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Abstract

This study extends the dynamic conditional corir@hatmodel to allow day-specific correlations of
shocks across international stock markets. Theeptes of the resulting periodic dynamic
conditional correlation (PDCC) model are examinedh the model then applied to study the
intra-week interactions between six developed Eemopstock markets and the US over the period
1993 - 2005. We find very strong evidence of padadfects in the conditional correlations of the
shocks. The highest correlations are generally rebdeon Thursdays, with these Thursday
correlations in some cases being twice those ondslpior Tuesday. Prior to estimating the PDCC
model, periodic mean and volatility effects are ogsd using a PAR model for returns combined
with a periodic EGARCH specification for the vari@nequation. Strong periodic mean effects are
found for returns in the French, Italian and Spasi®ck markets, whereas such effects are present
in volatility for all stock markets except Italy.

JEL Classifications: G10; G12; G22.
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1. Introduction

An important feature of stock market prices is pinesence of so-called calendar effects, by which
predictable patterns associated with the montihefyear, the day of the week or the hour of the
day exist in mean returns and/or their volatilithe existence of such predictable patterns does
not necessarily imply that the market is irratiorait these patterns nevertheless provide investors
and analysts with information about the functionofghe markets and the nature of the shocks to
which they are subject.

This paper considers an important, but apparemnistudied, aspect of calendar effects,
namely day-of-the-week patterns in the cross-macketelations of returns. In order to focus on
this phenomenon, we extend the dynamic conditioogklation (DCC) model of Engle (2002) to
allow for day-specific effects. Adopting the usdafminology that refers to models in which
parameters change systematically with the caleaddeing periodic, we refer to our model as a
periodic dynamic conditional correlation, or PDCEpecification. Building on Engle (2002), a
number of recent studies have investigated the rdimaehavior of conditional correlations of
shocks across various markets (for instance sepi€lapet. al., 2003, van Dijk, Munandar and
Hafner, 2005, among others). However, to the bésiuo knowledge, no study has examined
whether these correlations exhibit systematic integk patterns.

The existence of day-of-the-week patterns in retuemd their volatilities is well
established (Abraham and lkenberg, 1994, Bessemtand Herzel, 1993, Cross, 1973, French,
1980, Gibbons and Hess, 1981, Keim and Stamba@g, Fbgalski, 1984), with Jacops and Levy
(1988) explaining the “Monday effect” (by which weds on Mondays are lower than on other
days) based on human nature in combination withtehdency to announce good news quickly
and to defer bad news. Other studies investigateotithe-week effects in volatility; for example,

Foster and Viswanathan (1990) demonstrate that Bprdlatility tends to be higher than that of



other days, while other studies show day-specifiects to be pervasive for the parameters of the
volatility equations (Bollerslev and Ghysels, 1986bak and Zikes, 2006, Fantazzini and Rossi,
2005, Franses and Paap 2000).

The factors causing intra-week patterns in retumnsolatility may also apply to cross-
market correlations. For example, if “bad newsamounced over the weekend, leading to lower
Monday returns and higher volatility, then Mond&pesk correlations across markets may also be
higher than other days, due to the observed fedhat markets are more strongly correlated
during declines than during bull runs (Cappiellogle and Sheppard, 2003, Longin and Solnik,
2002, Ang and Bekaert, 2002, among others). Howehkerliterature on day-of-the-week effects
has examined only single markets in isolation, lamdce cannot shed any light on whether cross-
market relationships display any intra-week pa#er@ur study focuses on the presence (or
otherwise) of such effects in relation to daily ssty prices for six developed stock markets,
namely those of the US, UK, Germany, France, Spi&aty and Switzerland over the period
January 1993 to April 2005.

Prior to employing the PDCC model, we employ aquid autoregressive (PAR) mean
equation combined with a periodic generalized erptial autoregressive conditional
heteroscedasticity (PEGARCH) volatility model faailgt stock market returns. Conditioning on
these, the estimated PDCC model for the shocke/aléil parameters to be day-specific.

Although our results generally confirm those ofyioes studies in relation to the presence
of periodic effects in the mean and (more espepidhe volatility equations, we find much
stronger evidence that the conditional correlatiansoss markets exhibit day-specific patterns.
Therefore, we believe that periodic effects in ktowarkets are driven primarily by the nature of
the shocks, whose periodic correlations may betdusystematic patterns in the days on which

important macroeconomic data are released.



The remainder of this paper is structured as faglo@ur PDCC model is described in
Section 2, where its properties are also exami8edtion 3 then outlines the methodology we use
in our empirical application, while Section 4 pnetsethe data and describes its properties in
relation to intra-week patters. Empirical resulte @resented in Section 5, which includes the

results of hypothesis tests that examine the natuperiodic effects. Finally, Section 6 concludes.

2. The Periodic Dynamic Conditional Correlation Model

The Dynamic Conditional Correlation (DCC) model Bhgle (2002) provides an attractive
framework for modeling the changing nature of datiens between financial time series, because
it captures changing correlations of shocks whiééng relatively parsimoniods This section
extends the DCC model to consider day of the wdkgdcts, and examines key properties of the

resulting periodic DCC (PDCC) specification.

2.1 Periodic conditional correlations

We start with the multivariatex1 stochastic processj such that
&Q.,~@©7%) 1)
whereg, =[&,,€,,,....£,]' and Q; denotes all information available at tinke; we will later

associate;; with the shock relating to markefor dayt. The time-varying matrix of conditional
covariances in (1) can be written

% =SRS, (2)

! See also Tse and Tsui (2002), who propose a simibael.
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where S, =diag(y/hy, /., --..4/h,) is the vector of conditional standard deviatiomsth
h, = E[eif|ft_l]. Finally, R; is the time-varying symmetric conditional correat matrix with
j)™ elemenp;;; and
Py = Elv, v, Q] 1,i=12..,n (3)
whereu, =¢, /\/h_t is the standardized for markedt timet.
The PDCC model represents the dynamicg;gf allowing these to exhibit systematic

intra-week patterns. In particular, generalizing Ii\CC model of Engle (2002), the dynamics of

the conditional correlations are specified through
5
Q =2 [C, + Au, A +BQB,]D, (4)
s=1

in which Cs is anxn matrix of constants, whil&s andBs are nxn diagonal matrices that account
for the short and long run persistency, respegtjviel the conditional correlation dynamics for
each pair of markets ang = (uy, U2, ..., Ux)'. The scalar variablBg in (4) is a dummy variable
for days, which is unity whert falls on days (s= 1, 2, 3, 4, 5) and zero otherwise.

SinceQ; in (4) does not satisfy the requirement that aetation matrix have unit diagonal

elements, this is imposed by defining
R=(Q)"Q Q)" (5)
whereQ, is a diagonal matrix withg;, =,/g;, and lower case letters indicate the appropriate

elements of the corresponding matrices. Roto be positive definite we require only th@tis
positive definite. As in Cappiello, Engle and Sheab (2003),Q; is positive definite with

probability one ifCs (s=1, ...., 5) is positive definite, and we returrthies in the next subsection.



2.2 Properties of the PDCC model

Since As and Bs are diagonal(4) can be written in scalar form (and in an obsigwtation in

relation to (4)) as

5

Qi = ;[ e T 2585 0, 0, b, b g, D, . (6)
Defining ¢, , =u,v0,, andn,;, =¢; , —q;,, this has the ARMA representation
Py = Z[cj + (aa,, + b0, )0, — b0, 1D, +n, . (7)
For i, j = 1, ..., n (i#]), define the vectors¥, , = (z//ij'S(le,z//,j soe1y 2 W wm)' and

N, = (/7l s/l s 278 s 3 Q that collate the elements relating to weekThen the vector
representation of (7) is (for analogous cases &®eand Grupe, 1988, or Osborn, 1991)

/\u OLP - C +/\IJ 1LIJ|J w-1 I\/Iij ,ONij w + I\/Iij ,Nij w- o (8)

whereC,; (c”l,cIJ 2:Cj 3G 4G 5) the autoregressive matrices are defined as

1 0 0 O 00004,

4, 1 0 0 0 0000 O
/\j,o: 0 _41,3 1 0 O /\j,lz 0000 Of, 9)

0o 0 4, 1 0 0000 O

0 0 0 A, 1 0000 O

where ;s = aiisajjs + biidjj.s While Mjj 0, Mjj 1 have the same form &g and ;1 respectively,
with the elementd;; s replaced by bjjs (S= 1, 2, 3, 4, 5).
From (8), the existence of the stationary md#i’;,], which is the correlation of

(standardized) shocks between markedadj for weekw, requires the roots of the characteristic

2 For simplicity of notation, we assume that thstfsbservation relates to the first day of the w@é@nday). Also for
notational simplicity, we assume thEb is integer and henae = 1, 2, ...,T/5, whereT is the total number of daily
observations available.



equation‘/\” At ’12{ = (= A4 oA 4 44 s2) =0 to lie outside the unit circle. This condition

is analogous to that required for the stationasftperiodic autoregressive processes; see Tiao and

Grupe (1988) or Osborn (1991). Applied to all paine PDCC model is therefore stationary, if
[T . = [, +b.b,) <l allij,=12 . ni=j. (10)
s=1 s=1

Assuming the existence of the stationary meairs, @asy to see that (8) implies that the
unconditional weekly correlation shock matrix deis
E[Wijul = (A0 — Aij) "Cij, (11)
and hence a natural consequence of the periodicifispdon is that distinct unconditional
correlations of the normalized shoaksv;: can apply for the different days of the week.
An alternative representation of (11) is obtaibgchoting that becausgau;’ - Q; has mean

zero, (4) implies, assuming stationarity in meamalbi ,j = 1, 2, ....n (i # j), that

Elvu']= i{ C, + AE[v 0, ]A +B.E[, 0, ,]B} Dy (12)

=

Note that thei( j)" element ofE[uw] is equal to thes" element ofE[W;j4] in (11) whent

corresponds to dagof the weekWriting E[u,u,'] = Q, for days, it follows from (12) that
C,=Q,-AQ,,A -BQ,B;. (13)

Indeed, Engle (2002) specifies the DCC model usangonperiodic version of (13), with

Q. =Q.,=Q, A=A and B,=B(s = 1, ..., 5), rather than with an unrestricted nxatf

constantsC. In our context, (10) provides the conditions fiwe validity of the periodic

generalization (13) and, assuming these are satjghur estimated PDCC model is based on using

(13) to substitute fo€s in (4).



3. Methodology

This outline of the methodology used in our empiri@pplication of the PDCC model begins with
the specification of the mean and volatility eqoas that are estimated prior to the PDCC

specification. The section also discusses the Imgsi tests of interest and estimation issues.

3. 1 Mean and volatility eguations

To ensure that unmodelled periodic mean and vityagffects do not distort inferences from the
PDCC specification, we employ a PAR-PEGARCH moadelréturns. The PAR specification for
the means allows the autoregressive parametersrio with the day of the week, while the
PEGARCH specification does the same for the vdiatiiThe PAR-PEGARCH model is
employed separately for each market, with the naahvolatility equations estimated jointly.

Denoting an individual stock market index at tinmby P, the PARp)-PEGARCH(1,1)

model for the continuously compounded stock returns100*[In(R) —In(R_,)], is given by

y=3 (a+X ey o, +& (14)

s=1

g =uqh, u ~iid(0,2) (1%

h =Y exe v, +6, (I, FE bal)+ o nh D, (6)

Note that all parameters in (14) and (16), namglys, ws, ys, 6s andds, are allowed to be day-
specific. Our estimated models employ a PAR(1)1#4) (since the AIC and SIC criteria are in
favour of this specificatioh The EGARCH volatility specification of Nelson @B) is adopted in

(16) to ensure that all implied volatilities aresfitve and to allow the possibility of asymmetrg, s

that negative shocks may have a different effectvolatility than positive ones. First order

% Models with AR orders 1 and 5 were used in esfonatto capture any possible weekly patterns indhta.
However, the coefficients of thd'®Brder were insignificant and AR(1) models werefgmed by AIC and SIC.
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dynamics are used in (16) since this is widely tbim adequately capture volatility dynamics.
Here day-specific volatility persistence is meaduog Js, the magnitude effect is captured &y
while asymmetry in volatility typically implies nagve ys. In contrast to previous studies that
employ periodic GARCH models (Bollerslev and Ghgsel996, Franses and Paap, 2000,
Fantazzini and Rossi, 2005, among others), we alt@\persistence parameteto vary over the
days of the week and employ an EGARCH specificatioansure positive implied variances.

The stationarity conditions for the mean processafation (14) are well known and are
discussed by, among others, Tiao and Grupe (1@93)prn (1991), Franses and Paap (2000) or
Ghysels and Osborn (2001, pp.144-146). Assumirtgpetaity, and in an analogous way to (11),
a natural consequence of the PAR specificatiord&lly returns is that distinct underlying means
can apply for the different days of the week.

Since, to our knowledge, a PEGARCH model has aehlemployed in previous empirical
applications, it is useful to examine the condiidor the existence of constant unconditional
mean volatility. Employing a similar analysis te@tRDCC model above, consider the PEGARCH
volatility process of (16) and define the log cdimfial volatility vector for weelkw asH,, =
[IN(hsw-1)+1), IN(Ns@-1)+2), ..., IN(hsw-1)+5)]" SO that in a similar way to (8), the PEGARCH model
(16) can be written as

AH,=a+AH, , +V, (17)
where the 5 x 5 matrices andA; are defined in terms @4, ..., Js analogously to the definitions
of Ao, A1 in (9), simply replacinglijs by &, while w = (w1, wo, ..., ws)' and the 5 x 1 vectov,,

hass" element YsUsuenyssa T Os (| Uswogyrsa | B [Usuenyess ) - GENEralising the nonperiodic analysis

of Nelson (1991) to the VAR(1) of (17), the PEGARQ@ibcess has a constant unconditional

mean provided}d.0z049s5| < 1 and is integrated if this product is unity.



Under the conditiond{d.d3049s5| < 1 and by taking expectations, (17) yields
E[Hu] = (Ao —A1) "o (18)
so that the PEGARCH model allows expected log dandil volatility to be day-speciffc This
day-specific effect may arise through periodic a&on in the intercept®s and/or the persistence

coefficientsos of (16).

3.2 Hypotheses of interest

Previous literature finds evidence of periodic effein daily stock market returns and their
volatility (Keim and Stambaug, 1984, Bessembindd Herzel, 1993, Bollerslev and Ghysels,
1996, Franses and Paap, 2000, among others). Bstigate whether these apply also for our

PAR(1)-PEGARCH(1,1) models, we consider the follogvhypotheses:

Hit¢gs=¢ 1=1..,p;s=12345
H,:g.=¢@,a.,=a i=1..,ps=12345
Hy:w,=w s=1 2345

H,:0,=0 s=12345
Hoiw,=wb,=6,y.,=y,0,=0 s=1 2345

The first two hypotheses consider the need for réioghe specification for the mean equation,
while H3 to Hs examine periodicity in the EGARCH model. In partanyH; examines whether the
intercept has a periodic form, whité, considers whether volatility persistence is dagctr and
Hs is the overall test for a nonperiodic EGARCH. td#ion, we consider the null hypothesis of

an integrated PEGARCH process, namely

* The properties of unconditional volatility are qoiex in a EGARCH model; see, for example, the esgimns of
Karanasos and Kim (2003) for the moments/oih a non-periodic EGARCH specification.
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However, our principal interest centres on the PD@adel, and four hypotheses are
examined to establish the nature of any periodi@tian in the conditional correlations, namely

H A=A (s=1234,5)

H,:B =B (s=1234,5)

Hy:A =AB =B (s=1234,5)

Hyra, =a,b. =b (j=12..,ms5s=12345)
Therefore, our tests not only examine the ovendll mypothesis of no periodic coefficients in (4),
which is represented biflg, but also whether any such periodicity is confinedhe parameters
capturing short term or long term persistendy éndHs respectively). In additiorl;o examines
whether the PDCC coefficients vary over countr@swhether the same day-specific effects are
common across countries.

Finally, we examine the null hypothesis that agdidally integrated PDCC is required for

each pair of markets:

5

Hy,: rl (aii,sajj,s +b|i,sbjj,s) =1 (i#):,j=42..,n)

3.3 Estimation and inference

Engle and Sheppard (2001) show that the log-likelchfunction for a DCC model can be written
as the sum of a returns/volatility part and a datien part. Denoting the parameters of (14) and
(16) by the vecto¥ and the parameters in the conditional correlatiatrix R; by ¢, and assuming
the availability ofT sample observations, this result implies for asecthat

L&) = L)+ L Q) (19)

with volatility term

L(©)= 33 (nlog2n) +2logls| +£'S"S (20)

11



and correlation component
1 il i -1
Lc(f,Z)=-§Z(-Ut y +log|R [+u, Ry, ). (21)
t=1

Following Engle (2002), we obtain consistent par@mestimates through a two step

procedure, first maximizing the likelihood for thelatility part to find 5 =argmax{, ¢ )}, from
which the residuals?, and standardized residuals = S, are obtained. These standardized
residuals are then used to estiméteasf =arg max{, (3 { )}. Calculation of standard errors for

the estimated DCC parameter veaﬁortakes the first step (PAR-PEGARCH estimation) into

account, using the method described by Engle aegi&ird (2001).

In order to conserve degrees of freedom in estonatine intercept matrixCs of (4) is

T/50
w=1

estimated through (13), replacin@, by (T/5)‘1Z 5(W—1)+50I5(w—1)+s which corresponds to day

of the week. As noted in section 2.1 above, positivenilehess ofCs is important for the positive
definiteness ofQ,. However, although the sample analogue Qf is positive definite by

construction, this is not sufficient to guarantee thatresulting estimated intercept matrix defined
through (13) is necessarily positive definite even wiendonditions for stationarity in mean of
the PDCC model are satisfied. We adopt the practiclaitiso to this potential problem of
checking positive definiteness Gf during estimation.

Inference related to the null hypothesis of the absefqgeeriodic effects in the PAR-
PEGARCH modelH; to Hs in (14)-(16), is conducted via Wald tests, applied to nsoestimated
separately for each market. However, the PDCC modedtimated jointly across atl markets,
making computation of the corresponding joint Wald testmiptex in relation toHs to Hio.

Therefore, for ease of calculation, these latter hypahests are conducted using likelihood ratio

12



statistics. Finally, the tests of the null hypothesemtagrated PEGARCH and integrated PDCC
modelsHes andH13, respectively, are both computed using Wald stagistic

In all cases, the test statistics are comparedet@slymptoticy’ distribution, with degrees
of freedom given by the number of restrictions. To our Kedge, the distributions of test
statistics for integrated EGARCH and integrated DCEcHjations have not been formally
examined. However, we presume that an asympj@tidistribution applies these, based on the

result of Lumsdaine (1995) for the corresponding test iARGH framework.

4. Data

Our stock market data consist of the closing dailggziof S&P500 (USA), DAX-30 (Germany),
FTSE-100 (UK), CAC-40 (France), IBEX-35 (Spain) andtittal indices of the Italian and Swiss
markets. These particular markets were chosen since they acémuniore than 80% of total
stock market capitalization in Europe and four of thesentries (Germany, France, Italy and
Spain) have adopted the common Euro currency. FuttetJS and UK stock markets are home
to many of the world’s largest companies while Switaedll attracts the interest of international
investment due to its political and economic stability dredttaditionally high quality of services

provided. The first five indices are designed to mfile largest firnfs while the total indices

® |t should be noted that closing prices are non4ssorus across countries (especially between USEamdpean
stock markets), which may lead to underestimatforoarelations (see Martens and Poon, 2001). Howewe choose
to use closing data as we believe they best repirelsdy returns and volatilities for each market.

® DAX-30 is a price-weighted index of the 30 mosavigy traded stocks in the German market, while ETI0 is

the senior index in the UK and consists of thedatd 00 UK companies by full market value. CAC-4d@4alculated
on the basis of 40 largest French stocks basedavkeincapitalization on the Paris Bourse. IBEX-8&dmposed of
the 35 securities quoted on the Joint Stock Exch@ygtem of the four Spanish Stock Exchanges, v@#e500 is a
value weighted index representing approximatelp@&izent of the total US market capitalization.

13



cover all the companies listed in the market of tmantry. The sample period is Januaty 1993
to April 30", 2005.

The descriptive statistics in Table 1 suggest thegmree of systematic intra-week patterns.
For example, although overall average daily returns asdiy® for all markets, negative average
returns are observed on Thursdays in the UK, Germanycé&ramd Spain. Although European
markets generally have higher than average returns onayienthe US and Germany have their
highest averages on Tuesday, with the magnitude of Tyesddurn in relation to the overall
average being particularly large for Germany. Tagsalso displays relatively high volatility for
all markets. Alongside the low average return on Thaysdvolatility also tends to be relatively
low on this day. Finally, the day-specific first-ordast@correlations suggest an end-of-week
versus mid-week pattern, with positive correlationdvionday with those on the preceding Friday
and on Friday with the preceding day, while the corresmgnfiist-order correlations are often
negative for the remaining days of the week.

The unconditional cross-market returns correlation§ahle 2 show European markets to
generally have their highest correlations with the U&atds the end of the week (Thursday and
Friday), and lowest correlations in the middle of week (Tuesday and Wednesday). Indeed, the
US/UK correlation on Wednesday, at .217, is less thantimalcorresponding correlation of .513
for Friday. However, systematic correlation pattermsless evident across European market pairs.

Although these descriptive statistics indicate the presehday-of-the-week effects in the
dynamics of stock market returns, both on an individ@sidand in terms of the relationships
across markets, they do not indicate the source(s) andicaguié of differences across days. We

next turn to these issues, focusing especially on conditicorrelations.

’ Since the data comes from different countriess itmavoidable to have different holidays acrossketar We
replace a missing value by the closing price ordtinebefore the holiday. Hence the sample for eacimtry contains
all days of the week except weekends.

14



5. Empirical Results

This section reports the principal results, withséador the mean and volatility discussed in the

first subsection, followed by the PDCC results in subsp@i2.

5.1 Mean and Volatility Equations

Table 3 presents estimated values of the parametedipt (16), while Table 4 gives results
relating to the hypothesés$; to He outlined in section 3.2. Before considering detailed ltgsit
should be noted that the diagnostic statistics in Tabiled@ate that these models adequately
describe the variation in the conditional mean and vagiahstock returns.

As seen from Table 4, there is strong evidence (atsig¥ificance for eitheH;, H», or
both) of periodic effects in the mean equations foyJt8pain and France, and the corresponding
estimates in Table 3 are characterized by positive Ad¥ficeents on Mondays and Fridays that
are statistically significant at 5%, and smaller Gomts for other days that are typically
insignificant and sometimes negative. The UK also ldigp some evidence of a PAR mean
equation. Although a nonperiodic mean specification ap@erguate for the remaining markets,
it is nevertheless notable that estimated AR coeffisi@né positive and significant at 10% (or
less) on Monday for all stock markets, which is confgatwith results of Franses and Paap
(2000), Herwartz (2000) and Bubak and Zikes (2006). Othertsemlifiting to the periodic nature
of the mean equations also broadly agree with the previteuature, including Dubois and Louvet
(1996), Kohers, Kohers, Kohers and Pandey (2004), Peiro (28843teeley (2001).

Overall, Table 4 presents stronger evidence of #wednfor periodic modeling of the
volatility than the mean equation, with all countries exde&y rejecting the overall hypothesis of
nonperiodic volatility Hs) at 10% or less. However, at a conventional 5% levéherethe mean

nor volatility for the US is found to be periodic. Althouthiis weak evidence of periodicity for US

15



returns volatility is surprising in relation to the résuf Franses and Paap (2000) and Bollerslev
and Ghysels (1996), it should be noted that these studeesst GARCH form and hence do not
account for the asymmetry evident in the estimg4éar the US in Table 3.

Returning to Table 4, the results relatingitpshow that, irrespective of the significance of
the overall test, all countries give evidence (atli& level) that volatility persistence is periodic.
In other words, the volatility effects of shocks actg on some days of the week are transferred
more strongly than those occurring on other days. Althouglsethresults indicate that the
nonperiodic persistency term used in previous studies ppiopriate, nevertheless, the finding
that periodic volatility effects are not adequatebptured by intercept shifts is in line with
previous findings (Bollerslev and Ghysels 1996, FransesPaagh, 2000, Fantazzini and Rossi,
2005, Bubak and Zikes, 2006).

Interestingly, for the major international stock netskof the US, UK, Germany and
France, the estimated volatility persistence parandgterlargest on Thursdays, while it tends to
be relatively small on Wednesdays. The highly stasiljicsignificant asymmetry parametgrin
the US model (at 1% for all days) contrasts with &skl of significance for some European
markets at the beginning of the week (Mondays and Tuskd&uch day-specific volatility
responses presumably reflect the different nature ofnmdtion released on specific days of the
week, an issue to which we return below.

Although a number of individual estimatégare greater than unity in Table 4, the periodic

integration hypothesid, is rejected for all stock markets, implying the &ge of a constant,

but day-specific, unconditional mean volatility.
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5.2 Conditional Correlations

Table 5 reports the estimates of the persistenceicieets of the PDCC model, with Table 6
showing hypothesis test results filr to Hi; of section 3.2 Notice, first, that the marginal
significance level forH; is around 5 percent, so that shortrun persistencysunead by the
coefficientsAs in (4), does not have strong periodic variation. In contrasthjtpetheses relating
to non-periodicity of the overall conditional corretati model and of the longrun persistency
coefficients Hy and Hg respectively) are rejected at less than 0.1% sigmifie. This not only
emphasizes the inadequacy of a non-periodic DCC modelpituring the dynamics of conditional
correlations between these markets, but also implaghle periodic effects relate primarily to the
longrun persistency coefficientls; s. Further, the strong rejection of common PDCC coieffits
across marketdo) indicates that the nature of periodicity in correlatideapends on the origin of
the shock. However, the decisive rejection of the nullokiygsis of an integrated PDCC model
(H11) for all market pairs implies stability for the umzbtional correlations of the shocks.

Some patterns in the periodicity of the PDCC coigffits can be seen in Tablé For
instance, European markets have their highest longrun teexstscoefficients at the end of the

week (Friday in all cases, except for Germany wherdatgest value is for Thursday), whereas
the US has its smalleégjys on Friday and largest on Tuesday. Nevertheless difficult to make
detailed interpretations based on these coefficientgalon

To facilitate interpretation of the PDCC model, Figar@rovides indicative plots of the

patterns found in the day-specific effects in the dyinasonditional correlations across markets.

For instance, the US/UK plot in panel (a) shows thagughout the sample period, the highest

8 Detailed results are presented in Table 5 onlytferPDCC model, although restricted models wese astimated in
order to compute the hypothesis tests in Tablen@ddition, a nonperiodic DCC model with coeffidemonstant
over both countries and days;{ = a, bjs=b, s=1, 2, 3, 4, 5] = 1, ...,n) was estimated; no results are shown in
relation to this last model, as the restrictiores@jected at a very high significance level.

° Correlations were also estimated using synchromiaia (pseudo closing prices, that is prices rembrat 16:00
London time). The patterns remain qualitatively hemoged from those reported for all pair of markets.
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conditional correlations between these important marsetsir on Thursdays and the lowest on
Tuesdays, with the former correlation being, on aweragound double the latter, with other days
being intermediate between these extremes. The U rplot in panel (b) shows a broadly

similar pattern to that for the US with the UK, as dceotblots (not shown) for European markets
with the US. Indeed, with the single exception afyi’, the highest conditional correlations of all

European markets with the US occur on Thursdays, twéHowest being at the beginning of the
week (Monday or Tuesday). The consistency of this/galtern of correlations across European
markets with the US points to the important role & ltter and implies that the high Thursday
correlation may be associated with the release of eaignaformation; we return to this below.

In addition to relationships with the US, the interielahips between stock markets in
Europe is a topic of considerable interest, espedalthe context of the introduction of the euro
currency (see, for instance, Cappiello et al., 2003, Satned, 2005). The most important euro
area stock markets are those for Germany and France,eastiow their conditional correlations
in panel (c) of Figure 1. In the earlier part of the glperiod, the highest correlations tend to
occur on Tuesday, with the correlations lowest on ThyrsHawever, in this case day-specific
effects are less marked from around week 300 (late 19@Bjhe relative positions alter. By the
end of the sample period, the highest correlatioasoarFriday and the smallest on Monday and
Wednesday. Another notable feature of this plot iigh level of the correlation of the shocks at
the end of the sample period, with these being 0.8 oehiigh all days of the week.

Similar patterns apply across many stock market pair&urope, especially those in the
euro area. In particular, these euro area marketkergce a shift in the daily patterns of their
correlations in the late 1990s, with the highest caiicela subsequently applying at the end of the

week (Thursdays or Fridays). Historically high correlagi@iso apply at the end of the sample

19 The highest Italy/US conditional correlations apph Wednesdays, with the second highest on Thyssda
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period. A further illustration of these patterns gsven by the Germany/Spain conditional
correlations in panel (d) of Figure 1, where a re@jiMow Monday correlations from the late-
1990s is particularly evident.

Finally, we also illustrate the temporal patternsthe conditional correlations between
markets in European countries which are not membetsedauro area with euro area members. In
particular, panel (e) shows the conditional correlationshie UK and Italy, while panel (f) shows
Germany and Switzerland. Once again, the highest atime$ occur at the end of the week in the
later part of the sample period. However, in some ¢dkesperiodic pattern remains relatively
constant over time, whereas in others it changes; ingeeels (f) and (e), respectively, illustrate
the two scenarios. When the pattern across days,dltés occurs around week 300 of the sample,
which is a similar timing to the change between euea anarkets and illustrated in panels (c) and
(d). Many pairs involving at least one Euro Area country alsmv an increase in correlations at
this period, which may be associated with the intrtidacof the euro and supports previous
studies examining that isste

Finally, it should be noted that the percentage diffeeenn stock markets correlations
across the days of the week can be very substardrgicydarly when correlations with the US are
considered, as in panels (a) and (b) of Figure 1.s@hare largely unchanged from the
unconditional returns correlations shown in Table 2 and suggEsneglecting such effects might

lead investors to make inappropriate portfolio choices.

" For instance see Cappie#b al. (2003), Bartram, Taylor and Wang (forthcoming)irkiMoshirian and Wu (2005),
Savva, Osborn and Gill (2005) among others.
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6. Discussion and Conclusions

This study investigates the presence of the-day-of-thekweéfect in stock returns, volatility and
correlations of six European stock markets and the ¢ the period from January 1993 to April
2005. More specifically, our analysis extends the periddR-GARCH framework to examine
whether the parameters of the dynamic conditional cdioalanodel also vary over the days of
the week.

Our findings indicate the presence of day-of-the-wef&cts in the mean equations for
most stock markets, with the notable exceptionsarhtany and the US. There is also evidence of
periodic variation in the coefficients of the volagiléquation for all markets, although the overall
hypothesis of no such variation cannot be rejected indbe of Italy. Interestingly, the leverage
(asymmetry) effect in some cases varies over the afalyge week. However, of most interest for
this study, we find strong day-of-the-week patterns hia tonditional correlations between
markets. For the recent past, the correlations betkeeopean markets are highest at the end of
the week (Thursdays and Fridays), while correlationshef¢ markets with the US are often
highest on Thursday and lowest at the beginning of the week.

Many explanations have been proposed to explain theviegta patterns in stock returns,
volatility and, implicitly, in conditional correlations.n€se are based on issues such as different
settlement procedures for different days (Lakonishoklaewd, 1982; Gibbons and Hess, 1981),
trading volumes (Kiymaz and Berument, 2003), the timinggimrand source of information
(Penman, 1987, Gau and Hau, 2004; Brusa, Pu and Schui6@h), the dependence on certain
economic factors and macroeconomic news (Steely, 2001 esithdapalli, d’Ouville, Fabozzi
and Switzer, 2006).

In our case, the different pattern in conditional datirens through the week might be

related to macroeconomic news announcements, namely dhe twystematic pattern of news
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announcements on important US and European macroecomanables. More specifically, news
releases on employment, gross domestic product, prodassumer price indices (among others)
in the US are released on pre-announced dates andicpagié, and these announcements cause
substantial stock and bond market volatility (Jones, LarandtLumsdaine, 1998). For instance,
employment reports are released on Fridays, producer imdex on Thursdays (until 2004) and
on Fridays (from 2005 onwards), consumer price index on A&ethys, etc (Bureau of Labor
Statistics, U.S. Department of Labddr)Similarly, there are scheduled announcements of
macroeconomic figures for the Euro Area (monetary pal@gisions are announced on Thursdays
since 1999) and the publication of weekly financial stat@sabout the assets and liabilities held
by the Eurosystefon Tuesdays, while UK monetary policy decisions of8hak of England are
also announced on Thursdays (since 1997). Moreover therecla@duted speeches of senior
officials of the government and public agencies:‘etc

Therefore, the high Thursday correlations we uncoved also the high volatility
persistence on this day, may be at least partiallycaded with economic data announcements in
both US and Europe. Nevertheless, the day-of-the-wettdrps sometimes change, suggesting it
may be dependent on specific sample periods and manketd) supports previous evidence from
Balabanet. al (2001). This change is particularly evident in our caseind week 300, which may
be associated with different timings of announcementsidered relevant to the Euro Area in the
latter part of the sample period compared to announcemedatsd to individual countries for the

earlier subsample.

12 More details are available on the webpage of BuifalLabour Statisticshftp:/stats.bls.qdy European Central
Bank (vww.ecb.in}, and Bank of Englandywvw.bankofengland.co.)k

3 The Eurosystem is the central banking system efeiliro area. It comprises the European Central Bandkthe
national central banks of those EU member statdshtéive adopted the Eurattfy://www.ecb.int/home/glossary

14 For further details on scheduled and unscheduleduncements in US and Europe, refer to Bauwensaterand
Giot (2005).
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Identifying the day-of-the-week effect in mean, vibilgt and correlation is important for
several reasons. For example investors may adjustgbgfolios by increasing (reducing) their
assets whose volatility is expected to reduce (increagklse the predicted values of volatility in
valuation of certain assets (such as stock index mgjtionvestors that are interested in including
international markets in their portfolios need to know dsth markets are integrated and how the
extent of this integration varies across the dayfiefwteek. At the same time, policymakers are
interested in the impact of their policy changes, arebdheffects may be felt internationally.
However, predictability and seasonality of stock retuousé in this paper need not imply market
inefficiency. In particular, the marked intra-weedktterns in the conditional correlations of shocks
across markets do not imply any opportunity for investngams, but rather may simply indicate
common reactions across international markets to netenews.

This paper opens up a new dimension to the study of ini@nah stock market
interactions, by showing that day-of-the-week effect asvalent in correlation patterns across
markets. Although we speculate that these patterns leayt least partly associated with
announcement effects for macroeconomic data, a detagdt this possibility is an issue for

further research.
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Table 1. Descriptive Statisticsfor Daily Returns

Overall Monday Tuesday Wednesday  Thursday Friday
UK
Observations 3214 642 643 643 643 643
Mean 0.016 0.047 0.024 0.020 -0.032 0.022
Std. Deviation 1.111 1.041 1.089 1.056 0.998 1.084
Autocorrelation 0.007 0.017 -0.021 -0.001 -0.007 0.015
Germany
Observations 3214 642 643 643 643 643
Mean 0.031 0.022 0.095 0.044 -0.002 -0.005
Std. Deviation 2.197 1.446 1.615 1.448 1.421 1.476
Autocorrelation -0.016 0.004 -0.015 -0.019 -0.003 0.013
France
Observations 3214 642 643 643 643 643
Mean 0.023 0.042 0.024 0.049 -0.033 0.034
Std. Deviation 1.846 1.286 1.415 1.344 1.305 1.439
Autocorrelation 0.015 0.013 -0.015 -0.006 -0.006 0.029
Italy
Observations 3214 642 643 643 643 643
Mean 0.046 0.007 0.054 0.072 0.031 0.068
Std. Deviation 1.497 1.194 1.366 1.194 1.189 1.167
Autocorrelation 0.134 0.035 0.032 0.018 0.003 0.043
Spain
Observations 3214 642 643 643 643 643
Mean 0.042 0.104 -0.019 0.094 -0.042 0.072
Std. Deviation 1.769 1.289 1.391 1.290 1.313 1.363
Autocorrelation 0.039 0.027 -0.019 0.001 0.009 0.021
Switzerland
Observations 3214 642 643 643 643 643
Mean 0.032 0.056 0.044 0.015 0.020 0.024
Std. Deviation 1.381 1.110 1.289 1.177 1.063 1.226
Autocorrelation 0.042 0.018 -0.016 -0.009 0.010 0.034
USA
Observations 3214 642 643 643 643 643
Mean 0.030 0.009 0.059 0.040 0.033 0.014
Std. Deviation 1.047 1.038 1.080 1.088 0.998 1.036
Autocorrelation -0.014 0.009 0.010 -0.018 -0.026 0.008

Notes:

Autocorrelation values are computed in relation to the returns of the previous day.
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Table 2. Unconditional Correlationsfor Daily Returns

UK Germany  France Italy Spain Switz us
Overall
UK 1
Germany 0.691 1
France 0.782 0.765 1
Italy 0.505 0.560 0.551 1
Spain 0.686 0.691 0.775 0.538 1
Switz 0.715 0.710 0.735 0.519 0.679 1
USA 0.410 0.466 0.429 0.242 0.386 0.378 1
Monday
UK 1
Germany 0.747 1
France 0.779 0.821 1
Italy 0.554 0.594 0.579 1
Spain 0.696 0.750 0.784 0.591 1
Switz 0.756 0.788 0.781 0.579 0.726 1
USA 0.435 0.510 0.463 0.305 0.434 0.425 1
Tuesday
UK 1
Germany 0.713 1
France 0.800 0.784 1
Italy 0.491 0.560 0.531 1
Spain 0.674 0.667 0.772 0.482 1
Switz 0.704 0.733 0.762 0.503 0.677 1
USA 0.382 0.353 0.399 0.175 0.320 0.275 1
Wednesday
UK 1
Germany 0.688 1
France 0.765 0.760 1
Italy 0.449 0.533 0.532 1
Spain 0.687 0.686 0.776 0.514 1
Switz 0.675 0.692 0.709 0.473 0.674 1
USA 0.257 0.402 0.296 0.134 0.280 0.280 1
Thursday
UK 1
Germany 0.649 1
France 0.816 0.747 1
Italy 0.531 0.576 0.588 1
Spain 0.716 0.699 0.805 0.572 1
Switz 0.737 0.671 0.726 0.542 0.687 1
USA 0.453 0.551 0.484 0.336 0.441 0.462 1
Friday
UK 1
Germany 0.651 1
France 0.746 0.705 1
Italy 0.491 0.528 0.523 1
Spain 0.655 0.645 0.731 0.525 1
Switz 0.693 0.650 0.684 0.483 0.626 1
USA 0.513 0.511 0.498 0.254 0.454 0.438 1
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Table 3. Estimated PAR-PEGARCH Modd for Each Market

Day Parameter UK Germany France Italy Spain SwitzUSA
Monday ar -0.001 0.059 0.016 0.016 -0.008 0.052 0.072**
O 0.134**  0.076* 0.087*  0.324**  0.199**  0.109**  0.056*
w1 -0.053 0.026 0.043 -0.044 0.076 -0.086 -0.155%*
V1 -0.026 -0.029 -0.059***  -0.036 -0.017 -0.066**  -0.101***
61 0.101%*  0.118**  0.140%*  0.210**  0.167**  0.140%*  0.148***
51 0.763**  1.010%* 0.872%*  1.098%*  0.923**  0.812%*  0.986***
Tuesday az 0.027 0.049 0.046 0.029**  0.073* 0.023 0.010
@12 -0.046 -0.044 -0.063*  0.081**  -0.045 -0.052 -0.041
w> 0.041 -0.024 0.090 -0.007 0.036 0.165 0.078
y2 -0.095***  -0.034 -0.035*  -0.038 -0.049*  -0.026 -0.079%**
6. 0.114*+*  0.159** 0.106**  0.143**  0.153**  0.184**  0.083**
52 1.256%*  1.066*** 1.066**  0.888**  1.001***  1.176%*  0.911%*
Wednesday as 0.008 0.034 -0.040 0.010 -0.026 0.030 0.047*
@13 0.028 -0.051 0.001 0.143**  0.070 0.015 0.001
ws 0.042 0.170* -0.020 -0.053 0.036 -0.167 0.027
Vs -0.051%*  -0.055**  -0.059** -0.038 -0.088%*  -0.097**  -0.098***
6s 0.124*+*  0.226%*+ 0.127*+* 0218+  0.180**  0.149%*  0.130***
53 0.791%*  0.790%*  0.775%*  1.081**  0.845%*  0.930%*  0.953***
Thursday as 0.021 -0.015 0.018 0.052 0.116**  0.040 -0.021
Q14 -0.032 -0.027 -0.055 0.084**  0.033 0.008 0.048
wWa -0.090 0.070 -0.073 0.299**  0.127 0.318**  0.040
Va -0.101%*  -0.058* -0.048*  -0.041 -0.049%  -0.077**  -0.092%**
64 0.141%*  0.132% 0.055 0.185**  0.032 0.133**  0.070**
&4 1.329%* 1,118+ 1.386%*  0.923**  1.030%*  0.925%*  1.151%**
Friday as 0.033 0.038 0.050 0.026 0.116**  0.059* 0.015
Q15 0.022 0.014 0.098*  0.244*+  0.091*  0.071* 0.037
ws 0.050 -0.214* -0.018 -0.164 -0.274 -0.222*  0.007
Vs -0.064**  -0.100**  -0.068** -0.040 -0.036 -0.147*%*  -0.084%*+
65 -0.008 0.079* 0.026 0.138*  0.075 0.130%*  0.108**
&5 0.933**  0.974% 0.951**  0.951**  1.146**  1.069***  0.941+*
Log Likelihood -4172.25  -5170.06  -5128.51 -4731.76 -5023.85 -4494.64 -4186.32
Q(10) 17.124* 9.962 10.671 14.917 10.731 12.361 11.757
(0.072) (0.444) (0.384) (0.135) (0.379) (0.262) (0.302)
Q%(10) 8.765 10.497 11.471 12.038 11.536 5.820 4.786
(0.555) (0.398) (0.322) (0.282) (0.317) (0.835) (0.905)
ARCH-LM 8.445 10.059 12.038 13.187 11.382 5.898 4.590

(0.585) (0.435) (0.283)  (0.213)  (0.329)  (0.824)  (0.917)

Notes:

The estimated model is given by equations (14) to (16).

*** denotes significance at 1% level, ** denotes significance at 5% level, * denotes significance at 10% level.

Q(10) and Q2(10) are the Ljung-Box Statistics for the standardised and squared standardised residuals respectively,
ARCH-LM denotes the Lagrange multiplier test for the presence of ARCH effects in the standardised residuals; p-
values are in parentheses.

28



Table 4. Hypothesis Tests for PAR-PEGARCH Models

Degrees of

Hypothesis freedom UK Germany France Italy Spain Switz. USA
Mean Equation:

H Nonperiodic AR 4 12.865** 6.017 16.146%*  21.528**  20.327**  8.210* 3.139

! P (0.012) (0.198) (0.003) (0.000) (0.000) (0.084) (0.535)

H Nonperiodic AR; 8 13.181 7.586 19.149%  26.014**  29.939%*  10.919 8.821

2 nonperiodic intercept (0.106) (0.475) (0.014) (0.001) (0.000) (0.206) (0.358)

Volatility Equation

o 1.237 8.064* 1.980 13.248** 3.165 16.250*** 6.242

Hs Nonperiodic intercept 4 (0.872) (0.089) (0.739) (0.010) (0.531) (0.003) (0.182)
Nonperiodic 11.318*  28.874**  9.324* 7.879*  43.080***  10.341** 8.840*

Ha persistence 4 (0.023) (0.000) (0.053) (0.096) (0.000) (0.035) (0.065)
Nonperiodic 28.055*  32.916**  25.961* 19.918  28.742**  26.468**  25.006*

Hs EGARCH 16 (0.031) (0.000) (0.055) (0.224) (0.000) (0.048) (0.070)
Integrated 17.025%*  11.876**  7.236**  8.704**  10.303***  18.655***  54,391***

He PEGARCH 1 (0.000) (0.001) (0.007) (0.003) (0.001) (0.000) (0.000)

Notes:

Hi and H; examine periodicity in (14), while Hs to Hs relate to (16). All statistics are computed as Wald tests and are compared to an asymptotic x2
distribution, with p-values in parentheses. *** denotes significance at 1% level; ** denotes significance at 5% level; * denotes significance at 10% level.

Table5. Estimated Coefficientsfor Dynamic Conditional Correlation Model

UK Germany France Italy Spain Switz. USA

Shortrun persistence (a; s)

Monday 0.153*** 0.066*** 0.117%** 0.102*** 0.104*** 0.155%** 0.048***
Tuesday 0.167*** 0.102%** 0.068*** 0.048*** 0.094*** 0.104*** 0.065***
Wednesday  0.140*** 0.117*** 0.148*** 0.102*** 0.148*** 0.105*** 0.056***
Thursday 0.107*** 0.101%*=* 0.106%** 0.089*** 0.125*** 0.078*** 0.058***
Friday 0.093*** 0.076*** 0.069*** 0.090*** 0.122*** 0.080*** 0.036**
Longrun persistence (bjis)

Monday 1.023*** 0.825*** 1.075%** 1.206*** 0.785*** 1.205%** 1.025%**
Tuesday 1.027*** 0.950*** 0.803*** 0.870*** 1.031*** 0.876*** 1.205***
Wednesday  0.867*** 1.026*** 1.067*** 0.883*** 1.165%** 0.888*** 0.993***
Thursday 0.902*** 1.231%** 0.805*** 0.858*** 0.818*** 0.821*** 0.985***
Friday 1.135%** 0.988*** 1.305*** 1.218*** 1.239*** 1.225%** 0.841%**
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Table 6. Hypothesis Tests for Periodic DCC M odel

Panel A: Periodic DCC Coefficients

: Degrees of Statistic
Hypothesis freedom
Nonperiodic 41.56**
H7 ajj 28 (0048)
Nonperiodic 116.78***
Ha by 28 (0.000)
H Nonperiodic 56 169.56***
° DCC (0.000)
*kk
Huo Simple PDCC 60 2(15'02060)
Panel B: Periodic Integration (Hi;)
UK Germany France Italy Spain Switz
34.120***
Germany (0.000)
45.175%** 12.715
France (0.0000 (0.000)***
59.547*** 12.688*** 23.116***
Italy (0.000) (0.000) (0.000)
47.596*** 17.907*** 20.336***  29.805***
Spain (0.000) (0.000) (0.000) (0.000)
62.960*** 32.639*** 48.226***  54.838***  53.859***
Switz (0.000) (0.000) (0.000) (0.000) (0.000)
52.415%** 13.464** 16.974** 15.112%*  28.873**  41.839***
us (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes:

Hs to Hip examine periodicity in (4) using likelihood ratio test statistics. Hii tests the null hypothesis of an
integrated periodic DCC model for the country pair using a Wald test with one degree of freedom. All statistics
are tested against an asymptotic )(2 distribution, with p-values in parentheses.

*** denotes significance at 1% level; ** denotes significance at 5% level; * denotes significance at 10% level.
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Figure 1. Daily Correlation Plots
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(c) Germany-France
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(d) Germany-Spain
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(e) UK-Italy
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(f) Germany-Switzerland
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