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Abstract 
 

This study extends the dynamic conditional correlation model to allow day-specific correlations of 

shocks across international stock markets.  The properties of the resulting periodic dynamic 

conditional correlation (PDCC) model are examined, with the model then applied to study the 

intra-week interactions between six developed European stock markets and the US over the period 

1993 - 2005. We find very strong evidence of periodic effects in the conditional correlations of the 

shocks. The highest correlations are generally observed on Thursdays, with these Thursday 

correlations in some cases being twice those on Monday or Tuesday. Prior to estimating the PDCC 

model, periodic mean and volatility effects are removed using a PAR model for returns combined 

with a periodic EGARCH specification for the variance equation. Strong periodic mean effects are 

found for returns in the French, Italian and Spanish stock markets, whereas such effects are present 

in volatility for all stock markets except Italy. 
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1. Introduction 

An important feature of stock market prices is the presence of so-called calendar effects, by which 

predictable patterns associated with the month of the year, the day of the week or the hour of the 

day exist in mean returns and/or their volatility. The existence of such predictable patterns does 

not necessarily imply that the market is irrational, but these patterns nevertheless provide investors 

and analysts with information about the functioning of the markets and the nature of the shocks to 

which they are subject.  

This paper considers an important, but apparently unstudied, aspect of calendar effects, 

namely day-of-the-week patterns in the cross-market correlations of returns. In order to focus on 

this phenomenon, we extend the dynamic conditional correlation (DCC) model of Engle (2002) to 

allow for day-specific effects. Adopting the usual terminology that refers to models in which 

parameters change systematically with the calendar as being periodic, we refer to our model as a 

periodic dynamic conditional correlation, or PDCC, specification. Building on Engle (2002), a 

number of recent studies have investigated the dynamic behavior of conditional correlations of 

shocks across various markets (for instance see Cappiello et. al., 2003, van Dijk, Munandar and 

Hafner, 2005, among others). However, to the best of our knowledge, no study has examined 

whether these correlations exhibit systematic intra-week patterns.  

The existence of day-of-the-week patterns in returns and their volatilities is well 

established (Abraham and Ikenberg, 1994, Bessembinde and Herzel, 1993, Cross, 1973, French, 

1980, Gibbons and Hess, 1981, Keim and Stambaug, 1984, Rogalski, 1984), with Jacops and Levy 

(1988) explaining the “Monday effect” (by which returns on Mondays are lower than on other 

days) based on human nature in combination with the tendency to announce good news quickly 

and to defer bad news. Other studies investigate day-of-the-week effects in volatility; for example, 

Foster and Viswanathan (1990) demonstrate that Monday volatility tends to be higher than that of 
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other days, while other studies show day-specific effects to be pervasive for the parameters of the 

volatility equations (Bollerslev and Ghysels, 1996, Bubak and Zikes, 2006, Fantazzini and Rossi, 

2005, Franses and Paap 2000).  

The factors causing intra-week patterns in returns or volatility may also apply to cross-

market correlations. For example, if “bad news” is announced over the weekend, leading to lower 

Monday returns and higher volatility, then Monday shock correlations across markets may also be 

higher than other days, due to the observed feature that markets are more strongly correlated 

during declines than during bull runs (Cappiello, Engle and Sheppard, 2003, Longin and Solnik, 

2002, Ang and Bekaert, 2002, among others). However, the literature on day-of-the-week effects 

has examined only single markets in isolation, and hence cannot shed any light on whether cross-

market relationships display any intra-week patterns. Our study focuses on the presence (or 

otherwise) of such effects in relation to daily closing prices for six developed stock markets, 

namely those of the US, UK, Germany, France, Spain, Italy and Switzerland over the period 

January 1993 to April 2005. 

Prior to employing the PDCC model, we employ a periodic autoregressive (PAR) mean 

equation combined with a periodic generalized exponential autoregressive conditional 

heteroscedasticity (PEGARCH) volatility model for daily stock market returns. Conditioning on 

these, the estimated PDCC model for the shocks allows all parameters to be day-specific.  

Although our results generally confirm those of previous studies in relation to the presence 

of periodic effects in the mean and (more especially) the volatility equations, we find much 

stronger evidence that the conditional correlations across markets exhibit day-specific patterns. 

Therefore, we believe that periodic effects in stock markets are driven primarily by the nature of 

the shocks, whose periodic correlations may be due to systematic patterns in the days on which 

important macroeconomic data are released. 
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The remainder of this paper is structured as follows. Our PDCC model is described in 

Section 2, where its properties are also examined. Section 3 then outlines the methodology we use 

in our empirical application, while Section 4 presents the data and describes its properties in 

relation to intra-week patters. Empirical results are presented in Section 5, which includes the 

results of hypothesis tests that examine the nature of periodic effects. Finally, Section 6 concludes. 

 

 

2. The Periodic Dynamic Conditional Correlation Model 

The Dynamic Conditional Correlation (DCC) model of Engle (2002) provides an attractive 

framework for modeling the changing nature of correlations between financial time series, because 

it captures changing correlations of shocks while being relatively parsimonious1.  This section 

extends the DCC model to consider day of the week effects, and examines key properties of the 

resulting periodic DCC (PDCC) specification. 

 

2.1 Periodic conditional correlations 

We start with the multivariate n×1 stochastic process {εt} such that  

  ),0(~1 ttt ΣΩ −ε                                 (1) 

where 1 2,[ , ,..., ] 't t t ntε ε ε ε=  and Ωt-1 denotes all information available at time t-1; we will later 

associate εit with the shock relating to market i for day t. The time-varying matrix of conditional 

covariances in (1) can be written 

Σt = St Rt St,                              (2) 

                                                 
1 See also Tse and Tsui (2002), who propose a similar model. 
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where )...,,,( 21 ntttt hhhdiagS =  is the vector of conditional standard deviations, with 

][ 1
2

−= titit Eh ξε . Finally, Rt is the time-varying symmetric conditional correlation matrix with (i, 

j)th element ρij,t and 

  ....,,2,1,],[ 1, njiE tjtittij =Ω= −υυρ                (3) 

where ititit h/ευ =  is the standardized for market i at time t. 

The PDCC model represents the dynamics of ρij,t, allowing these to exhibit systematic 

intra-week patterns. In particular, generalizing the DCC model of Engle (2002), the dynamics of 

the conditional correlations are specified through  

st
s

stssttsst DBQBAACQ ][
5

1
1

'
11∑

=
−−− ++= υυ        (4) 

in which Cs is a n n×  matrix of constants, while As and Bs are n n×  diagonal matrices that account 

for the short and long run persistency, respectively, in the conditional correlation dynamics for 

each pair of markets and υt = (υ1t, υ2t, …, υnt)′. The scalar variable Dst in (4) is a dummy variable 

for day s, which is unity when t falls on day s (s = 1, 2, 3, 4, 5) and zero otherwise.  

 Since Qt in (4) does not satisfy the requirement that a correlation matrix have unit diagonal 

elements, this is imposed by defining 

1*1* )()( −−= tttt QQQR          (5) 

where Qt
* is a diagonal matrix with tiitii qq ,

*
, =  and lower case letters indicate the appropriate 

elements of the corresponding matrices. For Rt to be positive definite we require only that Qt is 

positive definite. As in Cappiello, Engle and Sheppard (2003), Qt is positive definite with 

probability one if Cs (s = 1, …., 5) is positive definite, and we return to this in the next subsection. 
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2.2 Properties of the PDCC model 

Since As and Bs are diagonal, (4) can be written in scalar form (and in an obvious notation in 

relation to (4)) as  

5

, , , , , 1 , 1 , , , 1
1

[ a a ]ij t ij s ii s jj s i t j t ii s jj s ij t st

s

q c b b q D− − −

=

= + υ υ +∑ .         (6) 

Defining ,ij t it jtψ υ υ=  and , , ,ij t ij t ij tqη ψ= − , this has the ARMA representation 

  
5

, , , , , , , 1 , , , 1 ,
1

[ (a a ) ]ij t ij s ii s jj s ii s jj s ij t ii s jj s ij t st ij t

s

c b b b b D− −

=

ψ = + + ψ − η + η∑ .      (7) 

For i, j = 1, …, n ( ji ≠ ), define the vectors ( ), ,5( 1) 1, ,5( 1) 2, ,5( 1) 5, ,..., 'ij w ij w ij w ij wψ ψ ψ− + − + − +Ψ =  and 

( ), ,5( 1) 1, ,5( 1) 2, ,5( 1) 5, ,..., 'ij w ij w ij w ij wN η η η− + − + − +=  that collate the elements relating to week w. Then the vector 

representation of (7) is (for analogous cases see Tiao and Grupe, 1988, or Osborn, 1991)2  

             ,0 , ,1 , 1 ,0 , ,1 , 1ij ij w ij ij ij w ij ij w ij ij wC N N− −Λ Ψ = + Λ Ψ + Μ + Μ                (8) 

where ( )1 ,2 ,3 ,4 ,5, , , , 'ij ij ij ij ij ijC c c c c c= ,  the autoregressive matrices are defined as 

,1

,2

,3,0 ,1

,4

,5

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 ,  ,0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

ij

ij

ijij ij

ij

ij

λ
λ

λ
λ

λ

   
   −   
   −Λ = Λ =
   −   

  −   

         (9) 

where λij,s = aii,sajj,s + bii,sbjj,s, while Mij,0, Mij,1 have the same form as Λij,0 and Λij,1 respectively, 

with the elements λij,s replaced by bii,sbjj,s (s = 1, 2, 3, 4, 5).  

From (8), the existence of the stationary mean E[Ψij,w], which is the correlation of 

(standardized) shocks between markets i and j for week w, requires the roots of the characteristic 

                                                 
2 For simplicity of notation, we assume that the first observation relates to the first day of the week (Monday). Also for 
notational simplicity, we assume that T/5 is integer and hence w = 1, 2, …, T/5, where T is the total number of daily 
observations available. 
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equation 0)1( 5,4,3,2,1,1,0, =−=Λ−Λ zz ijijijijijijij λλλλλ  to lie outside the unit circle. This condition 

is analogous to that required for the stationarity of periodic autoregressive processes; see Tiao and 

Grupe (1988) or Osborn (1991). Applied to all pairs, the PDCC model is therefore stationary, if  

   
5 5

, , , , ,
1 1

(a a ) 1, all , , 1, 2, ..., ;ij s ii s jj s ii s jj s

s s

b b i j n i j
= =

λ = + < = ≠∏ ∏ .     (10)  

  Assuming the existence of the stationary mean, it is easy to see that (8) implies that the 

unconditional weekly correlation shock matrix satisfies 

                         E[Ψij,w] = (Λij,0 – Λij,1)
-1C ij,                                   (11) 

and hence a natural consequence of the periodic specification is that distinct unconditional 

correlations of the normalized shocks υit, υjt  can apply for the different days of the week.   

 An alternative representation of (11) is obtained by noting that because υtυt′ - Qt has mean 

zero, (4) implies, assuming stationarity in mean for all i , j = 1, 2, …., n ( ji ≠ ), that 

st
s

sttssttsstt DBEBAEACE }][][{]'[
5

1

'
11

'
11∑

=
−−−− ++= υυυυυυ .      (12) 

Note that the (i, j)th element of E[υtυt′] is equal to the sth element of E[Ψij,w] in (11) when t 

corresponds to day s of the week. Writing stt QE =]'[ υυ  for day s, it follows from (12) that 

                         ssssssss BQBAQAQC 11 −− −−= .                          (13) 

Indeed, Engle (2002) specifies the DCC model using a nonperiodic version of (13), with 

QQQ s == −1s , AAs =  and BBs = (s = 1, …, 5), rather than with an unrestricted matrix of 

constants C. In our context, (10) provides the conditions for the validity of the periodic 

generalization (13) and, assuming these are satisfied, our estimated PDCC model is based on using 

(13) to substitute for Cs in (4).  
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3. Methodology  

This outline of the methodology used in our empirical application of the PDCC model begins with 

the specification of the mean and volatility equations that are estimated prior to the PDCC 

specification. The section also discusses the hypothesis tests of interest and estimation issues. 

 

3. 1 Mean and volatility equations 

To ensure that unmodelled periodic mean and volatility effects do not distort inferences from the 

PDCC specification, we employ a PAR-PEGARCH model for returns. The PAR specification for 

the means allows the autoregressive parameters to vary with the day of the week, while the 

PEGARCH specification does the same for the volatility. The PAR-PEGARCH model is 

employed separately for each market, with the mean and volatility equations estimated jointly.  

Denoting an individual stock market index at time t by tP , the PAR(p)-PEGARCH(1,1) 

model for the continuously compounded stock returns 1100*[ln( ) ln( )]t t ty P P−= − , is given by 

( )1

5

,
1

1 1

                                                 (14)

,     ~ (0,1)                                                            (15) 

(exp | | |

p

t iit s is s t t
s

t t t t

t s s t s t

y a y D

h iid

h E

φ ε

ε υ υ

ω γ υ θ υ

−=
=

− −

= + +

=

= + + −

∑∑

( )
5

1 1 ,
1

| ln )      (16)t s t s t
s

h Dυ δ− −
=

+  ∑

 

Note that all parameters in (14) and (16), namely αs, φs, ωs, γs, θs and δs, are allowed to be day-

specific. Our estimated models employ a PAR(1) in (14) since the AIC and SIC criteria are in 

favour of this specification3. The EGARCH volatility specification of Nelson (1991) is adopted in 

(16) to ensure that all implied volatilities are positive and to allow the possibility of asymmetry, so 

that negative shocks may have a different effect on volatility than positive ones. First order 

                                                 
3 Models with AR orders 1 and 5 were used in estimations to capture any possible weekly patterns in the data. 
However, the coefficients of the 5th order were insignificant and AR(1) models were preferred by AIC and SIC.  
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dynamics are used in (16) since this is widely found to adequately capture volatility dynamics. 

Here day-specific volatility persistence is measured by δs, the magnitude effect is captured by θs 

while asymmetry in volatility typically implies negative γs. In contrast to previous studies that 

employ periodic GARCH models (Bollerslev and Ghysels, 1996, Franses and Paap, 2000, 

Fantazzini and Rossi, 2005, among others), we allow the persistence parameter δ to vary over the 

days of the week and employ an EGARCH specification to ensure positive implied variances. 

The stationarity conditions for the mean process of equation (14) are well known and are 

discussed by, among others, Tiao and Grupe (1980), Osborn (1991), Franses and Paap (2000) or 

Ghysels and Osborn (2001, pp.144-146). Assuming stationarity, and in an analogous way to (11), 

a natural consequence of the PAR specification for daily returns is that distinct underlying means 

can apply for the different days of the week. 

 Since, to our knowledge, a PEGARCH model has not been employed in previous empirical 

applications, it is useful to examine the conditions for the existence of constant unconditional 

mean volatility. Employing a similar analysis to the PDCC model above, consider the PEGARCH 

volatility process of (16) and define the log conditional volatility vector for week w as Hw = 

[ln(h5(w-1)+1), ln(h5(w-1)+2), …, ln(h5(w-1)+5)]′ so that in a similar way to (8), the PEGARCH model 

(16) can be written as 

  www VHH +∆+=∆ −110 ω       (17) 

where the 5 × 5 matrices ∆0 and ∆1 are defined in terms of δ1, …, δ5 analogously to the definitions 

of Λ0, Λ1 in (9), simply replacing λij,s by δs, while ω = (ω1, ω2, …, ω5)′ and the 5 × 1 vector Vw  

has sth element |)||(| 1)1(51)1(51)1(5 −+−−+−−+− −+ swswssws E υυθυγ . Generalising the nonperiodic analysis 

of Nelson (1991) to the VAR(1) of (17), the PEGARCH process has a constant unconditional 

mean provided |δ1δ2δ3δ4δ5| < 1 and is integrated if this product is unity. 
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 Under the condition  |δ1δ2δ3δ4δ5| < 1 and by taking expectations, (17) yields 

    E[Hw] = (∆0 – ∆1)
-1
ω                  (18) 

so that the PEGARCH model allows expected log conditional volatility to be day-specific4. This 

day-specific effect may arise through periodic variation in the intercepts ωs and/or the persistence 

coefficients δs of (16). 

  

3.2 Hypotheses of interest 

Previous literature finds evidence of periodic effects in daily stock market returns and their 

volatility (Keim and Stambaug, 1984, Bessembinde and Herzel, 1993, Bollerslev and Ghysels, 

1996, Franses and Paap, 2000, among others). To investigate whether these apply also for our 

PAR(1)-PEGARCH(1,1) models, we consider the following hypotheses: 

  

5,4,3,2,1,,,:

5,4,3,2,1:

5,4,3,2,1:

5,4,3,2,1;...,,1,:

5,4,3,2,1;...,,1:

5

4

3

2

1

=====
==
==

====
===

sH

sH

sH

spiH

spiH

ssss

s

s

siis

iis

δδγγθθωω
δδ
ωω

ααφφ
φφ

   

The first two hypotheses consider the need for a periodic specification for the mean equation, 

while H3 to H5 examine periodicity in the EGARCH model. In particular, H3 examines whether the 

intercept has a periodic form, while H4 considers whether volatility persistence is day specific and 

H5 is the overall test for a nonperiodic EGARCH. In addition, we consider the null hypothesis of 

an integrated PEGARCH process, namely 

  1:
5

1
6 =∏

=s
sH δ  

                                                 
4 The properties of unconditional volatility are complex in a EGARCH model; see, for example, the expressions of 
Karanasos and Kim (2003) for the moments of εt

2 in a non-periodic EGARCH specification. 
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However, our principal interest centres on the PDCC model, and four hypotheses are 

examined to establish the nature of any periodic variation in the conditional correlations, namely  

7

8

9

10 , ,

: ( 1, 2, 3, 4, 5)

: ( 1, 2, 3, 4, 5)

: , ( 1, 2, 3, 4, 5)

: a a , ( 1, 2, ..., ; 1, 2, 3, 4, 5)

s

s

s s

jj s s jj s s

H A A s

H B B s

H A A B B s

H b b j n s

= =

= =

= = =

= = = =

 

Therefore, our tests not only examine the overall null hypothesis of no periodic coefficients in (4), 

which is represented by H9, but also whether any such periodicity is confined to the parameters 

capturing short term or long term persistency (H7 and H8 respectively). In addition, H10 examines 

whether the PDCC coefficients vary over countries, or whether the same day-specific effects are 

common across countries.  

Finally, we examine the null hypothesis that a periodically integrated PDCC is required for 

each pair of markets:  

 )...,,2,1,;(1)aa(: ,,

5

1
,,11 njijibbH sjjsii

s
sjjsii =≠=+∏

=

 

  

3.3 Estimation and inference 

Engle and Sheppard (2001) show that the log-likelihood function for a DCC model can be written 

as the sum of a returns/volatility part and a correlation part. Denoting the parameters of (14) and 

(16) by the vector ξ and the parameters in the conditional correlation matrix Rt by ζ, and assuming 

the availability of T sample observations, this result implies for our case that  

                         ( , ) ( ) ( , )v cL L Lξ ζ ξ ξ ζ= +                                                      (19) 

with volatility term  

  tttt

T

t
tv SSSnL εεπξ 11

1

'log2)2log((
2

1
)( −−

=

++−= ∑    (20) 
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and correlation component  

1

1

1
( , ) ( ' log | | ' )

2

T

c t t t t t t
t

L R Rξ ζ υ υ υ υ−

=

= − − + +∑ .                        (21) 

Following Engle (2002), we obtain consistent parameter estimates through a two step 

procedure, first maximizing the likelihood for the volatility part to find ˆ arg max{ ( )}vLξ ξ= , from 

which the residuals tε̂  and standardized residuals ttt S ευ ˆˆˆ 1−=  are obtained. These standardized 

residuals are then used to estimate ζ  as ˆ ˆarg max{ ( , )}cLζ ξ ζ= . Calculation of standard errors for 

the estimated DCC parameter vectorζ̂  takes the first step (PAR-PEGARCH estimation) into 

account, using the method described by Engle and Sheppard (2001).  

 In order to conserve degrees of freedom in estimation, the intercept matrix Cs of (4) is 

estimated through (13), replacing  sQ  by ∑ = +−+−
− 5/

1

'
)1(5)1(5

1 ˆˆ)5/(
T

w swswT υυ which corresponds to day s 

of the week. As noted in section 2.1 above, positive definiteness of Cs is important for the positive 

definiteness of Qt. However, although the sample analogue of sQ  is positive definite by 

construction, this is not sufficient to guarantee that the resulting estimated intercept matrix defined 

through (13) is necessarily positive definite even when the conditions for stationarity in mean of 

the PDCC model are satisfied. We adopt the practical solution to this potential problem of 

checking positive definiteness of Cs during estimation.  

Inference related to the null hypothesis of the absence of periodic effects in the PAR-

PEGARCH model, H1 to H5 in (14)-(16), is conducted via Wald tests, applied to models estimated 

separately for each market. However, the PDCC model is estimated jointly across all n markets, 

making computation of the corresponding joint Wald tests complex in relation to H6 to H10. 

Therefore, for ease of calculation, these latter hypothesis tests are conducted using likelihood ratio 
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statistics. Finally, the tests of the null hypotheses of integrated PEGARCH and integrated PDCC 

models, H6 and H11, respectively, are both computed using Wald statistics.  

In all cases, the test statistics are compared to the asymptotic χ2 distribution, with degrees 

of freedom given by the number of restrictions. To our knowledge, the distributions of test 

statistics for integrated EGARCH and integrated DCC specifications have not been formally 

examined. However, we presume that an asymptotic χ2 distribution applies these, based on the 

result of Lumsdaine (1995) for the corresponding test in a GARCH framework.  

 

 

4. Data 

Our stock market data consist of the closing daily prices of S&P500 (USA), DAX-30 (Germany), 

FTSE-100 (UK), CAC-40 (France), IBEX-35 (Spain) and the total indices of the Italian and Swiss 

markets5. These particular markets were chosen since they account for more than 80% of total 

stock market capitalization in Europe and four of these countries (Germany, France, Italy and 

Spain) have adopted the common Euro currency. Further, the US and UK stock markets are home 

to many of the world’s largest companies while Switzerland attracts the interest of international 

investment due to its political and economic stability and the traditionally high quality of services 

provided. The first five indices are designed to reflect the largest firms6, while the total indices 

                                                 
5 It should be noted that closing prices are non-synchronous across countries (especially between US and European 
stock markets), which may lead to underestimation of correlations (see Martens and Poon, 2001). However, we choose 
to use closing data as we believe they best represent daily returns and volatilities for each market.  
6 DAX-30 is a price-weighted index of the 30 most heavily traded stocks in the German market, while FTSE-100 is 
the senior index in the UK and consists of the largest 100 UK companies by full market value. CAC-40 is calculated 
on the basis of 40 largest French stocks based on market capitalization on the Paris Bourse. IBEX-35 is composed of 
the 35 securities quoted on the Joint Stock Exchange System of the four Spanish Stock Exchanges, while S&P500 is a 
value weighted index representing approximately 75 percent of the total US market capitalization. 
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cover all the companies listed in the market of that country. The sample period is January 1st, 1993 

to April 30th, 20057.  

 The descriptive statistics in Table 1 suggest the presence of systematic intra-week patterns. 

For example, although overall average daily returns are positive for all markets, negative average 

returns are observed on Thursdays in the UK, Germany, France and Spain. Although European 

markets generally have higher than average returns on Mondays, the US and Germany have their 

highest averages on Tuesday, with the magnitude of Tuesday’s return in relation to the overall 

average being particularly large for Germany.  Tuesday also displays relatively high volatility for 

all markets. Alongside the low average return on Thursdays, volatility also tends to be relatively 

low on this day. Finally, the day-specific first-order autocorrelations suggest an end-of-week 

versus mid-week pattern, with positive correlations on Monday with those on the preceding Friday 

and on Friday with the preceding day, while the corresponding first-order correlations are often 

negative for the remaining days of the week.  

The unconditional cross-market returns correlations in Table 2 show European markets to 

generally have their highest correlations with the US towards the end of the week (Thursday and 

Friday), and lowest correlations in the middle of the week (Tuesday and Wednesday). Indeed, the 

US/UK correlation on Wednesday, at .217, is less than half the corresponding correlation of .513 

for Friday. However, systematic correlation patterns are less evident across European market pairs. 

Although these descriptive statistics indicate the presence of day-of-the-week effects in the 

dynamics of stock market returns, both on an individual basis and in terms of the relationships 

across markets, they do not indicate the source(s) and significance of differences across days. We 

next turn to these issues, focusing especially on conditional correlations.  

                                                 
7 Since the data comes from different countries, it is unavoidable to have different holidays across markets. We 
replace a missing value by the closing price on the day before the holiday. Hence the sample for each country contains 
all days of the week except weekends.  
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5. Empirical Results 
 
This section reports the principal results, with those for the mean and volatility discussed in the 

first subsection, followed by the PDCC results in subsection 5.2.  

 

5.1 Mean and Volatility Equations 

Table 3 presents estimated values of the parameters of (14) - (16), while Table 4 gives results 

relating to the hypotheses H1 to H6 outlined in section 3.2. Before considering detailed results, it 

should be noted that the diagnostic statistics in Table 3 indicate that these models adequately 

describe the variation in the conditional mean and variance of stock returns. 

As seen from Table 4, there is strong evidence (at 1 % significance for either H1, H2, or 

both) of periodic effects in the mean equations for Italy, Spain and France, and the corresponding 

estimates in Table 3 are characterized by positive AR coefficients on Mondays and Fridays that 

are statistically significant at 5%, and smaller coefficients for other days that are typically 

insignificant and sometimes negative. The UK also displays some evidence of a PAR mean 

equation. Although a nonperiodic mean specification appears adequate for the remaining markets, 

it is nevertheless notable that estimated AR coefficients are positive and significant at 10% (or 

less) on Monday for all stock markets, which is compatible with results of Franses and Paap 

(2000), Herwartz (2000) and Bubak and Zikes (2006). Other results relating to the periodic nature 

of the mean equations also broadly agree with the previous literature, including Dubois and Louvet 

(1996), Kohers, Kohers, Kohers and Pandey (2004), Peiro (1994) and Steeley (2001). 

 Overall, Table 4 presents stronger evidence of the need for periodic modeling of the 

volatility than the mean equation, with all countries except Italy rejecting the overall hypothesis of 

nonperiodic volatility (H5) at 10% or less. However, at a conventional 5% level, neither the mean 

nor volatility for the US is found to be periodic. Although this weak evidence of periodicity for US 
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returns volatility is surprising in relation to the results of Franses and Paap (2000) and Bollerslev 

and Ghysels (1996), it should be noted that these studies use a GARCH form and hence do not 

account for the asymmetry evident in the estimated γs for the US in Table 3.  

Returning to Table 4, the results relating to H4 show that, irrespective of the significance of 

the overall test, all countries give evidence (at the 10% level) that volatility persistence is periodic. 

In other words, the volatility effects of shocks occurring on some days of the week are transferred 

more strongly than those occurring on other days. Although these results indicate that the 

nonperiodic persistency term used in previous studies is inappropriate, nevertheless, the finding 

that periodic volatility effects are not adequately captured by intercept shifts is in line with 

previous findings (Bollerslev and Ghysels 1996, Franses and Paap, 2000, Fantazzini and Rossi, 

2005, Bubak and Zikes, 2006). 

 Interestingly, for the major international stock markets of the US, UK, Germany and 

France, the estimated volatility persistence parameter δs is largest on Thursdays, while it tends to 

be relatively small on Wednesdays. The highly statistically significant asymmetry parameter γs in 

the US model (at 1% for all days) contrasts with its lack of significance for some European 

markets at the beginning of the week (Mondays and Tuesdays). Such day-specific volatility 

responses presumably reflect the different nature of information released on specific days of the 

week, an issue to which we return below.  

Although a number of individual estimated δs are greater than unity in Table 4, the periodic 

integration hypothesis 6H  is rejected for all stock markets, implying the existence of a constant, 

but day-specific, unconditional mean volatility.  
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5.2 Conditional Correlations 

Table 5 reports the estimates of the persistence coefficients of the PDCC model, with Table 6 

showing hypothesis test results for H7 to H11 of section 3.28. Notice, first, that the marginal 

significance level for H7 is around 5 percent, so that shortrun persistency, measured by the 

coefficients As in (4), does not have strong periodic variation. In contrast, the hypotheses relating 

to non-periodicity of the overall conditional correlation model and of the longrun persistency 

coefficients (H9 and H8 respectively) are rejected at less than 0.1% significance. This not only 

emphasizes the inadequacy of a non-periodic DCC model in capturing the dynamics of conditional 

correlations between these markets, but also implies that the periodic effects relate primarily to the 

longrun persistency coefficients, bjj,s. Further, the strong rejection of common PDCC coefficients 

across markets (H10) indicates that the nature of periodicity in correlations depends on the origin of 

the shock. However, the decisive rejection of the null hypothesis of an integrated PDCC model 

(H11) for all market pairs implies stability for the unconditional correlations of the shocks. 

Some patterns in the periodicity of the PDCC coefficients can be seen in Table 59. For 

instance, European markets have their highest longrun persistence coefficients at the end of the 

week (Friday in all cases, except for Germany where the largest value is for Thursday), whereas 

the US has its smallest sjjb ,
ˆ  on Friday and largest on Tuesday. Nevertheless, it is difficult to make 

detailed interpretations based on these coefficients alone. 

To facilitate interpretation of the PDCC model, Figure 1 provides indicative plots of the 

patterns found in the day-specific effects in the dynamic conditional correlations across markets. 

For instance, the US/UK plot in panel (a) shows that, throughout the sample period, the highest 

                                                 
8 Detailed results are presented in Table 5 only for the PDCC model, although restricted models were also estimated in 
order to compute the hypothesis tests in Table 6. In addition, a nonperiodic DCC model with coefficients constant 
over both countries and days (ajj,s = a, bjj,s = b, s = 1, 2, 3, 4, 5, j = 1, …, n) was estimated; no results are shown in 
relation to this last model, as the restrictions are rejected at a very high significance level.  
9 Correlations were also estimated using synchronous data (pseudo closing prices, that is prices recorded at 16:00 
London time). The patterns remain qualitatively unchanged from those reported for all pair of markets. 
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conditional correlations between these important markets occur on Thursdays and the lowest on 

Tuesdays, with the former correlation being, on average, around double the latter, with other days 

being intermediate between these extremes. The US/France plot in panel (b) shows a broadly 

similar pattern to that for the US with the UK, as do other plots (not shown) for European markets 

with the US. Indeed, with the single exception of Italy10, the highest conditional correlations of all 

European markets with the US occur on Thursdays, with the lowest being at the beginning of the 

week (Monday or Tuesday). The consistency of this daily pattern of correlations across European 

markets with the US points to the important role of the latter and implies that the high Thursday 

correlation may be associated with the release of economic information; we return to this below. 

In addition to relationships with the US, the interrelationships between stock markets in 

Europe is a topic of considerable interest, especially in the context of the introduction of the euro 

currency (see, for instance, Cappiello et al., 2003, Savva et al., 2005). The most important euro 

area stock markets are those for Germany and France, and we show their conditional correlations 

in panel (c) of Figure 1. In the earlier part of the sample period, the highest correlations tend to 

occur on Tuesday, with the correlations lowest on Thursday. However, in this case day-specific 

effects are less marked from around week 300 (late 1998) and the relative positions alter. By the 

end of the sample period, the highest correlations are on Friday and the smallest on Monday and 

Wednesday. Another notable feature of this plot is the high level of the correlation of the shocks at 

the end of the sample period, with these being 0.8 or higher for all days of the week. 

Similar patterns apply across many stock market pairs for Europe, especially those in the 

euro area. In particular, these euro area markets evidence a shift in the daily patterns of their 

correlations in the late 1990s, with the highest correlations subsequently applying at the end of the 

week (Thursdays or Fridays). Historically high correlations also apply at the end of the sample 

                                                 
10 The highest Italy/US conditional correlations apply on Wednesdays, with the second highest on Thursdays. 
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period. A further illustration of these patterns is given by the Germany/Spain conditional 

correlations in panel (d) of Figure 1, where a relatively low Monday correlations from the late-

1990s is particularly evident. 

 Finally, we also illustrate the temporal patterns in the conditional correlations between 

markets in European countries which are not members of the euro area with euro area members. In 

particular, panel (e) shows the conditional correlations for the UK and Italy, while panel (f) shows 

Germany and Switzerland. Once again, the highest correlations occur at the end of the week in the 

later part of the sample period. However, in some cases, the periodic pattern remains relatively 

constant over time, whereas in others it changes; indeed, panels (f) and (e), respectively, illustrate 

the two scenarios. When the pattern across days alters, this occurs around week 300 of the sample, 

which is a similar timing to the change between euro area markets and illustrated in panels (c) and 

(d). Many pairs involving at least one Euro Area country also show an increase in correlations at 

this period, which may be associated with the introduction of the euro and supports previous 

studies examining that issue11.   

Finally, it should be noted that the percentage differences in stock markets correlations 

across the days of the week can be very substantial, particularly when correlations with the US are 

considered, as in panels (a) and (b) of Figure 1. These are largely unchanged from the 

unconditional returns correlations shown in Table 2 and suggest that neglecting such effects might 

lead investors to make inappropriate portfolio choices.  

 

 

 

                                                 
11 For instance see Cappiello et. al. (2003), Bartram, Taylor and Wang (forthcoming), Kim, Moshirian and Wu (2005), 
Savva, Osborn and Gill (2005) among others. 
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6. Discussion and Conclusions 
 
This study investigates the presence of the-day-of-the-week effect in stock returns, volatility and 

correlations of six European stock markets and the US over the period from January 1993 to April 

2005. More specifically, our analysis extends the periodic AR-GARCH framework to examine 

whether the parameters of the dynamic conditional correlation model also vary over the days of 

the week. 

Our findings indicate the presence of day-of-the-week effects in the mean equations for 

most stock markets, with the notable exceptions of Germany and the US. There is also evidence of 

periodic variation in the coefficients of the volatility equation for all markets, although the overall 

hypothesis of no such variation cannot be rejected in the case of Italy. Interestingly, the leverage 

(asymmetry) effect in some cases varies over the days of the week. However, of most interest for 

this study, we find strong day-of-the-week patterns in the conditional correlations between 

markets. For the recent past, the correlations between European markets are highest at the end of 

the week (Thursdays and Fridays), while correlations of these markets with the US are often 

highest on Thursday and lowest at the beginning of the week.  

Many explanations have been proposed to explain the intraweek patterns in stock returns, 

volatility and, implicitly, in conditional correlations. These are based on issues such as different 

settlement procedures for different days (Lakonishok and Levi, 1982; Gibbons and Hess, 1981), 

trading volumes (Kiymaz and Berument, 2003), the timing, origin and source of information 

(Penman, 1987, Gau and Hau, 2004; Brusa, Pu and Schulman, 2005), the dependence on certain 

economic factors and macroeconomic news (Steely, 2001 and Arshanapalli, d’Ouville, Fabozzi 

and Switzer, 2006).  

In our case, the different pattern in conditional correlations through the week might be 

related to macroeconomic news announcements, namely due to the systematic pattern of news 
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announcements on important US and European macroeconomic variables. More specifically, news 

releases on employment, gross domestic product, producer/consumer price indices (among others) 

in the US are released on pre-announced dates and specific days, and these announcements cause 

substantial stock and bond market volatility (Jones, Lamont and Lumsdaine, 1998). For instance, 

employment reports are released on Fridays, producer price index on Thursdays (until 2004) and 

on Fridays (from 2005 onwards), consumer price index on Wednesdays, etc (Bureau of Labor 

Statistics, U.S. Department of Labour)12. Similarly, there are scheduled announcements of 

macroeconomic figures for the Euro Area (monetary policy decisions are announced on Thursdays 

since 1999) and the publication of weekly financial statements about the assets and liabilities held 

by the Eurosystem13 on Tuesdays, while UK monetary policy decisions of the Bank of England are 

also announced on Thursdays (since 1997). Moreover there are scheduled speeches of senior 

officials of the government and public agencies, etc14.  

Therefore, the high Thursday correlations we uncover, and also the high volatility 

persistence on this day, may be at least partially associated with economic data announcements in 

both US and Europe. Nevertheless, the day-of-the-week patterns sometimes change, suggesting it 

may be dependent on specific sample periods and markets, which supports previous evidence from 

Balaban et. al (2001). This change is particularly evident in our case around week 300, which may 

be associated with different timings of announcements considered relevant to the Euro Area in the 

latter part of the sample period compared to announcements related to individual countries for the 

earlier subsample. 

                                                 
12 More details are available on the webpage of Bureau of Labour Statistics (http://stats.bls.gov), European Central 
Bank (www.ecb.int), and Bank of England (www.bankofengland.co.uk).     
13 The Eurosystem is the central banking system of the euro area. It comprises the European Central Bank and the 
national central banks of those EU member states that have adopted the Euro (http://www.ecb.int/home/glossary). 
14 For further details on scheduled and unscheduled announcements in US and Europe, refer to Bauwens, Omrane and 
Giot (2005). 
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Identifying the day-of-the-week effect in mean, volatility and correlation is important for 

several reasons. For example investors may adjust their portfolios by increasing (reducing) their 

assets whose volatility is expected to reduce (increase) and use the predicted values of volatility in 

valuation of certain assets (such as stock index options). Investors that are interested in including 

international markets in their portfolios need to know if these markets are integrated and how the 

extent of this integration varies across the days of the week. At the same time, policymakers are 

interested in the impact of their policy changes, and these effects may be felt internationally. 

However, predictability and seasonality of stock returns found in this paper need not imply market 

inefficiency. In particular, the marked intra-week patterns in the conditional correlations of shocks 

across markets do not imply any opportunity for investment gains, but rather may simply indicate 

common reactions across international markets to relevant news. 

This paper opens up a new dimension to the study of international stock market 

interactions, by showing that day-of-the-week effect are prevalent in correlation patterns across 

markets. Although we speculate that these patterns may be at least partly associated with 

announcement effects for macroeconomic data, a detailed test of this possibility is an issue for 

further research. 
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Table 1. Descriptive Statistics for Daily Returns 
 

  Overall Monday Tuesday Wednesday Thursday Friday 

UK       

Observations 3214 642 643 643 643 643 

Mean 0.016 0.047 0.024 0.020 -0.032 0.022 

Std. Deviation 1.111 1.041 1.089 1.056 0.998 1.084 

Autocorrelation 0.007 0.017 -0.021 -0.001 -0.007 0.015 

Germany       

Observations 3214 642 643 643 643 643 

Mean 0.031 0.022 0.095 0.044 -0.002 -0.005 

Std. Deviation 2.197 1.446 1.615 1.448 1.421 1.476 

Autocorrelation -0.016 0.004 -0.015 -0.019 -0.003 0.013 

France       

Observations 3214 642 643 643 643 643 

Mean 0.023 0.042 0.024 0.049 -0.033 0.034 

Std. Deviation 1.846 1.286 1.415 1.344 1.305 1.439 

Autocorrelation 0.015 0.013 -0.015 -0.006 -0.006 0.029 

Italy       

Observations 3214 642 643 643 643 643 

Mean 0.046 0.007 0.054 0.072 0.031 0.068 

Std. Deviation 1.497 1.194 1.366 1.194 1.189 1.167 

Autocorrelation 0.134 0.035 0.032 0.018 0.003 0.043 

Spain       

Observations 3214 642 643 643 643 643 

Mean 0.042 0.104 -0.019 0.094 -0.042 0.072 

Std. Deviation 1.769 1.289 1.391 1.290 1.313 1.363 

Autocorrelation 0.039 0.027 -0.019 0.001 0.009 0.021 

Switzerland       

Observations 3214 642 643 643 643 643 

Mean 0.032 0.056 0.044 0.015 0.020 0.024 

Std. Deviation 1.381 1.110 1.289 1.177 1.063 1.226 

Autocorrelation 0.042 0.018 -0.016 -0.009 0.010 0.034 

USA       

Observations 3214 642 643 643 643 643 

Mean 0.030 0.009 0.059 0.040 0.033 0.014 

Std. Deviation 1.047 1.038 1.080 1.088 0.998 1.036 

Autocorrelation -0.014 0.009 0.010 -0.018 -0.026 0.008 
 

Notes: 
Autocorrelation values are computed in relation to the returns of the previous day.  
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Table 2.  Unconditional Correlations for Daily Returns 

 
  UK Germany France Italy Spain Switz US 
Overall        
UK 1       
Germany 0.691 1      
France 0.782 0.765 1     
Italy 0.505 0.560 0.551 1    
Spain 0.686 0.691 0.775 0.538 1   
Switz 0.715 0.710 0.735 0.519 0.679 1  
USA 0.410 0.466 0.429 0.242 0.386 0.378 1 
Monday               
UK 1       
Germany 0.747 1      
France 0.779 0.821 1     
Italy 0.554 0.594 0.579 1    
Spain 0.696 0.750 0.784 0.591 1   
Switz 0.756 0.788 0.781 0.579 0.726 1  
USA 0.435 0.510 0.463 0.305 0.434 0.425 1 
Tuesday               
UK 1       
Germany 0.713 1      
France 0.800 0.784 1     
Italy 0.491 0.560 0.531 1    
Spain 0.674 0.667 0.772 0.482 1   
Switz 0.704 0.733 0.762 0.503 0.677 1  
USA 0.382 0.353 0.399 0.175 0.320 0.275 1 
Wednesday              
UK 1       
Germany 0.688 1      
France 0.765 0.760 1     
Italy 0.449 0.533 0.532 1    
Spain 0.687 0.686 0.776 0.514 1   
Switz 0.675 0.692 0.709 0.473 0.674 1  
USA 0.257 0.402 0.296 0.134 0.280 0.280 1 
Thursday               
UK 1       
Germany 0.649 1      
France 0.816 0.747 1     
Italy 0.531 0.576 0.588 1    
Spain 0.716 0.699 0.805 0.572 1   
Switz 0.737 0.671 0.726 0.542 0.687 1  
USA 0.453 0.551 0.484 0.336 0.441 0.462 1 
Friday               
UK 1       
Germany 0.651 1      
France 0.746 0.705 1     
Italy 0.491 0.528 0.523 1    
Spain 0.655 0.645 0.731 0.525 1   
Switz 0.693 0.650 0.684 0.483 0.626 1  
USA 0.513 0.511 0.498 0.254 0.454 0.438 1 
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Table 3. Estimated PAR-PEGARCH Model for Each Market 
 

Day Parameter UK Germany France Italy Spain Switz. USA 
Monday α1 -0.001 0.059 0.016 0.016 -0.008 0.052 0.072** 

 φ11 0.134*** 0.076* 0.087** 0.324*** 0.199*** 0.109** 0.056* 

 ω1 -0.053 0.026 0.043 -0.044 0.076 -0.086 -0.155** 

 γ1 -0.026 -0.029 -0.059*** -0.036 -0.017 -0.066** -0.101*** 

 θ1 0.101*** 0.118*** 0.140*** 0.210*** 0.167*** 0.140*** 0.148*** 

 δ1 0.763*** 1.010*** 0.872*** 1.098*** 0.923*** 0.812*** 0.986*** 

Tuesday α2 0.027 0.049 0.046 0.029** 0.073* 0.023 0.010 

 φ12 -0.046 -0.044 -0.063* 0.081** -0.045 -0.052 -0.041 

 ω2 0.041 -0.024 0.090 -0.007 0.036 0.165 0.078 

 γ2 -0.095*** -0.034 -0.035* -0.038 -0.049* -0.026 -0.079*** 

 θ2 0.114*** 0.159*** 0.106*** 0.143*** 0.153*** 0.184*** 0.083*** 

 δ2 1.256*** 1.066*** 1.066*** 0.888*** 1.001*** 1.176*** 0.911*** 

Wednesday α3 0.008 0.034 -0.040 0.010 -0.026 0.030 0.047* 

 φ13 0.028 -0.051 0.001 0.143*** 0.070 0.015 0.001 

 ω3 0.042 0.170** -0.020 -0.053 0.036 -0.167 0.027 

 γ3 -0.051*** -0.055*** -0.059*** -0.038 -0.088*** -0.097*** -0.098*** 

 θ3 0.124*** 0.226*** 0.127*** 0.218*** 0.180*** 0.149*** 0.130*** 

 δ3 0.791*** 0.790*** 0.775*** 1.081*** 0.845*** 0.930*** 0.953*** 

Thursday α4 0.021 -0.015 0.018 0.052 0.116*** 0.040 -0.021 

 φ14 -0.032 -0.027 -0.055 0.084** 0.033 0.008 0.048 

 ω4 -0.090 0.070 -0.073 0.299*** 0.127 0.318*** 0.040 

 γ4 -0.101*** -0.058** -0.048* -0.041 -0.049** -0.077** -0.092*** 

 θ4 0.141*** 0.132*** 0.055 0.185*** 0.032 0.133*** 0.070*** 

 δ4 1.329*** 1.118*** 1.386*** 0.923*** 1.030*** 0.925*** 1.151*** 

Friday α5 0.033 0.038 0.050 0.026 0.116*** 0.059* 0.015 

 φ15 0.022 0.014 0.098** 0.244*** 0.091** 0.071* 0.037 

 ω5 0.050 -0.214* -0.018 -0.164 -0.274 -0.222** 0.007 

 γ5 -0.064*** -0.100*** -0.068*** -0.040 -0.036 -0.147*** -0.084*** 

 θ5 -0.008 0.079** 0.026 0.138** 0.075 0.130*** 0.108*** 

 δ5 0.933*** 0.974*** 0.951*** 0.951*** 1.146*** 1.069*** 0.941*** 

Log Likelihood -4172.25 -5170.06 -5128.51 -4731.76 -5023.85 -4494.64 -4186.32 

Q(10) 
  17.124*  

( 0.072) 
9.962 

(0.444) 
10.671 
(0.384) 

14.917 
(0.135) 

10.731 
(0.379) 

12.361 
(0.262) 

11.757 
(0.302) 

Q2(10) 
 

 8.765 
(0.555) 

10.497 
( 0.398) 

11.471 
(0.322) 

12.038 
(0.282) 

11.536 
(0.317) 

5.820 
(0.835) 

4.786 
(0.905) 

ARCH-LM 
 

8.445 
(0.585) 

10.059 
(0.435) 

12.038 
(0.283) 

13.187 
(0.213) 

11.382 
(0.329) 

5.898 
(0.824) 

4.590 
(0.917) 

 
Notes: 
The estimated model is given by equations (14) to (16).  
*** denotes significance at 1% level, ** denotes significance at 5% level, * denotes significance at 10% level.  
Q(10) and Q2(10) are the Ljung-Box Statistics for the standardised and squared standardised residuals respectively, 
ARCH-LM denotes the Lagrange multiplier test for the presence of ARCH effects in the standardised residuals; p-
values are in parentheses. 
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Table 4. Hypothesis Tests for PAR-PEGARCH Models 

Hypothesis 
Degrees of 

freedom UK Germany France Italy Spain Switz. USA 

Mean Equation:         

H1 Nonperiodic AR 4 12.865** 
(0.012) 

6.017 
(0.198) 

16.146*** 
(0.003) 

21.528*** 
(0.000) 

20.327*** 
(0.000) 

8.210* 
(0.084) 

3.139 
(0.535) 

H2 
Nonperiodic AR; 

nonperiodic intercept 8 13.181 
(0.106) 

7.586 
(0.475) 

19.149** 
(0.014) 

26.014*** 
(0.001) 

29.939*** 
(0.000) 

10.919 
(0.206) 

8.821 
(0.358) 

Volatility Equation       

H3 Nonperiodic intercept 4 
1.237 

(0.872) 
8.064* 
(0.089) 

1.980 
(0.739) 

13.248** 
(0.010) 

3.165 
(0.531) 

16.250*** 
(0.003) 

6.242 
(0.182) 

H4 
Nonperiodic 
persistence 4 

11.318** 
(0.023) 

28.874*** 
(0.000) 

9.324* 
(0.053) 

7.879* 
(0.096) 

43.080*** 
(0.000) 

10.341** 
(0.035) 

8.840* 
(0.065) 

H5 
Nonperiodic 
EGARCH 16 

28.055** 
(0.031) 

32.916*** 
(0.000) 

25.961* 
(0.055) 

19.918 
(0.224) 

28.742*** 
(0.000) 

26.468** 
(0.048) 

25.006* 
(0.070) 

H6 
Integrated 
PEGARCH 1 

17.025*** 
(0.000) 

11.876*** 
(0.001) 

7.236*** 
(0.007) 

8.704*** 
(0.003) 

10.303*** 
(0.001) 

18.655*** 
(0.000) 

54.391*** 
(0.000) 

Notes: 
H1  and H2 examine periodicity in (14), while H3 to  H5 relate to (16). All statistics are computed as Wald tests and are compared to an asymptotic χ2 
distribution, with p-values in parentheses. *** denotes significance at 1% level; ** denotes significance at 5% level; * denotes significance at 10% level. 

 
Table 5. Estimated Coefficients for Dynamic Conditional Correlation Model 

 UK Germany France Italy Spain Switz. USA 
Shortrun persistence (ajj,s)      
Monday 0.153*** 0.066*** 0.117*** 0.102*** 0.104*** 0.155*** 0.048*** 
Tuesday 0.167*** 0.102*** 0.068*** 0.048*** 0.094*** 0.104*** 0.065*** 
Wednesday 0.140*** 0.117*** 0.148*** 0.102*** 0.148*** 0.105*** 0.056*** 
Thursday 0.107*** 0.101*** 0.106*** 0.089*** 0.125*** 0.078*** 0.058*** 
Friday 0.093*** 0.076*** 0.069*** 0.090*** 0.122*** 0.080*** 0.036** 
Longrun persistence (bjj,s)      
Monday 1.023*** 0.825*** 1.075*** 1.206*** 0.785*** 1.205*** 1.025*** 
Tuesday 1.027*** 0.950*** 0.803*** 0.870*** 1.031*** 0.876*** 1.205*** 
Wednesday 0.867*** 1.026*** 1.067*** 0.883*** 1.165*** 0.888*** 0.993*** 
Thursday 0.902*** 1.231*** 0.805*** 0.858*** 0.818*** 0.821*** 0.985*** 
Friday 1.135*** 0.988*** 1.305*** 1.218*** 1.239*** 1.225*** 0.841*** 
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Table 6. Hypothesis Tests for Periodic DCC Model 

Panel A: Periodic DCC Coefficients 

Hypothesis Degrees of 
freedom 

Statistic 
 

H7 
Nonperiodic 

ajj 
28 41.56** 

(0.048) 

H8 
Nonperiodic 

bjj 
28 116.78*** 

(0.000) 

H9 
Nonperiodic 

DCC 56 169.56*** 
(0.000) 

H10 Simple PDCC 60 218.26*** 
(0.000) 

Panel B: Periodic Integration (H11) 
 UK Germany France Italy Spain Switz 

Germany 
34.120*** 
(0.000)      

France 
45.175*** 
(0.0000 

12.715 
(0.000)***     

Italy 
59.547*** 
(0.000) 

12.688*** 
(0.000) 

23.116*** 
(0.000)    

Spain 
47.596*** 
(0.000) 

17.907*** 
(0.000) 

20.336*** 
(0.000) 

29.805*** 
(0.000)   

Switz 
62.960*** 
(0.000) 

32.639*** 
(0.000) 

48.226*** 
(0.000) 

54.838*** 
(0.000) 

53.859*** 
(0.000)  

US 
52.415*** 
(0.000) 

13.464*** 
(0.000) 

16.974*** 
(0.000) 

15.112*** 
(0.000) 

28.873*** 
(0.000) 

41.839*** 
(0.000) 

 
Notes: 
H6 to H10 examine periodicity in (4) using likelihood ratio test statistics. H11 tests the null hypothesis of an 
integrated periodic DCC model for the country pair using a Wald test with one degree of freedom. All statistics 
are tested against an asymptotic χ2 distribution, with p-values in parentheses. 
*** denotes significance at 1% level; ** denotes significance at 5% level; * denotes significance at 10% level. 
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Figure 1. Daily Correlation Plots 
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(b) US-France 
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(c) Germany-France 
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(d) Germany-Spain 
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(e) UK-Italy 
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(f) Germany-Switzerland  
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