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Abstract

This paper develops a framework for the construction and analysis of
parametric misspeci�cation tests for GARCH models, based on standard
�rst order asymptotic theory. Here, the GARCH model is de�ned to be a
regression model in which the errors, under the null, are conditionally het-
eroskedastic according to a GARCH process and it is this latter assump-
tion which is the subject of misspeci�cation tests. The principal �nding
is that estimation e¤ects from the correct speci�cation of the conditional
mean (regression) function can be asymptotically non-negligible. This im-
plies that certain procedures, such as the asymmetry tests of Engle and
Ng (1993) and the non-linearity test of Lundbergh and Teräsvirta (2002),
are asymptotically invalid. A second contribution is the proposed use of
alternative tests for asymmetry and/or non-linearity which, it is conjec-
tured, should enjoy improved power properties. A Monte Carlo study
supports the principal theoretical �ndings and also suggests that the new
tests have fairly good size and very good power properties, when com-
pared with tests of Engle and Ng (1993) and Lundbergh and Teräsvirta
(2002).
JEL Classi�cation: C12, C22

1 Introduction

A great deal of research has been undertaken on modelling volatility clustering
in �nancial and economic time series, in which the GARCH model of Boller-
slev (1986) represents a benchmark speci�cation. The subsequent literature

�We are grateful for the insightful comments of three referees, Alastair Hall and Len Gill,
which greatly improved the exposition of this paper. The standard disclaimer applies.

yThe �rst author�s research is part of her PhD thesis and was supported by a University
Research Studentship and an Overseas Research Studentship; both of which are gratefully
acknowledged.

zCorresponding author. Email : a.g.halunga@exeter.ac.uk
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has provided generalisations by, for example, allowing for possible asymmetric
and/or non-linear behaviour. Prominent among these are: the EGARCH model
of Nelson (1990); the GJR model of Glosten, Jagannathan and Runkle (1993);
the TGARCH model of Zakoian (1994); and, the Smooth Transition GARCH
(STGARCH) model of Hagerud (1997) and Gonzalez-Rivera (1998).
Notwithstanding these developments, the parametric GARCH model re-

mains a popular choice among applied workers. Therefore, and as noted by
Lundbergh and Teräsvirta (2002), it is important to perform misspeci�cation
tests to assess the adequacy of the parametric model being employed. In this pa-
per, the GARCH model is de�ned to be a regression model in which the errors,
under the null, are conditionally heteroskedastic according to a GARCH process
and the parametric tests are ones which might be used to detect misspeci�cation
in the assumed GARCH process for the errors. Developing misspeci�cation tests
has not been a neglected area of research. Bollerslev (1986) suggested a natural
score type test for testing a GARCH model against a higher order GARCH
model. Asymmetry tests were proposed by Engle and Ng (1993), and these are
now widely used in empirical �nance. Li and Mak (1994) constructed a test for
the adequacy of a GARCH (p; q) model with a null hypothesis that the squared
standardised error process is serially uncorrelated. Lundbergh and Teräsvirta
(2002) proposed tests of (i) no remaining ARCH in standardised errors; (ii)
linearity; and, (iii) parameter constancy. All these procedures are important
inferential tools for empirical researchers who are interested in obtaining accu-
rate forecasts of �nancial volatility, in order to take the appropriate decisions
on portfolio selection, asset management or pricing derivative assets.
However, in this paper it is argued that, on closer inspection, the standard

�rst order theory employed to justify the asymptotic validity of such procedures
has sometimes been misinterpreted. To establish this, a unifying framework for
the construction and analysis of parametric misspeci�cation tests in GARCH
models, based on the conditional moment principle and �rst order asymptotic
analysis, is developed. This provides a useful contribution in at least two re-
spects.
Firstly, and most signi�cantly, the theory predicts that the limit null dis-

tribution of the relevant test indicators must take account of asymptotically
non-negligible estimation e¤ects which arise due to the estimated conditional
mean (regression) parameters in the null GARCH(p; q) model. (The importance
of estimation e¤ects was addressed by Durbin, 1970, when testing for serial cor-
relation with lagged dependent variables.) This issue has been, apparently,
overlooked in the GARCH testing literature because in the null GARCH(p; q)
model, under conditional symmetry of the errors, the estimated conditional
mean parameters are asymptotically orthogonal to estimated conditional het-
eroskedasticity parameters. In particular, and because of this orthogonality, it
appears that the conditional mean estimation e¤ects have been simply (but er-
roneously) assumed away, for example, by Engle and Ng (1993) and Lundbergh
and Teräsvirta (2002).1

The second contribution proposes �new� tests for asymmetry and/or non-
linearity. It is conjectured that these test procedures should have better power
properties against the types of alternative models considered by both Engle and

1Although, the issue of estimation e¤ects from the conditional heteroskedasticity parame-
ters has been ackowledged; see, for example, Li and Mak (1994) and Lundbergh and Teräsvirta
(2002).
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Ng (1993) and Lundbergh and Teräsvirta (2002) in their Monte Carlo exper-
iments, since their construction takes into account the recursive nature of the
conditional heteroskedasticity (whereas the test procedures of Engle and Ng,
1993, and Lundbergh and Teräsvirta, 2002, do not). The results of a small
Monte Carlo study reveal that the new tests do indeed have good size proper-
ties and very good power, when compared with the tests of Engle and Ng (1993)
and Lundbergh and Teräsvirta (2002).
This paper is organized as follows, with supporting Lemmas and Proposi-

tions, together with all proofs, relegated to Appendices. Section 2 describes the
null GARCH model, and brie�y discusses Quasi Maximum Likelihood (QML)
estimation. Section 3 describes a framework for constructing a particular class
of parametric misspeci�cation tests. In Section 4 the tests proposed by Lund-
bergh and Teräsvirta (2002) and Engle and Ng (1993) are reviewed and new
asymptotically valid tests for asymmetry and non-linearity are introduced. Sec-
tion 5 presents some Monte Carlo evidence in support of the theoretical �ndings
and Section 6 concludes.

2 The Null GARCH(p; q) Model

The regression model for the variable of interest, yt; is de�ned as

yt = m (wt;'0) + "0t; t = 1; :::; T (1)

where wt = (y0t�1; z
0
t), yt�1 = (1; yt�1;:::; yt�l)

0 2 <l+1, zt = (zt1;:::; ztk)0 2 <k
are exogenous variables, '0 = ('01; ::; '0r)

0 is the true parameter vector and the
conditional mean (regression) function, m (wt;'0) ; is possibly non-linear:

2 The
error f"0t;Ftg ; where Ft�1 = �

�
(yt�1; z

0
t) ;
�
yt�2; z

0
t�1
�
; :::
�
, is a martingale

di¤erence sequence given by
"0t = �th

1=2
0t (2)

where the standardised error process, �t, is an i:i:d. sequence with mean zero
and variance one and de�ne kc = E

�
�4t
�
and vc = E

�
�3t
�
; both �nite constants.

The conditional variance is speci�ed as

h0t = �00s0;t�1 (3)

= �00 +A0(L)"
2
0t +B0(L)h0t

where s0;t�1 =
�
1; "20;t�1; :::; "

2
0;t�q; h 0;t�1; ::; h0;t�p

�0
, �0=

�
�00; �01;:::; �0q; �01; ::; �0p

�0
;

A0(L) = �01L+ :::+ �0qL
q; B0(L) = �01L+ :::+ �0pL

p.
The above process is de�ned for the true parameter �0 = ('00;�

0
0)
0 and,

correspondingly, the model for the unknown parameter vector � = ('0;�0)0 ; is
de�ned as

yt = m (wt;') + "t; t = 1; :::; T

ht = �0st�1

= �0 +A(L)"
2
t +B(L)ht

= at +B(L)ht (4)

2For example, Lundbergh and Teräsvirta (1999) proposed the STAR-GARCH model and
the statistical properties of this model were investigated by Chan and McAleer (2002).
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where at = �0+A(L)"
2
t = �0+

Pq
k=1 �k"

2
t�k: The following assumptions ensure

the identi�ability, stationarity and ergodicity of the above process.
Assumptions A

1. The parameter space, �; is compact and �0 lies in the interior of �:

2. The elements of (yt; z0t) are strictly stationary and ergodic; and, m (wt;')
is continuous and Ft�1 measurable for all ' 2 �:

3. (i) all the roots of 1�A(z)�B (z) = 0 lie outside the unit circle;
(ii) the parameter space is constrained such that 0 < � � min f�lg �
max f�lg < �; l = 1; :::; p+ q + 1; where � and � are independent of �;
(iii) the polynomials A(z) and 1�B(z) are coprimes:

As in Ling and McAleer (2003), A3(i) is a stationarity assumption imposed
over the whole parameter space. Notice that, with A3(ii), this implies that
roots of 1 � B (z) = 0 lie outside the unit circle. Thus, in addition to A3(ii),
which restricts the parameter space so that zero values in � are ruled out,Pp

j=1 �j < 1: These restrictions are also imposed on � by Berkes, Horváth
and Kokoszka (2003) and are employed here because they a¤ord uniform con-
vergence of second derivatives of the log-likelihood over �, removing the need
for third derivatives, thus greatly simplifying the algebra required to justify the
substantive contribution.
Given Assumption A3(i)(ii) the process for ht has the following representa-

tion

h1t = (1�B(L))�1at =
1X
i=0

 iat�i

where (1�B(L))�1 =
P1

i=0  iL
i; with  0 = 1;  i > 0 and satisfying  i =Pp

j=1 �j i�j ; with  s = 0; s < 0; 0 <
P1

i=0  i =
�
1�

Pp
j=1 �j

��1
< 1: The

coe¢ cients,  i; decay exponentially fast, and there exist constants K > 0 and
0 < � < 1; independent of �; such that  i � K�i. Then, as in Ling and McAleer
(2003), but under (1), additional Assumption A2 and h0t = h1t (�0), it can be
shown that f"0t; h0tg is strictly stationary and ergodic.
Asymptotic theory for GARCH models has been considered by several au-

thors. For example, Ling and McAleer (2003) required that E
�
"60t
�
<1 to en-

sure asymptotic normality of the QML estimator in the ARMA-GARCH model.
Furthermore, Chan and McAleer (2002, 2003) argued that the results in Ling
and McAleer (2003) also hold for a STAR-GARCH model. Berkes et al (2003)
established the consistency and asymptotic normality of the QML estimator,
under weaker moment assumptions, in the pure GARCH model and Francq and
Zakoian (2004) established consistency and asymptotic normality of the QML
estimator in both a pure GARCH and ARMA-GARCH model under further
weakened conditions; for example, in the pure GARCH model the parameter
space can contain zero elements (although the true parameter can not) and the
only moment condition required for consistency is E

�
�2t
�
= 1 and for asymp-

totic normality, E
�
�4t
�
< 1: All these authors assume, as here, that the �t

are i.i.d. Therefore, whilst it is possible that the assumptions employed in this
paper could be weakened, it should be noted that the regression speci�cation
in (1) is more general than that employed in the literature referred to above
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and the corresponding assumptions employed are, nonetheless, su¢ cient and
(importantly) permit a relatively straightforward justi�cation of the required
�rst order asymptotic theory, without obfuscating the principal issue that is ad-
dressed in the paper. In practice, and following Weiss (1986),3 the existence of
moments is assumed when required as follows, where k:k denotes the Euclidean
norm:
Assumptions B

1. E j"0tj4(1+s) <1 for some s > 0; and all t:

2. E jm(wt;')�m(wt;'0)j
2
> 0; for all ' 6= '0

3. m (wt;') is at least twice continuously di¤erentiable in '; with, for all t

(i) sup� jm(wt;')j
4(1+s)

< B(wt); with E [B(wt)] <1; for some s > 0;

(ii) E
�
sup�

������"rt @m(wt�i;')
@'

������2� <1; r = 0; 2; and all i � 0;
(iii) E

�
sup�

������"rt @2m(wt�i;')
@'@'0

������2� <1; r = 0; 1 and all i � 0:
2.1 Estimation Framework

The (average) quasi log-likelihood, conditional on available pre-sample values
~y = (y0; :::; y1�l)

0, is (ignoring constants)

LT (�) =
1

T

TX
t=1

lt (�) ; lt (�) = �
1

2

�
ln(ht) +

"2t
ht

�
; (5)

although the ensuing asymptotic analysis does not restrict �t to be normally
distributed; see Bollerslev (1986). Note that (5) is not only conditional on
available pre-sample values, ~y, from which "t; t = 1; :::; T; can be constructed,
but also on ~"0 =

�
"20; :::; "

2
1�q; h0; :::; h1�p

�0
; from which ht can be constructed

using (4). However, "t and the process ht, t � 0; are unobserved. In order to
simplify the algebra and asymptotic theory, it is assumed (in addition) that pre-
sample observations w0; :::;w1�q are also available (entailing y�l; :::; y1�(l+q)),
so that "1�k; k = 1; :::; q; can be constructed, and that ht = 0 for all t �
0:4 The simpli�cations in the analysis derive from the fact that, now, ht can
be expressed as ht =

Pt�1
i=0  iat�i =

Pt�1
i=0 fB� (L)g

i
at�i; t = 1; :::; T; where

B� (L) = �1+�2L+ :::+�pL
p�1: (In practice, and for all inferential procedures

described in this paper, a constant value can be chosen for ~"0; in order to
generate ht, t = 1; :::; T .) The unknown parameters can be estimated jointly
by QML estimation of (5). Throughout, the estimated parameter vector will be

denoted �̂
0
=
�
'̂0; �̂0

�
:

The unobserved log-likelihood function, conditioning on the in�nite his-
tory of all past observations

�
w0
0;w

0
�1;w

0
�2; :::

�0
is L1T (�) =

1
T

PT
t=1 l

1
t (�) 6=

3Weiss (1986) established the asymptotic theory for the ARCH model allowing for exoge-
nous variables in the conditional mean.

4Note, that this is not the same start-up scheme employed by either Ling and McAleer
(2003), who choose ~"0 = 0; Berkes et al (2003), or Francq and Zakoian (2004).
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LT (�) ; with l1t (�) = �1
2

�
ln(h1t ) +

"2t
h1t

�
and score vector contributions of

d1�t (�) =
@l1t (�)

@�
; where d1�t(�) =

�
d10
't (�);d

10
�t (�)

�0
in an obvious manner.

Assuming L1T (�) and LT (�) are both twice continuously di¤erentiable in �; de-

�ne d�t(�) =
@lt (�)

@�
;D�T (�)

0 = T�1
PT

t=1 d�t(�);P��T (�) = �T�1
PT

t=1

@d�t(�)

@�0
;

and, correspondingly, D1
�T (�) and P

1
��T (�) in an obvious manner for the unob-

served L1T (�). By introducing the unobserved log-likelihood, the methodology
of Ling and McAleer (2003), Berkes et al (2003) and Francq and Zakoian (2004)
is followed whereby it is established that �̂ = argmax� LT (�) has exactly the
same �rst order asymptotic properties as �̂

1
= argmax� L

1
T (�); with the as-

ymptotic properties of the latter being fairly easy to verify.
In order to develop these arguments, it will be useful to illustrate, and

distinguish between, the various unobserved and observed quantities associ-
ated with L1T (�) and LT (�); respectively, based on the assumed initial start
up values embodied in ~"0: Speci�cally, the unobserved scores are D1

'T (�) =

T�1
PT

t=1

�
"tft
h1t

+
1

2

�
"2t
h1t

� 1
�
c1t

�
, D1

�T (�) = T�1
1

2

PT
t=1

�
"2t
h1t

� 1
�
x1t ;

where ft =
@m(wt;')

@'
; and by exploiting the recursions

@ht
@'

= �2
Pq

k=1 �k"t�kft�k+

B(L)
@ht
@'

and
@ht
@�

= st�1 +B(L)
@ht
@�

;

c1t =
1

h1t

@h1t
@'

= �2 1
h1t

qX
k=1

�k

( 1X
i=0

 i"t�k�ift�k�i

)
; (6)

and

x1t =
1

h1t

@h1t
@�

=
1

h1t

1X
i=0

 is
1
t�1�i; (7)

where s10
t�1 =

�
1; "2t�1; :::; "

2
t�q; h

1
t�1; ::; h

1
t�p
�0
: Given ~"0; the corresponding ob-

served score D�T (�); associated with LT (�); can be expressed analogously but
with

ct = �2 1
ht

qX
k=1

�k

(
t�1X
i=0

 i"t�i�kft�i�k

)
= �2 1

ht

qX
k=1

�k

(
t�1X
i=0

fB� (L)gi "t�i�kft�i�k

)

xt =
1

ht

t�1X
i=0

 ist�1�i =
1

ht

t�1X
i=0

fB� (L)gi st�1�i

replacing c1t and x1t ; respectively: For example in the GARCH(1; 1) case ht =Pt�1
i=0 �

i
1

�
�0 + �1"

2
t�i�1

	
; ct = �2h�1t �1

Pt�1
i=0 �

i
1"t�1�ift�1�i; whilst xt =

h�1t
Pt�1

i=0 �
i
1st�1�i; with s

0
t�1 =

�
1; "2t�1; ht�1

�
in this case. In practice, how-

ever, ct and xt can be constructed using the recursions for
@ht
@'

and
@ht
@�

; de-

scribed above.
The consistency and asymptotic normality of the QMLE estimator �̂ =

argmax� LT (�) is presented below, together with a consistent variance-covariance
matrix estimator.
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2.1.1 QML Estimation

The following Theorem establishes the consistency and asymptotic normality of
�̂:

Theorem 1 Given Assumptions A and B, �̂
p! �0 and

p
T (�̂ � �0)

d! N
�
0;J�1��
��J

�1
��

�
where J�� = �E

�
@d1�t(�0)

@�0

�
and 
�� = E [d1�t(�0)d

1
�t(�0)

0] are both �nite and

positive de�nite with

J�� =

�
J'' J0�'
J�' J��

�
= 1

2E

�
c1t c

10
t c1t x

10
t

x1t c
10
t x1t x

10
t

�
�=�0

+ E

� 1
h1t
ftf

0
t 0

0 0

�
�=�0

and


�� =

�

'' 
0�'

�' 
��

�
= (kc�1)

4 E

�
c1t c

10
t c1t x

10
t

x1t c
10
t x1t x

10
t

�
�=�0

+vc
2 E

24 1p
h1t
ftc

10
t

1p
h1t
ftx

10
t

1p
h1t
x1t f

0
t 0

35
�=�0

+ E

� 1
h1t
ftf

0
t 0

0 0

�
�=�0

:

Consistent standard errors follow from the next Lemma, in which Ĉ; X̂ and
F̂ are matrices with rows ĉ0t; x̂

0
t and f̂

0
t ; respectively, and Ĥ = diag

�
�̂0ŝt�1

�
;

where �hats�denote evaluation at �̂:

Lemma 1 Under Assumptions A and B,

(a) 
̂�� �
�� = op(1); where


̂�� =

�
k̂c � 1

�
4

1

T

�
Ĉ0Ĉ C0X̂

X̂0Ĉ X̂0X̂

�
+
v̂c
2

1

T

�
F̂0Ĥ�1=2Ĉ F̂0Ĥ�1=2X̂

X̂0Ĥ�1=2F̂ 0

�
+
1

T

�
F̂0Ĥ�1F̂ 0

0 0

�
;

where k̂c � 1 = 1
T

PT
t=1

�
"2t
ht
� 1
�2
�=�̂

and v̂c = 1
T

PT
t=1

�
"tp
ht

�3
�=�̂

:

(b) Ĵ�� � J�� = op(1); where

Ĵ�� =
1

2

1

T

�
Ĉ0Ĉ C0X̂

X̂0Ĉ X̂0X̂

�
+
1

T

�
F̂0Ĥ�1F̂ 0

0 0

�
:

Exploiting these results, and the method of proof, a¤ords a framework in
which to extend this asymptotic analysis to consideration of a speci�c class of
misspeci�cation tests.
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3 A Class of Asymptotically Valid Test Proce-
dures

In this section, �rst order asymptotic distribution results are developed for a
class of parametric test statistics. The corresponding test procedures are derived
from the conditional moment principle and are designed to detect misspeci�ca-
tion in the null GARCH(p; q) error process, ht = �0st�1; whilst assuming a
correct regression function speci�cation, m(wt;'):
If the GARCH model is correctly speci�ed, then it follows from (2) that

E
��
�2t � 1

�
jFt�1

�
= 0:

Therefore, misspeci�cation tests of GARCH models can be constructed as tests
of the following moment conditions

E
��
�2t � 1

�
rt(�0)

�
= 0 (8)

where rt(�0) is a Ft�1 measurable function. The intuition, here, is that if the
GARCH model is appropriate, then the squared standardised errors should be
serially uncorrelated with any function of past information.5

Consistent with the notation introduced in the previous Section, let d�t(�) =�
"2t
ht
� 1
�
rt(�), where the (test) variables in rt will, in general, depend upon

past history and, speci�cally, the process ht: For example, rt(�) could derive
from a (quasi) score principle in which � denotes the unknown parameter vector
in the alternative model, say hat , and H0 : � = 0 is under test. In this case, and

ignoring irrelevant factors of proportionality, rt(�) =
h
1
hat

@hat
@�

i
�=0

; see Section

4.2. Therefore, as with ct and xt; let r1t be the test variable constructed using
h1t :
To test the null of (8), the generic conditional moment test indicator is

constructed as

D�T (�̂)=
1

T

TP
t=1

��
"̂2t

ĥt
� 1
�
r̂t

�
=
1

T
R̂0#̂ (9)

where the matrix R has rows r0t = rt (�)
0
; #̂ is the vector with typical element�

"̂2t

ĥt
� 1
�
and where �hats�denote that everything is evaluated at the consis-

tent null parameter estimator, �̂: It should be noted that tests for non-linearity
and/or asymmetry, discussed in Section 4 are special cases. Assessing the statis-
tical signi�cance of (9), which requires estimation only under the null GARCH
model, provides the basis for a test procedure.
It is not being claimed that such procedures are consistent in the sense of

rejecting against any departure from the null model when the null hypothesis is
false. Given the framework set out in this paper, the general results of Godfrey

5Lundbergh and Teräsvirta (2002) employed a similar approach in order to test for no

remaining ARCH e¤ects, in a GARCH model, but with an implicit null of E
h�
�2t � 1

�
rGt

i
= 0,

where rGt =
�
�2t�1; ::; �

2
t�m

�0 is Gt�mt�1 = �
�
�t�1; ::; �t�m

�
measurable; see Section 3.1 of

Lundbergh and Teräsvirta (2002). However, this could yield tests with lower power than one
based on (8); since test variables of the form rGt contain less information about Ft�1 than the
test variables rt.

8



and Orme (1996) could be employed to suggest alternatives against which tests
based on (9), for a given choice of rt(�); may be relatively insensitive. On the
other hand, the conditional moment framework suggests that Newey�s (1985)
results can be exploited to determine the choice of rt(�) which will provide
optimal local power against particular forms of misspeci�cation. Such issues
are not the primary focus of the current paper, however.
The following Theorem provides su¢ cient conditions under which the famil-

iar limit distribution for
p
TD�T (�̂) applies.

Theorem 2 In addition to Assumptions A and B, if
(i)
P

tE sup� j"tj
l kr1t � rtk = O(1); l = 0; 2

(ii) E sup� kr1t k
2
<1; for all t

(iii) E sup�



"lt @r1t@� 


 <1; l = 0; 2; for all t

then p
TD�T (�̂)

d! N (0;�) ;

where
� = A
A0


 =

�

�� 
0��

�� 
��

�
; A =

�
�J��J�1�� : Im

�
and Im is the identity matrix of rank m = rank (
��) ;


�' = vcE

"
1p
h1t

r1t f
0
t

#
�=�0

+
(kc � 1)
2

E [r1t c
10
t ]�=�0 ;


�� =
(kc � 1)
2

E [r1t x
10
t ]�=�0 ;


�� = (kc � 1)E [r1t r10
t ]�=�0 :

J�� = [J�' : J��] with

J�' = �E
�
@d1�t (�0)

@'0

�
= E [r1t c

10
t ]�=�0 (10)

J�� = �E
�
@d1�t (�0)

@�0

�
= E [r1t x

10
t ]�=�0 : (11)

From the above result, the general form of the misspeci�cation test statistic
is the quadratic form

TD�T (�̂)
0�̂�1T D�T (�̂) (12)

which has a �2m limiting distribution under the null, where �̂T is any consistent
estimator for�; i.e. �̂T = �+op (1) : Similar in spirit to Lemma 1, the following
Lemma gives an expression for �̂T :

Lemma 2 Under Assumptions A and B, and those of Theorem 2, Â
̂Â
0�� =

op(1) where


̂ =

�

̂�� 
̂0��

̂�� 
̂��

�
; Â =

�
�Ĵ��Ĵ�1�� : Im

�

9



where 
̂�� and Ĵ�� are given in Lemma 1 and


̂�' = v̂c
R̂0Ĥ�1=2F̂

T
+

�
k̂c � 1

�
2

R̂0Ĉ

T
;


̂�� =

�
k̂c � 1

�
2

R̂0X̂

T


̂�� =
�
k̂c � 1

� R̂0R̂

T

and Ĵ�� =
h
Ĵ�' : Ĵ��

i
with

Ĵ�' =
R̂0Ĉ

T
; Ĵ�� =

R̂0X̂

T
:

Observe that� = A
A0 depends upon the �mode�of estimation only through

 and not J��, which is independent of the mode of estimation. In particular,
and of relevance for later discussions, if J�' = E [r1t c

10
t ]�=�0 = 0 then the limit

distribution of
p
TD�T (�̂) is not in�uenced by the estimation of '. Indeed, it

appears that this claim, J�' = 0; is always made when constructing parametric
misspeci�cation tests of GARCH, and ARCH, models under the assumption of
conditional symmetry; see, for example Lundbergh and Teräsvirta (2002) and
Engle and Ng (1993). Using the framework introduced here, it is argued in the
next section that this is not the case, in general, and in particular it is not the
case for the test procedures proposed by Lundbergh and Teräsvirta (2002) and
Engle and Ng (1993).
Section 4 describes how (9) accommodates existing misspeci�cation tests and

also provides alternative asymptotically valid test procedures. Before that, how-
ever, the important e¤ects of (known) conditional symmetry, on the preceding
results, are considered although normality of �t is not necessarily assumed.

3.1 The E¤ects of Conditional Symmetry

Conditional symmetry implies that E
�
�3t
�
= 0, E

�
"30tjFt�1

�
= 0 and thus

vc = 0: Although it can be tested, see for example Bai and Ng (1993), it is often
assumed as in Lundbergh and Teräsvirta (2002) and Engle and Ng (1993), with
the latter actually assuming normality of �t: The e¤ect of conditional symmetry
simpli�es the form � for the class of test indicators given by (9) as follows:

Lemma 3 Under conditional symmetry

(i) J�' = E

�
�
@d1�t(�0)

@'0

�
= 0;

(ii) 
�' = E
�
d1�t(�0)d

1
't(�0)

0� = 0;
(iii) 
'' =

(kc � 1)
4

E [c1t c
10
t ]�=�0 + E

�
1

h1t
ftf

0
t

�
�=�0

;

(iv) 
�' =
(kc � 1)
2

E [r1t c
10
t ]�=�0 :

This Lemma reveals that, under conditional symmetry, � = A
A0 can be
expressed as

� = 
�� �
��
�1��
�� � J�'J�1'' [(kc � 1)J'' �
'']J�1''J'�: (13)

10



The �rst term in the above expression, �A = 
�� � 
��
�1��
��; is simply
the variance in the conditional distribution of d1�t(�0) given d

1
�t (�0) and is the

�appropriate�variance matrix only when the second expression is the zero ma-
trix. Consequently, if it is �erroneously�assumed that J'� = 0 in constructing
the test statistic the di¤erence between the assumed, �A; and true, �; variance
matrices is J�'J�1'' [(kc � 1)J'' �
'']J�1''J'�, where (kc � 1)J''�
'' =
(kc�1)
2 E [c1t c

10
t ] + (kc � 2)E

h
1
h1t
ftf

0
t

i
: Under normality, kc � 1 = 2; so that

�A � � is positive de�nite, when J'� has full column rank, and remains so
under excess (normal) kurtosis.6 Since both �A and � can be consistently esti-
mated (see below), the procedure which utilises the incorrect �A will be asymp-
totically undersized (under normality) and increasingly so under heavier-tailed
distributions.

3.1.1 Variance matrix estimators

Correspondingly, and given Lemmas 2 and 3, a consistent estimator for � can
be obtained as

�̂T =
1

T

"
#̂
0
#̂

T
R̂0M̂XR̂�

#̂
0
#̂

T
R̂0Ĉ

�
F̂0Ĥ�1F̂+

1

2
Ĉ0Ĉ

��1
Ĉ0R̂

+R̂0Ĉ

�
F̂0Ĥ�1F̂+

1

2
Ĉ0Ĉ

��1 
F̂0Ĥ�1F̂+

#̂
0
#̂

4T
Ĉ0Ĉ

!
�
F̂0Ĥ�1F̂+

1

2
Ĉ0Ĉ

��1
Ĉ0R̂

#
; (14)

where, as before, �hats�denote evaluation at �̂ and MX = I�X (X0X)
�1
X0:

Further modi�cations can be made according to whether J�' and/or J�� are
null matrices. The former case, J�' = 0; yields

�̂1T =
1

T

"
#̂
0
#̂

T
R̂0M̂XR̂

#
(15)

which is the form assumed by Lundbergh and Teräsvirta (2002) and Engle and
Ng (1993), and the test statistic (12) has the simple interpretation as T times

the uncentred R2 from regressing #̂ on
h
R̂; X̂

i
: The latter case, J�� = 0; yields

�̂2T =
1

T

"
#̂
0
#̂

T
R̂0R̂� #̂

0
#̂

T
R̂0Ĉ

�
F̂0Ĥ�1F̂+

1

2
Ĉ0Ĉ

��1
Ĉ0R̂

+R̂0Ĉ

�
F̂0Ĥ�1F̂+

1

2
Ĉ0Ĉ

��1 
F̂0Ĥ�1F̂+

#̂
0
#̂

4T
Ĉ0Ĉ

!
�
F̂0Ĥ�1F̂+

1

2
Ĉ0Ĉ

��1
Ĉ0R̂

#
: (16)

6Under normality, � is conditional variance of d1�t(�0) given d
1
�t (�0) and d

1
't (�0).
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If both J�' and J�� are null matrices, we obtain

�̂3T =
1

T

"
#̂
0
#̂

T
R̂0R̂

#
; (17)

and the test statistic (12) has the simple interpretation as the T times the
uncentred R2 from regressing #̂ on R̂:

3.1.2 Orthogonality

Importantly, Lemma 3 shows that '̂ and �̂ are asymptotically orthogonal within
a QML framework7 . Thus, consistent estimation of �0 can be achieved by ex-
ploiting the QML approach, to obtain �̂, but utilizing any

p
T -consistent es-

timator, '̂ (see Cox and Reid, 1987), without loss of asymptotic e¢ ciency in
estimating �0; although there will be a loss of e¢ ciency in small samples; for
example, '̂ might be the least squares estimator. This might suggest that tests
for the adequacy of ht will not be in�uenced (asymptotically, at least) by the
estimation of ': Whilst this intuition is correct, for example, when construct-
ing tests for unconditional heteroskedasticity in the linear model, it is �awed
when applied to certain misspeci�cation tests for GARCH models (in partic-
ular, asymmetry and non-linearity tests). Formally, as the proof of Lemma 2
makes clear, what is required is that J�' = 0; and although this appears to
have been taken for granted by many authors the following example illustrates,
quite nicely, that it should not. The example employs an ARCH model which
is technically not nested in the class of models characterised by Assumption A.
However, assumptions such as those in Weiss (1986) could be exploited to get
the same form of limit distribution as described in Theorem 2, with the obvious
rede�nitions of xt and ct:

Example 1 Suppose we have the following model

yt = '+ "t;

hat = 1 + �1"
2
t�1 + �"t�1; 0 < �1 < 1; � > 0

and we want to the test the null hypothesis that � = 0; such that the null model
for the conditional variance is

ht = 1 + �1"
2
t�1; 0 < �1 < 1

and the test indicator in (9) is rt =
"t�1

1+�1"2t�1
= r1t ; so that var ("t) =

1

1� �1
and ct = @ht

@' = �2 �1"t�1
1+�1"2t�1

= c1t : We assume E
�
"30tjFt�1

�
= 0; such that

Lemma 3 (i) implies that J�' = 0 and thus '̂ and �̂ = �̂1 are asymptotically
orthogonal. However, in this case, the scalar J�' = E [rtct]

�=�0
is given by

�2E
(
E

"
�1"

2
t�1�

1 + �1"2t�1
�2
�����Ft�2

#)
�=�0

= �2E
"

�1"
2
t�1�

1 + �1"2t�1
�2
#
�=�0

:

7Although Bollerslev (1986, p.318) asserts this, he does not show it. Engle (1982) provides a
useful theorem, exploiting symmetry, which enables this result to be established for the ARCH
model. However, since he assumes normality, the importance of the conditional symmetry
assumption of �t is not stated explicitly.
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Then, assuming Pr ("t�1 6= 0) > 0; it follows that
�1"

2
t�1

(1+�1"2t�1)
2 > 0; almost every-

where. Moreover, Pr
�

�1"
2
t�1

(1+�1"2t�1)
2 < 1

�
= 1: Therefore Pr

�
0 <

�1"
2
t�1

(1+�1"2t�1)
2 < 1

�
=

1, so that J�' exists and is bounded between �2 and 0:

This example is of relevance since it is a special case of the non-linearity test
proposed by Lundbergh and Teräsvirta (2002). In the construction of that test
statistic, QML is employed and it is explicitly �stated� that, because of sym-
metry, E [TD�T (�0)D�T (�0)

0] = 0; Lundbergh and Teräsvirta (2002, p.433).
From this they incorrectly assume that there are negligible estimation e¤ects;
i.e., that J�' = E [r1t c

10
t ]�=�0 = 0. However, the above simple example il-

lustrates that this is not true. Generalising this example, Section 4 shows that
for the tests proposed by Lundbergh and Teräsvirta (2002) and Engle and Ng
(1993), for the GARCH model J�' is non-zero, rendering these test procedures
asymptotically invalid even under conditional symmetry.

4 Testing for Non-linearity and Asymmetry

In this section, we illustrate the utility of the general framework described in
Section 3 in two ways. Firstly, in Section 4.1, the general asymptotic analysis is
applied to the Lundbergh and Teräsvirta (2002) test for non-linearity and the
Engle and Ng (1993) negative size bias test for asymmetry. It is shown that both
are asymptotically invalid procedures, even if the conditional distribution of �t
is symmetric. Secondly, the framework of Section 3 justi�es two alternative, and
asymptotically valid, tests for non-linearity and asymmetry in the conditional
variance ht. All the ensuing analysis is undertaken under the assumption of
conditional symmetry of the errors so that Lemma 3 applies.

4.1 An Analysis of Existing Tests

4.1.1 Lundbergh and Teräsvirta Test

In order to test against non-linearity in the GARCH speci�cation, Lundbergh
and Teräsvirta (Theorem 4.1, 2002) proposed the following statistic

TLT = T � #̂
0
Ĝ(Ĝ0Ĝ)�1Ĝ0#̂

#̂
0
#̂

(18)

where Ĝ is a matrix with rows ĝ0t =
�
x̂0t; v̂

0
t�1
�
and v̂t�1 =

�
v̂01;t�1; v̂

0
3;t�1; :::; v̂

0
n+2;t�1

�0
;

v̂s;t�1 = ("̂
s
t�1; "̂

s
t�2; :::; "̂

s
t�q)

0. This can be interpreted as T times the uncentred

R2 following a regression of
�
"̂2t

ĥt
� 1
�
on ĝ0t; and is assumed to be asymptot-

ically distributed as a �2(n+1)q random variable under the null. In terms of
the general framework of Section 3, the test indicator is of the form (9), with
test variables r̂t = v̂t�1:8 Lundbergh and Teräsvirta (2002) also de�ned an al-
ternative regression based procedure, following Wooldridge (1991), which they

8Lundbergh and Teräsvirta (2002) obtain this statistic from a quasi-score principle but,
given the alternative entertained, the test variables should have been r̂t = ĥ�1t v̂t�1:
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suggested is robust to non-normality. However, the modi�cation employed is ac-
tually designed to make the statistic robust to heterokurticity (as Wooldridge,
1991, p.29, makes clear), not non-normality. But heterokurticity is ruled out,
anyway, by the assumptions made on �t and so this alternative form is not
considered further.
To focus discussion, consider a null GARCH (1; 1) model with n = 1; so

that r̂t =
�
"̂t�1; "̂

3
t�1
�0
: The following Lemma generalises the example of the

previous section and establishes that J�' 6= 0 whilst J�� = 0: The former
result implies that the test procedure proposed by Lundbergh and Teräsvirta
(2002) is asymptotically invalid9 .

Lemma 4 Assuming the GARCH(1,1) model under the null hypothesis and the
test variables considered by Lundbergh and Teräsvirta (2002) of r̂t =

�
"̂t�1; "̂

3
t�1
�0
,

(10) becomes

J�' = �2�01E
"
1

h1t

�
"t�1
"3t�1

� 1X
i=0

�i1"t�1�if
0
t�1�i

#
�=�0

6= 0:

whilst (11),

J�� = E

"
1

h1t

�
"t�1
"3t�1

� 1X
i=0

�i1s
10
t�1�i

#
�=�0

= 0:

The implication of this is that, rather than employing the variance estimator
�̂1T ; given in equation (15), Lundbergh and Teräsvirta (2002) should have
employed version �̂2T ; given in equation (16), or an asymptotically equivalent
version thereof.

4.1.2 Engle and Ng Test

Amongst the most popular asymmetry tests are those proposed by Engle and Ng
(1993). In order to con�rm the asymmetric behaviour of �nancial series, they
constructed a number of score type tests. For purposes of exposition, consider
the negative size bias test which examines the signi�cance of (9), employing the
test variable r̂t = Ît�1"̂t�1 where the indicator function It�1 takes the value 1
if "t�1 � 0 and 0 otherwise.
Speci�cally, the test statistic proposed by Engle and Ng (1993) is constructed

as follows

TEN = T �
#̂
0
Ĝ
�
Ĝ0Ĝ

��1
Ĝ0#̂

#̂
0
#̂

; (19)

9However, it can be shown that the test for remaining ARCH e¤ects, also proposed by Lund-
bergh and Teräsvirta (2002), is asymptotically valid. The intuition for this is that because the
alternative, being GARCH(p; q +m), is of the same form as the null speci�cation, asymptot-
ically orthogonality of the regression parameter estimators and those of the GARCH process
ensure that inferences concerning the latter are una¤ected (asymptotoically) by the former.
The same intuition also applies to the parameter constancy test, Lundbergh and Teräsvirta
(2002), in which the alternative can be written as hat = 


0
tst�1; 
t = �+

Pn
i=1 t

i�i; which is
still linear in the variables of st�1:
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where, here, Ĝ has rows g0t =
�
x̂0t; Ît�1"̂t�1

�
; and TEN is assumed to be as-

ymptotically �21 under the null. This can be computed as T times the uncentred

R2 following a regression of
�
"̂2t

ĥt
� 1
�
on ĝ0t: The tests presented in their paper

are derived assuming a conditional normal distribution for �t, although asymp-
totically valid procedures can be derived assuming just conditional symmetry,
as is the case here.
This case is not consistent with assumption that D�T (�̂) is continuously

di¤erentiable, as required for the analysis of Section 3. A direct mean value
expansion of

p
TD�T (�̂) is not applicable, since it entails terms like @rt=@�

0

and this issue was not discussed by Engle and Ng (1993). Therefore, in general
(and to deal with such a possibility) it will be assumed that

p
TD�T (�̂) =

1p
T

TP
t=1

��
"̂2t

ĥt
� 1
�
rt(�0)

�
+ op(1): (20)

(Note that employing (20) does not alter the generic expressions for J�' and J��
given by (10) and (11), respectively.) This assumption is innocuous when rt (�)
is continuously di¤erentiable in �; since then rt(�̂) = rt(�0)+

�
@rt
�
��
�
=@�0

�
(�̂�

�0); and (�̂ � �0) is Op(T�1=2):When rt is not continuously di¤erentiable, (20)
will have to be veri�ed on a case by case basis, and the following result veri�es
this for the negative size bias test procedure:

Proposition 1 For the negative size bias test of Engle and Ng (1993), in which
rt = It�1"t�1 is not continuously di¤erentiable in �; the equality in equation (20)
holds.

Again it is found that the Engle and Ng (1993) tests are asymptotically
invalid, in general, under the null hypothesis since it is assumed that J�' = 0;
contrary to the following Lemma.

Lemma 5 Assuming the GARCH(1,1) model under the null hypothesis and test
variable r̂t = Ît�1"̂t�1; (10)

J�' = �2�01E
"
1

h1t
It�1"t�1

1X
i=0

�i1"t�1�if
0
t�1�i

#
�=�0

6= 0;

in general.

4.2 Alternative Tests

The previous sub-section detailed the asymptotic invalidity of tests proposed by
both Lundbergh and Teräsvirta (2002) and Engle and Ng (1993). Of course,
asymptotically valid test procedures can be obtained using the framework of
Section 3, together with the test variables employed by these authors.
However, these test variables are derived from a particular alternative speci-

�cation for the conditional heteroskedasticity. Speci�cally, the alternative model
employed by Lundbergh and Teräsvirta (2002, p.422) is

"t = &t
p
ht + gt
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where &t are i:i:d: (zero mean and unit variance) random variables, whereas that
proposed by Engle and Ng (1993, p.1758) is of the form

"t = &t
p
ht exp (gt)

in which ht = �0st�1; and gt = g
�
�;vt�1

�
characterises the misspeci�cation

where vt�1 is the vector of omitted variables. In particular, the non-linearity test
of Lundbergh and Teräsvirta (2002) is constructed from the following alternative

hat = �0 +
qP
j=1

�j"
2
t�j + g(�;vt�1) +

pP
i=1

�iht�i (21)

whilst that of Engle and Ng (1993) is

ln (hat ) = ln

 
�0 +

qP
j=1

�j"
2
t�j +

pP
i=1

�iht�i

!
+ g

�
�;vt�1

�
; (22)

respectively. Within the QML approach, which uses (5), the tests actually con-
structed by Lundbergh and Teräsvirta (2002) and Engle and Ng (1993) can be
interpreted as score tests of ht against the alternatives of (21) and (22); i.e.,
tests of H0 : � = 0: Whilst this yields asymptotically valid (quasi-score) test
procedures using the framework of Section 3, the alternative models proposed
in the literature, and considered by Lundbergh and Teräsvirta (2002) and En-
gle and Ng (1993) in their Monte Carlo studies, are not of the form used to
construct these quasi-score test statistics. In those studies, the power of the
test is evaluated against alternative models for the conditional heteroskedas-
ticity (speci�cally GJR-GARCH and EGARCH models) which are �recursive�
in nature, a characteristic which is not apparent in (21) or (22), where ht�i;
i = 1; ::; p; appears on the right hand side and not the lagged values of hat . For
example, the GJR-GARCH(1,1) model can be expressed in the following form

hat = �0 + �1"
2
t�1 + �2It�1"

2
t�1 + �1h

a
t�1

indicating that the conditional heteroskedasticity is �recursive� in nature, due
to the inclusion of hat�1 on the right hand side. As a consequence, the non-
linearity/asymmetry tests, which neglect this recursive behaviour under the al-
ternative, may well lack power against these speci�cations. Similar remarks ap-
ply for the parameter constancy test constructed by Lundbergh and Teräsvirta
(2002).
With this in mind, alternative tests for non-linearity and asymmetry are now

constructed with the following alternative speci�cation in mind

"t = &t (h
a
t )
1=2

hat = �0sat�1 + gt = (at + gt) +B(L)h
a
t (23)

where sat�1 =
�
1; "2t�1; :::; "

2
t�q; h

a
t�1; ::; h

a
t�p
�0
and gt = g (vt�1;�) is a non-

linear and/or asymmetric function of "t�j ; j � 1 with vt�1 being the vector of
omitted variables. Thus the test indicator is of the form (9), with test variables

constructed as r̂t =
�
1

hat

@hat
@�

�
�=0;�=�̂

:
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4.2.1 Testing for Non-Linearity

Following Lundbergh and Teräsvirta (2002), non-linearity is introduced in the
intercept and the term containing the squared past errors via a smooth transition
function Fn ("t�j ; 
; c), j = 1; :::; q; i.e.,

gt =
qP
j=1

(�0j + �1j) "
2
t�jFn ("t�j ; 
; c) :

with

Fn("t�j ; 
; c) =

�
1 + exp

�
�


nQ
l=1

("t�j � cl)
���1

� 1
2
; 
 > 0; c1 � ::: � cn:

(24)

For example, if the location parameter (threshold) of the transition function
is zero, i.e., c = 0, then the transition is made between the regime characterized
by negative shocks to the one characterized by positive shocks. Under the null
of 
 = 0; it follows that Fn = 0; and taking a �rst-order Taylor expansion of Fn
around 
 = 0; yields

gt = �
0vt�1 (25)

where vt�1 =
�
v01;t�1;v

0
3;t�1; :::;v

0
n+2;t�1

�
; with vs;t�1 = ("st�1; "

s
t�2; :::; "

s
t�q)

0,
s = 1; 3; ::; n+ 2:
Combining (23) and (25), a quasi-score test of � = 0 can be based on assess-

ing the signi�cance of the test indicator (9) in which the test variables, given
~"0; are constructed as

r̂t =

�
1

hat

@hat
@�

�
�=0;�=�̂

=
1

ĥt

t�1X
i=0

 ̂iv̂
0
t�1�i

=
1

ĥt

t�1X
i=0

n
B̂� (L)

oi
v̂0t�1�i (26)

where B̂� (L) = �̂1 + ::: + �̂pL
p�1 and, in practice, @h

a
t

@� can de derived from

the recursion @hat
@� = vt�1 +B(L)

@hat
@� . For example, in the GARCH (1,1) model

assuming n = 1, the test variables take the form

r̂t =
1

ĥt

t�1P
i=0

�̂
i

1

�
"̂t�1�i
"̂3t�1�i

�
;

compared with those employed by Lundbergh and Teräsvirta (2002) which are
simply r̂t =

�
"̂t�1; "̂

3
t�1
�0
, in this case.

The following Lemma, stated for the general GARCH (p; q) model, estab-
lishes that J�' cannot be guaranteed to be zero even under conditional sym-
metry, although it turns out that J�� = 0 (so that 
�� = 0; also).
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Lemma 6 Under the null GARCH(p; q) model and assuming for simplicity, but
without loss of generality, test variables given by r̂t = 1

ĥt

Pt�1
i=0  ̂iv̂

0
t�1�i; with

n = 1; so that vt�1 = ("t�1; "t�2; :::; "t�q; "3t�1; "
3
t�2; :::; "

3
t�q)

0;

J�' = �2
qX

k=1

�0kE

24 1

(h1t )
2

1X
i=0

1X
j=0

 i j"t�k�jvt�1�if
0
t�k�j

35
�=�0

6= 0;

in general, but

J�� = E

24 1

(h1t )
2

1X
i=0

1X
j=0

 i jvt�1�is
10
t�1�j

35
�=�0

= 0:

Using these results and those of Section 3.1.1, an asymptotically valid non-
linearity test statistic can be constructed as

TN = TD�T (�̂)
0
�̂�12TD�T (�̂) (27)

which is asymptotically distributed as �2(n+1)q under the null, for the general n

case, where dim (vt�1) = (n+ 1) q and �̂2T is given by (16).

4.2.2 Testing for Asymmetry

The asymmetry test, of whether important negative shocks have more impact
on volatility than important positive shocks, assesses if the variables vt�1 =
(It�1"t�1; ::; It�q"t�q)

0 have been omitted from the null GARCH (p; q) model.
Again a quasi-score test statistic is constructed from the �alternative�volatility
model of (23), with asymmetry characterised by gt = �0vt�1. Within this
framework and under the null of � = 0; the test indicator in (9) employs test
variables

r̂t =
1

ĥt

t�1P
i=0

 ̂iv̂t�1�i

=
1

ĥt

t�1P
i=0

B̂� (L)
i
v̂t�1�i: (28)

If the null model is the GARCH (1,1) speci�cation, the test variable is

r̂t =
1

ĥt

t�1P
i=0

�̂
i

1Ît�1�i"̂t�1�i:

(This test variable di¤ers from the Engle and Ng test variable of r̂t = Ît�1"̂t�1;
in this case.)
For this test indicator, neither J�' and J�� are null matrices, in general, as

stated by the following Lemma:

Lemma 7 Under the null GARCH(p; q) model, with test variables given by
r̂t =

1
ĥt

Pt�1
i=0  ̂iv̂t�1�i, vt�1 = (It�1"t�1; ::; It�q"t�q)

0
; J�' 6= 0 and J�� 6= 0;

in general.
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The discussion in Section 3.1 provides the following test statistic

TA = TD�T (�̂)
0�̂�1T D�T (�̂); (29)

where �̂T is given by (14), and TA asymptotically distributed as �2q.
As argued by Engle and Ng (1993), we can also test asymmetry for more

extreme values of past errors. The asymptotic distribution of the test, in this
case, is the same as the previous one except that the test indicator employs

variables r̂t = ĥ�1t
Pt�1

i=0 B̂ (L)
i
�
Ît�1"̂

2
t�1; ::; Ît�q "̂

2
t�q

�0
:

5 Monte Carlo Study

In this section Monte Carlo evidence is presented on the �nite sample size and
power performance of the various asymmetry and non-linearity tests discussed
in Section 4.
The Monte Carlo experiment for assessing the size properties of the tests

is based on an AR(1)-GARCH(1; 1) data generation process. We consider the
following sets of parameter values for the conditional mean:

Model (1): yt = "t
Model (2)-(4): yt = '0 + '1yt�1 + "t with '0 = 1 and '1 2 f0:1; 0:5; 0:9g :

where "t =
p
ht�t with �t � N (0; 1), �t � t (�) (standardised Student t-

distribution with � degrees of freedom) where � 2 f7; 5; 3g : The inclusion of
t(3); for example, o¤ers some evidence on the robustness of the procedures
to violations of the moment assumptions employed. The conditional variance
equation follows Engle and Ng (1993)

Model H (high persistence): ht = 0:01 + 0:09"2t�1 + 0:9ht�1
Model M (medium persistence): ht = 0:05 + 0:05"2t�1 + 0:9ht�1
Model L (low persistence): ht = 0:2 + 0:05"

2
t�1 + 0:75ht�1

such that, without loss of generality, the unconditional variance of "t equals one.
Combining the conditional mean and variance speci�cations yields twelve

models to consider. For this purpose, a series of 1200 data realizations were
generated using the random generator number in GAUSS 5.0, with the �rst 200
observations being discarded, in order to avoid initialization e¤ects, yielding
a sample size of 1000 observations. Each model is replicated and estimated
1000 times by QML. The test statistics considered were TA of (29) with r̂t =
1
ĥt

Pt�1
i=0 �̂

i

1Ît�1�i"̂t�1�i; TN of (27) with r̂t = 1
ĥt

Pt�1
i=0 �̂

i

1"̂
3
t�1�i; the Engle and

Ng statistic, TEN ; of (19); and, the Lundbergh and Teräsvirta statistic, TLT ; of
(18) with vt�1 = "̂3t�1:
Table 1 reports the actual rejection frequencies when the null is true for the

tests described above: The results are reported for a nominal size of 5% and the
correct model for the mean is estimated. When �t � N (0; 1) and there are no
estimation e¤ects (i.e., yt = "t), the empirical sizes for TA and TEN are close to
the nominal size of 5%, with the exception of low persistence volatility, when the
size of TA is 6%. When there are estimation e¤ects from the conditional mean
generated as an AR process, TEN tends to be slightly undersized for medium
and low persistence volatility model, whereas TA is slightly oversized for the low
volatility models.
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[INSERT TABLE 1 ABOUT HERE]

The empirical size of the non-linearity test, TN ; is close to the nominal
size, except for the low volatility persistence, whereas TLT is undersized in all
the experiments, especially for a high persistence volatility model and Student-t
errors. When the conditional mean is generated as an AR process, the empirical
size of TN is close to the nominal size, whereas that of TLT is lower than the
nominal size of 5% for all volatility models examined and signi�cantly so under
Student-t errors. By ignoring asymptotically non-negligible estimation e¤ects,
the theoretical arguments of Section 3.1 imply that the procedures based on
TEN or TLT will be asymptotically undersized, and increasingly so under excess-
kurtosis; the Monte Carlo evidence supports this, although TEN is �relatively�
more robust that TLT :
The results of the Monte Carlo study for assessing the power of the tests are

reported in Table 2, where the nominal size is again 5%. The reported rejec-
tion frequencies are size-adjusted in the sense that they are constructing using
empirical critical values obtained under the null experiments. The alternative
models used are the GJR(1,1) model, with the parameter values considered by
Lundbergh and Teräsvirta (2002) in their simulations; the logistic STGARCH
(1,1) model, in which the transition between negative to positive shocks is made
smooth by using the logistic function; the EGARCH (1,1) model with parame-
ter values considered by Engle and Ng (1993); and, the TGARCH (1,1) model.
In the last case, the parameter values used are estimates obtained by Zakoian
(1994) for the CAC 40 daily stock index. Note that in these experiments, for the
non-linearity tests, the �omitted variable�is vt�1 = "3t�1 when the data is gener-
ated from the GJR and STGARCH models, but vt�1 = "t�1 for the EGARCH
and TGARCH models. The models for the conditional mean equation are M1,
M2 and M4 and we consider �t � N (0; 1) and �t � t (7) :
When the true data generating process is a GJR(1,1) model, the asymmetry

test, TA; performs remarkably well compared with the test proposed by Engle
and Ng (1993), TEN : This is true, as well, when the distribution of �t is non-
normal. Similarly, for the model with larger asymmetry, and under normality,
the simulated power for the non-linearity test TN is 89.2%, whereas that of the
test proposed by Lundbergh and Teräsvirta (2002), TLT ; is 16.5%, when there
are no estimation e¤ects from the conditional mean. This implies that TLT
is relatively insensitive to this alternative model10 . Similar conclusions can be
drawn for the model with smaller asymmetry.
For smooth transitions between negative to positive shocks, i.e. the true

data process is generated by STGARCH (1,1) model, the di¤erences between
the powers of TA and TEN ; and TN and TLT ; respectively, are quite large. When
estimation e¤ects from the conditional mean are present, say M2, and the model
with larger asymmetry is examined, the power of TN is 97% whereas that of TLT
is 45.9%. Similarly, the asymmetry test TA attains a simulated power of 95.8%,
whereas the actual rejection frequency of TEN is 64.7%. For the non-normal
distribution, the di¤erences are also signi�cant.

10 If the omitted variable vt�1 =
�
"t�1; "3t�1

�0 is considered as in the Monte Carlo study of
Lundbergh and Teräsvirta (2002) and for a nominal size of 10%, then the size adjusted power
are: for TN is 95.3% and TLT is 65.1%.
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[INSERT TABLE 2 ABOUT HERE]

For the other data generating processes, i.e. the EGARCH (1,1) and TGARCH
(1,1) models, the results are similar. The simulated power of the tests TA and
TN is much higher than the power of the tests proposed by Engle and Ng (1993)
and Lundbergh and Teräsvirta (2002).
Overall, the Monte Carlo simulations con�rm the theoretical derivations un-

dertaken in the previous sections. The �new� tests, namely TA and TN ; have
fairly good size properties and very good power when compared with TEN and
TLT . Moreover, the simulations reveal that these tests can be employed as gen-
eral misspeci�cation tests of asymmetry and non-linearity since they have power
against the asymmetry and/or non-linear models proposed in the literature.

6 Conclusion

This paper has provided some unifying results for parametric misspeci�cation
testing in regression models with GARCH errors, which have practical impli-
cations for empirical research. Firstly, a general analytical approach has been
provided for the construction of asymptotically valid test statistics that can ac-
commodate, for example, misspeci�cation tests for the STAR-GARCH model,
something which has not been considered in the literature to date. The principal
theoretical �nding from this analysis is that even under conditional symmetry,
implying that the estimated conditional mean (regression) and variance parame-
ters are asymptotically orthogonal, estimation e¤ects from the conditional mean
(regression) parameters cannot be treated as asymptotically negligible. Exploit-
ing this, it is established that the non-linearity and asymmetry tests proposed
by Lundbergh and Teräsvirta (2002) and Engle and Ng (1993), respectively, are
not asymptotically valid (since they ignore asymptotically non-negligible estima-
tion e¤ects) and, more generally, all test procedures which erroneously neglect
such estimation e¤ects will be asymptotically undersized when the error distri-
bution is fat-tailed. Secondly, new tests have been introduced for non-linearity
and asymmetry which, it is conjectured, should have better power properties,
than some existing tests, against many popular alternatives to the GARCH(p; q)
model.
The principal theoretical �ndings are supported by Monte Carlo results

which also suggests that the new tests are quite powerful against various non-
linear models proposed in the literature, suggesting that they can be useful
as general misspeci�cation tests against non-linearity and/or asymmetry in
GARCH models.

7 Appendix A
We shall exploit the results contained in the following preliminary three Propositions.

Proposition 2 (i) For any vector c 2 <r; @m(wt;')
@'0 c = 0; almost surely (a.s.), only if c = 0.

(ii) For any vector b 2 <p+q+1; @h
1
t

@�0 b = 0; a.s., only if b = 0.

Proof. (i) follows immediately from the identi�cation Assumption B2, which implies that
jm(wt;')�m(wt;'0)j2 > 0; a.s. for all ' 6= '0: Then, by Assumption B3 and a mean value
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expansion, jmt �m0tj2 = ('�'0)0
@m(wt;')

@'
@m(wt;')

@'0 ('�'0) > 0; a.s. for all ' 6= '0 and
some mean value ': Correspondingly, the identi�cation condition, A3(iii) establishes (ii); see,
for example, Ling and McAleer (2003), or Berkes et al (2003).

Proposition 3 Under Assumptions B1 and B3(i); E sup�2� j"tj4(1+s) <1; for some s > 0;
uniformly in t:

Proof. Let mt � m (wt;') and m0t � m (wt;'0) ; so that "t � "t(�) = "0t �
(mt �m0t) : By Assumption B3(i) and the cr-inequality, for some constant C > 0 and r � 0

E sup
�
j"tjr � C (E j"0tjr + 2rE jB(wt)jr) <1: (A.1)

De�nition 3 In the following exposition C, K and � denote generic constants, independent
of �; whose values might change from line to line but which always satisfy C > 0; K > 0 and
0 < � < 1:

Remark 4 (i) By Assumption A3(ii), for all r > 0; E sup� jatjr <1; provided E sup�
��"2rt �� <

1; uniformly in t:
(ii) The following inequalities will be useful: (a) h1t =

P1
i=0  iat�i � � > 0; (b) h1t �

�0+ iat�i; i � 1; or, (c) h1t � �0+ i�m"
2
t�i�m; i � 0; m = 1; :::; q: Given the construction

of initial values, ~"0; we can also write (a) ht =
Pt�1
i=0  iat�i � � > 0; (b) ht � �0 + iat�i;

i = 1; :::; t� 1; or, (c) ht � �0 +  i�m"
2
t�i�m; i = 0; :::; t� 1; m = 1; :::; q:

(iii) The proofs will exploit the following results, which can be derived by exploiting the alge-
bra of Berkes et al (2003) and Francq and Zakoian (2004). A particularly useful device, in
this respect, is x= (1 + x) � xs; for all x > 0 and any s 2 (0; 1):

jh1t � htj =

1X
i=t

 i jat�ij � K

1X
i=t

�i jat�ij (A.2)

����h1t � ht

h1t

���� �
1X
i=t

 iat�i
�0 +  iat�i

� K
1X
i=t

�iast�i; (A.3)

For r = 1; 2; 3; ���� 1

(h1t )
r �

1

(ht)
r

���� � C

����h1t � ht

h1t

���� � K

1X
i=t

�iast�i: (A.5)

Let r� ; r�� denote �rst and second order di¤ erentiation, respectively; for example, x1t =

1
h1t

r�h1t ; r'�h1t =
@2h1t
@'@�0 ; etc. Then, by Assumption A3(ii),

kx1t k � K

(
1 +

1X
i=1

i�iast�i

)
; kxtk � K

(
1 +

t�1X
i=1

i�iast�i

)
(A.6)





 1

h1t
r��h1t





 � K

(
1 +

1X
i=2

i2�iast�i

)
;





 1htr��ht




 � K

(
1 +

t�1X
i=2

i2�iast�i

)
(A.7)

1

h1t
kr�h1t �r�htk � K

(
�t +

1X
i=t

i�iast�i

)
;

1

h1t
kr��h1t �r��htk � K

(
t�t +

1X
i=t

i2�iast�i

)
: (A.8)

De�ne dt =
Pq
k=1




 @mt�k
@'




 = Pq
k=1 kft�kk and gt =

Pq
k=1

�
kft�k�ik2 +





 @2mt�k�i
@'@'0





� ;
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then by similar methods it can also be shown that

kc1t k � K
1X
i=0

�idt�i; kctk � K

t�1X
i=0

�idt�i (A.9)





 1

h1t
r''h1t





 � K

1X
i=0

�igt�i;





 1htr''ht




 � K

t�1X
i=0

�igt�i (A.10)

1

h1t
kr'h1t �r'htk � K

1X
i=t

�idt�i;
1

h1t
kr''h1t �r''htk � K

1X
i=t

�igt�i(A.11)





 1

h1t
r'�h1t





 � K

(
dt +

1X
i=1

i�idt�i

)
;





 1htr'�ht




 � K

(
dt +

t�1X
i=1

i�idt�i

)
(A.12)

1

h1t
kr'�h1t �r'�htk � K

1X
i=t

i�idt�i (A.13)

1

h12
t





@h1t@' @h1t
@'0

� @ht

@'

@ht

@'0





 � K
1X
i=t

�idt�i

( 1X
i=0

�idt�i

)
1

h12
t





@h1t@� @h1t
@�0

� @ht

@�

@ht

@�0





 � K

(
�t +

1X
i=t

i�iast�i

)(
1 +

1X
i=1

i�iast�i

)
1

h12
t





@h1t@' @h1t
@�0

� @ht

@'

@ht

@�0





 � K

1X
i=t

�idt�i

(
1 +

1X
i=1

i�iast�i

)

+

(
�t +

1X
i=t

i�iast�i

) 1X
i=0

�idt�i

#
(A.14)

where in (A.14) we have used, x;y;a; and b;

xa0 � yb0

 � kx� yk kak+ ka� bk kyk
or,



xa0 � yb0

 � ka� bk kxk+ kx� yk kbk :

For p = 1; 3=2; 2; 3; conformable matrices A and B; and since ht=h1t � 1;



 1

(h1t )
pA� 1

(ht)
pB





 � K

�
1

(h1t )
p kA�Bk+





 1hpt B




 ����h1t � ht

h1t

����� : (A.15)

Proposition 4 Under Assumptions A and B, and exploiting (A.2) -(A.15), all the following
are bounded uniformly in t :

(a) E sup� j"tjr



 1
h1t

r�h1t



2 ; 0 � r � 4

(b) E sup� j"tjr



 1
h1t

r��h1t



 ; r = 0; 2

whilst the following are O
�
�t
�
; at most,

(c) E sup� k"rt ftk




 1

(h1t )
pr�h1t � 1

h
p
t
r�ht





 ; r = 0; 1; p = 1; 3=2; 2
(d) E sup� j"tjr





 1

(h1t )
pr��h1t � 1

h
p
t
r��ht





 ; r = 0; 2; p = 1; 2
(e) E sup� j"tjr





 1

(h1t )
p (r�h1t ) (r�h1t )

0 � 1
h
p
t
(r�ht)0 (r�ht)0





 ; r = 0; 2; p = 2; 3:
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Proof. (a) and (b) follow in a straightforward manner from (A.6), (A.7), (A.9), (A.10)
and (A.12), and the fact that the following moments are bounded: E sup�



"4t ft�kft�j

 ;
E sup�



"2tr�ft�k

 ; E sup� ���"4t "2st�j"2st�k��� ; s: 2 (0; 1) : For example, by an application of

Holder�s inequality and then Cauchy-Schwartz,

E sup
�
"4t "

2s
t�j"

2s
t�k �

�
E sup

�
"
4(1+s)
t

�1=(1+s) �
E sup

�
j"t�j"t�kj2(1+s)

�s=(1+s)
<1

because, for some s 2 (0; 1) ; E sup� "
4(1+s)
t < 1: For (c) use (A.15), (A.11), (A.8), (A.9),

(A.6), (A.3) and the fact that E sup�



"tftf 0t�k


 ; E sup� 


"tftft�k"2st�j


 ; E sup� 


"tft"2st�k


 ;

E sup�




"tft"2st�k"2st�j


 are all bounded, by Cauchy-Schwartz, for s 2 (0; 1) : In particular,�
E sup

�



"tft"2st�k"2st�j

�2 � E sup
�
k"tftk2 E sup

�
j"t�k"t�j j4s <1;

since, by Holder�s inequality, and 4s (1 + s) � 4 (1 + s) ; s 2 (0; 1),

E sup
�
j"t�k"t�j j4s �

�
E sup

�
j"t�kj4s(1+s)

�1=(1+s) �
E sup

�
j"t�j j4(1+s)

�s=(1+s)
<1:

Similarly (d) holds since all the following are bounded: E sup� j"tj2 j"t�j j2s kft�kk2 ; E sup� j"tj2 j"t�j j2s kr'ft�kk ;
s 2 (0; 1) : In particular,�

E sup
�
j"tj2 j"t�j j2s kft�kk2

�2
� E sup

�



"2t ft�k

2 E sup
�




j"t�j j2s ft�k


2 <1�
E sup

�
j"tj2 j"t�j j2s kr'ft�kk

�2
� E sup

�
k"tr'ft�kk2 E sup

�

��"t"2st�j��2 <1:

Finally, (e) can be shown to hold, in a similar manner, noting that the following are bounded:

E sup�




"2t ft�k"2st�j"2st�l


 ; E sup� ���"2t "2st�j"2st�k"2st�l��� ; s 2 (0; 1) : In particular,�
E sup

�



"2t ft�k"2st�j"2st�l

�2 �
�
E sup

�



"2t ft�k

2��E sup
�
j"t�k"t�lj4s

�
<1�

E sup
�

��"2t "2st�j"2st�k"2st�l���2 �
�
E sup

�

��"4t "4st�j����E sup
�
j"t�k"t�lj4s

�
<1

and, by Holder�s Inequality, E sup�
���"4t "4st�j��� � �E sup� "4(1+s)t

�1=(1+s) �
E sup� "

4(1+s)
t�j

�s=(1+s)
:

The following three Propositions follow the approach of Ling and McAleer (2003), Berkes
et al (2003) and Francq and Zakoian (2004), and are used to establish the consistency and
asymptotic normality of the QMLE estimator �̂:

Proposition 5 Under Assumptions A, B1, B2, B3a:

(a) E [l1t (�)] exists for all � 2 �:

(b) sup�2�
��L1T (�)� E [l1t (�)]

�� = op(1):

(c) E [l1t (�)] achieves a unique maximum at �0:

(d) sup�2�
��L1T (�)� LT (�)

�� = op(1):

Proof.
(a) First, by Assumption A3(ii), h1t � � > 0; uniformly in �; therefore E sup�2�

��"2t =h1t �� �
��1E sup� j"tj2 <1; by Proposition 3. Second,by Assumption A3, jh1t j � K

P1
i=1 �

i jat�ij :
Thus, E sup� jh1t j <1, and by Jensen�s inequality E sup� jln jh1t jj � jlnE sup� jh1t jj <1;
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so that E [l1t (�)] exists for all � 2 �:
(b) By a Uniform Law of Large Numbers (ULLN) (e.g., Theorem 3.1 of Ling and McAleer
2003, p.287), it follows that sup�2�

��L1T (�)� E [l1t (�)]
�� = op (1) :

(c) Write

2E [l1t (�)] =
�
�E [ln(h1t )]� E

�
"20t=h

1
t

�	
�
�
E
�
(mt �m0t)

2=h1t
�	

= fL1(�)g+ fL2(�)g

since E ["0tmt=h1t jFt�1] = 0: Firstly, L2 (�) = �
�
E
�
(mt �m0t)2=h1t

�	
achieves a max-

imum value of 0 only when mt = m0t; for all t almost surely, which, by Assumption B2,
holds only if ' = '0: Secondly, (and as argued by Ling and McAleer, 2003, Lemma 4.4)
using Proposition 2(ii) and given ' = '0; L1(�) achieves a maximum only if � = �0. Thus
E [l1t (�)] achieves its unique maximum at � = �0:
(d) We have

2 jL1T (�)� LT (�)j � T�1
TX
t=1

����ln h1tht
����+ T�1

TX
t=1

����"2t � 1

h1t
� 1

ht

����� :
(A.2) and ln(x) � x�1; for all x > 0; yield E sup�2� jln (h1t =ht)j � ��1E sup�2� jh1t � htj =
O(�t); at most. Therefore T�1

PT
t=1 E sup�2� jln (h1t =ht)j = o (1) ; implying (by Markov�s

inequality) T�1
PT
t=1 sup� jln (h1t =ht)j = op (1) : Next, T�1

PT
t=1 sup�2�

���"2t � 1
h1t

� 1
ht

���� =
T�1

PT
t=1Xtut where Xt = sup� "

2
t is strictly stationary and ergodic with E jXtj < 1;

and jutj � 2��1. By (A.5), E sup�2�
��� 1
h1t

� 1
ht

��� = O
�
�t
�
; so that T�1

PT
t=1 at = op (1)

and T�1
PT
t=1 sup�2�

���"2t � 1
h1t

� 1
ht

���� = op (1) ; applying Lemma 4.5 of Ling and McAleer

(2003, p.288). This completes the proof.

Proposition 6 Under Assumptions A, B1, B2, B3a&b:

(a) 
�� � 
��(�0) is �nite and positive de�nite, where 
��(�) = E
�
d1�t(�)d

1
�t(�)

0�.
(b)

1p
T

PT
t=1



d1�t(�0)� d�t(�0)

 = op(1):

(c)
p
TD�T (�0)

d! N (0;
��)

Proof.

(a) We �rst show that 
�� = E
�
d1�t(�0)d

1
�t(�0)

0� is �nite. Denoting �10t = � "2
0t

h10t
� 1
�
, we

have

d10
�t (�0) =

1

2
�10t

1

h10t

@h10t
@�

+

"
"0t

1
h10t

@m0t
@'

0

#

and it is su¢ cient to show that E





�12
0t

n
1
h10t

o2 @h10t
@�

@h10t
@�0





 and E 



"20t n 1
h10t

o2
@m0t
@'

@m0t
@'0






are both �nite. Since h10t � � > 0 for all t and �t = "0t=

p
h10t ; E

�
�2t jFt�1

�
= 1; this follows

immediately from Assumption B3(ii) and Proposition 4.
Furthermore, 
�� is positive de�nite since E

�
�12
0t

�
= kc � 1 > 0 independent of h10t ; and, by

Proposition 2, for any vectors c, b of the same dimension of ' and �; respectively, c0d1't(�0) =
0; for all t almost surely, only if c = 0, and b0d1�t(�0) = 0; for all t almost surely, only if
b = 0.
(b) The proof is similar to that of Proposition 5. Firstly, with the notation above and ~�0t =
"20t=

~h0t�1; where ~h0t = ht (�0) ; to distinguish it from h10t = h1t (�0) ; d1't (�0)�d't (�0) =
1
2

n
�10t

1
h10t

@h10t
@'

� ~�0t 1
~h0t

@~h0t
@'

o
+
n
"0t

@m0t
@'

�
1
h10t

� 1
~h0t

�o
; so that�����

����� 1pT
TX
t=1

�
d1't (�0)� d't (�0)

������
����� � 1

2

�����
����� 1pT

TX
t=1

(
�10t

1

h10t
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� ~�0t
1

~h0t
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)�����
�����

+

�����
����� 1pT

TX
t=1

�
"0t

@m0t

@'

�
1

h10t
� 1

~h0t

�������
�����

=
1

2
jjRT jj+ jjQT jj :
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It is su¢ cient to show that E kQT k = o(1) and E kRT k = o(1): By Assumption A3, and since
(i � 1) h1t � �0 +  iat�i, and �t = "0t=

p
h10t ; iid (0; 1)

E jjQT jj � ��1
1p
T

TX
t=1

E

���������t @m0t

@'

��������
�����h10t � ~h0tp

h10t

�����
� C

1p
T

TX
t=1

E

"���������t @m0t
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��������
( 1X
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 i0a0;t�ip
�00 +  i0a0;t�i

)#

� K
1p
T

TX
t=1

E

"���������t @m0t

@'

��������
( 1X
i=t

�i ja0;t�ij1=2
)#

since 0 < �00 < 1 and x=
p
1 + x �

p
x; for all x � 0: Now, by Cauchy-Schwartz, iterative

expectations and Assumption B3(ii), E
h�������t @m0t

@'
a
1=2
0;t�i

������i �rE 


 @m0t
@'




2 E ja0;t�ij <1; so

that

E jjQT jj � O (1)
1p
T

TX
t=1

O
�
�t
�
= o(1):

Next, by (A.15) and E
�
"20tjFt�1

�
= h10t ;

E kRT k � 1p
T

TX
t=1

E

8><>:"20t









1�
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� 1�
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�2 @~h0t@'
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 1
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� 1
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9>=>;

� K
1p
T
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t=1

E

(
1
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@h10t@'
� @~h0t

@'






+





 1

~h0t

@~h0t
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 ���h10t � ~h0t���
)
:

It follows from (A.11), (A.9), (A.2) and similar arguments to Proposition 4 that E kRT k =
o (1)
Secondly, and in a similar fashion by and (A.8), (A.6

E

�����
����� 1pT

TX
t=1

�
d1�t (�0)� d�t (�0)

������
����� � K

1p
T

TX
t=1

E

(
1

h1t






@h10t@�
� @~h0t
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+





 1

~h0t

@~h0t
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 ���h10t � ~h0t���
)
= o(1):

Thus,



 1p

T

PT
t=1

�
d1�t (�0)� d�t (�0)

�


 = op(1) by Markov�s inequality.

(c) As in Lemma 5.2 of Ling and McAleer (2003), a martingale di¤erence CLT yields
p
TD1

�T (�0)
d!

N (0;
��) so that (b) yields
p
TD�T (�0)

d! N (0;
��) :

Proposition 7 Under Assumptions A, B1, B2, B3a,b&c:

(a) sup�2�


P1��T (�)� J��(�)

 = op(1); where J��(�) = �E

�
@d1�t(�)

@�0

�
is �nite for all

� 2 � and J�� = J�� (�0) is positive de�nite:

(b) sup�2�


P1��T (�)�P��T (�)

 = op(1):

Proof.

(a) We �rst show that J��(�) = �E
�
@d1�t(�)

@�0

�
is �nite for all � 2 �; it is then straightforward

to show that J��(�0) is positive de�nite. We have
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+
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�
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�
and by Assumption B3(ii), Proposition 4 (a &b) and Cauchy-Schwartz it can be seen that

E sup�





 @d1't(�)@'0





 <1

Similarly, and by the same arguments
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� <1:

Thus, by Theorem 3.1 of Ling and McAleer (2003), (a) holds and this completes the proof.

(b) Note that sup�


P1��T (�)�P��T (�)

 � T�1

P
t sup�
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sider the latter. First,
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=

4P
j=1

kRjtk

Consider 1=T
PT
t=1 sup�2� kR1tk ; where R1t = Xtat; with at = sup�

��� 1
h1t

� 1
ht

���, and ap-
ply Lemma 4.5 of Ling & McAleer, 2003. We know that at < 2��1 and T�1

PT
t=1 at =

op (1) ; and since E sup�

�


 @mt
@'




2 + 


"t @2mt
@'@'0




� <1; by Assumption B3(ii)&(iii), we have

1=T
PT
t=1 sup�2� kR1tk = op(1): By Proposition 4 E sup� kRjtk = O(�t); j = 2; :::6; so that

1=T
PT
t=1 sup�2� kRjtk = op(1); by Markov�s inequality.
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Similarly, sup�2�
1
T
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 = op (1) ; since




@d1�t (�)@'0
� @d�t (�)

@'0






 � "2t






 1

(h1t )
3

@h1t
@�

@h1t
@'0

� 1

h3t

@ht

@�

@ht

@'0







+
1

2






 1

(h1t )
2

@h1t
@�

@h1t
@'0

� 1

h2t

@ht

@�

@ht

@'0






+ 1

2
"2t






 1

(h1t )
2

@2h1t
@�@'0

� 1

h2t

@2ht

@�@'0







+
1

2





 1

h1t

@2h1t
@�@'0

� 1

ht

@2ht

@�@'0





+ 2



"t @mt

@'





 



 1

h1t

@h1t
@�

� 1

ht

@ht

@�






= K

5P
j=1

kRjtk ;

and by Proposition 4 E sup� kRjtk = O(�t); j = 2; :::6:
Finally, and analogously
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so that, by Proposition 4, E sup�





 @d1�t(�)@�0 � @d�t(�)

@�0





 = O
�
�t
�
:

This completes the proof.
Proof of Theorem 1. By Proposition 5, as in Ling and McAleer (2003), �̂ =

argmax� LT (�) is consistent. The limit distribution then follows from standard mean value
expansion ofD�T (�̂) = 0; exploiting Propositions 6 and 7, as follows. Firstly, 0 =

p
TD�T (�0)�

P��T

�
~�
�p

T (�̂ � �0); where ~� is the usual �mean value�satisfying ~� = �0+op(1): By Propo-

sitions 6 and7,
p
TD�T (�0) = Op(1) and P��T

�
~�
�
= Op(1); so that

p
T (�̂ � �0) = Op(1):

Second, by Proposition 7, and the triangle inequality, P��T
�
~�
�
= J��+op(1): Thirdly, since

J�� is positive de�nite,
p
T (�̂ � �0) = J�1��

p
TD�T (�0) + op(1); and the result follows from

Proposition 6. Finally, the expressions for 
�� and J�� are easily obtained from the previous
results in Lemmas 6 and 7.

Proof of Lemma 1. The proof follows from the results given previously. We know from

these results and/or assumptions made that E sup� kq1t q10
t k <1 , for q10

t =

�
1p
h1t

f 0t ; c
10
t ;x10

t

�
.

Moreover, T�1
PT
t=1 sup� kq1t q10

t � qtq0tk = op(1) since
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q1t q10
t � qtq0t



 � 2T�1 TX
t=1

kq1t � qtk kq1t k+ T�1
TX
t=1

kq1t � qtk2 :

It is readily shown, using Proposition 4 and related results, that 1p
T

PT
t=1 sup� kq1t � qtk =

op(1) so that T�1
PT
t=1 sup� kq1t � qtk2 = op(1) (since, 1

T
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t=1 z

2
t �

n
1p
T
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;

when zt � 0 for all t): In addition,
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�
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�
kq1t � qtk2 T�1
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�
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since T�1
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t=1 sup� kq1t k

2 = Op(1): Therefore, by a ULLN and the triangle inequality,
T�1
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t=1 (qtq

0
t)�=�̂ � E [q1t q

10
t ]�=�0 = op(1):

We also need to show that k̂c = kc + op(1) and v̂c = vc + op(1): By similar arguments,
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�
"2t
h1t

� 1
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1
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�
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�
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ht
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by (A.5) and Lemma 4.5 of Ling & McAleer (2003). Finally, E sup�

�
"tp
h1t

�3
< 1 and by

exactly the same reasoning

1

T
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T
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� 1
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t

����� = op(1);

since

���� 1

h
13=2
t

� 1

h
3=2
t

���� � K jh1t � htj :

8 Appendix B
Proof of Theorem 2. We establish the following:

(a)
 = E [d1t (�0)d1t (�00)] is �nite and positive de�nite, where d
1
t (�)

0 =
�
d10
't (�);d

10
�t (�);d

1
�t(�)

0
�
;

(b)
1p
T

PT
t=1 sup� kd1�t(�)� d�t(�)k = op(1);

(c) J�� (�) is �nite for all � 2 �; so that sup�


P1��T (�)� J�� (�)

 = op (1) ; where P1��T (�) =

1
T

PT
t=1

@d1�t(�)

@�0
;

Given (a) and similarly to Proposition 6,
p
TD1

T (�0)
d! N (0;
) ; whereD1

T (�) = T�1
P
d1t (�),

d1t (�)0 =
�
d10
't (�);d

10
�t (�);d

I
�t(�)

0
�
. 
 is positive de�nite provided r1t does not contain

redundant terms (eg, linear combinations of c1t and/or x1t ). By (b)

sup
�




pTD1
�T (�)�

p
TD�T (�)




 � 1p
T

TX
t=1

sup
�
kd1�t(�)� d�t(�)k = op(1)

so that
p
TD�T (�̂) =

p
TD1

�T (�̂) + op(1) and we can deal with
p
TD1

�T (�̂): A mean value
expansion of

p
TD�T (�̂) about �̂ = �0 yields

p
TD1

�T (�̂) =
p
TD1

�T (�0)�P1��T (~�)
p
T
�
�̂ � �0

�
where ~� is the usual �mean value� satisfying ~� = �0 + op(1): Since �̂ is consistent for �0; the
triangle inequality and (c) ensure that P1��T (

~�) = J��+op(1) and, substituting
p
T (�̂��0) =

J�1��
p
TD1

�T (�0) + op(1) from Theorem 1, yields

p
TD1

�T (�̂) =
p
TD1

�T (�0)� J��J
�1
��

p
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�T (�0) + op(1)

= A
p
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T (�0) + op(1);

and the result follows.
For the particular class of tests, characterised by indicator (9),
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for d1�t(�0) in the proof of Lemma 6 and d
1
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1
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1
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:
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We now establish that (a)-(c), above hold:
(a) Since 
�� is �nite (Proposition 6), by Cauchy-Schwartz, we only have to show that

E [d1�t(�0)d
1
�t(�0)

0] is �nite. The latter is true since E sup� kr1t k
2 <1; so that E




(�10t )2 r10t r10
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(kc � 1)E



r10t

2 <1:
(b) It can be shown that
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t=1 E sup� R2t = o(1): Finally, note that

1p
T

TX
t=1

sup
�
R3t �

vuut 1

T

TX
t=1

sup
�
"4t kr1t � rtk2

TX
t=1

sup
�

����h1t � ht

h1t

����2

�
(

1p
T

TX
t=1

sup
�
"2t kr1t � rtk

)(
TX
t=1

sup
�

����h1t � ht

h1t

����
)
= op(1)

since, 1
T

PT
t=1 z

2
t �

n
1p
T

PT
t=1 zt

o2
; when zt � 0 for all t, 1p

T

PT
t=1 sup� "

2
t kr1t � rtk =

op(1); by assumption, and
PT
t=1 sup�

���h1t �ht
h1t

��� = Op(1) by previous results.

By Markov�s Inequality, 1p
T

PT
t=1 sup� Rjt = op(1); j = 1; 2; 3; and the result follows.

(c) In a similar manner to the proof of Proposition 7, with
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Then since h1t � � > 0 for all t and �, using Cauchy-Schwartz inequality, the assumptions of

Theorem 2 and previous results, E sup�





@d1�t(�)@'0





 <1 and E sup�





@d1�t(�)@�0





 <1. These

are su¢ cient for a ULLN to apply, ensuring sup�


P1��T (�)� J�� (�)

 = op (1) :

Finally we brie�y show that these additional assumptions of Theorem 2 are satis�ed for the
test variables considered in this paper, in Section 4.
First, consider the Lundbergh and Teräsvirta (2002) nonlinearity (scalar) test variable rt =
"3t�k = r1t : Trivially, assumption (i) is satis�ed. For (ii) we require E

�
"60t
�
< 1; for (iii),

E sup�2�




"2t @r1t@' 


 = 3E sup�

���"2t "2t�k @mt�k
@'

��� < 1; by Cauchy-Schwartz. Similarly for the

asymmetry test variable of It�1"t�1; but taking into account (20).
For the non-linearity test variable, with kr1t k having typical element r1kt =

1
h1t

P1
i=0  i"

3
t�k�i,

k = 1; :::; q; and noting h1t � �0 +  i�k"
2
t�k�i;

jr1kt j �
1

p
�k

1P
i=0

p
 i�k j"t�k�ij

�0 +  i�k"
2
t�k�i

p
 i"

2
t�k�i � K

1P
i=0

�i"2t�k�i

jr1kt � rktj � K
1P
i=t

�i"2t�k�i
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1

h1t

1P
i=0

 i"
2
t�k�i kr'ft�k�ik+

1

h1t

1P
i=0

 i


"3t�k�ic1t 



� 3
1

p
�k

1P
i=0

p
 i�k j"t�k�ij

�0 +  i�k"
2
t�k�i

p
 i k"t�k�ir'ft�k�ik+

1
p
�k

1P
i=0

p
 i�k j"t�k�ij

�0 +  i�k"
2
t�k�i

p
 i"

2
t�k�i kc1t k

� K

� 1P
i=0

�i k"t�k�ir'ft�k�ik+
1P
i=0

�i"2t�k�i kc1t k
�





@r1kt@�





 � K

� 1P
i=1

i�i"2t�k�i +
1P
i=0

�i"2t�k�i kx1t k
�
:

It is then straightforward to show that assumptions (i)-(iii) are satis�ed. Similarly for the
asymmetry test variable r1t = 1

h1t

P1
i=0  iIt�k"t�k�i; but taking into account (20).

Proof of Lemma 2. The proof is similar to that of Lemma 1. We can show that
E sup� kr1t q10

t k < 1 , so that T�1
PT
t=1 sup� kr1t q10

t � E [r1t q
10
t ]k = op(1); by previous

arguments. It remains to establish that T�1
PT
t=1 sup� kr1t q10

t � rtq0tk = op(1); since this
then ensures that T�1

PT
t=1 (rtq

0
t)�=�̂ � E [r1t q

10
t ]�=�0 = op(1): Note that

T�1
TX
t=1



r1t q10
t � rtq0t



 � T�1
TX
t=1

kr1t � rtk kq1t k+T�1
TX
t=1

kq1t � qtk kr1t k+T�1
TX
t=1

kr1t � rtk kq1t � qtk

and it can easily be shown that each term on the right hand side is op(1): We also know that
k̂c = kc + op(1) and v̂c = vc + op(1); from the proof of Lemma 1, and the result follows.

Proof of Lemma 3. (i) Firstly, from the expression for
@d1�t(�)
@'0 in Proposition 7, it is

easy to see that J�' = 1
2
E [x1t c

10
t ]�=�0 .

Now,

E
�
x1t c

10
t

�
�=�0

= �2
qX

k=1

�0kE

24 1

h12
t

1X
i=0

1X
j=0

 i js
1
t�1�i"t�k�jf

0
t�k�j

35
�=�0

; (30)

which exists, provided E
�
1

h12
t

"t�ls1t�mf
0
t�l

�
�=�0

exists (for all l;m), since
���P1

i=0

P1
j=0  i j

��� =
��P1

i=0  i
��2 � �P1

i=0 j ij
	2

< 1: Thus E
�
1

h12
t

"t�ls1t�mf
0
t�l

�
�=�0

has to be examined for

the cases l = m; l < m and l > m, where s1t�m =
�
1; "2t�m; ::; "

2
t�m�q+1; h

1
t�m; ::; h

1
t�m�p+1

�0
:

Speci�cally, for l = m; E

�
1

h12
t

"t�ls1t�lf
0
t�l

�
�=�0

is

E

�
E

�
1

h12
t

�
"t�l; "

3
t�l; ::; "t�l"

2
t�l�q+1; "t�lh

1
t�l; ::; "t�lh

1
t�l�p+1

�0����Ft�l�1� f 0t�l�
�=�0

which is zero if the expression for the conditional expectation, given Ft�l�1; above is zero. To
establish the latter, follow Engle (1982) and treat this conditional expectation in two steps,
observing that "t�l�n; n = 1; 2; :::; are Ft�l�1- measurable. First, construct the conditional
expectation given Ft�l; which is��
"t�l; "

3
t�l; ::; "t�l"

2
t�l�q+1; "t�lh

1
t�l; ::; "t�lh

1
t�l�p+1

�0
E

�
1

h12
t

����Ft�l��
�=�0

� �("t�l);

where it is implicit that �(:) is evaluated at � = �0: Since h1t is symmetric in "t�l and the
elements in "t�ls1t�l are all anti-symmetric in "t�l, the elements in (h

1
t )

�2 "t�ls1t�l are anti-
symmetric in "t�l; which forms part of Ft�l and, at the second step, expectations with respect
to Ft�l�1 are taken only with random elements. Now, because h1t is symmetric in "t�l; its
conditional density given "t�l is also symmetric in "t�l: Therefore, by Engle (1982, Lemma
p.1006), �("t�l) is anti-symmetric in "t�l: Finally, the second step involves E [�("t�l)jFt�l�1]
which is zero, because the conditional density of "t�l given Ft�l�1 is symmetric and �(:) is
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anti-symmetric.
The other typical expectation in (30) for l < m and l > m is

E

�
E

�
1

h12
t

"t�ms
1
t�l

����Ft�m�1� f 0t�m�
�=�0

which is zero if the conditional expectation, given Ft�m�1; is zero. The later can be expressed
as

E

�
1

h12
t

"t�ms
1
t�l

����Ft�m�1�
�=�0

= E

�
E

�
1

h12
t

"t�ms
1
t�l

����Ft�m�����Ft�m�1�
�=�0

:

For l > m; the elements of s1t�l belong to Ft�m�1 and the preceding arguments show that

E
h
(h1t )

�2 "t�m
���Ft�m�1i

�=�0
= 0: For m > l; note that the elements of (h1t )

�2 s1t�l are

symmetric in "t�m; so that E
h
(h1t )

�2 "t�ms1t�l

���Ft�mi
�=�0

� �("t�m) is anti-symmetric in

"t�m and, again, E [�("t�m)j Ft�m�1]�=�0 = 0; where elements included in the conditioning
set Ft�m�1 are treated as non-random when taking the conditional expectation. It follows
that J�' = 0.
Since vc = 0; (ii), (iii) and (iv) follow immediately, given previous de�nitions.

Proof of Lemma 4. Note that c10
t = (h1t )

�1P1
i=0 �

i
1"t�1�if

0
t�1�i and rt =�

"t�1; "3t�1
�0so that J�' can be written as

J�' = �2�01E
�
E

�
1

h1t

�
"2t�1
"4t�1

�����Ft�2� f 0t�1
+

1X
i=1

�i1E

�
1

h1t

�
"t�1
"3t�1

�
"t�1�i

����Ft�2� f 0t�1�i
)
�=�0

= �2�01E
�
E

�
1

h1t

�
"2t�1
"4t�1

�����Ft�2� f 0t�1�
�=�0

which is non-zero, in general, since E
�
1

h1t

�
"2t�1
"4t�1

�����Ft�2�
�=�0

> 0 almost surely. The

second term (after the second equality) is zero because, for j � 2,

E

�
1

h1t

�
"t�1
"3t�1

�
"t�j

����Ft�2�
�=�0

=

�
"t�jE

�
1

h1t

�
"t�1
"3t�1

�����Ft�2��
�=�0

and

E

�
1

h1t
"st�1

����Ft�2�
�=�0

= E [� ("t�1) jFt�2]�=�0

where E
h
(h1t )

�1 "st�1jFt�1
i
= �("t�1); s = 1; 3; which is anti-symmetric in "t�1; so that

E [�("t�1)jFt�2] = 0 because the conditional density of "t�1 given Ft�2 is symmetric. Thus,
in general, J�' 6= 0:
Second, with x10

t = (h1t )
�1X1

i=0
�i1s

10
t�1�i, J�� can be written as

J�� = E

(
E

"
1

h1t

�"t�1
"3t�1

�
s10
t�1

�����Ft�2
#

+
1X
i=1

�i1E

"
1

h1t

�"t�1
"3t�1

������Ft�2
#
s10
t�1�i

)
�=�0

:

Similar arguments to those employed previously, imply that J�� is the null vector.
Proof of Proposition 1. The method of proof follows very closely that of Godfrey

(1996). Consider the negative size bias test of Engle and Ng (1993) in which r̂t = Ît�1"̂t�1
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and for simplicity, in this case, m(wt;') = w0
t': De�ne the following dummy variables, which

will be employed in the ensuing asymptotic analysis

Dt1 = 1; if "0;t�1 � 0 and "̂t�1 � 0; Dt1 = 0; otherwise

Dt2 = 1; if "0;t�1 > 0 and "̂t�1 � 0; Dt2 = 0; otherwise

Dt3 = 1; if "0;t�1 � 0 and "̂t�1 > 0; Dt3 = 0; otherwise

Dt4 = 1; if "0;t�1 > 0 and "̂t�1 > 0; Dt4 = 0; otherwise

for t = 1; :::; T: Note that both Pr (Dt2 = 1) and Pr (Dt3 = 1) tend to zero as T !1; under
fairly general conditions on wt; since "̂t�1 � "0;t�1 = �w0

t�1 ('̂�'0) and '̂ is root-T con-
sistent for '0:
Then, noting that r̂t � r0t = 0 when Dt4 = 1; the di¤erence between

p
TD�T (�̂) and

1p
T

TP
t=1

��
"̂2t

ĥt
� 1
�
r0t

�
can be expressed as

1p
T

TP
t=1

��
"̂2t

ĥt
� 1
�
(r̂t � r0t)

�
=

1p
T

TP
t=1

��
"̂2t

ĥt
� 1
�
fDt1 ("̂t�1 � "0;t�1) +Dt2"̂t�1 �Dt3"0;t�1g

�
= �1 + �2 + �3

where

�1 =
1p
T

TP
t=1

�
Dt1

�
"̂2t

ĥt
� 1
�
("̂t�1 � "0;t�1)

�
= � 1

T

TP
t=1

�
Dt1

�
"̂2t

ĥt
� 1
�
w0
t�1

�p
T ('̂�'0)

�2 =
1p
T

TP
t=1

�
Dt2

�
"̂2t

ĥt
� 1
�
"̂t�1

�
�3 = � 1p

T

TP
t=1

�
Dt3

�
"̂2t

ĥt
� 1
�
"0;t�1

�
:

It can now be shown that �j = op(1); for j = 1; 2; 3; which is su¢ cient for
1p
T

TP
t=1

��
"̂2t

ĥt
� 1
�
(r̂t � r0t)

�
=

op(1): For example, �3 can be written as

�3 = �
 

TP
t=1

Dt3=T
!1=2 24 TP

t=1
Dt3

!�1=2
TP
t=1

Dt3
�
"̂2t

ĥt
� 1
�
"0;t�1

35
= � (M3=T )

1=2

"
(M3)

�1=2 P
t2T3

�
"̂2t

ĥt
� 1
�
"0;t�1

#

where M3 =
TP
t=1

Dt3 is the number of observations for which Dt3 = 1 and T3 denotes the

subsample of observations with Dt3 = 1: Now,M3=T is the proportion of sample observations
for which Dt3 = 1: Since Pr (Dt3 = 1) ! 0; M3=T is thus op(1): Similar to the preceding

analysis, since M3 !1; a mean value expansion of (M3)
�1=2 P

t2T3

�
"̂2t

ĥt
� 1
�
"0;t�1 reveals

that it is Op(1): Therefore, �3 = op(1) and, in a similar fashion, it can be shown that
�2 = op(1):
Turning to �1;

�1 = � (M1=T )

"
M�1

1

P
t2T1

�
"̂2t

ĥt
� 1
�
w0
t�1

#
p
T ('̂�'0)

where M1 =
TP
t=1

Dt1 is the number of observations for which Dt1 = 1 and T1 denotes the

subsample of observations with Dt1 = 1: Now,M1=T is the proportion of sample observations

for which Dt1 = 1: In this case, Pr (Dt1 = 1) ! 1; so that M1=T
p! 1, and a mean value

expansion ofM�1
1

P
t2T1

�
"̂2t

ĥt
� 1
�
w0
t�1 reveals that it is op(1): Hence, �1 = op(1); also.
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Proof of Lemma 5. Speci�cally, J�' can be written as (with c10
t = (h1t )

�1P1
i=0 �

i
1"t�1�if

0
t�1�i

),

J�' = �2�01E
�
E

�
1

h1t
It�1"

2
t�1 jFt�2

�
f 0t�1

+
1X
i=1

�i1E

�
1

h1t
It�1"t�1"t�1�i jFt�2

�
f 0t�1�i

)
�=�0

which is non-zero (certainly, E
h

1
h1t

It�1"2t�1jFt�2
i
is non-negative).

Proof of Lemma 6. The proof is similar to that of Lemma 3. Firstly, for non-negligible
estimation e¤ects from the conditional mean,

J�' = �2
qX

k=1

�0kE

24 1

h12
t

1X
i=0

1X
j=0

 i j"t�k�jvt�1�if
0
t�k�j

35
�=�0

is non-zero, in general, if at least one element in J�' is non-zero. This amounts to examining

the typical expectation E

�
1

h12
t

"st�l"t�mf
0
t�m

�
�=�0

for l = m; l < m and l > m; where

s = 1; 3: Firstly, for l = m;

E

�
1

h12
t

"st�l"t�lf
0
t�l

�
�=�0

= E

�
E

�
1

h12
t

"st�l"t�l

����Ft�l�1� f 0t�l�
�=�0

with the conditional expectation given by E
h
(h1t )

�2 "ut�ljFt�l�1
i
for u = 2; 4: Similar to the

arguments in Lemma 4, E
h
(h1t )

�2 "ut�ljFt�l�1
i
> 0 almost surely and thus E

h
1

h12
t

"st�l"t�lf
0
t�l

i
�=�0

is non-zero. Further, for l < m;

E

�
f 0t�mE

�
1

h12
t

"st�l"t�m

����Ft�m�1��
�=�0

= E

�
f 0t�mE

�
"t�mE

�
1

h12
t

"st�l

����Ft�l�1�����Ft�m�1��
�=�0

and similar arguments to those employed in the Proof of Lemma 3 establish that E
h
(h1t )

�2 "st�ljFt�l�1
i
=

0 for s = 1; 3: For l > m; since Ft�l�1 � Ft�m�1,

E

�
1

h12
t

"st�l"t�mf
0
t�m

�
�=�0

= E

�
f 0t�m"

s
t�lE

�
1

h12
t

"t�m

����Ft�m�1��
�=�0

where the elements "st�l; s = 1; 3 belong to Ft�m�1 and previous arguments show that

E
h
(h1t )

�2 "t�mjFt�m�1
i
�=�0

= 0.

Secondly, for J�� , the expectation to be examined is E
h

1
h12
t

"st�ls
10
t�m

i
�=�0

, s = 1; 3 for

l = m; l > m and l < m and arguments similar to those used in Lemma 3 show that J�� = 0.
In particular, notice that for s = 1; the above expectation was shown to be zero for all three
cases in Lemma 3. Similar arguments also apply for s = 3:

Proof of Lemma 7. Firstly, with c10
t = (h1t )

�1P1
i=0  i"t�1�if

0
t�1�i and r

1
t =

(h1t )
�1P1

i=0  ivt�1�i; J�' can be written as

J�' = �2
qX

k=1

�0kE

24 1

h12
t

1X
i=0

1X
j=0

 i j"t�k�jvt�1�if
0
t�k�j

35
�=�0

:

For a typical element in J�'; the expectation to be examined is E
�
1

h12
t

It�l"t�l"t�mf 0t�m

�
for the cases l = m; l < m and l > m. Consider just l = m; here we have E

�
1

h12
t

It�l"2t�lf
0
t�l

�
�=�0

=
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E
n
E
h
1
h2t
It�l"2t�l

���Ft�l�1i f 0t�lo
�=�0

is certainly non-zero.

Secondly, with x10
t = (h1t )

�1P1
i=0  is

10
t�1�i; J�� in (11) can be written as

J�� = E

24 1

h12
t

1X
i=0

1X
j=0

 i jvt�1�is
10
t�1�j

35
�=�0

:

For a typical element in J�� ; the expectation to be examined is E
�
1

h12
t

It�l"t�ls10
t�m

�
for

the cases l = m; l < m and l > m. Similar arguments to those employed previously show that
this is non-zero in general.
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Table 1. Empirical size
N (0; 1) t (7) t (5) t (3)
TA TEN TN TLT TA TEN TN TLT TA TEN TN TLT TA TEN TN TLT

M1-H 4.4 5.2 5.1 2.6 4.2 4.1 4.0 1.7 5.8 4.4 2.2 1.0 5.9 2.7 2.4 0.5
M2-H 4.5 4.9 5.6 2.1 4.4 3.6 3.8 1.5 6.2 4.1 2.5 0.9 7.2 2.7 2.8 0.5
M3-H 4.6 5.0 5.4 2.5 4.4 3.7 3.7 1.6 6.7 4.0 2.5 1.0 7.2 2.6 2.7 0.5
M4-H 4.9 5.0 5.4 2.6 4.0 3.7 3.7 1.4 6.1 4.0 2.4 1.0 8.0 2.5 2.6 0.5
M1-M 4.8 4.7 4.8 4.0 4.9 4.0 4.2 3.1 5.6 4.1 2.9 2.0 5.5 2.9 2.8 1.1
M2-M 5.0 4.4 5.2 4.3 4.4 4.1 3.8 3.4 5.1 3.7 2.8 2.0 5.9 2.9 2.7 1.1
M3-M 5.0 4.6 5.4 4.3 4.5 3.9 4.0 3.4 5.0 4.0 2.8 2.0 6.0 2.9 2.7 1.1
M4-M 5.1 4.6 5.4 4.0 4.4 3.8 4.2 3.3 5.3 4.0 3.1 2.1 6.7 3.2 2.6 1.1
M1-L 6.0 4.7 4.2 4.1 4.6 3.8 3.8 2.6 4.8 4.1 2.5 1.4 6.5 2.0 1.9 0.5
M2-L 5.7 4.7 5.3 3.9 4.7 3.8 4.0 2.8 4.0 4.0 2.6 1.5 6.4 1.5 2.3 0.6
M3-L 5.7 4.4 5.2 4.0 4.8 4.0 4.3 2.5 4.0 3.8 2.6 1.6 6.1 1.8 2.3 0.7
M4-L 5.7 4.6 5.2 3.9 4.6 4.0 3.7 2.7 4.6 4.0 2.5 1.5 5.8 1.9 2.1 0.6
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Table 1. Empirical power
GJR (1,1) model

ht = 0:005 + 0:23 [j"t�1j � 0:23"t�1]2 + 0:7ht�1
N (0; 1) t(7)
TA TEN TN TLT TA TEN TN TLT

M1 88.7 47.1 89.2 16.5 62.2 32.7 64.9 14.4
M2 84.6 38.3 87.4 14.5 59.0 27.1 59.0 12.2
M3 84.1 38.5 87.0 14.2 59.9 27.2 58.8 12.6
M4 84.6 37.9 87.8 16.6 58.7 28.0 59.7 12.8

ht = 0:005 + :23 [j"t�1j � 0:17"t�1]2 + 0:7ht�1

N (0; 1) t(7)
TA TEN TN TLT TA TEN TN TLT

M1 67.5 30.0 67.0 12.4 40.4 22.5 42.8 11.6
M2 62.1 26.1 65.3 10.5 39.7 19.7 37.3 10.2
M3 61.3 26.6 64.6 10.6 40.5 19.3 37.1 10.6
M4 61.3 24.5 66.2 12.2 40.2 20.0 37.6 10.9

STGARCH (1,1) model
ht = 0:005 + 0:136"2t�1 � 0:212F ("t�1) "2t�1 + 0:7ht�1

F ("t�1) =
1

1+exp(�100"t�1)
� 1

2

N (0; 1) t (7)
TA TEN TN TLT TA TEN TN TLT

M1 95.7 69.0 96.7 49.3 78.0 46.4 81.5 29.6
M2 95.8 64.7 97.0 45.9 75.0 43.4 80.6 27.1
M3 95.5 64.5 96.7 45.7 74.8 43.9 80.3 26.7
M4 95.2 63.9 96.5 47.3 75.9 45.5 81.3 26.9

ht = 0:005 + 0:136"2t�1 � 0:17F ("t�1) "2t�1 + 0:7ht�1
F ("t�1) =

1
1+exp(�100"t�1)

� 1
2

N (0; 1) t (7)
TA TEN TN TLT TA TEN TN TLT

M1 86.1 51.5 88.7 36.6 60.7 34.5 62.3 20.6
M2 84.7 46.9 88.2 41.8 59.0 34.0 62.0 18.9
M3 83.8 48.0 87.4 34.3 57.2 33.6 60.8 19.2
M4 84.1 46.9 87.2 35.2 59.1 34.2 62.3 19.3

EGARCH (1,1) model
log(ht) = �0:23 + 0:9 log(ht�1) + 0:25

�
j�t�1j � 0:3�t�1

�
N (0; 1) t (7)
TA TEN TN TLT TA TEN TN TLT

M1 83.9 29.7 76.5 35.9 64.9 23.3 52.8 23.8
M2 82.8 27.2 75.7 33.7 64.4 20.1 49.4 20.3
M3 82.1 27.0 75.5 34.2 63.1 19.9 49.3 20.9
M4 83.2 27.0 75.1 32.4 63.0 19.7 49.3 21.7

TGARCH (1,1) model
p
ht = 0:07 + 0:081 (1� It�1) j"t�1j+ 0:193It�1 j"t�1j+ 0:831

p
ht�1

N (0; 1) t (7)
TA TEN TN TLT TA TEN TN TLT

M1 98.3 46.3 97.4 54.5 91.1 31.2 81.9 33.0
M2 98.8 40.4 96.7 48.5 90.1 26.6 80.6 29.3
M3 98.3 41.5 96.8 49.5 89.4 26.6 80.5 29.2
M4 98.9 40.3 96.9 49.9 89.6 27.1 81.0 29.7
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