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Abstract

In recent years it has become apparent that we must take unobservable hetero-
geneity into account when conducting empirical consumer demand analysis. This
paper is concerned with integrability (that is, whether demand is consistent with
utility maximization) of the conditional mean demand (that is, the estimated de-
mand) when allowing for unobservable heterogeneity. Integrability is important
because it is necessary in order for the estimated price and income effects to be
used for welfare analysis. Conditions for conditional mean demand to be integrable
in the presence of unobservable heterogeneity are developed in the literature. These
integrability conditions have testable implications for panel data. In this paper we
exploit a unique long panel data set to test these conditions. We make use of the
panel structure to identify a very flexible specification of unobservable heterogeneity:
We model individual demands as an Almost Ideal Demand system and allow for un-
observable heterogeneity by allowing all the parameters of the demand system to be
individual-specific. We test the conditions for integrability of the conditional mean
demand of this demand system. We find that that they can not be rejected. This
means that the conditional mean demand generated by a population of consumers
with different preferences described by different Almost Ideal Demand systems is
consistent with utility maximization.

∗I am grateful toWalter Beckert, Richard Blundell, Martin Browning, Mette Ejrnaes, Stefan Hoderlein,
Arthur Lewbel, Birgitte Sloth, Frank Windmeijer, Allan Würtz and seminar participants at University
of Copenhagen, Mannheim University, The 11th International Conference on Panel Data 2004, The
Econometric Society European Meeting 2004, Essex University, IFS, Cemmap, Queen Mary College,
Birkbeck College, Aarhus University and University of Manchester for many helpful suggestions and
discussions. Financial support from the European Community’s Human Potential Programme under
contract HPRN-CT-2002-00235 [AGE] is gratefully acknowledged. All errors are mine.

†Department of Economics, University of Manchester, and The Institute for Fiscal Studies, London.
E-mail: mette.christensen@manchester.ac.uk

1



JEL: C33, D12, D60
Keywords: Integrability, demand, unobservable heterogeneity, panel data

2



1 Introduction

Demand system estimation provides estimates of price and income elasticities, as well
as estimates of the effects of demographic variables on demands. These elasticities and
effects are important inputs into many policy analyses; for example the analysis of the
effects of income or commodity taxes on market demands and the implications these effects
have for welfare. Indeed, one of the main motivations for estimating demand systems is
to facilitate welfare analysis. For this it is necessary that demands are consistent with
consumer theory; that is, it is necessary that demands are integrable1.
In this paper we exploit a unique data set to test conditions that are necessary for

the conditional mean demand function across consumers to be integrable, assuming that
individual consumers all separately maximise utility. The conditional mean demand is of
great importance in empirical demand analysis because this is what is estimated: when
we estimate a demand system, what we estimate is always the average demand, condi-
tional on observables. To see this, consider the usual way of modelling and estimating
demand systems. The usual way of modelling demand systems is by an additive model:
The demand of each individual is modelled as the sum of a systematic component, i.e.
some function, and an additive error term. The systematic component is functionally de-
pendent on observables, like prices, incomes and observable demographics, and is common
for all individuals: Different individuals have different values of observables, but the sys-
tematic component is the same function for all individuals. The error term is functionally
independent of observables and is specific to each individual. The systematic component
is then estimated from data, typically employing the assumption that the additive error
term has conditional mean zero. This, together with the conditional mean zero condition
on error terms, implicitly defines the systematic component to be the average budget
share function. This means that what is in fact being estimated is the conditional mean
budget share function. In order to use the estimated coefficients from a demand system
for welfare analysis we thus need the conditional mean demand to be integrable.
There is a vast literature on demand system estimation and this literature provides

an abundance of different ways of specifying the conditional mean demand to be esti-
mated, both parametrically and nonparametrically. Widely used examples of parametric
specifications are the Almost Ideal Demand system (introduced by Deaton and Muell-
bauer (1980)) and the Quadratic Almost Ideal Demand system (introduced by Banks,
Blundell and Lewbel (1997)). Nonparametric specifications include Härdle and Jerison
(1988), Lewbel (1991), Blundell, Duncan and Pendakur (1998) and Blundell, Chen and

1By the term ”integrability” we will understand that demand is generated from maximising a utility
function subject to a linear budget constraint.
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Kristensen (2007). The data used for demand system estimation is nowadays typically
cross sectional household expenditure survey data, that is, data at the household level,
where each household is observed only once. A couple of decades ago demand systems
were estimated using aggregate data; thus Deaton and Muellbauer (1980) used aggregate
data. Regardless of whether data is aggregate level data or household level data, and re-
gardless of whether the demand system is parametrically or nonparametrically estimated,
what is always estimated is the conditional mean demand.
When modelling demand systems in the usual way, unobservable individual-level het-

erogeneity is assumed to be captured in the additive, individual-specific error term, which
is not taken into account when the integrability properties of the demand system are
analysed. In recent years, however, it has become widely acknowledged that we must take
unobservable heterogeneity into account when conducting empirical consumer demand
analysis. In an early paper, Brown and Walker (1989) consider the additive demand
model and show that in order for integrability to hold at both the individual and the
average level, the individual error terms must be functionally dependent on prices and/or
incomes. In other words: If we want integrability to hold both at the individual level
and at the average level, we can not employ the usual modelling of demand systems with
additive independent error terms. In contrast to the usual way of modelling demand
systems, the random utility approach takes unobservable heterogeneity specifically into
account by letting a random component either enter the individual utility maximization
problem directly, or letting it enter the demand system. The idea is that each consumer
has his or her own value of the random component (coefficient) and hence the distribution
of the random coefficients represent the distribuition of preference heterogeneity. Each
consumer knows his or her own value, but this is unknown to the researcher. In a recent
paper, Lewbel (2001) adopts the random utility approach to the usual additive model
and derives conditions under which the conditional mean demand is integrable, assuming
that individual demands are integrable. The conditions imply the result of Brown and
Walker (1989). These integrability conditions are conditions on a matrix whose elements
are covariances across individuals (households) between individual income responses and
individual demands and hence they have testable implications for panel data: The condi-
tions can be tested as properties of an estimate of the matrix of covariances. Because each
element of the matrix is a covariance across individuals (households) between individual
income responses and individual demands, this matrix can be estimated from panel data
by a simple two step procedure. In a first step, the time series variation of the data
can be used to estimate the individual income responses and the individual demands for
all individuals. In a second step, the cross sectional variation in the data can be used
to estimate the elements of the matrix of covariances as the sample covariances across
households of the estimated individual effects.
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In this paper, we exploit the unique long time series dimension of a Spanish panel data
set on households expenditures to empirically test the integrability conditions developed in
Lewbel (2001), following the two step procedure outlined above. The data is the Encuesta
Permanente de Consumo (the ECP), which is a 6 year long data set with quarterly
information on household expenditures, on prices and on demographics, collected by the
Spanish National Bureau of Statistics in the period 1978-83 2. The ECP is to the best of
our knowledge the longest real panel on households consumption covering a wide range of
commodity groups we have available. The exceptional long time-series dimension allows
us to estimate the individual income responses and individual demands that are needed
for each household in order to construct an estimate of the matrix of covariances. It also
allows us to be far more flexible in our specification of preference heterogenity than other
studies estimating demand systems with unobservable heterogeneity.
We take a semiparametric approach and model the demand of each household by

an Almost Ideal Demand system. We introduce preference heterogeneity by allowing
all parameters to be household-specific, but we impose no parametric restrictions on
the distribution of preference parameters. Identification of such a flexible heterogeneity
scheme is possible only because we have this long panel data. The idea is to view the
time series dimension for each household as a repetetion of the same thing: Demand
systems are models of consumer behavior that describe how consumers allocate total
expenditures to consumption goods within the period, given that consumers have already
allocated a given amount of total expenditure to each period by solving an intra-temporal
optimastion problem3. In other words, demand systems are static models and thus we
have no dynamics in our model. We test for integrability and find that we can not reject
the integrability conditions. This finding implies that a set of completely heterogeneous
Almost Ideal Demand systems generate an integrable conditional mean demand.
Among our other findings are however some strong rejections of homogeneous con-

sumer behavior: We strongly reject that different consumers have identical income effects.
That is, we find strong evidence of preference heterogeneity in marginal propensities to
spend. We also strongly reject that the coefficients on seasonal dummies are identical
across consumers. This means that different households adjust their budget shares differ-
ently over the year; one interpretation could be that some households simply like winter
holidays whereas others prefer summer holidays. Both these rejections of homogeneous
consumer behavior is in stark contrast to what is usually assumed in demand system
estimation: Usually, it is assumed that these behavioral coefficients are identical across

2The data was kindly provided by Lola Collado. Many thanks to her for answering numerous queries
about the data. Also thanks to José M. Labeaga for help with this data.

3Demand systems are thus the second stage of a two stage budgeting process, see Deaton and Muell-
bauer (1980).
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consumers - at most it is assumed that income responses can vary with observable de-
mographics (the classic example is to allow income repsonses to be different according to
number of children in the household). But our finding suggests that this is not enough.
Our findings thus also adds to the growing body of research which shows the importance
of taking unobservable heterogeneity into account.
Few other papers have looked at integrability of demand systems when accounting for

unobservable heterogeneity. Hoderlein (2004) derives nonparametric tests of negativity
and symmetry in a random utility setting which is more general than that of Lewbel
(2001). Amongst other features, Hoderlein (2004) considers a model that is more general
than the additive model. The framework of Hoderlein (2004) nests the framework of Lew-
bel (2001) and thus also nests our model. But none of these papers contain any empirical
applications. Brown and Matzkin (1998) construct a random utility model by letting a
random component enter the direct utility function and then derive the demand equations
from the utility maximisation problem. Their paper contains no empirical application.
Beckert (2005) estimates the demand for internet services, allowing for preference het-
erogeneity in a Cobb-Douglas utility framework. This model automatically generates a
conditional mean demand which is integrable because individual preferences are Cobb-
Douglas preferences. Calvet and Comon (2003) estimate an Almost Ideal Demand system
with unobserved heterogeneity, but since they have cross sectional data, they are forced
to being very restrictive in their heterogeneity specification; e.g. they can only identify a
linear scheme with one heterogeneity parameter per individual and one per good, whereas
panel data allows at least one heterogeneity parameter per individual per good. In our
model, we furthermore allow heterogeneous price and income responses.
The integrability conditions in Lewbel (2001) bear a strong resemblance to the con-

ditions for integrability of the unconditional average demandin Muellbauer (1975) and
Mas-Colell (1985). The matrix of covariances that appear in Lewbel (2001) is roughly
speaking a conditional version of the matric of covariances that appear in Mas-Colell’s
work on aggregation. It is somewhat surprising that conditioning on observables like
income does not provide more structure.
It is worth pointing out that while this paper deals with the question of obtaining

integrability at the average level, assuming integrability at the individual level prevails,
a different type of question one could ask is "Can we obtain integrability - or just the
Weak Axiom of Revealed Preference - at the average level without assuming integrability
at the individual level, but instead by assumptions on the distributions of individual
behavior?". This is the question asked in a strand of the theoretical demand aggregation
literature by amongst others Hildenbrand (1994) and Grandmont (1992). The results of
Hildenbrand and Grandmont have an important feature in common with the conditions
in Brown and Walker (1989) and Lewbel (2001). Namely that what is needed is what
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Hildenbrand and Grandmont denote behavioral heterogeneity in preferences, which are
distributional assumptions on consumers’ behavior, i.e. distributional assumptions on how
consumers respond to changes in for example income. In other words, they also require
that unobservable heterogeneity is functionally dependent on prices and/or incomes.
The rest of this paper is organised as follows. In Section 2 we present the integrability

conditions and discuss what they imply for the ways in which we can introduce preference
heterogeneity into demand systems in a way that is consistent with consumer theory. In
Section 3 we formulate our theoretical model and provide a theoretical discussion of the
integrability conditions in the context of our model. Section 4 presents the econometric
model to and section 5 contains the empirical analysis and the results. Section 6 discusses
and concludes.

2 The Integrability Conditions Accounting for Un-
observable Heterogeneity

In this section we present and discuss the theoretical conditions for integrability of a
demand system with unobservable heterogeneity developed in Lewbel (2001).

2.1 Demand Systems and Integrability: The Usual Way

In order to put the integrability conditions for a demand system with unobservable het-
erogeneity into the right perspective, we first consider the usual way of modelling demands
in empirical demand analysis. Usually, we specify an additive model: The demands are
modelled as the sum of a function of observables (like prices and income) and an error
term. The function of observables is common for all households, whereas the error term
is household-specific and does not depend on observables. The error term then capture,
among other things, unobservable heterogeneity and is typically assumed to have condi-
tional mean zero. Let N denote the number of goods, let wh denote the vector of budget
shares for household h, let p = (p1, ..., pN)0 denote the vector of prices for the N goods,
let ln p denote the vector of log prices, let xh denote total expenditure for household h,
let zh denote a K-dimensional vector of observable characteristics of household h (e.g.
demographic characteristics) and let εh denote the error term specific to household h.
Then the usual additive model can be written

wh = G(ln p, lnxh, zh) + εh,

where
E [ε |ln p, lnx, z ] = 0.
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The function G(·) is then estimated from data. There is a vast literature on the estima-
tion of demand systems, with both parametric and nonparametric specifications of G(·).
One of the most well-known examples of a parametric form of G(·) is the Almost Ideal
Demand system (hereafter denoted the AID system), introduced by Deaton and Muell-
bauer (1980b) and since used in numerous applications. The data used for demand system
estimation is nowadays typically cross sectional household expenditure survey data, but
until a couple of decades ago, household-level data were not that common and demand
systems would be estimated from aggregate level data4. Regardless of whether data is ag-
gregate level data or individual-level cross sectional data, and regardless of whether G(·)
is specified parametrically or nonparametrically, the additive structure of the individual
budget share function together with the zero mean condition implicitly defines G(·) as the
conditional mean budget share function. This means that what is in fact being estimated
is always an average (namely the conditional mean) budget share function.
Now, in order to be able to use the estimated price - and income elasticities from

this demand system for welfare analysis, the estimated demand must be consistent with
consumer theory, i.e. the conditional mean demand must be integrable. In order to
perform welfare analysis at the individual level, we will also need that the behavior of
each individual is consistent with consumer theory, i.e. that the individual demands G+ε
are integrable. Traditionally, empirical demand analysis conducts integrability analysis on
G without taking the unobservable heterogeneity ε into account5. However, if one wants
to explicitly interpret unobservable heterogeneity as containing preference heterogeneity,
it seems natural to also require that individual demands are integrable. The first question
that comes to mind is then whether it is possible that individual demands, G+ ε, as well
as the estimated demand, namely the conditional mean demand G, are integrable in the
usual additive model? The answer to this question is no (Brown and Walker (1989)): If G
as well as G+ε are integrable, ε must be functionally dependent on prices and/or incomes
(i.e. the additive error terms must be heteroskedastic)6. As a consequence of this result
the literature on demand systems therefore turned to formulating demand systems that
allow for unobservable heterogeneity to be functionally dependent on prices and incomes.

4The AID system was, when it was first introduced in Deaton and Muellbauer (1980(b)), estimated
on aggregate level data.

5Quoting Brown and Walker (1989): As Barten (1977) remarks, "disturbances are usually tacked on
to demand equations as a kind of afterthought".

6With the exception of homothetic preferences. If wih = αih+ εih, where E[εi] = αih− ᾱi = 0, where
ᾱi is the mean of the αih’s, then both the individual and the conditional mean demand is integrable
(because they are both Cobb-Douglas). However, there seems to be an overall consensus in the literature
on demand systems that homothetic preferences are too restrictive to realistically describe consumer
behavior.
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The natural way to do this seems to be to adopt the random utility hypothesis as an
approach for randomisation (e.g. Brown and Matzkin (1998), Beckert (2002)).

2.2 Demand Systems and Integrability: Accounting for unob-
servable Heterogeneity

Lewbel (2001) adopts the random utility approach to the additive demand system model
allowing for general heteroskedasticity of the error term and derive conditions under which
the conditional mean demand is integrable, given that individual demands are integrable.
These conditions have testable implications for panel data which is what we utilize in
this paper. In order to formulate Lewbel’s conditions, consider a sample of H households,
h = 1, ...., H. Throughout, we assume independence across households. LetN, w, ln p, lnx
and z be as before. Let η denote an L-dimensional vector of unobservable characteristics
with L ≥ N7. Let g denote the individual budget share function of household h, and let
F (η | lnx, ln p, z ) denote the conditional distribution of the unobserved characteristics in
the population, conditional on observable characteristics. We can then write individual
budget shares as

w = g(ln p, lnx, z, η)

= G(ln p, lnx, z) + ν(ln p, lnx, z, η), (1)

where G is defined as the conditional mean:

G(ln p, lnx, z) = E [w |ln p, lnx, z ]

=

Z
g(ln p, lnx, z, η)dF (η |ln p, lnx, z ). (2)

The definition of G then implies that

E [ν |ln p, lnx, z ] = 0.

Notice that this formulation of g in itself imposes no restrictions on individual budget
shares: We can choose g to be any budget share function, calculate G from (2) and then
construct ν(·) as the residual g −G. Obviously, this formulation nests the usual model.

7In order to ensure that the model produces a non-degenerate distribution of budget shares, it is
necessary that there are at least as many unobservables per individual as there are goods (Beckert
(2006)).
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Before turning to the integrability conditions, let us comment on how unobservable
heterogeneity enters in this framework as compared to how it enters in the usual model.
In the usual model, preference heterogeneity is implicitly assumed to be captured in the
ε’s. Since ε is functionally independent of observables, price - and income effects are
restricted to have the same functional form for all households: When differentiating the
budget share function with respect to prices or income, there is no contribution from
ε. This means that preference heterogeneity can only enter as level effects in the usual
model. In other words, the usual model does not allow for unobservable heterogeneity in
the marginal effects. The formulation in (1) has the household-specific error term as a
function of both unobservables and observables (as was shown is necessary for integrability
by Brown andWalker (1989)). This means that preference heterogeneity enters not just as
level effects as in the usual model, but also as slope effects. For example, two households
with identical income levels and identical observable characteristics can have different
responses to a change in income. In other words, the result of Brown and Walker (1989)
means that in order to ensure integrability both at the individual level of the conditional
mean in models that allow for preference heterogeneity, it is necessary that preference
heterogeneity enters not just as level effects (i.e. that some households persistently have
a high budget share for some good and others a low budget share independently of prices
and income levels), but also in the marginal effects (i.e. that different households respond
differently to changes in prices or in their incomes, all other things being equal).
The error term being functionally independent on prices and/or incomes, however, only

provides necessary conditions for integrability of the conditional mean demand. Sufficient
conditions are provided in Lewbel (2001). Define the N by N matrices s and s̃ by

s(ln p, lnx, z) =
∂g(ln p, lnx, z)

∂(ln p)0
+

∂g(ln p, lnx, z)

∂(lnx)
g(ln p, lnx, z)0

s̃(ln p, lnx, z) = s(ln p, lnx, z) + g(ln p, lnx, z)g(ln p, lnx, z)0 − diagg(ln p, lnx, z).

These are the budget share analogs to the Slutsky matrix. From classical demand theory
we know that the four conditions that ensure integrability of a continuously differentiable
budget share function are: Adding up (budget shares add up to one), homogeneity (the
budget share function is homogeneus of degree zero in prices and income), symmetry
(that s is symmetric8) and negativity (that s̃ is negative semidefinite). The corresponding
budget share analogs to the Slutsky matrix for the conditional mean demandG are defined

8Note that s̃ is symmetric if and only if s is symmetric.
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similarly

S(ln p, lnx, z) =
∂G(ln p, lnx, z)

∂(ln p)0
+

∂G(ln p, lnx, z)

∂(lnx)
G(ln p, lnx, z)0

S̃(ln p, lnx, z) = S(ln p, lnx, z) +G(ln p, lnx, z)G(ln p, lnx, z)0 − diagG(ln p, lnx, z).

We assume that individual demands are integrable. In addition, the following indepen-
dence assumption is invoked:

Fη ≡ F (η |lnx, ln p, z ) = F (η |z ), (3)

which, roughly speaking, states that preferences are stochastically independent of prices
and income. Under this independence assumption, S̃ can be written

S̃ = E [s̃]−M −Var [g] , (4)

where

M = {Mij}i,j=1,....,N =
½
Cov

∙
∂gi

∂(lnx)
, gj

¸¾
i,j=1,....,N

and where Var[g] is the variance-covriance matrix of g. For G to be integrable, G must
satisfy adding up, homogeneity, symmetry and negativity. Adding up follows directly
because adding up is satisfied at the individual level, and homogeneity follows from ho-
mogeneity at the individual level in conjunction with the independence assumption. Since
a variance-covariance matrix is always symmetric and positive definite, the negative of the
variance matrix −Var[g] is also symmetric and negative definite. E [s̃] is symmetric and
negative semidefinite because s̃ is symmetric and negative semidefinite, which follows from
integrability at the individual level. Therefore S̃ is symmetric if and onlyM is symmetric,
and S̃ is negative semidefinite if M is positive semidefinite. Note that the integrability
conditions are sufficient conditions: Symmetry of M is necessary and sufficient, whereas
the positive semidefiniteness of M is only sufficient.

2.3 The Matrix of Covariances

M is a matrix of covariances (not a variance-covariance matrix!). It expresses, roughly
speaking, how income effects (i.e. marginal propensities to consume) vary with budget
shares in response to changes in unobservables. Mas-Colell, Whinston and Green (1995)
interpret the positive semidefiniteness of M as consumers with higher than average con-
sumption of one commodity also tend to spend a higher than average fraction of their
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last unit of income on that commodity. The expression for the Slutsky matrix of the
conditional mean demand, S̃, in (4) displays clearly how M comes about: The Slutsky
matrix for the conditional mean demand is not equal to the conditional average of the
Slutsky matrices for the individual demands. There is "something" left over, and this
"something" is precisely the matrix of covariancesM . Integrability at the individual level
ensures that E[s̃]−Var[g] is well-behaved (negative semidefinite), but imposes no structure
whatsoever on M . This is very similar to the results found in the studies of demand ag-
gregation. Here the averageing of demands is unconditional and thus aggregation happens
over consumers with different incomes. But the same matrix of covariances (only now the
covariances are unconditional) occurs in the special case where the income distribution is
fixed (see the aggregation chapter in Mas-Colell, Whinston and Green (1995)) and also
in the case of more general income distributions (see Mas-Colell (1985)). As Mas-Colell,
Whinston and Green (1995) remark “the source of the aggregation problem rests squarely
with the wealth effects on the consumption side”. The result of Lewbel (2001) shows us
that conditioning on income does not aid in getting rid of this problem caused by the
income effects.

2.4 The Distribution of Unobservable Heterogeneity

There are two obvious cases in which the integrability conditions are met. One is the case
where M is the zero matrix. This case is for example implied by Gorman aggregation: If
all consumers have identical income effects for each commodity, then each element ofM is
the covariance between a constant and a random variable, which is always zero. Another
case is where M is so close to being the zero matrix that the negative semidefiniteness of
E[s̃]−Var[g] is large enough to make S̃ negative semidefinite. This case can be interpreted
as budget shares and income effects varying very little with unobservables, i.e. that there
is only little dispersion in preferences across consumers.
The integrability result presupposes that the distribution of unobservables conditional

on observable demographics are independent of prices and incomes ((3)). This assump-
tion has recently been examined empirically: Calvet and Comon (200?), Labeaga and
Puig (2003), Browning and Collado (2006) and Christensen (200?) all contain empirical
evidence suggesting that this assumption may not hold in the data for all commodities.
Calvet and Comon (200?) use the FES. The FES is a cross sectional data set and hence
the authors are forced to rely on a restictive identificaiton scheme (they assume that pref-
erence heterogeneity can be described by one random parameter per good and one random
parameter per individual) which may account for their strong finding; they find that the
majority of the observed variation in budget shares is due to preference heterogeneity
and hence that income effects can only explain very little of the observed differences in
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budget shares. Labeaga and Puig (2003), Browning and Collado (2006) and Christensen
(200?) all use panel data (the same panel data set, namely the ECPF) and hence they
can allow for more flexible specifications of unobservable heterogeneity than Calvet and
Comon. Differing models and tests are employed in the three papers, but the findings
are in concordance with each other, namely that for some, but not all, goods, there is
evidence of correlated heterogeneity. When employing a similar test for the data set used
in this paper we find no evidence against the independence assumption [(see Section ?)].

3 How to Formulate Preference Heterogeneity and
the Research Question

To estimate the matrix of covariancesM , we must first specify the individual budget share
function g and the distribution of preference heterogeneity F . g can be specified either
parametrically or nonparametrically. We choose a parametric specification, because this
allows us to model the unobservable household-specific characteristics η by the unknown
parameters of the individual budget share functions, which fascilitates identification. More
precisely, we model the preference heterogeneity by taking g to be a parametric demand
system and allowing some or all the parameters to be different across households. This
amounts to specifying g as a variable-coefficient model and accordingly view the coeffi-
cients as random variables with a conditional distribution, conditional on observables 9.
This conditional distribution of the coefficients is then the distribution of preference het-
erogeneity. For example, if we took g to have the most simple Working-Leser form, that
is, g(lnx) = α + β lnx , we would view α and β as random variables with a conditional
distribution across households such that each household h had its own intercept αh and its
own slope βh. The values αh and βh would be known to household h, but unknown to the
econometrician. In estimation, we can choose at one extreme to specify the distribution
of coefficients completely nonparametrically, placing no restrictions on its form. In this
case, we would estimate the distribution of coefficients as the empirical distribution of the
estimated realizations of the random variable underlying the distribution of coefficients.
Or, in other words, we would estimate each coefficient for each household. This approach
is very general. The cost of this generality is that it involves estimating a large number of
parameters; in the example above with g having the Working-Leser form, we would have
to estimate one α and one β for each household. At the other extreme, we can choose to
model the distribution of coefficients completely parametrically, for example by a normal
distribution; in the example with g having the Working-Leser form, this would involve

9We will refer to the parameters both as "coefficients" and as "parameters".
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estimating only five parameters: The mean and variance of α, the mean and variance of
β and the covariance of α with β. In between the two extremes lies a whole range of
(semi-parametric) possibilities, like for example assuming a mixture distribution for the
coefficients a la Heckman and Singer (1984).
We choose the nonparametric extreme and thus place no restrictions on the distrib-

ution of coefficients. The reason for choosing the fully nonparametric approach to the
modelling of the distribution of preference heterogeneity is that any restriction on this
distribution would be completely ad hoc; this type of model has never been estimated on
demand panel data for a complete set of goods before, and so there are no suggestions
in the literature about what is reasonable to assume about the distribution of preference
heterogeneity. Moreover, as we will show later in an example, distributional assumptions
can actually imply that the matrix of covariances is symmetric and positive semidefinite.
In other words, by imposing distributional assumptions, we risk imposing integrability
of the conditional mean demand by assumption. Obviously, this would be highly unde-
sirable. As mentioned earlier, the drawback of the fully nonparametric approach is that
it involves a large number of parameters to be estimated, and therefore we will expect
less precise estimates from this approach than from a parametric or a semiparametric
approach.
Because we assume independence across households, the model in which all parameters

are household-specific can be estimated by estimating a demand system separately for
each household. Obviously, this is only feasible because our panel data set has large T .
Our approach is similar to the idea underlying the mean-group estimator in Pesaran and
Smith (1995): Like them, we also estimate a model for each household (each group), but
where Pesaran and Smith (1995) are interested in the average regression coefficient, we
are interested in a different function of the estimated coefficients, namely in the matrix
of covariances of the income effects with the budget shares, M .
In Section 3.1 we specify g and F, in Section 3.2 we calculate the conditional mean

demand for our model, and in Section 3.3 we calculate the object of interest for the
integrability test, the matrix of covariancesM, for our model. Then we are finally able to
state the research question in precise terms. In Section 3.4 we go beyond the model and
give some examples of model specifications that in themselves lead toM being symmetric
and positive semidefinite. Note that all that follows depend on the choice of g and F ,
since the matrix of covariances M is specific to these choices.
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3.1 Individual Demands: An Almost Ideal Demand Systemwith
Household-Specific Parameters and a Nonparametric Dis-
tribution of Parameters

We choose g to be an AID system and introduce randomness in demands by making
the parameters household-specific. Then the budget share equations for the N goods for
household h are in their most general form with all parameters being household-specific
given by

wih = αih +
P

j γijh ln pj + βih [lnx− lnP (p)] , i = 1, ..., N,

where P (p) is the price index given by10

lnP (p) =
P

k αkh ln pk +
1

2

P
k

P
l γklh ln pk ln pl.

One can choose a greater or lesser degree of heterogeneity by restricting various parameters
to be identical across households. We will consider various specifications in estimation and
we return to a discussion of this point in Section 3.4. Since we assume that the demand
of each individual is generated from utility maximisation, we have the usual restrictions
on the parameters of an AID system, but now for each h 11:Pn

i=1 αih = 1,
Pn

i=1 βih = 0,
Pn

i=1 γijh = 0 for all j (5)Pn
j=1 γijh = 0 for all i (6)

γijh = γjih for all i, j. (7)

Let θ denote the vector of the parameters in the demand system, that is, θ =
((α1, ..., αN) , (β1, ..., βN) , (γ11, ......, γNN)) .The conditional distribution of preference het-
erogeneity is the conditional distribution of the unknown parameters θ, conditional on log
total expenditure, log prices and demographics. Denote it by Fθ ≡ F (α, β , γ | lnx, ln p, z ).
Thus, the independence assumption (3) translates in our model into that θ = ((α, β, γ))Ni,j=1is
conditionally independent of lnx and of ln p for all i, j, conditional on demographics z.
Denote the conditional means in the marginal distributions of the different parameters by

Eθ[βi | z ] = µβi , Eθ[αi | z ] = µαi , Eθ[γij |z ] = µγij ,

i, j = 1, ..., N, where Eθ denotes integration with respect to Fθ.

10Since the intercept parameter, usually denoted α0, in the price index is not identified we omit it
wthout any loss of generality.
11See Deaton and Muellbauer (1980a) section 3.4 or Christensen (2005) Chapter 4 Appendix A.
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3.2 The Conditional Mean Demand

The conditional mean demand for commodity i is calculated from (2) asZ
gi(lnx, ln p; θ)dFθ = Gi(lnx, ln p).

The conditional mean budget share function Gi for commodity i is thus in its most general
form given by, where we denote the price index by P (p; θ) in order to emphasize that the
price index is a function of the parameters and thus household-specific,

Gi(lnx, ln p) = Eθ[gi(ln p, lnx, z; θ) |z ]

= µαi + µβi lnx−Eθ [(βi lnP (p; θ)) |z ]

+
P

j µγij ln pj,

where we used the independence assumption in the last equality12. If we restrict the price
effects (γij, i = 1, .., N, j = 1, ..., N) to be identical across households, the conditional
mean demand is given by

Gi(lnx, ln p) = µαi + µβi lnx−Eθ

h
βi
PN

k=1 αk ln pk |z
i

−µβi
1

2

P
k

P
l γkl ln pk ln pl +

P
j γij ln pj .

Note that in neither specification is G in itself an AID system because of the term
Eθ [(β lnP (p; θ)) |z ] . If it was not for this term, G would be an AID system with para-
meters given by the conditional mean of the corresponding parameters of the individual
AID systems. But because β is not necessarily independent of lnP (p; θ), the mean of
the product of β with lnP (p; θ) is not necessarily equal to the product of the mean of
β and the mean of lnP (p; θ), and so G is not an AID system. From this observation it
is clear that this must be a general point: When introducing unobservable heterogeneity
in preferences by letting the parameters of a parametric demand system vary across in-
dividuals, the conditional mean demand will not have the generic form of the individual

12The additive error term for commodity i for household h, νih(lnx, ln p), is given by νih(lnx, ln p) =¡
αih − µαi

¢
+
³
βih − µβi

´
lnx − (βih lnP (p; θ)−Eθ [βi lnP (p; θ) |z ]) +

³P
j

³
γijh − µγij

´
ln pj

´
, from

which it is clear that this model has error terms that are functionally dependent on both prices and total
expenditure.
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demands if the individual demands are nonlinear in the parameters (i.e. are nonlinear
in the unobservable preference heterogeneity). From this statement it is now clear that
a sufficient condition for the conditional mean demand to be an AID system is that the
βi’s are conditionally independent of the parameters in the price index, αi and γij for all
i, j = 1, ...., N :

Example 1 Independent income effects
Assume that the income effect for commodity i, βi, is independent of all the other

parameters in the price index, αj and γij, j = 1, ..., N, for all i = 1, ...., N. Then the
conditional mean demand G is itself an AID system:

Gi(lnx, ln p) = µαi + µβi lnx−Eθ [βi lnP (p; θ)] +
P

j µγij ln pj,

and since βi is independent of α and γ,

Gi(lnx, ln p) = µαi + µβi lnx− Eθ [βi]Eθ[lnP (p; θ)] +
P

j µγij ln pj,

and since

Eθ[lnP (p; θ)] = Eθ[
P

k αik ln pk +
1

2

P
k

P
l γkl ln pk ln pl]

=
P

k µαik ln pk +
1

2

P
k

P
l µγkl ln pk ln pl,

then defining

lnP (p;µθ) ≡
P

k µαk ln pk +
1

2

P
k

P
l µγkl ln pk ln pl,

we can write Gi on the following form for all i = 1, ..., N

Gi(lnx, ln p) = µαi + µβi lnx− µβi lnPµθ +
P

j µγij ln pj.

Thus, G is an AID system with parameters given as the conditional means of the corre-
sponding individual parameters.

3.3 The Matrix of Covariances and the Research Question

The (i, j)’th entry in the matrix of covariances, M, is the covariance between the partial
derivative of the budget share function for commodity i with respect to lnx and the
budget share for commodity j across households. Since in our model the partial derivative
of the budget share function for household h for commodity i with respect to log total
expenditure is βih, h = 1, ..., H, the (i, j)’th entry of M for our model is given by, using
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the independence assumption of parameters being conditionally independent of prices and
total expenditures (3)

Mij = Cov [βi, gi(ln p, lnx, z; θ) |z ]

= Cov [βi, αj |z ] +Cov
£
βi, βj |z

¤
lnx

−Cov
£
βi, βj lnPθ(p) |z

¤
+Cov

£
βi,
P

k γjk ln pk |z
¤
. (8)

Now we are finally able to state the research question in precise terms. We have for-
mulated a demand system with unobservable heterogeneity which is nested within the
framework of Lewbel (2001). The integrability conditions in Lewbel (2001) then yield
that the conditional mean demand for this demand system is integrable if the matrix of
covariances M is symmetric and positive semidefinite. Our model is a demand system in
which each household has its own AID system. The research question is thus whether a
set of AID systems with all parameters being household-specific generates an integrable
conditional mean demand. Taking a closer look at M , we see that without further as-
sumptions, M is not necessarily symmetric. A sufficient condition for symmetry of M is
that each of the four terms in (8) is symmetric. But only the second term, Cov

£
βi, βj |z

¤
,

is symmetric without further assumptions. Thus, G is not necessarily integrable.

3.4 Alternative assumptions on the distribution of preference
heterogeneity

As mentioned earlier, making assumptions on the distribution of preference heterogenity
can have the unfortunate consequence that it makes M symmetric. In this section we
give two examples of such assumptions:

Example 2 Identical income effect coefficients in the AID system
Let the budget share equations for household h be given by

gi(ln p, lnx; θh) = αih + βi lnx− βi lnP (p; θ) +
P

j γijh ln pj, i = 1, ..., N,

for each h = 1, ...,H. Then the partial derivative of the budget share function for com-
modity i with respect to log total expenditure is βi for all households. Since Mij is the
covariance of the income effect for commodity i with the budget share of commodity j
across households, and since the income effect is the same for all households, Mij is the
covariance between a constant and a random variable, so Mij is zero for all i, j. This
trivially implies that M is both symmetric and positive semidefinite.
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This example shows that identical income effects for all households for all commodi-
ties in the AID system implies that the matrix of covariances is symmetric and positive
semidefinite, i.e. identical income effects imply that G is integrable.

Example 3 Income effects independent of the other parameters of the demand
system
Suppose that βi is conditionally independent of (αj, γij), j = 1, ..., N, conditional on

lnx, ln p and z for all i and consider again Mij. This independence assumption, together
with all parameters being independent of lnx and ln p, implies that the first and last terms
in Mij are zero:

C ov [βi, αj |z ] = 0

C ov
£
βi,
P

k γjk ln pk |z
¤
= 0.

Furthermore, the third term becomes

Cov
£
βi, βj lnP (p; θ) | z

¤
= Eθ

£
βiβj lnP (p; θ) | z

¤
− Eθ [βi | z ]E

£
βj lnP (p; θ) | z

¤
= Eθ

£
βiβj | z

¤
Eθ [lnP (p; θ) | z ]− Eθ [βi | z ]Eθ

£
βj | z

¤
Eθ [lnP (p; θ) | z ]

=
¡
Eθ
£
βiβj | z

¤
− Eθ [βi | z ]Eθ

£
βj | z

¤¢
Eθ [lnP (p; θ) | z ]

= Cov
£
βi, βj | z

¤
Eθ [lnP (p; θ) | z ] ,

i.e. Mij reduces to

Mij = Cov
£
βi, βj | z

¤
(lnx− Eθ [lnP (p; θ) | z ]) ,

i.e. M is symmetric. Furthermore,M is the product of the conditional variance-covariance
matrix of β = (β1, β2, β3) conditional on z and the number (lnx− Eθ [lnP (p; θ) | z ]) . The
conditional variance-covariance matrix is positive definite which implies thatM is positive
semidefinite if lnx−Eθ [lnP (p; θ) | z ] is greater than or equal to zero. P (p; θ) is a price in-
dex and thus between 0 and 1, hence lnP (p; θ) is less than or equal to zero, hence the mean
of lnP (p; θ) is also less than or equal to zero, which implies that lnx−Eθ [lnP (p; θ) | z ] is
greater than zero for all values of total expenditure greater than 1. Since total expenditure
is always much larger than 1, M is also positive semidefinite.
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Note that these examples are specific to this particular model where g is an AID sys-
tem. If chosing a different form of g, one would have to re-examine which additional as-
sumptions on the distribution of preference heterogeneity have unfortunate consequences
for that choice of g13. We chose the AID system as our basic functional form, because
the AID system is one of the most used parametric demand systems in the literature
and because the income effects in that model are simply the β’s which simplifies all our
estimations and interpretations.

4 The Econometric Model

We model individual demand as an AID system with all parameters being household-
specific and allow for heteroskedasticity across households (i.e. that each household has
its own covariance matrix). Since we have assumed independence across households and
since we have made all parameters of the demand equations household-specific, there are
no cross-equation restrictions across households and so estimation of the demand system
amounts to estimating an AID system separately for each household. The AID system
for a given household h is given by the budget share equations

wiht = αih + βih [lnxht − lnPht(p)] +
NX
j=1

γijh ln pjt +
KX
k=1

δikhzkht + εiht, (9)

i = 1, ..., N, t = 1, ..., T, with the price index given by

lnPht = α0h +
NX
k=1

αhk ln pkt +
1

2

NX
j=1

NX
k=1

γkjh ln pkt ln pjt,

for t = 1, ..., T, and where zht is a K-dimensional vector of demographics for household h
at time t and εiht is the idiosyncratic error term for household h, commodity i at time t.
Integrability at the individual level is imposed by imposing the restrictions (5), (6) and
(7) on the parameters for each household: Adding up, (5), is satisfied by leaving out one
commodity. We leave out the N ’th commodity for each household and thus end up with a
system of N−1 equations. Given that adding up is satisfied, (6) implies that homogeneity
is satisfied. (6) is imposed by replacing the N log prices with the N − 1 homogeneous (or
13If for example chosing g to be the QUAID system, identical income effects do not imply symmetry

of M, see Lewbel(2001).
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relative) log prices given by14

ln epjt = ln pjt − ln pNt, j = 1, ..., N − 1. (10)

The error term structure of the demand system for household h is given by

E [εiht] = 0, all i, t

E [εihtεjhs] = σ2ijh, all i, j, t = s

E [εihtεjhs] = 0, all i, j, t 6= s.

5 Empirical Analysis

In this section we estimate the matrix of covariancesM and test whetherM is symmetric.
The estimation of M is carried out in two steps. Recall that entry (i, j) in M is the
covariance of the budget share for commodity i with the income effect for commodity j.
In the first step, we estimate budget shares and income effects for each of the commodities
for each household. In the second step we calculate the covariance of the budget share
for commodity i with the income effect for commodity j as the sample covariance across
households of the estimated budget share for commodity i with the estimated income
effect for commodity j.

5.1 Data

The data we use is a unique Spanish panel data sets on household expenditures, the
Spanish Permanent Survey of Consumption (Encuesta Permanente de Consumo, hereafter
the ECP), collected by the Spanish National Bureau of Statistics (Instituto Nacional de
Estadistica). It is a real panel of sizeable longitudinal length: the ECP covers the years
1978-83 with quarterly information on all recorded variables with households staying in
the survey between 6 and 24 quarters. All households in the data set are headed by a
married couple and may contain children or other adults cohabiting in the household. The
data set contains information on consumption expenditures for a wide range of commodity
groups, price indices for these commodities as well as a variety of demographic variables
such as labour market status, occupation, education level of the husband, the ages of
the different household members and housing tenure. The version of the ECP we have

14PN
j=1 γij = 0 implies that γiN = −(γi1 + ... + γiN−1), which in turn implies that

PN
j=1 γij ln pj =

γi1 ln p1+...+γiN−1 ln pN−1−(γi1+ ...+γiN−1) ln pN = γi1(ln pi1−ln piN )+...γiN−1(ln piN−1− ln piN ) =PN−1
j=1 γij ln epj .
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available consists of 1641 households with more than 70 percent staying in the sample for
at least 9 consecutive quarters. The total number of observations is 21.668. For complete
lists of the variables recorded in the ECP, see Table A.1 and Table A.2 in Appendix A.
This Spanish household expenditure data set is exceptional in that it is a real panel

with detailed information on a full range of commodities and prices, as well as on de-
mographics. To the best of my knowledge, this is the longest real panels on household
consumption expenditures covering a wide range of commodity groups, we have available.
For comparison, the British Family Expenditure Survey (the FES) is a cross sectional
data set and so does not provide the same possibility of taking account of unobservable
heterogeneity. The American Consumer Expenditure Survey (the CEX) contains a ro-
tating panel with information on several commodity groups, but it only has information
on 4 quarters per household. Moreover, the consumption information in the panel part
of the CEX consists of recall data only, and rescent research shows that the best method
for collecting accurate consumption expenditure data is a combination of diary and recall
information, see Battistin (2003). In contrast, the Spanish data consists of a combination
of diary and recall information with a grouping of commodities into which are recorded
as diary information and which are recorded as recall information very close to the one
recommended in Battistin (2003). The Panel Study of Income Dynamics (the PSID) is
also a real panel and is of considerable length, but it only contains consumption expen-
diture information on food (food in and food out) and is therefore not well suited for
analyzing demand choices. The British Household Panel Survey (the BHPS) is another
real panel, but also this panel has insufficient information on consumption expenditures:
The BHPS only records expenditures on household appliances and electronics and has
one food question which asks how much the household approximately spends on food and
groceries each week 15. The European Community Household Panel Survey (the ECHP)
has no records on consumption expenditures 16. Finally, there exists a panel survey for
Japan (The Japanese Panel Survey on Consumers, the JPSC) which contains consumption
information. However, the JPSC asks all households about expenses only for the calendar
month of September 17, which makes it impossible to control for seasonal variation in
demands.
In this paper, we use a subsample of the ECP. We select a sample consisting of the

households that are observed for all 24 quarters and where the husband is all the time
employed as a wage earner with a permanent job. This results in quite a small sample
of the full data set, but there are two good reasons for this selection: Firstly, we select

15Browning, Crossley and Weber (2003) p. F563.
16The ECHP asks the household questions like "can you afford" various expenses, see Browning, Cross-

ley and Weber (2003) p. F563, but this type of information is not useful for estimating demand systems.
17Browning, Crossley and Weber (2003) p. F563.
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the households observed for all 24 quarters in order to have as many observations as
possible per household, since we need to estimate a demand system separately for each
household 18. Secondly, we select the full-time employed wage earners with permanent
jobs because by only modelling the demand (and not modelling the labor supply) we
have implicitly assumed separability between the consumption of goods and the labor
supply, and there seems to empirical evidence against this separability assumption: The
empirical findings of Browning & Meghir (1991) show rejections in the FES. By selecting
out the unemployed, the part-time employed and the employed with temporary jobs,
we increase the probability that none of the households in our sample are making labor
market descisions during the sample period which makes the assumption of separability
between consumption and labor supply more plausible. This sample selection leaves us
with a balanced panel of 87 households, each observed for 24 consecutive quarters yielding
a total of 2088 observations. The table below illustrates the sample selection:

Number of
households

Number of
observations

Total sample 1641 21668
In the survey for 24 quarters 249 5976
In the survey for 24 quarters and
husband full-time employed as
wage earner with permanent job

87 2088

Even though this is a somewhat small sample, it is worth emphasizing at this point that
this is still the longest time-series available on expenditures on a full range of goods
following the same individuals over time. It would not be possible to estimate all the
parameters of an AID system separately for each household with any other existing data
set than this 19.
The sample we have selected is clearly more homogeneous than the full data set and so

we would expect less unobserved heterogeneity in this sample than in the full data set. To
get an idea of whether there are selection problems, we compare the selected sample to the
full data set. Summary statistics are presented in Appendix A. We see from Table A.3 and
Table A.4 that there are fewer households where the husband has very low education level

18The original sample of the ECP covers three more quarters than our sample. The total number of
households (including both employed and unemployed) for 27 quarters is 413 (Labeaga (1993) p. 107).
There is thus potential scope for increasing each individual time series with 3 observations.
19As mentioned previously, the ECP is to the best of our knowledge the longest real panel data set on

household expenditures which also includes reliable demographics.
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(illiterate or less than 5 years of school), more with primary school, the same percentage
has secondary school and more have a university degree. Thus, our sample has a higher
education level than is the case in the full data set. The division of owners and renters of
hte main house is exactly the same as in the full data set, but when it comes to the second
house there is a difference: More households in our sample have a second house than in
the full data set (the fraction owning a second house is 10 percentage points higher in
our sample). This could suggest that the households in our sample is on average slightly
more wealthy. This is somewhat confirmed when looking at total expenditures (Table A.5
and Table A.6): The average is 182.365 pesetas (standard deviation of 134.273) in the full
data set, but 218.735 in our sample (standard deviation of 152.268). With regard to the
expenditures on the individual goods, then the mean expenditure for Food at home is lower
whereas the mean expenditure for Foodout is higher in our sample than in the full data
set. The average ages of the husband, respectively the wife, is lower in our sample, but the
average number of children and cohabiting adults is the same. In summary, our sample
has slightly younger, more educated and slightly more wealthy households that eat more
out than is the case in the full data set. Table A.7 provides a more detailed impression of
the types of households in our sample. Almost all households (80 households) have either
children and/or other cohabiting members. Most of the households either have children
throughout or get them at some point during the survery period (73 households) and
many households have cohabiting adults (60). Only 7 households (less than 10 percent of
our sample) have no cohabitation at all.
When estimating a demand system separately for each household, we can only identify

effects from those variables that change over time within the household. The level of the
husband’s education is time invariant. The dummy for housing tenure is time invariant for
83 of the 87 households. We therefore leave these two variables out of the demand system
estimations. As for the variables describing the size and composition of the household,
we control only for the level effect of the family size in the demand system estimation.
36 households experience changes to their family size during the survey period, so we
include family size as an explanatory variable in the demand system estimations for those
36 households only.
Next we turn to the commodity groups. To keep things simple, we construct 4 aggre-

gate commodity groups from the 12 of the 14 commodities, leaving out Rent and Durables.
The definition of the 4 commodity groups, together with their mean and standard devia-
tions, are displayed in the table below.
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Commodity group Definition Mean
Standard
deviation

Food, alcohol
& tobacco

Food at home
+ Foodout
+ Alcohol & tobacco

.54 .14

Clothing Clothing .10 .07

Utilities

Energy + Services
+ Medication
+ Education
+ Transportation
+ Other

.29 .13

Leisure activities Leisure + Holidays .07 .06

The commodity group Food, Alcohol and Tobacco constitues a larger percentage of the
total budget than is usually the case for food. It is abnormally large because the budget
share for Food at home is abnormally large; an average budget share for Food of around
30% is what is usually observed in other expenditure surveys. The reason for this is that
Spain went through a recession during the years where the ECP was collected 20.
We construct the log prices for each of the composite commodity groups as the

weighted average of the log prices for the goods in that particular commodity group,
with the weights being the average budget share for the goods. To take an example, the
log price for the commodity group Food, Alcohol & Tobacco is constructed as

ln
³
pFood, Alcohol&Tobaccot

´
= 2 ·

Ã
1

H

HX
h=1

wFood at homeht

!
· ln
¡
pFood at homet

¢
+

Ã
1

H

HX
h=1

wAlcohol&Tobaccoht

!
· ln
¡
pAlcohol&Tobaccot

¢
When estimating the demand system, the left out good will be Utilities, and therefore the
relative prices are the prices of Food, Alcohol&Tobacco, Clothing and Leisure&Holidays

20M. D. Collado (1998).
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relative to the price of Utilities:

ln ep1t = ln
³
pFood, Alcohol&Tobaccot

´
−
¡
pUtilitiest

¢
ln ep2t = ln

³
pClothingt

´
−
¡
pUtilitiest

¢
ln ep3t = ln

³
pLeisure&Holidayst

´
−
¡
pUtilitiest

¢
The variation over the sample period in relative prices is shown in Figure 1 in Appendix
A. As the graph shows there is a lot of independent variation between the three relative
prices which means that all price parameters (the price effects) should be well identified.
In the initial step in the estimation of the AID systems we deflate total expenditures

with a Stone price index. We calculate household-specific Stone price indeces, i.e. the
Stone price index for household at time t is given by

lnP ∗ht = wFood, Alcohol&Tobaccoht · ln pFood, Alcohol&Tobaccot + wClothinght · ln pClothingt

+wLeisure&Holidaysht · ln pLeisure&Holidayst + wUtilitiesht · ln pUtilitiest .

One of the most (if not the most) important parameter for our test of integrability
is the income effect for the different goods. The individual income effects are identified
off variation in total expenditure within the household. And the larger the variation in
total expenditure is within a household, the more precise will the estimate of the income
effect for that household be. We therefore examine whether there is sufficient variation in
total expenditure within the household. Firstly, a simple linear random effects panel data
estimation shows the fraction of variance in the error term which is due to the individual-
specific part, which is a measure of the within-variation in the data. As can be seen form
the table below, this fraction is between 20 and 50 percent:

Commodity
Food, Alcohol
and Tobacco

Clothing
Leisure and
Holidays

Utilities

Fraction of variance
due to individual-
specific part

.4308 .2077 .1779 .4923

Secondly, the estimate of the matrix of covariances M from the individual-specific esti-
mates will also depend on the between-variation in the data. We regress each of the budget
shares on the set of household dummies; the R2s from these regressions then measures
how much of the variation in budget shares is explained by the between variation:
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Commodity
Food, Alcohol
and Tobacco

Clothing
Leisure and
Holidays

Utilities

R2 .4794 .2301 .2189 .4843
Finally, scatterplots of the variance against the mean as well as the interquartile range

against the median are shown in Figure 2 and 3 in Appendix A. The two scatterplots
look similar, suggesting there are no problems with outliers. And since the mean and
the variance (and the median and the interquartile range) are completely uncorrelated
this suggests that there is just as much variation in total expenditures within the richer
households as there is within the poorer households.

5.2 Estimation of the Matrix of Covariances

The first step consists in estimating an AID system separately for each household. The
second step consists in estimating the matrix of covariances of the income effects with the
levels of the budget shares as the sample covariance across households of the estimated
income effects with the estimated levels of the budget shares.

5.2.1 Step 1: Estimation of the Demand System

Estimating an AID system separately for each household amounts to estimating (9) sub-
ject (??), (6) and (7) for each household. The AID system is nonlinear in parameters,
because the price index contains parameters. If there were no parameters to be esti-
mated in the price index, the system would be linear in parameters. The usual way of
estimating the AID is an iterative procedure which exploits this: In an initial step, the
parametric price index is replaced by the Stone price index and the resulting linear model
is estimated. The parameter estimates of this initial step are then used to calculate the
parametric price index, which is then inserted in place of the Stone price index. A new set
of parameters is estimated and the parametric price index is recalculated. This iterative
procedure is continued until the parameter estimates converge (converge in the sense that
they do not change from iteration to iteration) 21.
Adding up is satisfied by leaving out one good. The left out good is Utilities, so the

three commodity groups are "Food, Alcohol & Tobacco", "Clothing" and "Leisure & Hol-
idays". The included explanatory variables are log total expenditure, relative log prices,
quarterly dummies and a constant term. For the households that experience changes
to their family size during the survey period we include also family size among the ex-
planatory variables (we can only identify both the constant intercept and the coefficient on

21We set α0h = 0 for all h, since α0 in the AID system is not identified.
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family size for a given household if there are changes to family size within that household).
Homogeneity (10) and symmetry (??) are imposed in each iteration in the following

way. Suppressing the household index, let wi = (wi1, ...., wiT )
0 denote the vector of budget

shares for commodity i, let lnx = (lnx1, ...., lnxT )0 denote the vector of deflated log total
expenditure 22, let ln epi = (ln epi1, ...., ln epiT )0 denote the vector of the relative log prices
for good i, let Dq1, Dq2 and Dq3 denote the quarterly dummies for the quarters 1, 2 and
3 respectively, let z = (z1, ..., zT )0 denote the vector of family size, let εi = (εi1, ...., εiT )0

denote the vector of error terms for commodity i, let 1 denote the T -vector of ones and
let θ denote the vector of parameters. Then the AID system for a given household with
adding up, homogeneity and symmetry imposed can be written as⎡⎣ w1

w2
w3

⎤⎦ = £ X P Dq 1 Z
¤
θ +

⎡⎣ ε1
ε2
ε3

⎤⎦
where the data is organised as follows

X =

⎡⎣ lnx 0 0
0 lnx 0
0 0 lnx

⎤⎦ , P =

⎡⎣ ln ep1 ln ep2 ln ep3 0 0 0
0 ln ep1 0 ln ep2 ln ep3 0
0 0 ln ep1 0 ln ep2 ln ep3

⎤⎦
and

Dq =

⎡⎣ Dq1 Dq2 Dq3 0 0 0 0 0 0
0 0 0 Dq1 Dq2 Dq3 0 0 0
0 0 0 0 0 0 Dq1 Dq2 Dq3

⎤⎦
and

1 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , Z =

⎡⎣ z 0 0
0 z 0
0 0 z

⎤⎦
and where accordingly the parameters are organised as θ = (β1, β2, β3, γ11, γ12,
γ13, γ22, γ23, γ33, δ

dq1
1 , δdq12 , δdq13 , δdq21 , δdq22 , δdq23 , δdq31 , δdq32 , δdq33 , α1, α2, α3, δ

z
1, δ

z
2, δ

z
3)
0 and where

the error term structure is given by

E

⎡⎣⎡⎣ ε1
ε2
ε3

⎤⎦⎡⎣ ε1
ε2
ε3

⎤⎦0⎤⎦ =
⎡⎣ σ211 σ212 σ213

σ212 σ222 σ223
σ213 σ223 σ233

⎤⎦⊗ I24

22In the first iteration, log total expenditure is deflated with the Stone price index. In the following
iterations, log total expenditure is deflated with the parametric price index calculated with the parameter
estimates of the previous iteration. The point is that in each iteration, the price index is fixed which
implies that the model is linear in parameters in each iteration.
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We have 24 quarters for each household, so the vector of all three budget shares (w1, w2, w3)
0

is 72 × 1, the matrix of regressors
£
X P Dq 1 Z

¤
is 72 × 21 if family size is not

included and 72×24 if family size is included, and accordingly the vector of parameters θ
is 21× 1 if family size is not included and 24× 1 if family size is included and the vector
of error terms (ε1, ε2, ε3)

0 is 72× 1.
The AID system is estimated for each household by the iterative procedure described

above. In each iteration we estimated the model by OLS (which is consistent, but not
efficient due to the cross-equation retrictions imposed by symmetry). The outcome of this
first step estimation is 87 sets of parameter estimates of θ : bθh, h = 1, ...., 87.
For the whole demand system for all households, the total number of observations is

72 · 87 = 6264, and since family size is included for 36 households, the total number of
parameters to be estimated is 36 · 24 + 51 · 21 = 1935.

5.2.2 Step 2: Calculation of the matrix of covariances

The figures needed for estimating the matrix of covariances are the estimated income
effects and the estimated budget shares for each of the three commodities for each of the
87 households. The estimated income effects are simply the estimates of the coefficients on

log total expenditure,
³bβih´3 87

i=1h=1
. We estimate the budget share for good j for household

h by the mean over time of the predicted budget shares for good j for household h, i.e.

ŵih =
1

T

TX
t=1

ŵiht, i = 1, ..., 3, h = 1, ...,H.

The covariances of income effects with budget shares can now be calculated as the sample
covariances across households of the estimated income effects with the estimated budget
shares. Entry (i, j) of M is thus calculated as

Mij =
1

H

HX
h=1

β̂ihŵjh −
Ã
1

H

HX
h=1

β̂ih

!Ã
1

H

HX
h=1

ŵjh

!
i, j = 1, ..., 3.

5.3 Empirical Results

In this section we present and discuss the estimation results of the first and second stage
estimations and present the test results from the tests of symmetry and positive semidef-
initeness of the matrix of covariances M .
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5.3.1 Estimation Results from Step 1

The output from the first stage estimations is 87 sets of estimates of the parameters of the
AID system, one set for each household. Firstly, we compare our estimation results with
the usual estimates from an AID system (i.e. the estimates from a pooled AID model) to
get an idea of whether our individual-specific estimates are reasonable. To this end, note
that the demand for good i in the pooled AID system evaluated at unit prices (i.e. in the
base year) is given by

wi = eαi + eβi lnx, i = 1, 2, 3,

where eαi and eβi are the parameters of the pooled system. And that the aggregate demand
for our system of household-specific AID systems, evaluated at unit prices, is given by

G(lnx) = µα + µβ lnx,

where µα and µβ are the means of the corresponding household-specific parameters αih

and βih, h = 1, ...., H. This means that the Engel curve for good i in the base year
resulting from the estimation of the pooled AID model should be similar to the "Engel
curve" for good i in the base year with intercept and slope coefficients given by the mean
of the estimated household-specific intercepts and slopes. The estimates of the intercept
and slope for the pooled model as well as the means of the household-specific estimates
of intercepts and slopes are given in the table below 23:

Pooled AID
Mean of household-
specific AID systems

Intercept coefficient for good 1 (α1) 1.57835 1.39704
Intercept coefficient for good 2 (α2) .32207 .00392
Intercept coefficient for good 3 (α3) -.22152 -.08746
Slope coefficient for good 1 (β1) -.08883 -.07080
Slope coefficient for good 2 (β2) -.01795 .00980
Slope coefficient for good 3 (β3) .02426 .01251

The two sets of Engel curves for the three goods are shown in Appendix B. As can be seen,
the "Engel curve" with the mean estimates is similar to the Engel curve for the pooled
model for all three goods. We therefore conclude that our household-specific estimates
are reasonable and now turn to examining them in more detail.

23The corresponding table containing all the parameter estimates is shown in Table C.1 in Appendix
C.
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Histograms of the parameter estimates are depicted in Appendix B. It appears that
there are quite large differences in the parameter estimates across households, suggesting
that there is considerable unobservable heterogeneity in our sample. We test whether this
is indeed the case for a selected set of parameters. The most important parameters for
our integrability test are the income effects β1, β2 and β3, because, as shown previously in
Example 2 in Section 3, identical income effects across households for each good implies
that the matrix of covariances M is symmetric (exact linear aggregation or Gorman
aggregation). We test for identical income effects across households by an asymptotic
F -test. The null hypothesis is

H0 : For each i : βih = βi for all h,

which imposes 3 ·86 = 258 restrictions. Let SSRur denote the sum of squared residuals in
the unrestricted model and let SSRr denote the sum of squared residuals in the restricted
model. The F test statistic is then given by

F =
6274

1935
· SSRr − SSRur

SSRur

which is asymptotically chi-square with 258 degrees of freedom. We get a test statistic of
F = 807 which results in a p-value of nearly zero (2.36·10−67), so we strongly reject income
effects being identical across households. This means that if the matrix of covariances M
turns out to be symmetric, it is not because we have Gorman aggregation.
We also test whether the effects of the quarterly dummies are identical across house-

holds. There are two reasons for being interested in testing this. Firstly, since the quar-
terly dummies represent macro shocks one could think their effects to were similar across
households. Secondly, if the seasonal pattern effects are in fact identical across households
it would reduce the total number of parameters to be estimated by 774 to 1161, which
would increase precision of the parameter estimates considerably. We test for identical
seasonal patterns across households by an asymptotic F -test. The null hypothesis of
identical seasonal pattern effects is

H0 : For each good i and quarter j, i, j = 1, 2, 3 : δdqjih = δdqji for all h,

which imposes 9 ·86 = 774 restrictions, so the F test statistic is asymptotically chi-square
with 774 degrees of freedom. We get a test statistic of F = 1363, which results in a
p-value of nearly zero (4.275·10−35), so we strongly reject that the seasonal patterns in
demands are identical across households. This means that different households adjust
their budget shares differently over the year. One example of this could be the budget
share for Leisure&Holiday: Some households may prefer to spend more on winter holidays
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than on summer holidays, and vice versa. Another example could be the budget share
for Food, Alcohol & Tobacco: Some households may spend relatively more on celebrating
christmas, relative to their consumption of Food, Alcohol & Tobacco during the rest of
the year, than other households.
Recall that one of our arguments for modelling the distribution of preference het-

erogeneity nonparametrically was that any parametric restrictions would be totally un-
founded. If we were to model the distribution of preference heterogeneity parametrically,
an obvious choice of a parametric form would be the normal distribution. The histograms
of the parameter estimates are the naive non-parametric density estimates of the marginal
distributions of the parameters. As can be seen from the histograms of the parameter
estimates in Appendix B, not all the marginal distributions are close to fit the normal,
and indeed, skewness and kurtosis tests for normality strongly rejects normality for the
parameters β2, β3, α2, α3, γ22, γ23 and γ33

24:

Parameter β1 β2 β3 α1 α2 α3 γ11 γ12 γ13 γ22 γ23 γ33
p-value .49 0 .05 .36 0 0 .10 .54 .21 0 0 0

This suggests that modelling the distribution of preference heterogeneity by a normal
distribution would be a misspecification. However, eyeballing the histograms, it seems
that it would be fair to assume that all the marginal distributions are unimodal. So, if
we were to model the distribution of preference heterogeneity parametrically, we should
choose a distribution with unimodal marginal distributions and that allows for skewness
in the marginal distributions.
Next, we examine whether βi is correlated with the set of all α’s and γ’s for any i.

The reason we are interested in this specific correlation is that, as shown in Example 3 in
Section 3, if the income effect for commodity i is conditionally independent of all the α’s
and the γ’s for all i, then the matrix of covariances M is symmetric. We examine this by
regressing βi on the α’s and γ’s, controlling for mean family size, and then testing if any
of the α’s or γ’s are significant. Results are reported in the table below, where * indicates
that the variable is significant:

24The null hypothesis is that the variable is normal. The test statistic is based on tests for whether
skewness and kurtosis are significantly different from those of the normal. The test statistic is χ(2).
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α1 α2 α3 γ11 γ12 γ13 γ22 γ23 γ33 {α1, α1, α1}
{γ11, γ12, γ13
γ22, γ23, γ33}

β1 * * *
β2 * *
β3 * * * * * *

The income effect for good i is significantly correlated with the intercept for good i
for all goods. Furthermore, all three price effects are significantly correlated with the
income effect for Leisure&Holidays. This we take as evidence of income effects not being
uncorrelated with the α’s and γ’s. This implies that income effects are not independent
of the α’s and γ’s. This in turn means that if the matrix of covariances, M, turns out
to be symmetric, it is not because the income effects are independent of all the other
parameters in the demand system.
An underlying assumption of the integrability result in Lewbel (2001) about the con-

ditional distribution of preference heterogeneity is that it is conditionally independent of
prices and total expenditure, conditional on demographics. In our model this translates
into the conditional distribution of (α, β ,Γ) being independent of prices and total expen-
ditures, conditional on demographics. We have not imposed this assumption in estimation
because of our completely non-parametric approach, but we check it by regressing each
of the parameter estimates on the means of deflated log total expenditure, controlling for
mean family size. As can be seen from the t statistics from these regressions, the mean
total expenditure is not significant for any of the parameters:

Parameter β1 β2 β3 α1 α2 α3 γ11 γ12 γ13 γ22 γ23 γ33
t25 .04 .12 -1.46 -.08 -.41 1.57 -.86 .12 -1.54 .61 1.09 .65

This we take as evidence in favor of the independence assumption 26.
In summary, we have found firstly that when comparing our household-specific esti-

mates with the pooled estimates it seems that our estimates are reasonable. Secondly, we
have found that there is a significant large amount of unobserved heterogeneity in pref-
erences: Tests of identical income effects and identical seasonal effects across consumers
were strongly rejected. We also found that if we were to model the distribution of pref-
erence heterogeneity parametrically by some assumed disitribution, our non-parametric

25t-statistic on mean total expenditure.
26Also, Hausman tests for random effects versus fixed effects do not reject the random effects spec-

ification for any of the commodities. Although the models are different, this also points to that the
unobservable heterogeneity is uncorrelated with prices and total expenditure.
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approach suggests that this distribution should have unimodal marginal distributions,
allow for skewness in the marginal distributions and allow for correlations between the
coefficients (that is, allow for that for example β1 is correlated with γ13).

5.3.2 Estimation Results from Step 2

The estimate of the matrix of covariances M is (all elements are multiplied by 1000) 27:

cM =

⎡⎣ 2.8394 .4043 −.7723
−.4596 −.1278 .4398
.8685 −.2064 .1450

⎤⎦
When eyeballing these numbers, the first thing one notices is that the off-diagonal

elements seem similar in absolute magnitude, but have opposite signs. We have not been
able to find any interpretation of the magnitudes of the elements of M.

5.3.3 Tests of Symmetry and Positive Semidefiniteness

In this section we test whether the matrix of covariances is symmetric and positive semi-
definite. In order to make inference we need the variance-covariance matrix of cM. We
estimate the variance-covariance matrix of cM by bootstrap.
The bootstrap is a method for estimating the distribution of an estimator or a test

statistic or features of that distribution by resampling from the data. The bootstrap treats
the data as if they were the population and requires sampling with replacement from the
data. Bootstrap sampling can be done in different ways, either by resampling directly
from the data (non-parametric bootstrap) or by resampling from a model estimated from
the data (parametric bootstrap).
We do a non-parametric bootstrap and sample from the data. We sample in clusters,

that is, we sample households and for each household we sample, we sample all three
budget shares. By sampling households we maintain the (true) covariance between time
periods within a household. By sampling all three budget shares we ensure that the
adding up restriction on budget shares holds in each bootstrap sample. We draw B =
10.000 bootstrap samples and calculate the variance-covariance matrix of cM as the sample

27Row 1 is Food, Alcohol & Tobacco; row 2 is Clothing and row 3 is Leisure & Holidays.
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covariance of the boostrap samples. Let M also denote the vectorized matrix of M :

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11

M21

M31

M12

M22

M32

M13

M23

M33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let V(M) denote the variance-covariance matrix of M. To take an example, the (2, 3)’th
element of bV(cM) is then calculated as

dCov(cM21,cM31) =
1

B − 1

BX
b=1

³cM b
21
cM b
31

´
−
Ã

1

B − 1

BX
b=1

cM b
21

!Ã
1

B − 1

BX
b=1

cM b
31

!
.

Our bootstrap estimate of the variance-covariance matrix of M is (all elements are mul-
tiplied by 106 so that they correspond in magnitude to 1000 ·M) :

V̂(M) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.7167 −.5694 −.0744 −.1544 .0707 .0587 −.3588 .1252 −.0061
.8748 −.1760 .0757 −.1267 .0375 .1369 −.1049 .04132

.8127 .0231 .0436 −.1056 .0035 .0305 −.0915
.3131 −.0761 −.0433 .0202 −.0060 .0036

.1244 −.0023 −.0071 −.0023 −.0113
.1125 −.0010 −.0088 −.0116

.1863 −.0386 −.0244
.0586 .0004

.0589

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The estimate of M is repeated below, now with the bootstrapped standard errors in
parentheses:

cM =

⎡⎢⎢⎢⎣
2.8394
(1.6482)

.4043
(.5596)

−.7723
(.4316)

−.4596
(.9353)

−.1278
(.3527)

.4398
(.2421)

.8685
(.9015)

−.2064
(.3354)

.1450
(.2426)

⎤⎥⎥⎥⎦
As can be seen immediately, none of the elements of cM are significantly different from
zero on a 5 percent significance level. This means that on a 5 percent significance level
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we can not reject thatM is a matrix of zeroes in which caseM is trivially symmetric and
positive semidefinite. Below we report the χ2-statistics of the nine individual tests:

H0 :Mij = 0, i, j = 1, .., 3,

where ∗ indicates that the element is significant on a 10 percent significance level28:

Element
in cM cM11

cM21
cM31

cM12
cM22

cM32
cM13

cM23
cM33

χ2-statistic 2.965∗ .241 .927 .523 .132 .380 3.204∗ 3.302∗ .360

Recall that we are interested in whether M is symmetric. To this end, the diagonal
elements of M are thus irrelevant. Two of the off-diagonal elements of cM , however, are
different from zero on a 10 percent significance level, namely cM13 and cM23. We therefore do
the separate t-tests for whether the off-diagonal elements are different. The null hypothesis
is:

H0 :Mij −Mji = 0, i 6= j.

A rejection of H0 for just one set of (i, j) is enough to reject symmetry of M. The t-
statistics for these three tests are, again with ∗ indicating significance at the 10 percent
significance level:

Element M12 −M21 M13 −M31 M23 −M32

χ2-statistic .721 2.716∗ 2.214

For completeness, we report a joint test of whether M is the zero matrix. The null
hypothesis for this test can be written

H0 : RM = 0,

where R = I9 and M denotes the vectorized matrix of M. The Wald test statistic for H0

is then given by

W0 =
h
RcMi0 hRV(cM)R0i−1 hRcMi ,

which is asymptotically chi sqaure with 9 degrees of freedom29. We get cW0 = 8.388, i.e.
we can not reject that M is the zero matrix, even on a 10 percent significance level.
This means that we can not reject that M is symmetric, because we can not reject

that M is the zero matrix. This in turn trivially implies that M is positive semidefinite.
28The critical value on 10% significance level in the χ2(1) distribution is 2.706.
29The critical value in the χ2(9) distribution at significance level 5% is 16.919 and on significance level

10% it is 14.684.
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6 Conclusion and Further Work

In this paper we have presented a panel data test of integrability of the conditional
mean demand in a random utility model. A uniquely long panel data set on household
expenditures allowed us to model individual demands as a set of completely heterogeneous
Almost Ideal Demand systems by allowing all the parameters of the demand system to
be household-specific. We do not reject symmetry and negativity of the conditional mean
demand, our test result in a p-value of 0.76. Hence we conclude that a set of completely
heterogeneous Almost Ideal Demand systems generates a conditional mean demand that
is integrable.
The value of having integrable conditional demands is that it fascilitates welfare analy-

sis. Suppose for example that the government lowers the VAT on healthy foods; from the
demand system estimates alone we can assess quantitatively how demands will change,
but in order to assess how the welfare of the consumers change, we need a utility frame-
work. Given that integrability is not rejected, we thus know that the conditional mean
demand is generated by utility maximisation of some utility function. This paper, how-
ever, does not provide this utility function. We saw in Section 3 that the conditional mean
demand generated by a set of completely heterogeneous Almost Ideal Demand systems is
not in itself an Almost Ideal Demand system, hence the utility function underlying the
conditional mean demand is not that of an Almost Ideal Demand system. This leaves us
with the question: Given that integrability is not rejected, what can we use this condi-
tional mean demand for? We derived an expression for the conditional mean demand in
Section 3.2. Using this expression we can calculate price and income elasticities for the
conditional mean demand and so we can do positive analysis. We can not perform welfare
analysis directly using the conditonal mean demand without knowing the form of the
utility function generating it, but we can perform welfare analysis at the individual level,
since we have estimated an Almost Ideal Demand system for each household. Hence, one
could compare results of policy analyses based on the usual pooled model (i.e. not tak-
ing unobservable heterogeneity into account) to results based on the separate estimates
for each household; for example, calculations of the compensating variations following a
price change. A future version of the paper will contain such calculations. These will be
illustrative rather than deep policy analysis, given the selection criteria of the sample, but
they illustrate the difference between taking unobservable heterogeneity into account and
not taking it into account.
Finally, a discussion of the power of our test of integrability is in place. Looking at

the standard errors of cM , it is clear that symmetry and positive definiteness of cM are
not rejected because the standard errors are large enough to not reject that M is the
zero matrix. Though some people may argue that with a sample size of 87 households, a
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significance level of 10% is appropriate, in which case our test would reject integrability.
A first inclination would be to abandon the non-parametric modelling approach for

the distribution of unobservable heterogeneity and instead impose a distributional as-
sumption, e.g. joint normality, on the distribution of unobservable heterogeneity and
estimate the model by maximum likelihood instead. This approach, however, entails sev-
eral problems. Firstly, our theoretical examples in Section 3 showed how assumptions on
the distribution of preference heterogeneity could lead to integrability of the conditional
mean demand by assumption. This means that if we were to chose a distributional form
of the preference parameters, we need to allow for a general covariance-structure in that
distribution (i.e. that we need to allow at least for the income effects to correlate with
other parameters). And our tests of normality of the marginal distributions of parame-
ters indicate that we may need a joint distribution that allows for more skewness than
the normal does. All estimates of the marginal distributions, however, clearly feature a
unimodal distribution. Finding such a distribution would not be a big problem. A more
complicated issue would be to find a distribution from which the coefficients could be
randomly drawn and yet always yield integrability at the individual level. It is not at all
clear which distribution would ensure this. This highlights the motivation for the chosen
modelling strategy of estimating every household separately instead of imposing a random
utility model across households.
Another way to potentially obtain more efficient estimates would be to restrict some of

the parameters to being identical across households. For example, one could restrict the
price effects, the seasonal effects and the coefficients on household size to being identical
across households. This would reduce the number of parameters to be estimated from
1935 to 540. Alternatively, one could also consider heterogeneity in fewer goods; for
example, one could reduce the number of goods considered to two (one inside good and
one outside good), which would reduce the number of parameters to be estimated from
1935 to 179.
Finally, the large standard errors could quite simply be a small sample problem. This

suggestion can be examined in two ways. Either via simulation: One could simulate a large
data set on which the test rejects and then select a smaller sample (of our sample size)
and check if the test then fails to reject on the smaller sample. Or one could increase the
sample size by including the remaining households that are observed for all 24 quarters.
This would increase the number of households from 87 to 249. The implicit assumption
being made by this is that labour market status is exogenous in the allocation of total
expenditures to the different goods. Further work will look into some or all of these
different ways of obtaining more effecient estimates.
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A Data

Table A.1. - Consumption Expenditures in the ECP
Commodity group Description
Food at home Food at home
Alcohol & tobacco Alcoholic drinks and tobacco
Clothing Clothing

Rent
Renting (including the money paid to the owner and
the water, but not electricity, heating etc.)

Energy Electricity, heating and petrol

Services
Furniture and appliances repairing, products for
cleaning, money paid to people for cleaning the
house and other household services

Medication Medical expenses

Transportation
Car repairing, public transportation and
communications (phone, mail, etc)

Leisure Books, cinemas and other entertainments
Education Education
Foodout Restaurants and cafeterias
Holiday Holidays

Other
Hairdressing, non-durables for personal care
(soap, cosmetics etc), pocket money given to children,
other services

Durables Durables (cars, furniture, tv, etc)
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Table A.2. - Demographic Variables in the ECP
Variable name Definition

hempl:
Husband’s
employment
status

1: employed
2: unemployed
3: military service having worked before
4: retired
5: living out of property rents
6: student (none)
7: housewife (none)
8: others

hgact:
Husband’s type
of employment

0: missing
1: entrepreneurs or self-employed with employees
2: entrepreneurs or self-employed without employees
3: wage earners with a permanent job
4: wage earners with a temporary job
5: working in family business without salary
6: other

heduc:
Husband’s
education

0: illiterate
1: primary school
2: secondary school, first level
3: secondary school, second level
4: secondary school, second level, professional studies
5: university degree (3 years)
6: university degree (5 years) and PhD’s
7: less than 5 years of school

tenure:
Housing
tenure

1: renters
2: home owners
3: free accomodation
4: not documented, presumably missing

tenure2:
Housing
tenure of
second house

1: renters
2: home owners
3: free accomodation
4: not documented, presumable missing
6: does not have a second house
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Table A.3 - Summary statistics in full data set
Husband’s employment status: Percent Frequency
Employed 77,97 16.895
Retired 18,66 4044
Unemployed or out of labor force 3,37 729
Total 100 21.668
Husband’s occupational status
Wage earners with permanent job 63,56 10.738
Wage earners with temporary job 7,82 1321
Self-employed 28,61 4834
Nonpaid work 0,01 2
Total 100 16.895
Husband’s education level:
Illiterate 3,24 701
Less than 5 years of school 22,47 4869
Primary school 60,05 13.011
Secondary school 10,45 2264
University degree 3,79 823
Total 100 21.668
Housing tenure of main house:
Renters 19,3 4319
Home owners 76,18 16.506
Other (free accomodation or missing) 3,89 843
Total 100 21.668
Housing tenure of second house:
Does not have a second house 90,18 19.541
Own second house 8,57 1856
Rent or free accomodation or missing 1,25 271
Total 100 21.668
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Table A.4 - Summary statistics in sample
Husband’s education level: Percent Frequency
Illiterate 2.11 44
Less than 5 years of school 12.60 263
Primary school 69.40 1449
Secondary school 9.53 199
University degree 6.37 133
Total 100 2088
Housing tenure of main house:
Renters 21.50 449
Home owners 73.99 1545
Other (free accomodation or missing) 4.41 94
Total 100 2088
Housing tenure of second house:
Does not have a second house 80.51 1681
Own second house 17.10 357
Rent or free accomodation or missing 2.25 47
Total 100 2088
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Table A.5 - Sample means of expenditures and household composition in full data set 30

Mean Std.Dev
Food at home 100.434 56.319
Alcohol & tobacco 8.640 9.713
Clothing 21.336 22.790
Rent 13.298 49.246
Energy 17.331 19.622
Services 4.711 7.447
Medication 4.552 10.666
Transportation 9.198 15.989
Leisure 7.635 12.820
Education 6.431 14.459
Foodout 2.202 13.591
Holidays 6.398 29.807
Other 17.702 29.807
Durables 32.006 91.541
Total Expenditure 182.365 134.273

Husband’s age 51,24 11,89
Wife’s age 48,61 11,95
Number of children 1,27 1,36
Number of adults 2,55 0,80
Total household size 3,97 1,54

30These are pooled means and standard deviations, based on all 21668 observations.
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Table A.6 - Sample means of expenditures in sample

Mean Std.Dev
Food at home 82 493 44 185
Alcohol & tobacco 7315 8650
Clothing 17 454 15 619
Rent 12 000 46 021
Energy 16 786 16 583
Services 3268 2624
Medication 3855 8607
Transportation 7815 11 334
Leisure 7044 9369
Education 6509 11 842
Foodout 16 011 27 199
Holidays 4946 13 819
Other 2125 14 097
Durables 31 114 91 290
Total expenditure 218 735 152 268

Husband’s age 46.49 7.21
Wife’s age 44.17 7.84
Number of children 1.63 1.35
Number of adults 2.65 2.84
Total household size 4.29 1.49
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Table A.7 - Summary statistics of demographics in sample

Cohabitation Number of Households
Children or cohabiting members
in the household for some or all
of the survey period

80

Household consists of only the
husband and wife throughout the
survey period

7

Total 87
Children
Children in the household throughout
the survey period

59

Children arriving in the household
during the survey period

14

No children 14
Total 87
Cohabiting adults
Adults cohabiting in the household
throughout the survey period

19

Adults arriving in the household
during the survey period31

41

No adults cohabiting in the household 27
Total 87

31An arrival of an adult can also be a child that turns 18 and then counts as an adult instead.
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Figure 1: The variation in relative prices during the sample period.
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Figure 2: The correlation between the variance of log total expenditure within the house-
hold and the mean of log total expenditure within the household (thus based on 87 data
points).
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Figure 3: The correlation between the interquartile range of log total expenditure within
the household and the median of log total expenditure within the household (thus based
on 87 data points).
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B Empirical Results

Table B.1 - Parameter estimates from pooled AID and means of household-specific
estimates

Pooled AID
Means of household-
specific estimates

β1 -.08883 -.07080
β2 -.01795 .00980
β3 .02426 .01251
γ11 -.11937 -.49027
γ12 -.04830 .07321
γ13 -.08557 .01700
γ22 -.03626 -.14315
γ23 -.01537 -.03564
γ33 -.10925 -.22473
δdq11 .00034 .00470
δdq21 .00684 .01175
δdq31 .01137 .01732
δdq12 -.02460 -.02281
δdq22 -.02031 -.02045
δdq32 -.04861 -.05061
δdq13 .00460 .00335
δdq23 .00280 .00213
δdq33 .00961 .00769
δfam1 .00780 -.01091
δfam2 .00357 .00287
δfam3 -.00300 .00262
α1 1.57835 1.39704
α2 .32207 .00392
α3 -.22152 -.08746
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Food, Alcohol & Tobacco, base year
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Figure 4: Engel curve for the estimated pooled model and "Engel curve"
for the model with parameters given by the means of the individual-specific
estimated parameters for the commodity Food, Alcohol & Tobacco.
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Clothing, base year
Log total expenditure
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Figure 5: Engel curve for the estimated pooled model and "Engel curve"
for the model with parameters given by the means of the individual-specific
estimated parameters for the commodity Clothing.
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Leisure&Holidays, base year
Log total expenditure

 Pooled model  Means of individual-specific
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Figure 6: Engel curve for the estimated pooled model and "Engel curve"
for the model with parameters given by the means of the individual-specific
estimated parameters for the commodity Leisure & Holidays.
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Figure 7: Histogram of the estimated individual-specific income effects
(bβ1h)h=1,...,87 toghether with the normal distribution for the commodity Food,
Alcohol&Tobacco.
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Figure 8: Histogram of the estimated individual-specific income effects
(bβ2h)h=1,...,87 toghether with the normal distribution for the commodity
Clothing.
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Figure 9: Histogram of the estimated individual-specific income effects
(bβ3h)h=1,...,87 toghether with the normal distribution for the commodity
Leisure&Holidays.
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Figure 10: Histogram of the estimated individual-specific constant terms
(bα1h)h=1,...,87 toghether with the normal distribution for the commodity Food,
Alcohol&Tobacco.
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Figure 11: Histogram of the estimated individual-specific constant terms
(bα2h)h=1,...,87 toghether with the normal distribution for the commodity
Clothing.
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Figure 12: Histogram of the estimated individual-specific constant terms
(bα3h)h=1,...,87 toghether with the normal distribution for the commodity
Leisure & Holidays.
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Figure 13: Histogram of the estimated individual-specific own price effects
(bγ11h)h=1,...,87 toghether with the normal distribution for the commodity
Food, Alcohol&Tobacco.
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Figure 14: Histogram of the estimated individual-specific cross price effects
(bγ12h)h=1,...,87 toghether with the normal distribution for the commodities
Food, Alcohol&Tobacco and Clothing.
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Figure 15: Histogram of the estimated individual-specific cross price effects
(bγ13h)h=1,...,87 toghether with the normal distribution for the commodities
Food, Alcohol&Tobacco and Leisure & Holidays.
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Figure 16: Histogram of the estimated individual-specific own price effects
(bγ22h)h=1,...,87 toghether with the normal distribution for the commodity
Clothing.
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Figure 17: Histogram of the estimated individual-specific cross price effects
(bγ23h)h=1,...,87 toghether with the normal distribution for the commodities
Clothing and Leisure&Holidays.
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Figure 18: Histogram of the estimated individual-specific own price effects
(bγ33h)h=1,...,87 toghether with the normal distribution for the commodity
Leisure & Holidays.
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Figure 19: Histogram of the estimated individual-specific coefficient on the
quarterly dummy for quarter 1 (bδ11h)h=1,...,87 for the commodity Food, Alco-
hol&Tobacco.
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Figure 20: Histogram of the estimated individual-specific coefficient on the
quarterly dummy for quarter 2 (bδ11h)h=1,...,87 for the commodity Food, Alco-
hol&Tobacco.
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Figure 21: Histogram of the estimated individual-specific coefficient on the
quarterly dummy for quarter 3 (bδ11h)h=1,...,87 for the commodity Food, Alco-
hol&Tobacco.
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Figure 22: Histogram of the estimated individual-specific coefficient on the
quarterly dummy for quarter 1 (bδ11h)h=1,...,87 for the commodity Clothing.
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Figure 23: Histogram of the estimated individual-specific coefficient on the
quarterly dummy for quarter 2 (bδ11h)h=1,...,87 for the commodity Clothing.
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Figure 24: Histogram of the estimated individual-specific coefficient on the
quarterly dummy for quarter 3 (bδ11h)h=1,...,87 for the commodity Clothing.
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Figure 25: Histogram of the estimated individual-specific coefficient on
the quarterly dummy for quarter 1 (bδ11h)h=1,...,87 for the commodity
Leisure&Holidays.
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Figure 26: Histogram of the estimated individual-specific coefficient on
the quarterly dummy for quarter 2 (bδ11h)h=1,...,87 for the commodity
Leisure&Holidays.
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Figure 27: Histogram of the estimated individual-specific coefficient on
the quarterly dummy for quarter 3 (bδ11h)h=1,...,87 for the commodity
Leisure&Holidays.
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