), is a martingale
difference sequence given by

cor = Eho)” (2)

where the standardised error process, &,, is an ¢.i.d. sequence with mean zero
and variance one and define k. = F [ff] andv. = F [ff] , both finite constants.
The conditional variance is specified as

hot = mySo,—1 (3)
= apo + Ag(L)ed; + Bo(L)hoy

where S0,t—1 = (1, 6%’1571, ceey 8(2),t7q7 h 0,t—15 =5 hoyt,p)l, MNo= (ao(), Qo1,---y Q0g, 601,
Ao(L) = a01L —|— + aoqu, Bo(L) = ﬂ01L —|— —|— BOpr'

The above process is defined for the true parameter 8y = (¢h,n})" and,
correspondingly, the model for the unknown parameter vector 8 = (¢’, '), is
defined as

ye = m(wg @)+ e, t=1,..,T
hy = m'si
= oo+ A(L)e? + B(L)h,
a; + B(L)hy (4)

2For example, Lundbergh and Terisvirta (1999) proposed the STAR-GARCH model and
the statistical properties of this model were investigated by Chan and McAleer (2002).
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where a; = ap+A(L)e? = ap+ Y 41—, axe?_,. The following assumptions ensure
the identifiability, stationarity and ergodicity of the above process.
Assumptions A

1. The parameter space, ©, is compact and 6 lies in the interior of ©.

2. The elements of (y;,z;) are strictly stationary and ergodic; and, m (wy; )
is continuous and F;_; measurable for all ¢ € ©.

3. (i) all the roots of 1 — A(z) — B (z) = 0 lie outside the unit circle;
(ii) the parameter space is constrained such that 0 < A < min{n;} <
max {n;} < A,l=1,...,p+q+ 1, where X and A are independent of 8;
(iii) the polynomials A(z) and 1 — B(z) are coprimes.

As in Ling and McAleer (2003), A3(i) is a stationarity assumption imposed
over the whole parameter space. Notice that, with A3(ii), this implies that
roots of 1 — B (z) = 0 lie outside the unit circle. Thus, in addition to A3(ii),
which restricts the parameter space so that zero values in m are ruled out,

:;:1 B; < 1. These restrictions are also imposed on © by Berkes, Horvdth
and Kokoszka (2003) and are employed here because they afford uniform con-
vergence of second derivatives of the log-likelihood over ®, removing the need
for third derivatives, thus greatly simplifying the algebra required to justify the
substantive contribution.

Given Assumption A3(i)(ii) the process for h, has the following representa-
tion

hi®=(1-B(L) a = Z%at—i
=0

where (1 — B(L))™! = S oL, with ¢y = 1, ¢; > 0 and satisfying ¢, =

-1

P By, with g, = 0,5 < 0,0 < X ¢, = (1 - 5j) < 0. The
coefficients, 1,;, decay exponentially fast, and there exist constants K > 0 and
0 < p < 1, independent of 8, such that v; < Kp’. Then, as in Ling and McAleer
(2003), but under (1), additional Assumption A2 and ho: = h$° (0p), it can be
shown that {eo¢, hot } is strictly stationary and ergodic.

Asymptotic theory for GARCH models has been considered by several au-
thors. For example, Ling and McAleer (2003) required that FE (Egt) < 00 to en-
sure asymptotic normality of the QML estimator in the ARMA-GARCH model.
Furthermore, Chan and McAleer (2002, 2003) argued that the results in Ling
and McAleer (2003) also hold for a STAR-GARCH model. Berkes et al (2003)
established the consistency and asymptotic normality of the QML estimator,
under weaker moment assumptions, in the pure GARCH model and Francq and
Zakoian (2004) established consistency and asymptotic normality of the QML
estimator in both a pure GARCH and ARMA-GARCH model under further
weakened conditions; for example, in the pure GARCH model the parameter
space can contain zero elements (although the true parameter can not) and the
only moment condition required for consistency is E [5?] = 1 and for asymp-
totic normality, E [{f] < o0. All these authors assume, as here, that the &,
are i.1.d. Therefore, whilst it is possible that the assumptions employed in this
paper could be weakened, it should be noted that the regression specification
in (1) is more general than that employed in the literature referred to above



and the corresponding assumptions employed are, nonetheless, sufficient and
(importantly) permit a relatively straightforward justification of the required
first order asymptotic theory, without obfuscating the principal issue that is ad-
dressed in the paper. In practice, and following Weiss (1986), the existence of
moments is assumed when required as follows, where ||.|| denotes the Euclidean
norm:

Assumptions B

1. B \60t\4(1+s) < oo for some s > 0, and all .

2. B |m(wy; 0)—m(wii o)|* > 0, for all ¢ # @,

3. m(wy; ) is at least twice continuously differentiable in ¢, with, for all ¢
(i) supg |m(we;@)|** ™ < B(w,), with E [B(w;)] < oo, for some s > 0;

9 & [one

sam(wﬂ")m < o0, r=0,2, and all i > 0:
t acp ) — Yy il )

?m(wi_i;0) 2 )
E;WH <oo,r=0,1andall > 0.

(iii) E [Supe ’

2.1 Estimation Framework

The (average) quasi log-likelihood, conditional on available pre-sample values
¥ = (o, ...,y1_1)', is (ignoring constants)

Lr(0)= 3 300), 10) =3 0+ 7] o)
=1 ¢

although the ensuing asymptotic analysis does not restrict &, to be normally
distributed; see Bollerslev (1986). Note that (5) is not only conditional on
available pre-sample values, y, from which ¢4, ¢ = 1,...,T, can be constructed,
but also on gy = (5%, ...,Eiq, ho, ..., hl,p)/, from which h; can be constructed
using (4). However, ¢; and the process hy, t < 0, are unobserved. In order to
simplify the algebra and asymptotic theory, it is assumed (in addition) that pre-
sample observations wo, ..., w1_4 are also available (entailing y_i, ..., y1_(14¢))>
so that e;_x, £k = 1,...,q, can be constructed, and that h, = 0 for all ¢ <
0.* The simplifications in the analysis derive from the fact that, now, h; can
be expressed as h; = Zf;é Yap—; = Zf;é {B* (L)} a;_i, t = 1,...,T, where
B*(L) =61+ 05L+... +6PLP_1. (In practice, and for all inferential procedures
described in this paper, a constant value can be chosen for &g, in order to
generate hy, t = 1,...,T.) The unknown parameters can be estimated jointly
by QML estimation of (5). Throughout, the estimated parameter vector will be
denoted 8 = (@' 7).

The unobserved log-likelihood function, conditioning on the infinite his-
tory of all past observations (w(, w’ | w’ ,, ) is L5 (0) = A1 10(0) #

3Weiss (1986) established the asymptotic theory for the ARCH model allowing for exoge-
nous variables in the conditional mean.

4Note, that this is not the same start-up scheme employed by either Ling and McAleer
(2003), who choose &g = 0, Berkes et al (2003), or Francq and Zakoian (2004).



2
t> and score vector contributions of

€

hee
dg: (0) = , where dg;(0) = (d&‘;’(@),d%‘;’(@))/ in an obvious manner.
Assuming L (6) and Ly (0) are both twice continuously differentiable in 6, de-

fine dg:+(0) = @) =11 Zthl de.(6), Pogr(0) = —T-1 ZT 8d9t(0)’

and, correspondingly, Dg7-(8) and Pgy,-(0) in an obvious manner for the unob—
served LY (). By introducing the unobserved log-likelihood, the methodology
of Ling and McAleer (2003), Berkes et al (2003) and Francq and Zakoian (2004)
is followed whereby it is established that 8 = arg maxg Lr(0) has exactly the

Ly (0), with I (0) = —% (1n(h;>°) +
9l (0)

same first order asymptotic properties as 0~ = arg maxg LY (0), with the as-
ymptotic properties of the latter being fairly easy to verify.

In order to develop these arguments, it will be useful to illustrate, and
distinguish between, the various unobserved and observed quantities associ-
ated with L¥(0) and Ly (0), respectively, based on the assumed initial start
up values embodied in &j. Specifically, the unobserved scores are D (6) =

iy 1{Etft 5 (,f;— )W} D(6) = T~ ) SF 1<oo— )x;’O,

0
where f; = w and by exploiting the recursions — ago QZk 1 akEr—rfi_p+
Ohy (’9ht Oh,
B(L)— and — 4+ B(L)=t
(L) and S =51+ BI)GE.
1 Ohge 1 & >
C;X) hoo a(P - 2@ Z Qg {Z wigtkiftki} ) (6)
k=1 i=0
and
o LOnE 1 SN
X 7o Z ViS{Z1_is (7)

I

where s = (1,5?_1, ...,sf_q, hq, .y hg’ip)'. Given &g, the corresponding ob-
served score Dgr(8), associated with Lp(6), can be expressed analogously but
with

q

Ct = —2ézak{z¢ iEt—i—kfr—i_ k:} Z {Z{B* }Et ikt k}

'k t =1
Xt:hZ%bStlz—hZ{B* )} seo1i

replacing cg° and x7°, respectively. For example in the GARCH(1, 1) case h; =

t—1 i
Yico Bl {ao—i—alsf_i_l}, c. = —2h; Loy ZZ Oﬁlat 1-ifi_1_;, whilst x; =
hit Zf;é Bist—1—s, with s}_; = (1,5t_1, ht_l) in this case. In practice, how-
0 oh
ever, ¢; and x; can be constructed using the recursions for 8—t and a—t, de-
14 U

scribed above.

The consistency and asymptotic normality of the QMLE estimator 0 =
arg maxg L (@) is presented below, together with a consistent variance-covariance
matrix estimator.



2.1.1 QML Estimation

The following Theorem establishes the consistency and asymptotic normality of
6.

Theorem 1 Given Assumptions A and B, 0 2> 0, and
\/T(é — 90) i N (07,];91909;]591)

odg; (6o)

here Jgg = —F
wnere Jgo 80/

} and Qg = E [dg;(00)dgi(00)'] are both finite and
positive definite with

1
J00:|:‘}P4P J%¢:|:§E[C?OC§OI Ctooxz?o/:| _|_E|:hgcftft/ 0]
6=0, 6=6

o0 L0007 o0 oo/
ne  Jun Xp € Xp Xy 0 0
and
i
Qgg = { Doy }
Qe Qg
. (kcl)E[ Ct‘x’cgo/ ct‘x’xtOO/ :|
- 4 00 H00/ 00 00/
X € X Xy 0=0,
1 f oo/ 1 f oo/
—7—=1LCy =Xy 1 ef 0
+%E QL?O co gl A +E| M bt .
\/hToXt ft 0 0 0 Jo—o
¢ =0,

Consistent standard errors follow from the next Lemma, in which C, X and
F are matrices with rows &, X} and f/, respectively, and H = diag (7'8;-1) ,
where “hats” denote evaluation at 8.

Lemma 1 Under Assumptions A and B,

(a) Qoo — Qoo = 0,(1), where

o _ (=-Yijee ox

00 = 4 T|X¢ XX
. 1 [ FPH-Y2C FH-Y2X +1 FAF 0
2T | X'H-V2F 0 T 0 0

2 2 3
where I%c -1= e T, i - 1> and ’IA)C =1 Ti <€t ) .
T Zt—l R T t=1 \/th .
(b) Joo — Joo = op(1), where

3 _117C¢C C¢X] 1[FH'F 0
TaoT | XC XX |'T 0 '
Exploiting these results, and the method of proof, affords a framework in
which to extend this asymptotic analysis to consideration of a specific class of
misspecification tests.



3 A Class of Asymptotically Valid Test Proce-
dures

In this section, first order asymptotic distribution results are developed for a
class of parametric test statistics. The corresponding test procedures are derived
from the conditional moment principle and are designed to detect misspecifica-
tion in the null GARCH(p, q) error process, hy = n's;_1, whilst assuming a
correct regression function specification, m(wy; ).

If the GARCH model is correctly specified, then it follows from (2) that

E[(& 1) |F1] =0.

Therefore, misspecification tests of GARCH models can be constructed as tests
of the following moment conditions

E[(¢l —1)ri(60)] =0 ®)

where r;(0p) is a F;_1 measurable function. The intuition, here, is that if the
GARCH model is appropriate, then the squared standardised errors should be
serially uncorrelated with any function of past information.?
Consistent with the notation introduced in the previous Section, let d+(0) =
2
€
(ht - ) r;(0), where the (test) variables in r; will, in general, depend upon
t
past history and, specifically, the process h;. For example, r:(8) could derive
from a (quasi) score principle in which 7 denotes the unknown parameter vector

in the alternative model, say h{, and Hy : 7 = 0 is under test. In this case, and

ignoring irrelevant factors of proportionality, r:(0) = [h—la %} : see Section
t =0

4.2. Therefore, as with c; and x¢, let r{® be the test variable constructed using
hge.
To test the null of (8), the generic conditional moment test indicator is
constructed as
D1 (0) ! XT; st 1)} '’'d (9)
T - =~ ry| = —
T T = [\ by T
where the matrix R has rows r; = 1y (6)', 9 is the vector with typical element
2
&
{IA; - } and where “hats” denote that everything is evaluated at the consis-
t
tent null parameter estimator, 8. It should be noted that tests for non-linearity
and/or asymmetry, discussed in Section 4 are special cases. Assessing the statis-
tical significance of (9), which requires estimation only under the null GARCH
model, provides the basis for a test procedure.
It is not being claimed that such procedures are consistent in the sense of
rejecting against any departure from the null model when the null hypothesis is
false. Given the framework set out in this paper, the general results of Godfrey

5Lundbergh and Teriisvirta (2002) employed a similar approach in order to test for no
remaining ARCH effects, in a GARCH model, but with an implicit null of [(5? — 1) rtg] =0,

where r¢ = (5?71,..,55_7,1)’ is i_7" = o (€_1,..,6_,,) measurable; see Section 3.1 of
Lundbergh and Teréisvirta (2002). However, this could yield tests with lower power than one
based on (8), since test variables of the form rtg contain less information about F;_1 than the
test variables r¢.



and Orme (1996) could be employed to suggest alternatives against which tests
based on (9), for a given choice of r;(0), may be relatively insensitive. On the
other hand, the conditional moment framework suggests that Newey’s (1985)
results can be exploited to determine the choice of ry(8) which will provide
optimal local power against particular forms of misspecification. Such issues
are not the primary focus of the current paper, however.

The following Theorem provides sufficient conditions under which the famil-
iar limit distribution for vTD .7 () applies.

Theorem 2 In %ddition to Assumptions A and B, if
(1) >y Esupg ler| [ry° —rif| = O(1), 1 = 0,2

(it) Esupg ||r5°]|> < oo, for all t

(iii) E supg Hsé% ‘ <00,1=0,2, for all t

then o
VTD,7r(0) 5 N(0,%),
where
T =AQA’
Qoo Q. _
a-lon aze] A= londs vl

and 1,, is the identity matriz of rank m = rank (Qpr) ,

1 [e'e) (kc B 1) 00 .00
Q‘“"P = ’UCE Wrt ft/‘| + TE [I‘t Ct l]e:HO s
t 0=06,
(kC B 1) 00,00
Qrn = 9 Eryx; /]6:007
Qrr = (ke — 1) E[rr|g_yg, -
Jro = [Jnep i Jnn] with
Jrp = —F {82&’ = Er{°c; qe:eo (10)
adz; (60) 000
Joy = -E {’gno] = E[r3°x;]g_g, - (11)

From the above result, the general form of the misspecification test statistic
is the quadratic form A .
TD 7 (0) ;7' Drr(0) (12)

which has a x?2, limiting distribution under the null, where Sris any consistent
estimator for 3, i.e. 37 = 340, (1) . Similar in spirit to Lemma 1, the following
Lemma gives an expression for .

Lemma 2 Under Assumptions A and B, and those of Theorem 2, AQA -» =
op(1) where

~ [Qee " & Al
Q:{ng sz, A=[-Jredpy: L.



where gg and Jgg are given in Lemma 1 and

- i .
an = (kc;l) fl;X
e = (1) 57

Observe that ¥ = AQA’ depends upon the “mode” of estimation only through
Q and not Jrg, which is independent of the mode of estimation. In particular,
and of relevance for later discussions, if Jr, = E [r7°c;”]g_g, = 0 then the limit

distribution of vTD .7 () is not influenced by the estimation of . Indeed, it
appears that this claim, Jr, = 0, is always made when constructing parametric
misspecification tests of GARCH, and ARCH, models under the assumption of
conditional symmetry; see, for example Lundbergh and Teréisvirta (2002) and
Engle and Ng (1993). Using the framework introduced here, it is argued in the
next section that this is not the case, in general, and in particular it is not the
case for the test procedures proposed by Lundbergh and Teréisvirta (2002) and
Engle and Ng (1993).

Section 4 describes how (9) accommodates existing misspecification tests and
also provides alternative asymptotically valid test procedures. Before that, how-
ever, the important effects of (known) conditional symmetry, on the preceding
results, are considered although normality of £, is not necessarily assumed.

3.1 The Effects of Conditional Symmetry

Conditional symmetry implies that E [{f] =0, E [58t“7:t—1] = 0 and thus
ve = 0. Although it can be tested, see for example Bai and Ng (1993), it is often
assumed as in Lundbergh and Terisvirta (2002) and Engle and Ng (1993), with
the latter actually assuming normality of &,. The effect of conditional symmetry
simplifies the form X for the class of test indicators given by (9) as follows:

Lemma 3 Under conditional symmetry

(i) Ine = E [—‘%;(5(9)} -0

(i) Qny = E [d35(00)d(0,)'] = 0;

(iii) Qg = k-Vp [c7°ct o0, T E [h;ftf{} o,
(1) Qe = @E [r7°ct*lo—a,

This Lemma reveals that, under conditional symmetry, ¥ = AQA’ can be
expressed as

Y= Qrr = Qe Qe — I I (ke — 1) T — Qo] I oo T om. (13)

10



The first term in the above expression, 4 = Qo — Q,T,,Q;%er, is simply
the variance in the conditional distribution of d3;(6o) given d7; (69) and is the
“appropriate” variance matrix only when the second expression is the zero ma-
trix. Consequently, if it is “erroneously” assumed that J,» = 0 in constructing
the test statistic the difference between the assumed, 34, and true, ¥, variance
matrices is JrpJ o5 [(ke — 1) Jpp — Qo] Jobd om, Where (ke — 1) T — Q. =
@E [coe®] + (ke —2) E [%ftft’} . Under normality, k. — 1 = 2, so that
4 — 3 is positive definite, when J on has full column rank, and remains so
under excess (normal) kurtosis.% Since both 34 and ¥ can be consistently esti-
mated (see below), the procedure which utilises the incorrect £4 will be asymp-

totically undersized (under normality) and increasingly so under heavier-tailed
distributions.

3.1.1 Variance matrix estimators

Correspondingly, and given Lemmas 2 and 3, a consistent estimator for 3 can
be obtained as

IV

; (14)

where, as before, “hats” denote evaluation at @ and Mx =1 — X (X'X) "' X'.
Further modifications can be made according to whether Jr, and/or J.,, are
null matrices. The former case, Jr, = 0, yields

Al A

v

~ 1 RS ~
—R'M 1
T R XR] (15)

szf

which is the form assumed by Lundbergh and Terésvirta (2002) and Engle and
Ng (1993), and the test statistic (12) has the simple interpretation as T times

the uncentred R? from regressing d on [f{, X} . The latter case, Jr, = 0, yields

. 190, O0s s (o n 1o, 2\ ' s

Sor = = |—RR-—RC(FH'F+=C'C) CR

2T T|T T < T3 >
oo o Ao N e DD
+R'C (F’H—1F+2C’C> <F’H—1F+4c’c>

6Under normality, ¥ is conditional variance of d2%(60) given dpg (80) and dgj; (6o).

11



If both J, and Jr, are null matrices, we obtain
. 1[99 ]

Y =

== |—RR
T

; (17)

and the test statistic (12) has the simple interpretation as the T times the
uncentred R? from regressing ¥ on R.

3.1.2 Orthogonality

Importantly, Lemma 3 shows that @ and 7) are asymptotically orthogonal within
a QML framework”. Thus, consistent estimation of 17, can be achieved by ex-
ploiting the QML approach, to obtain 7, but utilizing any /T-consistent es-
timator, ® (see Cox and Reid, 1987), without loss of asymptotic efficiency in
estimating m,, although there will be a loss of efficiency in small samples; for
example, @ might be the least squares estimator. This might suggest that tests
for the adequacy of h; will not be influenced (asymptotically, at least) by the
estimation of ¢. Whilst this intuition is correct, for example, when construct-
ing tests for unconditional heteroskedasticity in the linear model, it is flawed
when applied to certain misspecification tests for GARCH models (in partic-
ular, asymmetry and non-linearity tests). Formally, as the proof of Lemma 2
makes clear, what is required is that Jr, = 0, and although this appears to
have been taken for granted by many authors the following example illustrates,
quite nicely, that it should not. The example employs an ARCH model which
is technically not nested in the class of models characterised by Assumption A.
However, assumptions such as those in Weiss (1986) could be exploited to get
the same form of limit distribution as described in Theorem 2, with the obvious
redefinitions of x; and c;.

Example 1 Suppose we have the following model

Yt - Q0+€t7
hy = 1+o¢16t2_1+7r5t_1,0<041<1, T >0

and we want to the test the null hypothesis that m = 0, such that the null model
for the conditional variance is

htzl—i—alaf,l, 0<a; <1

1
. . . . _ Et—1 — .00 —
and the test indicator in (9) is ry = o, = 1t 80 that var () = =
_ ohs _ Qe _ 3 _
and ¢ = G4 = —2% = ¢°. We assume E [e3,|F,_1] = 0, such that

Lemma 8 (i) implies that Jy, = 0 and thus ¢ and 1) = &1 are asymptotically
orthogonal. However, in this case, the scalar Jrp, = E [ricy] is given by

—2E {E ft_gl } = _2F
=6

" Although Bollerslev (1986, p.318) asserts this, he does not show it. Engle (1982) provides a
useful theorem, exploiting symmetry, which enables this result to be established for the ARCH
model. However, since he assumes normality, the importance of the conditional symmetry
assumption of §; is not stated explicitly.

=0

2
Q1EF_

(1 + a1€§_1)2

2
051575—1 ‘|
— )
2
(1+ are?_y) oos

12



2
Then, assuming Pr (g,_1 # 0) > 0, it follows that ———=1— > 0, almost every-

(1+a1€?71)

0‘15?71 _
m <1l)=1. The'ref()re Pr (O < m < 1) =

1, so that Jr, exists and is bounded between —2 and 0.

2
Q1€ _q

where. Moreover, Pr (

This example is of relevance since it is a special case of the non-linearity test
proposed by Lundbergh and Terisvirta (2002). In the construction of that test
statistic, QML is employed and it is explicitly “stated” that, because of sym-
metry, E[TD,1(00)Dgr(00)'] = 0; Lundbergh and Terisvirta (2002, p.433).
From this they incorrectly assume that there are negligible estimation effects;
ie., that Jrp = E[r°ci”]g_g, = 0. However, the above simple example il-
lustrates that this is not true. Generalising this example, Section 4 shows that
for the tests proposed by Lundbergh and Teriisvirta (2002) and Engle and Ng
(1993), for the GARCH model J ., is non-zero, rendering these test procedures
asymptotically invalid even under conditional symmetry.

4 Testing for Non-linearity and Asymmetry

In this section, we illustrate the utility of the general framework described in
Section 3 in two ways. Firstly, in Section 4.1, the general asymptotic analysis is
applied to the Lundbergh and Terésvirta (2002) test for non-linearity and the
Engle and Ng (1993) negative size bias test for asymmetry. It is shown that both
are asymptotically invalid procedures, even if the conditional distribution of &,
is symmetric. Secondly, the framework of Section 3 justifies two alternative, and
asymptotically valid, tests for non-linearity and asymmetry in the conditional
variance h;. All the ensuing analysis is undertaken under the assumption of
conditional symmetry of the errors so that Lemma 3 applies.

4.1 An Analysis of Existing Tests
4.1.1 Lundbergh and Terésvirta Test

In order to test against non-linearity in the GARCH specification, Lundbergh
and Terésvirta (Theorem 4.1, 2002) proposed the following statistic

(18)

where G is a matrix with rows ) = (X}, V/_;) and 9,1 = (¥4,,_1, V5, 1, Vhins 1) s
Vet-1=(8/_1,81_2,---,é{_,)"- This can be interpreted as T' times the uncentred
2
5
R? following a regression of <At — 1) on g;, and is assumed to be asymptot-
t
ically distributed as a X%n +1)g random variable under the null. In terms of
the general framework of Section 3, the test indicator is of the form (9), with
test variables £, = ¥;_1.® Lundbergh and Terisvirta (2002) also defined an al-
ternative regression based procedure, following Wooldridge (1991), which they

8Lundbergh and Teriisvirta (2002) obtain this statistic from a quasi-score principle but,
given the alternative entertained, the test variables should have been & = ht_l\“ft,l.

13



suggested is robust to non-normality. However, the modification employed is ac-
tually designed to make the statistic robust to heterokurticity (as Wooldridge,
1991, p.29, makes clear), not non-normality. But heterokurticity is ruled out,
anyway, by the assumptions made on &, and so this alternative form is not
considered further.

To focus discussion, consider a null GARCH (1, 1) model with n = 1, so
that 1; = (ét,l,é;‘ffl)/. The following Lemma generalises the example of the
previous section and establishes that Jr, # 0 whilst Jr, = 0. The former
result implies that the test procedure proposed by Lundbergh and Teridsvirta
(2002) is asymptotically invalid”.

Lemma 4 Assuming the GARCH(1,1) model under the null hypothesis and the

test variables considered by Lundbergh and Terdsvirta (2002) of ¥ = (ét_l, g 1)/,
(10) becomes

Jﬂ-q, = —20(01E
el s

hoo(ft 1)251&} 1— lt lz]

0=0¢

# 0.
whilst (11),

J‘rr77 =F [ (Et 1> Zﬂllsgwl z] =0.
€4 =0 09—,

The implication of this is that, rather than employing the variance estimator
3.7, given in equation (15), Lundbergh and Terisvirta (2002) should have
employed version f]gT, given in equation (16), or an asymptotically equivalent
version thereof.

4.1.2 Engle and Ng Test

Amongst the most popular asymmetry tests are those proposed by Engle and Ng
(1993). In order to confirm the asymmetric behaviour of financial series, they
constructed a number of score type tests. For purposes of exposition, consider
the negative size bias test which examines the significance of (9), employing the
test variable 7, = ft,lét,l where the indicator function I;_; takes the value 1
if £,_1 <0 and 0 otherwise.
Specifically, the test statistic proposed by Engle and Ng (1993) is constructed
as follows )
Ve (ae) e
Al a I

U9

9However, it can be shown that the test for remaining ARCH effects, also proposed by Lund-
bergh and Terésvirta (2002), is asymptotically valid. The intuition for this is that because the
alternative, being GARCH(p, ¢ +m), is of the same form as the null specification, asymptot-
ically orthogonality of the regression parameter estimators and those of the GARCH process
ensure that inferences concerning the latter are unaffected (asymptotoically) by the former.
The same intuition also applies to the parameter conbtancy test, Lundbergh and Terédsvirta
(2002), in which the alternative can be written as h¢ = v}s¢—1, v, = n+ > 1, t'm;, which is
still linear in the variables of s;_1.

TEN =T x (19)
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where, here, G has rows g = ()‘(2, ft_lét_l) , and Try is assumed to be as-
ymptotically x? under the null. This can be computed as T times the uncentred
2
5
R? following a regression of (f — 1) on g;. The tests presented in their paper

hy
are derived assuming a conditional normal distribution for £,, although asymp-

totically valid procedures can be derived assuming just conditional symmetry,
as is the case here.

This case is not consistent with assumption that DwT(é) is continuously
differentiable, as required for the analysis of Section 3. A direct mean value
expansion of VT D,,T(é) is not applicable, since it entails terms like dr;/080’
and this issue was not discussed by Engle and Ng (1993). Therefore, in general
(and to deal with such a possibility) it will be assumed that

2

VTDr(8) = % é [(Z _ 1) rt(Oo)} +o,(1). (20)

(Note that employing (20) does not alter the generic expressions for Jr, and Jy,
given by (10) and (11), respectively.) This assumption is innocuous when r; (0)
is continuously differentiable in @, since then r(8) = r,(8o)+ (9r; (8) /98') (6—
80), and (6 — 0y) is O,(T~/?). When r, is not continuously differentiable, (20)
will have to be verified on a case by case basis, and the following result verifies
this for the negative size bias test procedure:

Proposition 1 For the negative size bias test of Engle and Ng (1993), in which
re = Ii_1e¢1 is not continuously differentiable in 0, the equality in equation (20)
holds.

Again it is found that the Engle and Ng (1993) tests are asymptotically
invalid, in general, under the null hypothesis since it is assumed that J, = 0,
contrary to the following Lemma.

Lemma 5 Assuming the GARCH(1,1) model under the null hypothesis and test
variable #y = I,_1&,_1, (10)

1 > i
ﬁltflgtfl Zﬁlgtflfiftlflfi 7& 0,

i=0 =6,

Jﬂ—cp = —20{01E

in general.

4.2 Alternative Tests

The previous sub-section detailed the asymptotic invalidity of tests proposed by
both Lundbergh and Teriisvirta (2002) and Engle and Ng (1993). Of course,
asymptotically valid test procedures can be obtained using the framework of
Section 3, together with the test variables employed by these authors.

However, these test variables are derived from a particular alternative speci-
fication for the conditional heteroskedasticity. Specifically, the alternative model
employed by Lundbergh and Terisvirta (2002, p.422) is

g =GtV ht + g
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where ¢; are i.1.d. (zero mean and unit variance) random variables, whereas that
proposed by Engle and Ng (1993, p.1758) is of the form

et = ¢/ heexp (g¢)

in which h; = n’s;_1, and ¢; = ¢ (71'; Vt71) characterises the misspecification
where v;_1 is the vector of omitted variables. In particular, the non-linearity test
of Lundbergh and Terésvirta (2002) is constructed from the following alternative

q p
hi = a0+ Y el +g(mve_y) + 2 Bihi (21)
o 2

J =1

whilst that of Engle and Ng (1993) is

q P
In(h{) =1n (ao + 21 ozjef_j + ;Biht—i> +g (7r; Vt—1) , (22)

j=

respectively. Within the QML approach, which uses (5), the tests actually con-
structed by Lundbergh and Terisvirta (2002) and Engle and Ng (1993) can be
interpreted as score tests of h; against the alternatives of (21) and (22); i.e.,
tests of Hy : m = 0. Whilst this yields asymptotically valid (quasi-score) test
procedures using the framework of Section 3, the alternative models proposed
in the literature, and considered by Lundbergh and Terésvirta (2002) and En-
gle and Ng (1993) in their Monte Carlo studies, are not of the form used to
construct these quasi-score test statistics. In those studies, the power of the
test is evaluated against alternative models for the conditional heteroskedas-
ticity (specifically GJR-GARCH and EGARCH models) which are “recursive”
in nature, a characteristic which is not apparent in (21) or (22), where h;—;,
i =1,..,p, appears on the right hand side and not the lagged values of h{. For
example, the GJR-GARCH(1,1) model can be expressed in the following form

a 2 2 a
hi = ao +a1e;_y + aoly_16;_1 + Brhi_4

indicating that the conditional heteroskedasticity is “recursive” in nature, due
to the inclusion of h{ ; on the right hand side. As a consequence, the non-
linearity /asymmetry tests, which neglect this recursive behaviour under the al-
ternative, may well lack power against these specifications. Similar remarks ap-
ply for the parameter constancy test constructed by Lundbergh and Teridsvirta
(2002).

With this in mind, alternative tests for non-linearity and asymmetry are now
constructed with the following alternative specification in mind

e = ()"’
hi = m'si_i+g: = (ar+g:) + B(L)h (23)
where sf_; = (1,5?_1,...,53_4,@_1,..,hf}_p)/ and g; = ¢g(vi—1;7) is a non-

linear and/or asymmetric function of €,_;, j > 1 with v;_; being the vector of
omitted variables. Thus the test indicator is of the form (9), with test variables
1 Oh{

hf? om :l 7=0,0=0 .

constructed as ©; = [
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4.2.1 Testing for Non-Linearity

Following Lundbergh and Terisvirta (2002), non-linearity is introduced in the
intercept and the term containing the squared past errors via a smooth transition
function F, (g1—j;;7v;¢), j=1,...,¢, ie,

9e= 3 (aoj +aj) ef_;Fp (e0-j;7,€) -

q
Jj=1

with

n -1 1
Fo(et—j37,¢) = (1 + exp (—'y [T(e—; — cl)>> —5 7 >0,¢1 < ... <.
=1
(24)

For example, if the location parameter (threshold) of the transition function
is zero, i.e., ¢ = 0, then the transition is made between the regime characterized
by negative shocks to the one characterized by positive shocks. Under the null
of v =0, it follows that F,, = 0, and taking a first-order Taylor expansion of F;,
around v = 0, yields

gt =T'viy (25)

— / / / 4 — s s s /
where vi_1 = (Vi 1, V5, 1, Vigo, 1), With ve 1 = (g1, o, ...6f ),

s=13,..,n+2.

Combining (23) and (25), a quasi-score test of 7 = 0 can be based on assess-
ing the significance of the test indicator (9) in which the test variables, given
€, are constructed as

=[]
h? 871' ﬂ:O,B:é

1 =L

= Tzwi{’z/tflfi

he =5
1 =t

_ [Brw) v, (26)

ilt i=0
where B* (L) = B, + ... + Bpr_l and, in practice, %}_f
the recursion %—}f =vVi_1+ B(L)%. For example, in the GARCH (1,1) model
assuming n = 1, the test variables take the form
N 1t (e, —i
rs = — Z 51 < g ! > ’

hy i=0 Et—1—i

can de derived from

compared with those employed by Lundbergh and Terésvirta (2002) which are
simply #; = (ét_l,é?_l)/, in this case.

The following Lemma, stated for the general GARCH (p, q) model, estab-
lishes that J, cannot be guaranteed to be zero even under conditional sym-
metry, although it turns out that Jxy, = 0 (so that Q,, = 0, also).
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Lemma 6 Under the null GARCH(p, q) model and assuming for simplicity, but

without loss of generality, test variables given by ¥, = hi Zf;é 12)2-\7;7171», with
t

— — 3 3 3 1
n =1, 50 that vi_1 = (€t—1,61-2, s Et—q, Ef—15Ep—25 - Ef—q) s

q (o) o0
1
Tmp =23 aokB | (05 D D ViVt | #0,
k=1 t

=0 j=0 0=0,

in general, but

1 oo o0
Ton =B | o Y vy =0
t

1=0 j=0 =0,

Using these results and those of Section 3.1.1, an asymptotically valid non-
linearity test statistic can be constructed as

Ty = TDrr(8) £ D (8) (27)

which is asymptotically distributed as X%n +1)q under the null, for the general n

case, where dim (vy_1) = (n+ 1) ¢ and 27 is given by (16).

4.2.2 Testing for Asymmetry

The asymmetry test, of whether important negative shocks have more impact
on volatility than important positive shocks, assesses if the variables v;_1 =
(li—184-1, ..,It_qet_q)/ have been omitted from the null GARCH (p, ¢) model.
Again a quasi-score test statistic is constructed from the “alternative” volatility
model of (23), with asymmetry characterised by ¢g; = @w'v;_;. Within this
framework and under the null of 7w = 0, the test indicator in (9) employs test
variables

= B* (L) V414 (28)

=
—_ .
T’\w
—_

|

.
o>
o

|

—_

|

<.

(This test variable differs from the Engle and Ng test variable of #; = ft,lét,l,
in this case.)

For this test indicator, neither Jr, and Jr,, are null matrices, in general, as
stated by the following Lemma:

Lemma 7 Under the null GARCH(p,q) model, with test variables given by
£ = h% Zi;é YiVi_1—i, Vier = (Li—160—1, ~~aIt—q5t—q)/, Jrp #0 and Jry # 0,
in general.
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The discussion in Section 3.1 provides the following test statistic
Ta = TDrr(8)S: ' Drr(8), (29)

where 37 is given by (14), and T4 asymptotically distributed as X?I.

As argued by Engle and Ng (1993), we can also test asymmetry for more
extreme values of past errors. The asymptotic distribution of the test, in this
case, is the same as the previous one except that the test indicator employs

N ; o R /
variables £; = h;l Zf;é B(L)' (Itfléfflv - It—qé?—q> -

5 Monte Carlo Study

In this section Monte Carlo evidence is presented on the finite sample size and
power performance of the various asymmetry and non-linearity tests discussed
in Section 4.

The Monte Carlo experiment for assessing the size properties of the tests
is based on an AR(1)-GARCH(1,1) data generation process. We consider the
following sets of parameter values for the conditional mean:

Model (1) Yt = &t
Model (2)-(4): y: = ¢y + p1yt—1 + €+ with ¢, = 1 and ¢, € {0.1,0.5,0.9} .

where g, = Vhi&, with & ~ N(0,1), & ~ t(n) (standardised Student ¢-
distribution with v degrees of freedom) where v € {7,5,3}. The inclusion of
t(3), for example, offers some evidence on the robustness of the procedures
to violations of the moment assumptions employed. The conditional variance
equation follows Engle and Ng (1993)

Model H (high persistence): h; = 0.01 + 0.09¢?_; + 0.9h;_1
Model M (medium persistence): h; = 0.05 + 0.05¢7_; + 0.9h;_;
Model L (low persistence): h; = 0.2 4+ 0.05¢?_; + 0.75h;_1

such that, without loss of generality, the unconditional variance of g; equals one.

Combining the conditional mean and variance specifications yields twelve
models to consider. For this purpose, a series of 1200 data realizations were
generated using the random generator number in GAUSS 5.0, with the first 200
observations being discarded, in order to avoid initialization effects, yielding
a sample size of 1000 observations. Each model is replicated and estimated
1000 times by QML. The test statistics considered were T4 of (29) with ¥, =
020 Bulioa—iEea—i; Ty of (27) with £ = - 32720 3168, s the Engle and
Ng statistic, Tgn, of (19); and, the Lundbergh and Ter#svirta statistic, T, of
(18) with v, 1 =&} _,.

Table 1 reports the actual rejection frequencies when the null is true for the
tests described above. The results are reported for a nominal size of 5% and the
correct model for the mean is estimated. When &, ~ N (0,1) and there are no
estimation effects (i.e., y» = &), the empirical sizes for T4 and Tgy are close to
the nominal size of 5%, with the exception of low persistence volatility, when the
size of Ty is 6%. When there are estimation effects from the conditional mean
generated as an AR process, Tgy tends to be slightly undersized for medium
and low persistence volatility model, whereas T4 is slightly oversized for the low
volatility models.
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[INSERT TABLE 1 ABOUT HERE]

The empirical size of the non-linearity test, T, is close to the nominal
size, except for the low volatility persistence, whereas T is undersized in all
the experiments, especially for a high persistence volatility model and Student-t
errors. When the conditional mean is generated as an AR process, the empirical
size of T is close to the nominal size, whereas that of Ty is lower than the
nominal size of 5% for all volatility models examined and significantly so under
Student-t errors. By ignoring asymptotically non-negligible estimation effects,
the theoretical arguments of Section 3.1 imply that the procedures based on
Ty or T will be asymptotically undersized, and increasingly so under excess-
kurtosis; the Monte Carlo evidence supports this, although Ty is “relatively”
more robust that Tr,r.

The results of the Monte Carlo study for assessing the power of the tests are
reported in Table 2, where the nominal size is again 5%. The reported rejec-
tion frequencies are size-adjusted in the sense that they are constructing using
empirical critical values obtained under the null experiments. The alternative
models used are the GJR(1,1) model, with the parameter values considered by
Lundbergh and Terisvirta (2002) in their simulations; the logistic STGARCH
(1,1) model, in which the transition between negative to positive shocks is made
smooth by using the logistic function; the EGARCH (1,1) model with parame-
ter values considered by Engle and Ng (1993); and, the TGARCH (1,1) model.
In the last case, the parameter values used are estimates obtained by Zakoian
(1994) for the CAC 40 daily stock index. Note that in these experiments, for the
non-linearity tests, the “omitted variable” is v;_; = &} ; when the data is gener-
ated from the GJR and STGARCH models, but v;_1 = ¢;_1 for the EGARCH
and TGARCH models. The models for the conditional mean equation are M1,
M2 and M4 and we consider & ~ N (0,1) and &, ~ ¢ (7).

When the true data generating process is a GJR(1,1) model, the asymmetry
test, T4, performs remarkably well compared with the test proposed by Engle
and Ng (1993), Try. This is true, as well, when the distribution of £, is non-
normal. Similarly, for the model with larger asymmetry, and under normality,
the simulated power for the non-linearity test Ty is 89.2%, whereas that of the
test proposed by Lundbergh and Teréisvirta (2002), Trr, is 16.5%, when there
are no estimation effects from the conditional mean. This implies that T r
is relatively insensitive to this alternative model'®. Similar conclusions can be
drawn for the model with smaller asymmetry.

For smooth transitions between negative to positive shocks, i.e. the true
data process is generated by STGARCH (1,1) model, the differences between
the powers of T4 and Ty, and T and T 7, respectively, are quite large. When
estimation effects from the conditional mean are present, say M2, and the model
with larger asymmetry is examined, the power of Ty is 97% whereas that of 1
is 45.9%. Similarly, the asymmetry test T4 attains a simulated power of 95.8%,
whereas the actual rejection frequency of Tey is 64.7%. For the non-normal
distribution, the differences are also significant.

10Tf the omitted variable v4_1 = (6,5,1, effl)/ is considered as in the Monte Carlo study of
Lundbergh and Terésvirta (2002) and for a nominal size of 10%, then the size adjusted power
are: for Ty is 95.3% and T is 65.1%.
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For the other data generating processes, i.e. the EGARCH (1,1) and TGARCH
(1,1) models, the results are similar. The simulated power of the tests T4 and
T is much higher than the power of the tests proposed by Engle and Ng (1993)
and Lundbergh and Terésvirta (2002).

Overall, the Monte Carlo simulations confirm the theoretical derivations un-
dertaken in the previous sections. The “new” tests, namely T4 and T, have
fairly good size properties and very good power when compared with Try and
Trr. Moreover, the simulations reveal that these tests can be employed as gen-
eral misspecification tests of asymmetry and non-linearity since they have power
against the asymmetry and/or non-linear models proposed in the literature.

6 Conclusion

This paper has provided some unifying results for parametric misspecification
testing in regression models with GARCH errors, which have practical impli-
cations for empirical research. Firstly, a general analytical approach has been
provided for the construction of asymptotically valid test statistics that can ac-
commodate, for example, misspecification tests for the STAR-GARCH model,
something which has not been considered in the literature to date. The principal
theoretical finding from this analysis is that even under conditional symmetry,
implying that the estimated conditional mean (regression) and variance parame-
ters are asymptotically orthogonal, estimation effects from the conditional mean
(regression) parameters cannot be treated as asymptotically negligible. Exploit-
ing this, it is established that the non-linearity and asymmetry tests proposed
by Lundbergh and Ter#svirta (2002) and Engle and Ng (1993), respectively, are
not asymptotically valid (since they ignore asymptotically non-negligible estima-
tion effects) and, more generally, all test procedures which erroneously neglect
such estimation effects will be asymptotically undersized when the error distri-
bution is fat-tailed. Secondly, new tests have been introduced for non-linearity
and asymmetry which, it is conjectured, should have better power properties,
than some existing tests, against many popular alternatives to the GARCH(p, q)
model.

The principal theoretical findings are supported by Monte Carlo results
which also suggests that the new tests are quite powerful against various non-
linear models proposed in the literature, suggesting that they can be useful
as general misspecification tests against non-linearity and/or asymmetry in
GARCH models.

7 Appendix A

We shall exploit the results contained in the following preliminary three Propositions.

Proposition 2 (i) For any vector c € R", %ﬂc =0, almost surely (a.s.), only ifc = 0.

ii) For any vector b € RPHatl, a,h—‘,b =0, a.s., only if b=0.
on

Proof. (i) follows immediately from the identification Assumption B2, which implies that
[m(we; @)—m(we; )2 > 0, a.s. for all @ # . Then, by Assumption B3 and a mean value
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expansion, |m; —mot|? = (@ — wo)'mﬂw(cp ®g) > 0, a.s. for all ¢ # ¢ and

some mean value @. Correspondingly, the identification condition, A3(iii) establishes (ii); see,
for example, Ling and McAleer (2003), or Berkes et al (2003). m

Proposition 3 Under Assumptions B1 and B3(i), Esupgeo |Et|4(1+s) < 00, for some s > 0,
uniformly in t.

Proof. Let miy = m(we;) and mor = m(We;g), so that er = €¢(0) = eor —
(m¢ —mot) . By Assumption B3(i) and the cr-inequality, for some constant C > 0 and r > 0

Esuplet|” < C(E|eot|” +2"E |B(we)|") < oo. (A1)
o
|

Definition 3 In the following exposition C, K and p denote generic constants, independent
of 8, whose values might change from line to line but which always satisfy C > 0, K > 0 and
0<p<l

Remark 4 (i) By Assumption A3(ii), for allT > 0, Esupg |at|” < oo, provided E supg |a$r| <
oo, uniformly in t.

(it) The following inequalities will be useful: (a) h$® = Y2 Yai—; > X > 0; (b) h® >

oo+ ai—q, i > 1; or, (c) h§® > O‘OJF"/’iamE?fifm: 1> 0,m=1,...,q. Given the construction

of initial values, o, we can also write (a) hy = Ef;é Yia—; > A >0; (b) he > a0+ Ya1—i,

i=1,..,t—1; or, (¢) ht > ao + ¢i0‘m5$7¢7m’ 1=0,..,t—1,m=1,...,q.

(iii) The proofs will exploit the following results, which can be derived by exploiting the alge-

bra of Berkes et al (2003) and Francq and Zakoian (2004). A particularly useful device, in

this respect, is x/ (1 + ) < a%, for all x > 0 and any s € (0,1).

(oo} oo
I — il = S wilardl Ko fari] (4.2)
i=t i=t
h$® — hy Yiar—; =
-+ <K plai_;, (A.3
Gt = Rt saee )
Forr=1,2,3,
1 h%® — hy <
T r| = T 100 <K pla’s—i' (A5)
(h2)" (he) Z: !

Let Vg, Voo denote ﬁrst and second order differentiation, respectively; for example, x§° =

Vr,,ht , Vonh$® = 7, etc. Then, by Assumption A3(ii),

8¢8n
t—1
SRR (RO S RS RS S e
=1
[e'e) ) t—1
Hhoovnnhoo’ < K{Hzi%“afi}, H Vnht <K{1+212p’af/1}
=2 i=2
1 >
hf.onvnhfo_vnhtﬂ < K{Pt'f‘ziplafi}v
t imt
oo
hee IVanhe® = Vanhill < {tﬂt*’zﬁﬂlaf z}- (A.8)
Omy_y Pmy g

Define d¢ = ZZ:I H 50

| = S Ml and gr = 3y {imsl? +

b

Opdp’

22



then by similar methods it can also be shown that

[e'9] t—1
el < K> pldii; lled <KD pldis (A.9)
=0 =0
t—1
thvwht ' < KZpgt e H Veeht|| <KD plgis (A.10)
i=0

IN

1 >, .
7o (IVohi® — Vhe|| K§ pldi_i, he IVephi® = Voohtll| < K plg4.11)
t

1=t 1=t

oo t—1
. 1 .
H he Venhi® ’ < K {dt + Ziﬂldti} i HKVW]M <K {dt + Ziﬂldél»l%)
i=1 i=1
= [Venhi® = Venhi| < KD ip'di (A.13)

IN

1 ‘ OhZ® Ohg®  Ohg Ohy

oo oo
t t Yt K iq . iq .
1 ||8hg° Ohg°  Ohy Dhy PR = .
K + 7 Sf‘ 1+ 7 87‘
thQ ' 87] 6’)7 61” 6’)7 {P Z/LP ag_; Zzp ay_;
ho® Oh® ht Oh >, EaI
1o} t 0 t (9 t Ohy szzdt_i{l_,'_zipzafi}
i=t i=1

dp On' 6<p on’
+ {Pt + Z’il)iafi} Z Pidt—i:| (A.14)
i=t i=0

where in (A.14) we have used, x,y,a, and b,

IN

IN

[[xa” —yb'|| lx = ylllall +lla = byl

lla = bl {Ix[l+lIx =yl bl

INIA

or, ||xa' — yb'||

For p=1,3/2,2,3, conformable matrices A and B, and since hy/h$° < 1,

1 BH ‘hf“ — ht
h? h$e

1A - BH+]

H(h;)pA*ﬁBH SK{(hoo)p } (A.15)

Proposition 4 Under Assumptions A and B, and exploiting (A.2) -(A.15), all the following
are bounded uniformly in t :

2
(a) Esupglet|” Hh%VOhf’H ,0<r<4
t

(b) Esupg |et|” %V(aahi’ou ,7=0,2
whilst the following are O (pt) , at most,

(c) Esupg <t |

(hm)p Veoh$® — %Vght ,r=0,1,p=1,3/2,2

(4) Esupg let|" \

03 )Veeh *%Veeht ,7=0,2,p=1,2

(e) Esupg |et|”

Wy )p (Vohg® )(VOhtoo)/*;%f(veht)l(veht)l ,r=0,2,p=2,3.
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Proof. (a) and (b) follow in a straightforward manner from (A.6), (A.7), (A.9), (A.10)
and (A.12), and the fact that the following moments are bounded: FE supg Ha?ft_kft,jH,

Esup9||atV9ft k” Esupe‘atat ]5%5k‘7 s. € (0,1). For example, by an application of

Holder’s inequality and then Cauchy-Schwartz,
1/(1+s) s/(1+s)
Esupataz Jafsk (Esupall(17L )) (Esup\at jEL— k|2(1+5)) < oo

because, for some s € (0,1), Esupg &‘?(1+5) < oo. For (c) use (A.15), (A.11), (A.8), (A.9),
(A.6), (A.3) and the fact that E supg Hstft f)_ kH E'supg HEtftft ksijH E supg HEtftE?SkH R

E'supg HEtftE? kst JH are all bounded, by Cauchy-Schwartz, for s € (0,1). In particular,
[ESUP Hftftft el ]H} < ESI;I) llet£:]|? Esgp \st,kat,j|4s < 00,
since, by Holder’s inequality, and 4s (1 +s) <4(1+s), s € (0,1),
1/(1+s) s/(14s)
Bouplecper-* < (Boupler 07 (Bouper-si ) < oo,
0 0

Similarly (d) holds since all the following are bounded: Esupg |e¢|* ler—;|** |fi—i]l?, Esupg |et]? |et—i1° IV fi_ill s
s € (0,1). In particular,

IN

2
2 2
[Esgmatﬁ e Hft_knﬂ Bsup |36, ]|” Bsup [l ** i < o0
2 2
{E sup let]? lee— 517 chpft—k‘|:| < ESl;P et Vot ESII;P |ete?s ;| < oo

Finally, (e) can be shown to hold, in a similar manner, noting that the following are bounded:

E'supg ‘z—:tft k:—:t Js? || s Esupg ‘Etsfgjefskst | s € (0,1). In particular,
2 2 4s
{Esup”stft ReZ ]z-: ||} < (Est;p”stft,ku ) (Estép|st,k€t,l| ) < 00
2
{E’sup|5t6t Jsfsks? lq < (E'sup|5tst J|) (Est;p|5t,k€t,l|4s) < o0

4(1+s)>1/(1+s) (E Supg £

/(1+s)
and, by Holder’s Inequality, E supg ‘s;‘e?ij‘ < (E Supg € 4(1+5))s ° .

The following three Propositions follow the approach of Ling and McAleer (2003), Berkes
et al (2003) and Francq and Zakoian (2004), and are used to establish the consistency and
asymptotic normality of the QMLE estimator 6.

Proposition 5 Under Assumptions A, B1, B2, B3a:
(a) E[I$°(0)] exists for all 6 € ©.
(b) supgee |LF () — E[1° (0)]] = op(1).
(c) E[1$°(0)] achieves a unique mazimum at Og.
(4) supgee L5 () — Lt (8)] = 0p(1).
Proof.
(a) First, by Assumption A3(ii), hg® > X > 0, uniformly in 0; therefore E supgeg |5?/h§°| <

A"LE supg |et| < o0, by Proposition 8. Second,by Assumption A3, [hee] < K 3202 p*|ag—q] -
Thus, Esupg |h$°| < oo, and by Jensen’s inequality E supg |In |h$°|| < |In E'supg |h$°|| < oo,
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so that E [13°(0)] exists for all 6 € ©.
(b) By a Uniform Law of Large Numbers (ULLN) (e.g., Theorem 3.1 of Ling and McAleer
2003, p.287), it follows that supgece | L (0) — E[Ig° (8)]] = op (1)

(c) Write
E[0)] = {-EMn(h)] - E[5,/h]} = {E [(me — mou)* /hi°] }
= {L1(9)} +{L2(0)}
since E [eomy/h$C|Fi—1] = 0. Firstly, Lz (8) = —{E [(m¢ — mo¢)?/h$°]} achieves a maa-

imum value of 0 only when m¢ = moy, for all t almost surely, which, by Assumption B2,
holds only if ¢ = ¢q. Secondly, (and as argued by Ling and McAleer, 2003, Lemma 4.4)
using Proposition 2(ii) and given @ = @q, L1(0) achieves a mazimum only if 7 =ngy. Thus
E[12°(0)] achieves its unique mazimum at 6 = Og.
1 1
T -
2 e

(d) We have

(A.2) andIn(z) < z—1, for allz > 0, yield Esupgeg |In (h$°/he)| < A1 Esupgeg [h§° — he| =

O(p'), at most. Therefore T~ ST Esupgeg |In (h$°/ht)| = o (1), implying (by Markov’s

inequality) T=1 S°T_ | supg |In (h$° /he)| = op (1). Next, T=1 S°T_ | supgee ‘5% (h%'O - h%)’ -
t

T-1 2321 Xtus where Xy = supg 5? is strictly stationary and ergodic with E|X¢| < oo,

and |us| < 2371 By (A.5), Esupgeeo ‘h%'o — =] =0(p?), so that T2 ST ar =0, (1)

t

T
2|LF (8) — LT (0)| < T~

and T—1 Zthl SUPgco ‘e% (hioo - —)‘ = op (1), applying Lemma 4.5 of Ling and McAleer
(2008, p.288). This completes the proof. m

Proposition 6 Under Assumptions A, B1, B2, B3a&b:
(a) Qoo = Nee(B0) is finite and positive definite, where Qgg(0) = E [dg3(0)dg;(0)].

1
(b) - S [|dgs(80) — de(80) || = 0p(1).
((j) \/TD@T(OO) i’ N (07999)
Proof. 2
(a) We first show that Qgg = E [dg3(80)dg2(80)’] is finite. Denoting (57 = (ZOT"E — 1)7 we
have

437 (00) = 3T 12 5 v

1 9Om
1 Ohgy n |: €0t o h<><(>) ot :|

and E

2 oo co
and it is sufficient to show that E‘ 502 {h%} agg" aaheo,t €2, { } Bgf’f" %Lw","
are both finite. Since hgy > A > 0 for all t and §; = co¢/+/h5e, E [ﬁt | Fe— 1] =1, this follows
immediately from Assumption B3(ii) and Prop0s1t10n 4.
Furthermore, Qgg is positive definite since E [ ] = ke —1 > 0 independent of hOt , and, by
Proposition 2, for any vectors ¢, b of the same dimenblon of ¢ and m, respectively, ¢ d°° (90)
0, for all ¢ almost surely, only if ¢ = 0, and b’d%‘%(eo) = 0, for all ¢t almost surely, only if
b=0.
(b) The proof is similar to that of Proposition 5. Firstly, with the notation above and (o =
EOt/hOt -1, where hot = he (60) , to distinguish it from hg? = h° (09), d > (00) —dyt (B0) =

1 _F 1 ma 9mot 1 .
{COt hee B‘P COt hot } {EOt e (’LOt iLOt ) } » s that

T _
1 1 1 8h® . 1 Ohoe
(dgy; (B0) — det (6 < Zll—= 0t _ g —2
[ a2 —w2{<mhwa o )|
T{ 8m0t(1 _i)}
— hS  hot
= 5HRT\I+IIQT|\-
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It is sufficient to show that F ||Qr]|| = o(1) and F ||Rr|| = o(1). By Assumption A3, and since
(i>1) b > ag + ;ar_i, and &, = eor/ /RS, iid (0, 1)

T -
om hsS — h
BllQr|l < ZE‘ft a;)t WTOOM
=1 0t
T
Omoy _ Yig00,t—i
< 3
; ‘ b op {Z v aoo + Y;0a0,t—i
el omyg
< Z [ : {ZP lao,¢—il /2H

since 0 < agp < oo and z/v/1+z < +/z, for all z > 0. Now, by Cauchy-Schwartz, iterative

m (9'rn0t (1)/t271' ]§ \/EHaBL;t
T
7206 = ot

expectations and Assumption B3(ii)

that

Elag,t—i| < o0, so

EllQrl| <0(1)

3\

Next, by (A.15) and F [e2,|Fi—1] = h3,

1 0hg 1 Oho

1 1 Ohg 1 dhot
E|Rrll < —=> E{eb T A~ T2 oo - I
VT 5 (hg7)” 9% (h0t> O hi; 9% ho O

< KlTXT:E{h% ‘hgg—ﬁ(,t(}.

It follows from (A.11), (A.9), (A.2) and similar arguments to Proposition 4 that E |[|[Rp|| =

o(1)
Secondly, and in a similar fashion by and (A.8), (A.6
T
1
=) % <w el
Thus, Hﬁ 23:1 (d;’ﬁ (60) — dnt (90)> H = op(1) by Markov’s inequality.

(c) Asin Lemma 5.2 of Ling and McAleer (2003), a martingale difference CLT yields vTD$5.(60) A
N (0,R2pp) so that (b) yields vVTDgr(80) > N (0,2,). ®

1 6?10,5

Ohgy _ Ohot| || 1
ilOt Op

Op Op

L Ohor
;ZOt on

ohge  Ohot

Z (d57 (80) — dnt (60)) an on

Proposition 7 Under Assumptions A, B1, B2, B3a,béc:

9dg; (6)

(0) suoce [Py (6) ~ Joo(®)] = 0y(1), where Jao(®) =~ | 2L,

0 € O and Jgg = Jgo (00) is positive definite.
(b) supgee |[Pgyr (0) — Poor(0)|| = op(1).

Proof.

] is finite for all

odge (0
(a) We first show that Jgg(0) = — 5725)} is finite for all @ € ©; it is then straightforward
to show that Jgg(0p) is positive definite. We have
0d, (0) 1 OmyOme e Omy Oh® & Oh Omy | ey 0Pmy
! h° O O’ (h;fo)2 dp O’ (ht‘x’)2 Op 0@’  h Opdp’

1 @i 1) L 2o (i ) (Lagh?")
2 h$° (R$°)? D¢ O¢’ h$® h$° Opdyp’
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od7i (6) 1 (Qi_l) 1 9hg° Ohg° (i_1> (Lthgo)
871 2 hge (ht‘x’)2 on on’ h$e hg° Onon’

9dpi (0) v Oh® Omy 1 (2i71) 1 Ohg° Ohg® (eg 1) (L a2h§°)
o' h° Om Op' 2 hg° (h2°)2 On Oy’ h$e h$° Andyp!

Thus
3d°° 0) o 1 9hee |2 1 §2po°
() oma* gy ([ L[ | L2
8<p h° O h° Opdp’
amt 1 Ohge 8%my }
+ €t
8Lp h° O’ dpdp’
and by Assumption B3(ii), Proposition 4 (a &b) and Cauchy-Schwartz it can be seen that
Py | 242

Similarly, and by the same arguments

odz3 (6) 1 Ohg 1 92k
E - |\ < KE 241 — — —t <
| Tom || T Slép{(st - )< hi® om Hh;” anon’ >} o
ad>= (0 =] oo 2 1,00
E sup 7’”5 ) < C{(s?+1) (Hiaht L ok +’ia hi )
0 O hge On hg° O¢! h° Ondy’

1 Oh® Omy
h°° on Oy’

e

}<oo.

Thus, by Theorem 3.1 of Ling and McAleer (2003), (a) holds and this completes the proof.

°Ig° 2
(b) Note that supg ||Pgyr (6) — Peer(6)|| < T3, supg Haoae/ % , and we con-

sider the latter. First,

9dz, (8)  ddyt (0) ’amt L Ome |V L 1) ome L 0he 1 0
o’ ! - t&p&p’ h®  ht k dp (hf")Q dp h2 84,0
9 1 Ohg® Ohg® 1 Ohy Oht
+ei 3 3
(hge)® Op O’ h3 Op Op’
+1 1 Oh$® Oh® 1 Ohy Ohy +1 5 1 8%he 1 Py
2 (h;’")2 Op O¢’ h? 0 O’ 2 (hoo)2 Opdyp'  hZ 0pdp’
LU e 1 otn
2 || h° Opdp’  hi OpOy’
4
= 22 IRl
j=1

Consider 1/T ZZ=1 supgee ||R1t||, where R1; = Xtat, with a: = supg ’h% - h%‘ and ap-
ply Lemma 4.5 of Ling & McAleer7 2003. We know that ay < 22\~ and 71 23:1 ar =

op (1), and since E supy {H Omy + Hst ad‘an‘;

} < 00, by Assumption B3(ii)&(iii), we have

1/TST | supgeg ||Rit]| = 0p(1). By Proposition 4 Esupg || Rj:|| = O(pt), § = 2,...6, so that
1/T Z?:l supgeeo [|Rjtll = 0p(1), by Markov’s inequality.
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8d () Bdyi(6)

Similarly, supgcg % >, ‘ = 0p (1), since

O’ e’
0d28 (0)  ddny (0) of| 1 ORh$C ORL 1 Ohy Oht
_ e _ -
o4 O’ ¢ (h;’o)3 on O¢’ h3 om B¢’
1 1 Oh$® Ohg® 1 Oht Ohy N 1, 1 8%hye 1 0%my
hul _ -7 Ze _
2 (ht°°)2 on 0¢' h? on 8¢’ 2t (hfo)2 ondy’  h? ondy’
Jr1 H 1 9%h 1 9%k Omy ’ 1 OhY® 1 Ohg
il | = c i _ -
2 || hee Imdg’  hy omog’ e || IIhe an T hy on
5
= K3 [[Rull,
j=1
and by Proposition 4 Esupg ||Rjt|| = O(p?), j =2, ...6.
Finally, and analogously
9dz; (8)  ddnt (9) || 1 OhP Oy 1 9k Ohe|l 1|\ 1 Oh Ohy 1 Ohi Ok
on’ on’ t (h;;o)3 on on’ hf’ on on’' 2 (hfo)2 on on' hf on on’'
+1 9 1 0%h$e 1 O%he || 1| 1 8%hg° 1 O%hy
Ze _ = _
2" (h;"’)2 omon’  hZ omom'|| 2 || h$° Ondn’  hy Onon’

9di(8)  9dyt(6)

so that, by Proposition 4, E supg an’ on’

=00,

This completes the proof. m R
Proof of Theorem 1. By Proposition 5, as in Ling and McAleer (2003), 6 =

arg maxg L1 (0) is consistent. The limit distribution then follows from standard mean value

expansion of Dgr (@) = 0, exploiting Propositions 6 and 7, as follows. Firstly, 0 =v/TDg7 (¢)—

Poor (é) \/T(@ — 60p), where 0 is the usual “mean value” satisfying 6 = 6 +o0p(1). By Propo-

sitions 6 and7, vVTDgr (80) = Op(1) and Pger (é) = 0p(1), so that VT (0 — 8g) = Op(1).
Second, by Proposition 7, and the triangle inequality, Pggr (é) = Jgo +0p(1). Thirdly, since

Jge is positive definite, \/T(@ —6p) = J;;\/TDGT (60) + 0p(1), and the result follows from
Proposition 6. Finally, the expressions for 2gg and Jgg are easily obtained from the previous
results in Lemmas 6 and 7. =

Proof of Lemma 1. The proof follows from the results given previously. We know from

these results and /or assumptions made that E supg ||qf°qf®’|| < oo, for qf°’ = ﬁft’, P, x?o’).
Moreover, T~1 "7 supg [|[92°q2® — qtd}|| = 0p(1) since

T

T T
Ty laPas™ —arar]] <277 lla® —adll la®ll+ 771> lla® —al®.
t=1 t=1 t=1

It is readily shown, using Proposition 4 and related results, that % Zle supg ||af® — q¢| =

2
op(1) so that T—1 Ele supg [la® — q¢[|> = op(1) (since, %23:1 22 < {% 23:1 zt} ,
when z; > 0 for all ¢). In addition,

T T

T
771 suplag® — aell la®|| < | T} ngp lag® — qe* 71 ngp lag®lI* = op(1)
t=1 t=1 t=1

since T—1 23:1 supg ||as®|> = Op(1). Therefore, by a ULLN and the triangle inequality,
1T

Tt D=1 (thi)ezé -E [q?oq?m]e:eo = op(1).

We also need to show that ke = ke + op(1) and 9. = ve + 0p(1). By similar arguments,

2
2
E'supy (;T’t" — 1) < oo and

2 2
() -G
hoe hi

1 & 1 & 1 1
— su < K— sup e + 2| |— — —| = 0,(1
T; ep > T; 9P|t t| hoe R p()
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3
by (A.5) and Lemma 4.5 of Ling & McAleer (2003). Finally, E supg (\/%) < oo and by
t

exactly the same reasoning

° o\ o1& 1 1
sup —_— — < = sups3
rxr|(e) - () | r el

(?03/2 hf/Q

= Op(l)’

since < KI|h® —hi|. m

1
o372 - 3/2
t

8 Appendix B

Proof of Theorem 2. We establish the following:
(a) @ = E[d$° (80) d$° (6()] is finite and positive definite, where d$°(0)’ = (dg’t’(ﬂ), d3y/(0),dss(0) )

(b) fzt 15upg [|[d55(60) — dxt ()] = 0p(1);
(c) Jrg (8) is finite for all @ € @, so that supy | P, (8) — Jre (8)| = op (1), where P2%,,.(0) = ? 1 adggt,(e);

Given (a) and similarly to Proposition 6,v/TDS® (80) 4N (0,9), where D () = T—1 > dg° (0)7
dse ()" = (d;f’t’(ﬂ),d;l"é’( ),dL,(0) ) Q is positive definite provided rg° does not contain

redundant terms (eg, linear combinations of ¢f° and/or x£°). By (b)
1 I
sup | VT (6) = VIDrr (8)] < —= 3 sup [d55(6) — dwe(6) | = 0 (1)
0 vT (= o

so that VT D, (0) = VTD (0) + op(1) and we can deal with vTD (0) A mean value
expansion of \/TD.,,T(A) about @ = 6 yields

VID,(8) = VIDY(80) — ng@)ﬁ(a_eo)

where 8 is the usual “mean value” satisfying 8 = 0o + op(1). Since 0 is consistent for g, the
triangle inequality and (c) ensure that Pﬂ_eT(G) = Jro-+0p(1) and, substituting vT(6—80¢) =
\FD 5-(60) + 0p(1) from Theorem 1, yields

VTDZ(8)

VTDZ(00) — Inod g VIDG(80) + 0p(1)
AVTDZ (60) + op(1),

and the result follows.
For the particular class of tests, characterised by indicator (9),

odg;,(0) et Omy oo €2 o 1 Ohe 2 Oorg®
= 2 ryo — —r; | — — =1
O’ hge O’ hge hgo O’ hge orr-4
8d,(8) &l o 1 Ok 2 Orge
= rit | — +(—=-1
on’ h°° hge on' hg° on’

so that Jrp = E[rfecf®]y_ o, and Jxpn = E[rt""xt"‘"]gze0 and similarly, from expressions
for d$3(60) in the proof of Lemma 6 and d35(8o) = (§erse, where (57 = €3,/hSS — 1,

1 ke — 1
Qrp = VE|—=rf] +ME[r°°ct°°/]9:9 ,
Vhee 0—o 2 0
=69
ke —1
Qry = %E[r?"xfm]e:eo,
Qrr = (ke—1)FE [rfor?o’]ezeo .
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We now establish that (a)-(c), above hold:
(a) Since Qgg is finite (Proposition 6), by Cauchy-Schwartz, we only have to show that

E[dS5(80)d25(80)'] is finite. The latter is true since E supg [|[r$°||? < oo, so that E H (€8) 2 rorsy

(ke = 1) E x| < oo
(b) It can be shown that

A7 (6) — dt (9)]]

IN

2 2
K{|st |5 — el + 22 e

)

h® — hy
hee

h$® — hy

F g = rel) |22
t

3
= K> Rj.
j=1

By assumption, ﬁ 23:1 E'supg R1: = o(1). Secondly, since E'supg €2 ||r{°|| ‘sfii

< \/Esupe ||r,?<’||2 E supg lsfsffi <

oo, by (A.3), Esupy Ra; = O (p') , so that ﬁ Zle E'supg Rat = o(1). Finally, note that

1 & 1 & 5 he® — hy |?
—=> supRy < — > supef |[rfe — ¢l sup |[—t——
V2% 72 e I e
T T
1 R — hy
S BN ur:o—rt}{zsup h e }—opu)
{VTt_l 0 t—1 @ hee

2
since, % Zle 22 < {% ZtT:1 zt} , when z¢ > 0 for all ¢, ﬁ Zthl supg e7 [|rg° — 1| =

0p(1), by assumption, and 37 supg ‘hth;ht
t

= Op(1) by previous results.
By Markov’s Inequality, % Z;Tzl supg Rjt = 0p(1), j = 1,2,3, and the result follows.

(¢) In a similar manner to the proof of Proposition 7, with

odss, (6 0 1 Ohg° orge
[=552] = {5 e+ 55D}
o’ e hge O o’
ods,(0) 1 Ohg® orse
SO < wleen(|mGE |+ 5]
Then since hg® > A > 0 for all £ and 8, using Cauchy-Schwartz inequality, the assumptions of
: 9dz(9) 9dz(9)
Theorem 2 and previous results, E supg oo < oo and E'supg Y < 0o. These
¥ mn

are sufficient for a ULLN to apply, ensuring supy ||[P%4(0) — Jre (0)]| = op (1).

Finally we briefly show that these additional assumptions of Theorem 2 are satisfied for the
test variables considered in this paper, in Section 4.

First, consider the Lundbergh and Terdsvirta (2002) nonlinearity (scalar) test variable ry =
€3, = rg°. Trivially, assumption (i) is satisfied. For (ii) we require E [¢§,] < oo; for (iii),

I}

|| — 2.2 Omi_p
e H = 3E supg ‘Et&‘t_k

Esupgco Ha? 9%

asymmetry test variable of I;_1e:—1, but taking into account (20).

For the non-linearity test variable, with ||r§® || having typical element 753 = h% S o WiER i
t

k =1,...,q, and noting h{® > ag + wiaksf—k—w

1 i": Vo et kil

2
Qg i=o0 a0 + Pk,

‘ < 00, by Cauchy-Schwartz. Similarly for the

el <

oo
2 i 2
Viigi_p_; <K _EO P'E ki
=

o .
ITee — el < K Ztﬂlgffkﬂ‘
i=
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] e BRI S LR ) e |
1 X Vagles kil Viag lei—k—il
< - o T2 : \ ¢z ”5t k— zvtpft k— l” + — Z . \/ wz‘gt k—1 ”C?O”
VO i=0 @0 + Yiaker_y,_; Vark i=0 a0 + Piape;_
< K{S o e iVofinill+ 5 o't el |
orgy K X i2 i 2 oo
P Do ipei gt Z plet—p—i Xl ¢
n i=1 =0

It is then straightforward to show that assumptions (i)-(iii) are satisfied. Similarly for the
asymmetry test variable ri°® = h%o S o Wil—ker—k—s, but taking into account (20).
t

|

Proof of Lemma 2. The proof is similar to that of Lemma 1. We can show that
Esupy [[r2*q2®’|| < oo , so that T=1 3T | supy ||rt E[rt 1|l = op(1), by previous
arguments. It remains to establish that 77! thl supe [[reeqe’ — rtq,@” = o0p(1), since this

then ensures that 71 ZtT:1 (riq})g_p — E [rf"qf"’]ezeo = 0p(1). Note that

T T T T
T3 ea® vy | < T2 e —rell 1a®I+T 1 laf® — qell e +77 1> [rg° — el g — al|
=1

t=1 t=1 t=1

and it can easily be shown that each term on the right hand side is op(1). We also know that
ke = ke 4 0p(1) and 8. = ve + 0p(1), from the proof of Lemma 1, and the result follows. m

ados (6
Proof of Lemma 3. (i) Firstly, from the expression for %E) in Proposition 7, it is
easy to see that Jpe = %E [x§°ci®lg—g, -
Now,
E [x7°ci] g_p, = —2 ZC“OkE hoo2 Zzw $;8e2 1 i€tk _p_j , o (30)
1=075=0 6=6,

1
which exists, provided E {Wst,lsﬁmft’_l] exists (for all [,m), since |32 Z;’;O qp”/;j‘ =
t 0=0)

2 2 1 .
>0 wi]” < {32520 %1} < co. Thus E {Wet,Lsfimfg_l] has to be examined for
t 0=6)
/
the cases = m,l < mand ! > m, wheres$® = (1,5%_m, . 6$7m7q+17 h$2 s hﬁm7p+1) .

1
Specifically, for I = m, E |:h°°2 €¢_1S —lft l:| is
=00

ft—l71:| ft',l}
6=60

which is zero if the expression for the conditional expectation, given F;_;_1, above is zero. To
establish the latter, follow Engle (1982) and treat this conditional expectation in two steps,
observing that e;_;_,, n =1,2,..., are F;_;_1- measurable. First, construct the conditional
expectation given F;_;, which is

1 ’
3 2
E {E [hoo2 (st,l, €F_py s Et—1Ef—|_gt1s et 1h{2,, ~-7€t—lhfil,p+1>
t

Fi- lH oo, = ¢(et—1)s

where it is implicit that ¢(.) is evaluated at @ = 0g. Since h® is symmetric in e;_; and the

/ 1
3 2
|:(5t7l7 Et—1» "75t7l5t717q+]_7 Etflh?il: “75t7lhtoilfp+]_) E{ hoo2

elements in €;_;s§°; are all anti-symmetric in e;_;, the elements in (h;fo)f2 €¢—187°, are anti-
symmetric in £;_;, which forms part of F;_; and, at the second step, expectations with respect
to Fi_;—1 are taken only with random elements. Now, because h{® is symmetric in g;_;, its
conditional density given e;_; is also symmetric in e;_;. Therefore, by Engle (1982, Lemma
p.1006), ¢(er—;) is anti-symmetric in e;_;. Finally, the second step involves E [¢(e¢—;)| Fr—1—1]
which is zero, because the conditional density of e;_; given Fy_;_1 is symmetric and ¢(.) is
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anti-symmetric.
The other typical expectation in (30) for { < m and I > m is

}—t m— 1:| ft m}
60=0¢

which is zero if the conditional expectation, given F¢_,,_1, is zero. The later can be expressed
as

1
E{E|:h°°26t mSt 1

ftm1:|

1 1
E|:h°°26t mSt 1 :E{E[h 2515 mSt l‘Ft m:Hft m— 1} .
6=0g

For I > m, the elements of sg2, belong to Fi—m—1 and the preceding arguments show that

0=0¢

E [(h?")72 at,m‘ ft,mfl] = 0. For m > [, note that the elements of (h§5’°)72 s9°, are
=0,

symmetric in €¢_.y,, so that £ [(h,‘f")’2 €t—mSgY, ’ ft,m] oo = ¢(et—m) is anti-symmetric in
et—m and, again, E[¢(et—m)| ft_m_1]9:90 =0, where elemoents included in the conditioning
set Fi_m—1 are treated as non-random when taking the conditional expectation. It follows
that Jyne = 0.
Since ve = 0, (ii), (iii) and (iv) follow immediately, given previous definitions. m

Proof of Lemma 4. Note that ¢’ = (ht‘”)_1 =0 6Zi€t—1—ift/,17¢ and ry =

(etfl,sffl)/so that Jxy can be written as

1
Jnp = 720401E{E{—( = )‘}} 2} £,
hge €t 1

o= i 1 €¢—1
+> BE [5( 3 )st_l_i ftfz] £l
=1

1 €
- s {e gz ()| 7e] o)
hee \ €ty o 0=6,

Et—
Et—

6=0(

1
which is non-zero, in general, since E [hi’o ( )’ft 2} > 0 almost surely. The
9=0,

second term (after the second equality) is zero because, for j > 2,
1 €t—1 ) 1 Et 1
E|l— et—j| Fi—2 =|ea—ib| Fi—2
|:htoo ( et ’ 6=0, T lnge \ et 6=0,

E [hio ef 1| Fie } = E[¢(et-1) [Ft—2]g=0,
6=0¢

where E [(h§°)71 5f71|-7'—t71j| = ¢(et—1), s = 1,3, which is anti-symmetric in ;—1, so that

and

E[¢(e¢t—1)|Ft—2] = 0 because the conditional density of e;—1 given Fy_2 is symmetric. Thus,
in general, Jxyp # 0.

Second, with x5 = (hg°) 13" 8is2®| . Jny can be written as

econd, with x2°' = (h°) Zi:o 187% _;» Jnn can be written as

1 _
= oo e
#3 ot | () A
fi-1 0=0

=Y0

Similar arguments to those employed previously, imply that Jxs is the null vector. =
Proof of Proposition 1. The method of proof follows very closely that of Godfrey
(1996). Consider the negative size bias test of Engle and Ng (1993) in which # = [;_1&;—1
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and for simplicity, in this case, m(w¢; ) = wgga. Define the following dummy variables, which
will be employed in the ensuing asymptotic analysis

Dy = 1, if e04t-1 <0 and &1 <0, Dy =0, otherwise
Dz = 1, if e94-1>0 and &_1 <0, Dy =0, otherwise
Dz = 1, if e04—1 <0 and é&_1 >0, D3 =0, otherwise
Dy = 1, if e0t—1>0 and &1 >0, Dy =0, otherwise

for t =1,...,T. Note that both Pr (D2 = 1) and Pr (D3 = 1) tend to zero as T — oo, under
fairly general conditions on wy¢, since &1 —eg,1—1 = —W}_, (p — ¢p) and @ is root-T con-
sistent for ¢.

Then, noting that 7+ — rgs = 0 when Dy = 1, the difference between \/TD.,‘.T(@) and

1 I [[&
—T iL—fl ro¢| can be expressed as
t=1 t
B (G L R (0 P
_ Zt P — 1 = £ - Et_1 —E0.4— 1 — €0,t—
T iy t 0t JT & P t1 (Et—1 0,t—1 t2€t—1 t3€0,t—1
= D1 +T2+4T3
where
A |7 5 [ (1) ]
I = — D. ,\771 Et_1 — € — = —— D. ,\771 W, _ \/TAf
1 ﬁt; w7, (8t—1 — €0,t-1) Tt; a7 1 (@ — o)
1 Z g2
SR
v (PG )
1

T é%
s = ——= X [Dt3 (ﬁf - 1) 60,#1] :

T t=1 t

1 Z[re
It can now be shown that T'; = 0,(1), for j = 1,2, 3, which is sufficient for Wi > {(B—t — 1) (Pt — mt)} =
t=1 t
op(1). For example, I's can be written as

T 1/2 T “2 &
I's = —| > Dw3/T > Di3 > D3 (7 - 1) €0,t—1
t=1 t=1 t=1 hy

(M3)~V2 3 (ﬁ - 1) EO,H}

— (Ms/T)'/?
teTs \hy

T

where M3 = 3 Dy is the number of observations for which Dy3 = 1 and 73 denotes the
t=1

subsample of observations with D3 = 1. Now, M3 /T is the proportion of sample observations

for which Dy = 1. Since Pr(Dy3 = 1) — 0, M3/T is thus op(1). Similar to the preceding

22
. _ é

analysis, since M3 — 0o, a mean value expansion of (Ms) 1/2 S (B—t — 1) €0,t—1 reveals
teTy t

that it is Op(1). Therefore, I's = o0p(1) and, in a similar fashion, it can be shown that

T2 = o0p(1).
Turning to I',

Iy =—WMy/T)

Mt Y (‘:5—2— )wzl]ﬁ(a—wo)

teT; \ht

T

where M1 = > Dy is the number of observations for which Dy; = 1 and 77 denotes the
=1

subsample of observations with Dy; = 1. Now, M1 /T is the proportion of sample observations

for which Dy; = 1. In this case, Pr(Dy1 = 1) — 1, so that My /T EN 1, and a mean value

22

5

expansion of M7 30 (A—t — ) w;_, reveals that it is 0p(1). Hence, I't = 0p(1), also. m
teT t
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Proof of Lemma 5. Specifically, Jry can be written as (with ¢’ = (h;’")_1 o Bistflfift’_l_i
)7
1 !
Jﬂ'(p = 72&01E hoo It—lft 1 ‘ft 2 ft71
> 1
+ ZﬁiE {hfwftfletﬂét—l—i |-7:t721| ffli}
i=1 t 6=06,
which is non-zero (certainly, E {h%ltflsfil\ft,g] is non-negative). m
t
Proof of Lemma 6. The proof is similar to that of Lemma 3. Firstly, for non-negligible
estimation effects from the conditional mean,
Iro =23 o0t |y 35 bibyerci s iy
=0 7=0 =0,
is non-zero, in general, if at least one element in Jx is non-zero. This amounts to examining
the typical expectation E [hooz € _,Et— mfl_,. for I = m, !l < m and I > m, where
6=0
s =1, 3. Firstly, for | = m,
1 1 ,
E hoo25t er—ifly =EJFE h°°2€t 1&t—1| Fr—i—1| £y
6=0( 6=0g
with the conditional expectation given by E [(h,‘f")’2 s?f”}}_l_l] for u = 2,4. Similar to the
arguments in Lemma 4, [(ht‘x’)*2 5%‘7”.7'-,5,1,1] > 0 almost surely and thus £ [;f%afflgt*lftlfz]
t 0=0,

is non-zero. Further, for | < m,

1
ft m— 1j| } =F {ftl_mE |:6t77nE |: h<><>2 Etfl
0=0¢

1
E{ft’_mE |:h°°2 €5_1Et—m Fi1—1 }

Do

and similar arguments to those employed in the Proof of Lemma 3 establish that E [(hfo)72 €5, |]:t—l—1] =

0 for s =1,3. For I > m, since Fy_;_1 C Ft—m—1,

1 1
E|:hoo28t et—mfi_ m} :E{f{,mef,lE[hOOQEt m’]:t m— 1}}

0=0, =0,
where the elements €;_;, s = 1,3 belong to F;—m—1 and previous arguments show that
E[(h*) 7 etmmlFem—r] ,_ =0.
=06,
Secondly, for Jry, the expectation to be examined is E [Tjﬁei—lsw?ilm] oty s = 1,3 for

I =m,l>mandl < m and arguments similar to those used in Lemma 3 show that Jr, = 0.
In particular, notice that for s = 1, the above expectation was shown to be zero for all three
cases in Lemma 3. Similar arguments also apply for s =3. ®

Proof of Lemma 7. Firstly, with ¢§ = (h$*)™1 2% 9hep—1-4f/_,_, and r® =
(hf")*l >0 %iVi—1—i, Jwe can be written as

q
Jnp = _QZQOICE 002 Zzw '(/) j€t—k—3Vt— 1—1ft k—j

k=1 =0 j=0 =6,

For a typical element in Jry, the expectation to be examined is E |:h s lt—180—16¢— mfl_ m}

1
for the cases I = m,l < mand ! > m. Consider just [ = m; here we have E/ {h 5 It—lat—lft—l:|
2]
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1 2
E{E [Elt,,et_,

ft—l—l] ft’_l} is certainly non-zero.
6=0

Secondly, with x2 = ()™ 3252 4,85, _, Jnn in (11) can be written as

1 oo o0
Jan =B | 13> D witveor-isi?i :
t
0=0,

i=0 ;=0

1
For a typical element in Jry, the expectation to be examined is E [7It—l€t—l5f3/m:| for

002
ht

the cases I = m, I < m and [ > m. Similar arguments to those employed previously show that
this is non-zero in general. W
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Table 1. Empirical size

N (0,1) t(7) (5) 1(3)

T4 Tepny Tn Tir T4 Tepny Tn Tir Ta Tepy Tn Tpr Ta Ty TIn  Tir
M1-H 4.4 5.2 5.1 2.6 4.2 4.1 4.0 1.7 5.8 4.4 2.2 1.0 5.9 2.7 2.4 0.5
M2-H 4.5 4.9 5.6 2.1 4.4 3.6 3.8 1.5 6.2 4.1 2.5 0.9 7.2 2.7 2.8 0.5
M3-H 4.6 5.0 5.4 2.5 4.4 3.7 3.7 1.6 6.7 4.0 2.5 1.0 7.2 2.6 2.7 0.5
M4-H 4.9 5.0 5.4 2.6 4.0 3.7 3.7 1.4 6.1 4.0 2.4 1.0 8.0 2.5 2.6 0.5
M1-M 4.8 4.7 4.8 4.0 4.9 4.0 4.2 3.1 5.6 4.1 2.9 2.0 5.5 2.9 2.8 1.1
M2-M 5.0 4.4 5.2 4.3 4.4 4.1 3.8 3.4 5.1 3.7 2.8 2.0 5.9 2.9 2.7 1.1
M3-M 5.0 4.6 5.4 4.3 4.5 3.9 4.0 3.4 5.0 4.0 2.8 2.0 6.0 2.9 2.7 1.1
M4-M 5.1 4.6 5.4 4.0 4.4 3.8 4.2 3.3 5.3 4.0 3.1 2.1 6.7 3.2 2.6 1.1
M1-L 6.0 4.7 4.2 4.1 4.6 3.8 3.8 2.6 4.8 4.1 2.5 1.4 6.5 2.0 1.9 0.5
M2-L 5.7 4.7 5.3 3.9 4.7 3.8 4.0 2.8 4.0 4.0 2.6 1.5 6.4 1.5 2.3 0.6
M3-L 5.7 4.4 5.2 4.0 4.8 4.0 4.3 2.5 4.0 3.8 2.6 1.6 6.1 1.8 2.3 0.7
M4-L 5.7 4.6 5.2 3.9 4.6 4.0 3.7 2.7 4.6 4.0 2.5 1.5 5.8 1.9 2.1 0.6
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Table 1. Empirical power

GJR (1,1) model

ht = 0.005 + 0.23[|eg_1| — 0.23¢;_1]% + 0.7hs_1

N0, 1) 10)
Ta Tgn Tn  TLT T Tgn Tn  TLT
M1 88.7 47.1 89.2 16.5 62.2 32.7 64.9 14.4
M2 84.6 38.3 87.4 14.5 59.0 27.1 59.0 12.2
M3 84.1 385 87.0 14.2 59.9 27.2 58.8 12.6
M4 84.6 379 87.8 16.6 58.7  28.0 59.7 128

h¢ = 0.005 + .23 [|et_1| — 0.17et_1)% + 0.7hs_1

N(0,1) 10)

Ty Ten TN Trr Ty Ten TN Trr
M1 67.5 30.0 67.0 12.4 40.4 22.5 42.8 11.6
M2 62.1 26.1 65.3 10.5 39.7 19.7 37.3 10.2
M3 61.3 26.6 64.6 10.6 40.5 19.3 37.1 10.6
M4 61.3 24.5 66.2 12.2 40.2  20.0 37.6 10.9

STGARCH (1,1) model

ht =0.005 + 0.1362_; — 0.212F (g¢—1)e7_; + 0.7Ths—1
1 1

F(et-1) = Itexp(—100e, ;) 2
N (0, 1) 10)
Ta Ten 1IN Trr T Ten Tn Trr
M1 95.7  69.0 96.7 49.3 78.0 46.4 81.5  29.6
M2 95.8  64.7 97.0 459 75.0 434 80.6 27.1
M3 95.5 64.5 96.7 45.7 74.8 439 80.3 26.7
M4 95.2  63.9 96.5 47.3 75.9 455 81.3 26.9
ht =0.005 + 0.136eZ_; — 0.17F (e¢—1)e2_; + 0.7Tht—1
F(e4—1) = -1 @1
1+exp(—100e;_1) 2
N (0,1) t(7)
Ta Ten TN Trr T Ten Tn Trr
M1 86.1 51.5 88.7 36.6 60.7 34.5 62.3  20.6
M2 84.7  46.9 88.2 41.8 59.0 34.0 62.0 18.9
M3 83.8 48.0 87.4 343 57.2  33.6 60.8 19.2
M4 84.1 46.9 87.2 35.2 59.1 34.2 62.3 19.3

EGARCH (1,1) model

log(ht) = —0.23 + 0.91og(hs—1) + 0.25 [[§,_1] — 0.3§,_4]

N0, 1) t(7)
Ta Tgny Tn  TLT T Tgn Tn  TLT
M1 83.9 29.7 76.5 35.9 64.9 23.3 52.8 23.8
M2 82.8 27.2 75.7 33.7 64.4  20.1 49.4 20.3
M3 82.1 27.0 75.5  34.2 63.1 19.9 49.3  20.9
M4 83.2 27.0 75.1 324 63.0 19.7 49.3  21.7

TGARCH (1,1) model

vV ht =0.07 + 0.081 (1 — It—l) ‘6{,_1| + 0.193[1_1 ‘Et—l‘ -+ 0.831\/ht_1

N0, 1) (1)
Ta Teny TN Trr Th Ten Tn Trr
M1 98.3 46.3 97.4 54.5 91.1 31.2 81.9 33.0
M2 98.8 404 96.7 48.5 90.1 26.6 80.6  29.3
M3 98.3 41.5 96.8 49.5 89.4  26.6 80.5 29.2
M4 98.9 40.3 96.9 49.9 89.6 27.1 81.0 29.7
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