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Abstract

This paper extends Dastidar’s [3] analysis of Bertrand equilibria

to industries with increasing and strictly convex variable costs and

fixed costs. Focusing on a symmetric duopoly, we show first that a

price-taking equilibrium (pte) is sufficient, but not necessary, for the

existence of a pure strategy Bertrand equilibrium (psbe), and that

there could exist multiple psbe even if a pte does not exist. Then, we

prove that a necessary and sufficient condition for the existence of a

Bertrand equilibrium in pure strategies where both firms are active is

that the total cost function is superadditive at the output correspond-

ing to the duopoly break-even price. Finally, we characterize the set of

psbe, showing that it is a closed subset of the diagonal of the product

of the strategy sets, and that it includes (if it exists) the profile where

each firm posts the pte price.

JEL codes: D43, L13.

Keywords: Bertrand equilibrium; price-taking equilibrium; fixed

costs; superadditivity.

1 Introduction

This paper analyzes necessary and sufficient conditions for the existence of

pure strategy Bertrand equilibria (psbe) in a symmetric and homogeneous

product duopoly with fixed costs.

In an influential work, Dastidar [3] has recently shown that, under

strictly decreasing returns to scale, with no fixed costs, and (possibly) a

sunk cost, oligopolies with homogeneous products and symmetric firms typ-

ically have multiple psbe, being the price-taking equilibrium (pte) price an
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element of the set of Bertrand equilibrium prices. He also proved in a later

paper that, under certain conditions, this set may even include the perfectly

collusive outcome (Dastidar [4]).

On the contrary, in industries with fixed costs, like in the duopoly pro-

posed here, the total cost function is no longer convex around the origin.

Under increasing and strictly convex variable costs, the market exhibits vari-

able returns to scale, and neither a pte nor a psbe are anymore guaranteed.1

In this paper, we deal with this problem of equilibrium existence. First,

we show in Lemma 1 that the existence of a price-taking equilibrium is

sufficient to guarantee that the market has a Bertrand equilibrium in pure

strategies where all firms are active. Furthermore, as our example in Section

3 illustrates, this condition is not necessary, and the duopoly could exhibit

multiple psbe even if a pte does not exist.

Then, in Proposition 1, we formulate and proof the main result of the

paper, namely that a symmetric and homogenous product duopoly has a

Bertrand equilibrium in pure strategies where all firms supply positive out-

put if and only if the total cost function is superadditive at the output

corresponding to the duopoly break-even price. Finally, in Proposition 2,

we also characterize the set of psbe, showing that it is a closed subset of

the diagonal of the product of the strategy sets, and that it includes (if it

exists) the profile where each firm posts the pte price (Corollary 1).

2 The model

Consider a market with a single homogenous good, produced and supplied

by two identical firms, indexed by i = 1, 2. Suppose firms compete in prices

à la Bertrand. Let Ai = [0, P ] ⊂ ℜ+ be firm i’s strategy set, with generic

element pi, and qi = qi(pi, pj) its output supply at (pi, pj) ∈ Ai × Aj , j 6= i.

The following assumptions define our model.

Assumption A1 The market demand D(P ) is continuous and twice dif-

ferentiable in the market price P , with D′(P ) < 0 and D′′(P ) ≥ 0 for all

P ∈ [0, P ], D(P ) = 0 and D(0) = K for some K ∈ ℜ++.

Assumption A2 The variable cost V C(qi) is continuous and twice dif-

ferentiable in qi, with V C(0) = 0, V C ′ > 0 and V C ′′ > 0. In addition,

each firm faces a fixed cost F > 0, so that the total production cost is

Ci(qi) = V C(qi) + F for all qi > 0, and Ci(0) = 0 otherwise.

1A related result is provided by Telser [8], who showed that markets with nondecreasing

returns to scale may fail to have a nonempty core and, therefore, that a pte may not

exist. However, his framework is different, and there is no reference to whether Bertrand

equilibria exist in such industries.
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Assumption A3 Firm i’s profits are πi(pi, pj) = pi di(pi, pj)−Ci(di(pi, pj)),

where di(pi, pj) is i’s individual demand at (pi, pj), and

di(pi, pj) =





0 if pi > pj,
1
2 D(pi) if pi = pj,

D(pi) if pi < pj.

(1)

In words, (1) simply says that the firm that charges the lowest price gets

the whole market, and that the market is equally split between the firms if

they set the same price.2

Let p+
i ∈ arg maxpi∈Ai

{
pi

D(pi)
2 − V C

(
D(pi)

2

)
− F

}
. By A1-A2, p+

i

exists and it is unique.

Assumption A4 p+
i

D(p+

i
)

2 − V C

(
D(p+

i
)

2

)
− F ≥ 0.

We denote G = (Ai, πi)i=1,2 a symmetric and homogenous good price

competition game where Ai and πi satisfy A1-A4. Compared with Dastidar

[3], the main difference is that in our model F represents a fixed cost, that

can be avoided producing zero output. On the contrary, in Dastidar [3]

only sunk costs are allowed, although it is not explicitly stated in that way.

Apart from this, the two frameworks are similar.3

As we show later, the nature of F has important implications for the

existence of pure strategy Bertrand equilibria. If F is a sunk cost, then the

total cost Ci(qi) is strictly convex on [0,K]. The market exhibits strictly

decreasing returns to scale. Therefore, there is always a price-taking equi-

librium, and a pure strategy Bertrand equilibrium where all firms are active.

In fact, as Lemma 1 shows, the former result implies the latter.

On the contrary, if F is a fixed cost that firms can avoid producing

zero output, then the total cost function Ci(qi) is no longer convex around

the origin. The total average cost is U-shaped, and has a unique minimum

where it crosses the marginal cost. Hence, the market’s returns to scale are

variable, and neither a pte nor a psbe are anymore guaranteed.

The main goal here is precisely to find conditions under which the exis-

tence of a psbe is ensured. Before doing that, however, we need to provide

the formal definition of this equilibrium concept.

Definition 1 (psbe) A pure strategy Bertrand equilibrium of G is a strat-

egy profile (p∗1, p
∗
2) ∈ A1 × A2 such that, for each i 6= j,

(E1) πi(p
∗
i , p

∗
j ) ≥ πi(p̂i, p

∗
j) for all p̂i ∈ Ai,

2For Bertrand games under alternative sharing rules, see Hoernig [7] and Dastidar [5].
3As Tirole [9] (p. 307-308) wrote, the difference between fixed and sunk costs is that

“fixed costs are sunk only in the short run.” Instead, “(S)unk costs are those investment

costs that produce a stream of benefits over a long horizon but can never be recouped.”
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(E2) πi(p
∗
i , p

∗
j ) ≥ 0, and

(E3) qi(p
∗
i , p

∗
j ) = di(p

∗
i , p

∗
j ).

Note that Bertand equilibria requires that firms meet all the demand at

the prices they post. The only strategic choice of the firms, therefore, is the

price that they charge and not the quantity that they sell.4 In rest of the

paper, we focus on the subset of psbe where both firms are active, in the

sense that di(p
∗
i , p

∗
j) > 0 for all i = 1, 2. We denote this set B(G). Clearly,

if there exists a Bertrand equilibrium (p∗1, p
∗
2) ∈ B(G), then p∗1 = p∗2 = p∗.

Therefore, E1 can be rewritten as

p∗
D(p∗)

2
− V C

(
D(p∗)

2

)
≥ p̂iD(p̂i) − V C(D(p̂i)), (E4)

for all p̂i < p∗, while E2 simply requires that

p∗
D(p∗)

2
− V C

(
D(p∗)

2

)
− F ≥ 0. (E5)

Assume now for a while that the price in the industry is given, so that

firms are price-takers instead of price-makers, and it makes sense to talk

about price-taking equilibria.

Definition 2 (pte) Given a price P c ∈ (0, P ), a price-taking equilibrium

in the homogenous product duopoly defined by A1-A4 is a pair of outputs

(qc
1, q

c
2) ∈ ℜ2

+ such that, for each i = 1, 2,

(C1) qc
i ∈ arg maxqi∈ℜ+

{P c qi − Ci(qi)},
(C2) P c qc

i − Ci(q
c
i ) ≥ 0, and

(C3) qc
1 + qc

2 = D(P c).

Note that C3, together with the “equal sharing” rule implicit in (1),

imply that, if (qc
1, q

c
2) is a pte for a given P c ∈ (0, P ), then qc

1 = qc
2 = qc ≡

D(P c)/2. Hence, in what follows we denote a pte as (P c, qc), understanding

that this means that (qc, qc) satisfies C1-C3 under P c.

Given A1-A2, a unique pair (P c, qc) satisfying C1 and C2 always exists,

because P c qi − Ci(qi) is strictly concave on ℜ++, and P c 0 − Ci(0) = 0.

However, as the example in the next section illustrates, if F is sufficiently

large, the three conditions need not be simultaneously satisfied, meaning

that a pte does not necessarily exist in our model.

By contrast, if F represents a sunk cost, like in Dastidar [3], then a pte

always exists. This is because C1, together with A1 and A2, imply that

qc > 0 and P c > V C(qc)
qc . Thus, P c qc

i − Ci(q
c
i ) ≥ −F .

4For more on Bertrand and Bertrand-Edgeworth equilibria, where firms face capacity

constraints, see Vives [10], Chapter 5.
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3 Example

In order to motivate the results derived in Sections 4 and 5, consider first

the following numerical example. Let D(P ) = 10−P , and suppose Ci(qi) =

1/2q2
i + F if qi > 0, and Ci(0) = 0 otherwise. Then, if a pte exists, C1

and C3 imply that P c = 10/3 and qc = 10/3. However, C2 is satisfied at

(P c, qc) = (10/3, 10/3) only if F ≤ 50/9. Thus, for F > 50/9 this exercise

does not possess a pte.

Regarding Bertrand equilibria, note that E4 can be written as 1/2p∗(10−
p∗) − 3/8(10 − p∗)2 ≤ 0, and it is satisfied for all p∗ ≤ 30/7. Similarly,

using E5, it follows that p∗ ≥ 6 −
√

16 − 8/5F . Thus, a price p∗ that

simultaneously satisfies both inequalities exists if and only if F ≤ 400/49.

For instance, if F = 6, then p∗ = 4 is a solution of E4 and E5. Hence,

(4, 4) ∈ B(G). If F ≤ 50/9, the set of Bertrand equilibria includes the

pte; i.e. (10/3, 10/3) ∈ B(G). However, if 50/9 < F < 400/49, a pte

does not exist, but the game possesses multiple psbe. In effect, as Figure 1

below illustrates, if for example F = 6, any price between the lower bound

pL = 6−
√

32/5 and the upper bound pH = 30/7 satisfies conditions E1-E3

and, therefore, it is part of a psbe.

0 2 4 6 8 10
−5

0

5

10

15

p(10 − p)− 1
2 (10 − p)2 − 6

p (10−p)
2 − 1

2

(
10−p

2

)2 − 6

pH = 30/7

pL = 6 −
√

32/5

set of psbe

Figure 1:

In addition, it also comes out from the previous analysis that, if F >

400/49, then our example does not admit a pure strategy Bertrand equilib-

rium. For F = 9, this is illustrated in Figure 2, where it can be easily seen

that, for any strategy profile (p̃, p̃), pL ≤ p̃ ≤ p′, that verifies E5, there exists
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0 2 4 6 8 10
−5

0

5

10

p(10 − p)− 1
2 (10 − p)2 − 9

p (10−p)
2 − 1

2

(
10−p

2

)2 − 9

p′pL = 6 −
√

8/5

p̂i

Figure 2:

at least one firm and an individual deviation such that E4 is contradicted at

(p̃, p̃). Effectively, if for instance j is playing pL, the diagram shows that firm

i has an strategy p̂i < pL that dominates pL, in the sense that πi(p̂i, pL) =

p̂i (10 − p̂i) − 1
2 (10 − p̂i)

2 − 9 > pL
(10−pL)

2 − 1
2

(
10−pL

2

)2
− 9 = πi(pL, pL).

Hence, (pL, pL) 6∈ B(G).

Interestingly, notice that the cost function Ci(qi) is superadditive at the

bound Q = 10 − [6 −
√

16 − 8/5F ], (see (3) in Section 4 for the definition

of superadditivity), if 1/2(4+
√

16 − 8/5F )2 ≥ 1/4(4+
√

16 − 8/5F )2 + F ,

which is equivalent to 4+
√

16 − 8/5F −2
√

F ≥ 0. Moreover, this inequality

is satisfied if F ≤ 400/49, which is precisely the critical level of fixed costs

above which the set of pure strategy Bertrand equilibria is empty. As we

argue in the next section, this is not accidental. Rather, we will see that

there exists a closed relation between superadditivity and the existence of a

psbe. We now move to the existence and characterization analysis.

4 Existence

We begin this section showing that the existence of a pte is sufficient for a

psbe to exist. Remarkably, the proof does not depend on neither the number

of firms in the industry nor the nature of F . Thus, it generalizes to any

homogenous product oligopoly, under similar demand and cost conditions

that our model, and a finite number of symmetric firms.
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Lemma 1 If (P c, qc) is a pte, then (P c, P c) ∈ B(G).

Proof: Assume, by contradiction, (P c, P c) 6∈ B(G). First, note that, if

(P c, qc) is a pte, then C2 and C3 imply that E5 and E3 are satisfied at

(P c, P c). Hence, there must exist i, and p̂i ∈ Ai, such that πi(p̂i, P
c) >

πi(P
c, P c) ≥ 0. That is, p̂i di(p̂i, P

c)−C(di(p̂i, P
c)) > 0. Thus, p̂i < P c. Let

q̂i = di(p̂i, P
c). Totally differentiating p̂i qi − V C(qi)−F in a neighborhood

of q̂i, we have

p̂i >
∂V C(q̂i)

∂qi
. (2)

By C1, P c = ∂V C(qc)
∂qi

. Moreover, since p̂i < P c, D′ < 0 and V C ′′ > 0,

it follows that ∂V C(qc)
∂qi

< ∂V C(q̂i)
∂qi

. Therefore, (2) implies that p̂i > P c:

Contradiction. Hence, (P c, P c) ∈ B(G). 2

The previous lemma shows that the existence of a pte is sufficient to

ensure the existence of a Bertrand equilibrium in pure strategies where both

firms are active. If F represents a sunk cost, an immediate corollary is

therefore that B(G) is always nonempty, because in that case a pte always

exists. And, of course, the converse of Lemma 1 also applies; that is, if

B(G) 6= ∅, then a pte exists.

On the contrary, as the example in the previous section illustrates, if F

is a fixed cost, a pte is not necessary for the existence of a psbe.5 Instead,

in the rest of this section we show that a necessary and sufficient condition

is that the total cost function is superadditive at the output corresponding

to the duopoly break-even price.

To show this, we now introduce the definition of subadditivity:

Definition 3 (subadditivity) A function f : ℜ → ℜ is subadditive at

z ∈ ℜ if and only if f(z) < f(x)+ f(y), for all x, y ∈ ℜ such that x+ y = z.

It is immediate to see that, if f is continuous and twice differentiable,

minx,y f(x) + f(y) subject to x + y = z (for a given z ∈ ℜ), has a unique

interior solution where x = y = z/2, (provided that, of course, f ′′ > 0).

Thus, under these conditions, Definition 3 can be restated as follows: f is

subadditive at z only if f(z) < 2f(z/2). Or, alternatively, we will say that

f is superadditive at z if f(z) ≥ 2f(z/2).

Applying superadditivity in our framework, it follows that the cost func-

tion Ci(qi) is superadditive at Q ∈ ℜ++ if

V C(Q) ≥ 2V C

(
Q

2

)
+ F. (3)

5A similar result appears in Grossman [6], but associated to a different equilibrium

concept. Using a model similar to ours, Grossman has shown that the pte, if it exists, is

a “supply function equilibrium”, and that the latter may exist even if a pte does not.
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In words, Ci(qi) is superadditive at Q if the total cost of producing Q with

only one firm is greater than or equal to the sum of the costs of producing

it separately with two or more identical firms. Subadditivity is therefore a

necessary and sufficient condition for a natural monopoly (Baumol [1]).6

The following preliminary results will be useful to prove our main conjec-

ture. Let H : [0, P ] → ℜ and J : [0, P ] → ℜ be such that, for all x ∈ [0, P ],

H(x) = x
D(x)

2
− V C

(
D(x)

2

)
− F,

and

J(x) = xD(x) − V C (D(x)) − F.

By A1-A2, H and J are continuous and strictly concave on [0, P ].

Lemma 2 There exists x′ ∈ (0, P ) such that H(x′) = 0.

Proof: By A1-A2, H(0) = −V C(K/2) − F < 0. By A4, H(p+) ≥ 0. Since

H is strictly concave, p+ ∈ (0, P ). Thus, by the intermediate value theorem,

there exists x′ ∈ (0, p+] such that H(x′) = 0. 2

Lemma 3 If there exists x̃ ∈ (0, P ) such that J(x̃) > H(x̃) ≥ 0, then

sup{x′′ ∈ (0, P ) : J(x′′) = 0} > sup{x′ ∈ (0, P ) : H(x′) = 0}.

Proof: By Lemma 2, sup{x′ ∈ (0, P ) : H(x′) = 0} exits. By A1-A2,

J(0) = −V C(K) − F < 0. By hypothesis, J(x̃) > 0. Hence, sup{x′′ ∈
(0, P ) : J(x′′) = 0} also exists. On the other hand, notice that:

(a) xD(x) > x D(x)
2 for all x ∈ (0, P );

(b) 0D(0) = 0 D(0)
2 = 0;

(c) P D(P ) = P D(P )
2 = 0;

(d) xD(x) and x D(x)
2 are strictly concave on [0, P ];

(e) arg maxx xD(x) = arg maxx x D(x)
2 ;

(f)
∣∣∣(xD(x))′

∣∣∣ >
∣∣∣∣
(
x D(x)

2

)′∣∣∣∣ ∀x ∈ (0, P );

(g) V C(D(x)) + F > V C
(

D(x)
2

)
+ F ∀x ∈ [0, P );

(h) V C(D(0)) + F = V C(K) + F > V C(K/2) + F = V C
(

D(0)
2

)
+ F ;

(i) V C(D(P )) + F = V C

(
D(P )

2

)
+ F = F ;

(j) V C(D(x)) + F and V C
(

D(x)
2

)
+ F are strictly convex on [0, P ];

(k) arg minx V C(D(x)) + F = arg minx V C
(

D(x)
2

)
+ F = P ;

6Of course, it is always possible that the market behaves as a natural monopoly for a

certain output, and not for others.
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(l)
∣∣∣(V C(D(x)) + F )′

∣∣∣ >
∣∣∣∣
(
V C

(
D(x)

2

)
+ F

)′∣∣∣∣ ∀x ∈ (0, P ).

Figure 3 below illustrates xD(x), x D(x)
2 , V C(D(x)) + F and

V C
(

D(x)
2

)
+ F . As it is clear from the graph, (a)-(l) imply that sup{x′′ ∈

(0, P ) : J(x′′) = 0} > sup{x′ ∈ (0, P ) : H(x′) = 0}. 2

V C(D(x)) + F

V C
(

D(x)
2

)
+ F

xD(x)

x D(x)
2 sup{x′ : H(x′) = 0}

sup{x′′ : J(x′′ = 0} P

Figure 3:

Lemma 4 arg max
x∈[0,P ] J(x) > arg max

x∈[0,P ] H(x).

Proof: Totally differentiating H with respect to x, and evaluating it at p+,

we have that

D(p+) +

[
p+ − V C ′

(
D(p+)

2

)]
D′(p+) = 0. (4)

On the other hand, A1-A2 imply that

D(p+) +
[
p+ − V C ′

(
D(p+)

)]
D′(p+) > 0 (5)

But, ∂J(x)
∂x

= D(x)+ [x − V C ′ (D(x))] D′(x). Thus, (5) implies ∂J(p+)
∂x

>

0, meaning that arg max
x∈[0,P ] J(x) > p+ = arg max

x∈[0,P ] H(x). 2

Lemma 5 There exists a unique β ∈ [0, P ) such that J(β) = H(β).

9



Proof: Consider the function J(x) − H(x) on [0, P ]. Simple algebraic ma-

nipulation shows that J(x)−H(x) = 1/2xD(x)−V C(D(x))+V C(D(x)/2).

Note that V C(D(x)/2) is positive and strictly convex on [0, P ), with

V C(D(0)/2) = V C(K/2) and V C(D(P )/2) = 0. On the other hand,

1/2xD(x) − V C(D(x)) is strictly concave, it is equal to −V C(K) at zero,

it intersects the horizontal axis at a certain α ∈ (0, P ), (where V C(D(x))

crosses from above 1/2xD(x)), and it is zero at P .

β α P

V C
(

D(x)
2

)

x D(x)
2 − V C(D(x))

Figure 4:

Hence, as Figure 4 above illustrates, there exists a unique β < α on

[0, P ) such that J(β) − H(β) = 0. 2

Let pL = inf{x′ ∈ (0, P ) : H(x′) = 0}. By Lemma 2, pL is well defined.

Lemma 6 If B(G) 6= ∅, then (pL, pL) ∈ B(G).

Proof: Assume, by contradiction, (pL, pL) 6∈ B(G). Since (pL, pL) fulfills

E3 and E5, ∃ i, and p̂i ∈ Ai, such that πi(p̂i, pL) > πi(pL, pL) = 0, where

the last equality follows from the definition of pL. Hence, p̂i < pL, and

πi(p̂i, pL) = J(p̂i) > 0. By hypothesis, ∃ p∗ ∈ [0, P ] such that (p∗, p∗) ∈
B(G). By E5, H(p∗) ≥ 0 ⇒ p∗ > pL. By E4, πi(p

∗, p∗) ≥ J(p̂i) (recall

that p̂i < pL < p∗). Thus, H(p∗) > 0. Using Lemmas 2-4, the graphical

representation of H and J is as it appears in Figure 5.

Note that, since H(p∗) ≥ J(x) for all x ≤ p∗, J(p̂i) > H(pL), and

J(0) < H(0), there must exist β1 ∈ (0, pL) and β2 ∈ (pL, p∗) such that

10



x

−V C(K) − F

−V C(K
2 ) − F

β2

P

−F

πi(p
∗, p∗)

p∗

β1 p̂i

J(x)H(x)

pL

Figure 5:

H(βk) = J(βk) for all k = 1, 2. However, this stands in contradiction with

Lemma 5. Therefore, (pL, pL) ∈ B(G). 2

Proposition 1 B(G) 6= ∅ if and only if Ci(qi) is superadditive at D(pL).

Proof: (Sufficiency) First, we prove that, if Ci(qi) is superadditive at

D(pL), then (pL, pL) ∈ B(G). By definition, pL is the minimum price that

simultaneously satisfies both, qi(pL, pL) = di(pL, pL) = D(pL)
2 ∀ i = 1, 2, and

pL
D(pL)

2
− V C

(
D(pL)

2

)
− F = 0. (6)

Suppose, by contradiction, ∃ i, and p̂i < pL such that

p̂iD(p̂i) − V C(D(p̂i)) > pL
D(pL)

2
− V C

(
D(pL)

2

)
.

By (6),

p̂iD(p̂i) − F > V C(D(p̂i)). (7)

If Ci(qi) is superadditive at D(p̂i), we are done: Using (3) and (7), we

have that p̂iD(p̂i)−F > 2V C
(

D(p̂i)
2

)
+F , which is equivalent to H(p̂i) > 0.

Applying the intermediate value theorem, it follows that ∃ p̃ ∈ (0, p̂i) such

that H(p̃) = 0, which contradicts the definition of pL.

Instead, if Ci(qi) is not superadditive at D(p̂i), then

V C(D(p̂i)) < 2V C

(
D(p̂i)

2

)
+ F.
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x0

F

D(pL)
2

2V C
(

D(pL)
2

)
+ F

D(p̂i)
2

2V C
(

D(p̂i)
2

)
+ F

D(pL)

V C(D(pL))

D(p̂i)

V C(D(p̂i))

V C(qi)

2V C(qi) + F

Figure 6:

Notice that p̂i < pL, D′ < 0 and V C ′ > 0 imply that V C(D(p̂i)) >

V C(D(pL)) ≥ 2V C
(

D(pL)
2

)
+ F , where the last inequality follows from the

fact that, by hypothesis, Ci(qi) is superadditive at D(pL). Thus, combining

all these expressions, we have that

2V C

(
D(pL)

2

)
+ F < V C(D(p̂i)) < 2V C

(
D(p̂i)

2

)
+ F. (8)

However, as Figure 6 above illustrates, (8) implies that 2V C(qi) + F

and V C(qi) diverge, which contradicts that by A2, (i.e. because V C is

continuous, increasing and strictly convex), |(2V C(qi) + F ) − V C(qi)| → 0

as qi → ∞. Hence, (pL, pL) ∈ B(G).

(Necessity) We want to prove that, if B(G) 6= ∅, then Ci(qi) is super-

additive at D(pL). First, notice that, by Lemma 6, (pL, pL) ∈ B(G). Now,

assume that Ci(qi) is not superadditive at D(pL). This means

V C(D(pL)) < 2V C

(
D(pL)

2

)
+ F. (9)

By definition, H(pL) = 0 can be rewritten as

pL D(pL) − V C(D(pL)) − F = 2V C

(
D(pL)

2

)
+ F − V C(D(pL)).

Therefore, (9) implies that pL D(pL) − V C(D(pL)) − F > 0. Moreover,

since J(x) = xD(x) − V C(D(x)) − F is continuous, ∃ ǫ > 0, and p̃ < pL

12



closed enough to pL, such that 0 < J(pL)− ǫ < J(p̃). However, this contra-

dicts the fact that, by E4 and the definition of pL, p̂i D(p̂i)−V C(D(p̂i))−F ≤
0 for all p̂i < pL. Hence, Ci(qi) is superadditive at D(pL). 2

5 Characterization

Having proved the existence of a psbe, we now provide a full characterization

of Bertrand equilibria of G:

Proposition 2 If B(G) 6= ∅, ∃ pH ∈ (0, P ) such that B(G) = {(p∗, p∗) ∈
Ai × Aj : p∗ ∈ [pL, pH ]}.

Proof: If |B(G)| = 1, the claim is trivially true (just let pH = pL).

Thus, suppose |B(G)| > 1. That is, assume there exist p′ < p′′ such that

(p′, p′), (p′′, p′′) ∈ B(G). Define the linear combination pλ = λ p′+(1−λ) p′′,

λ ∈ (0, 1). We want to prove that (pλ, pλ) ∈ B(G) for all λ ∈ (0, 1). Suppose

not. Note that, by definition, (pλ, pλ) satisfies E3. Moreover, since H is

strictly concave and H(p′) ≥ 0 and H(p′′) ≥ 0, it follows that H(pλ) ≥ 0 ⇒
E5 is satisfied at (pλ, pλ). Thus, there must exist i, and p̂i ∈ Ai such that

πi(p̂i, p
λ) > πi(p

λ, pλ) ⇒ p̂i < pλ. Hence, J(p̂i) > H(pλ).

xβ

P

−F

πi(p
′′, p′′)

p′′p′

πi(p
′, p′)

J(x)H(x)

α

p̂i

pλ

pL

J(p̂i)
H(pλ)

Figure 7:

Notice that, since (p′′, p′′) ∈ B(G), ∃α ∈ (pλ, p′′) such that J(α) = H(α).

Furthermore, by Lemma 3, ∃β > α such that J(β) = H(β). However, this

contradicts Lemma 5. Therefore, (pλ, pλ) ∈ B(G). 2
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Corollary 1 If (P c, qc) is a pte, then P c ∈ [pL, pH ].

Proof: Immediate from Lemma 1 and Proposition 2. 2

6 Conclusion

This paper extends Dastidar’s [3] analysis of Bertrand equilibria to industries

with increasing and strictly convex variable costs and fixed costs.

Focusing on a symmetric duopoly, we show first that a price-taking equi-

librium is sufficient, but not necessary, for the existence of a pure strategy

Bertrand equilibrium (Lemma 1), and that there could exist multiple psbe

even if a pte does not exist.

Then, we prove that a necessary and sufficient condition for the existence

of a Bertrand equilibrium in pure strategies where both firms are active is

that the total cost function is superadditive at the output corresponding to

the duopoly break-even price (Proposition 1).

Finally, we characterize the set of psbe, showing that it is a closed subset

of the diagonal of the product of the strategy sets (Proposition 2), and that

it includes (if it exists) the profile where each firm posts the pte price

(Corollary 1).
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