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STOCHASTIC EQUILIBRIA IN VON NEUMANN–GALE
DYNAMICAL SYSTEMS

IGOR V. EVSTIGNEEV AND KLAUS REINER SCHENK-HOPPÉ

Abstract. The paper examines a class of random dynamical systems related
to the classical von Neumann and Gale models of economic dynamics. Such
systems are defined in terms of multivalued operators in spaces of random vec-
tors, possessing certain properties of convexity and homogeneity. We establish
a general existence theorem for equilibrium, which holds under conditions anal-
ogous to the standard deterministic ones. Our results answer questions that
remained open for more than three decades.

1. Introduction

Von Neumann-Gale dynamical systems are defined in terms of multivalued oper-
ators that possess certain properties of convexity and homogeneity. These operators
assign to each element of a given cone a convex subset of the cone describing pos-
sible one-step transitions from one state of the system to another. The classical,
deterministic theory of such dynamics was originally aimed at the modeling of eco-
nomic growth (von Neumann [29], Gale [14]). First attempts to build a stochastic
generalization of this theory were undertaken in the 1970s by Dynkin [6, 7, 8],
Radner [23, 24] and others. However, the initial attack on the problem left many
questions unanswered. Substantial progress was made only in the 1990s—see the
survey in [11].

It has recently been observed [4] that stochastic analogues of von Neumann-
Gale systems provide a natural and convenient framework for financial modeling
(asset pricing and hedging under transaction costs). This observation gave a new
momentum to studies in the field and posed new interesting questions. It also
revived interest in old unsolved problems.

In spite of the current progress achieved, a substantial gap remained. The the-
ory lacked quite satisfactory results on the existence of equilibrium in stochastic
von Neumann-Gale systems. The results available established the existence of equi-
librium under certain conditions which also guaranteed its stability. These condi-
tions seemed to be too restrictive in the context of economic models and did not
cover a number of new examples arising in financial applications. Furthermore,
the conditions were substantially distinct from those conventionally imposed in the
deterministic case. In this paper, we fill this gap by establishing the existence of
equilibrium under assumptions fully analogous to the standard deterministic ones.
The problem of obtaining a result of this kind was posed by E.B. Dynkin in the

Key words and phrases. Random dynamical systems, convex multivalued operators, von
Neumann–Gale model, rapid paths, convex duality, stochastic equilibrium.
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early 1970s. We are happy to provide (alas, only after three decades!) a solution to
the problem. The result obtained is applicable to both old models—those related
to economics, and new ones, coming from finance.

We analyze a stochastic version of a von Neumann-Gale dynamical system de-
fined in terms of a stationary random process st, t = 0,±1, ..., with values in a
measurable space S and a closed convex cone C(..., s−1, s0) ⊆ Rn

+ ×Rn
+ depending

measurably1 on (..., s−1, s0). We denote by st := (..., st−1, st) the ”history” of the
process ..., s0, s1, ... up to time t and consider the class Zt of pairs (x(st−1), y(st))
of essentially bounded measurable functions such that

(x(st−1), y(st)) ∈ C(st)

almost surely (a.s.). We put Zt(x) := {y : (x, y) ∈ Zt}. The operators Z1(·), Z2(·), ...
define the multivalued dynamical system we study. For each t ≥ 1, the multivalued
mapping x 7→ Zt(x) describes the set of those random states y(st) of the system
which can be reached at time t from the random state x(st−1) at time t − 1. The
main characteristic feature of such dynamics is that the graphs Zt of the operators
Zt(·) are convex cones. It will be convenient to deal with the graphs Zt, rather
than with the operators Zt(·) themselves (although these ways of presentation are
of course equivalent).

A sequence of functions x0(s0), x1(s1), ... is called a path (trajectory) in the dy-
namical system under consideration if

(1.1) (xt−1, xt) ∈ Zt

for all t ≥ 1. The fact that xt(st) is a function of st means that a random state of
the system may depend on the past and the present of the underlying process (st)
but cannot depend on its future. We will be mainly interested in those trajectories
that grow in a sense faster than others—we will call them ”rapid”. To define them,
we will need an important auxiliary notion of a dual path. Put

(1.2) C×(st) := {(p, q) ∈ Rn
+ × Rn

+ : qb− pa ≤ 0 for all (a, b) ∈ C(st)}
and denote by Z×t the set of pairs (p(st), q(st)) of measurable functions such that

(p(st), q(st)) ∈ C×(st) (a.s.),

E|p(st)| < ∞ and E|q(st)| < ∞. Here ”E” stands for the expectation with respect
to the underlying probability P , and the norm |(p1, ..., pn)| is defined as |p1| +
... + |pn|. A dual path (dual trajectory) is a sequence p1(s1), p2(s2), ... of functions
satisfying

(1.3) (pt, Etpt+1) ∈ Z×t (a.s.), t = 1, 2, ...,

where Et(·) = E(·|st) is the conditional expectation given st. By virtue of (1.2)
and (1.3), Et(pt+1y) ≤ ptx for any (x, y) ∈ Zt. Consequently, if x0, x1, ... is a path,
then

Et(pt+1xt) ≤ ptxt−1 (a.s.), t = 1, 2, ....

This inequality shows that for any path x0, x1, ... the sequence of random variables
p1x0, p2x1, ... is a supermartingale with respect to the filtration in the underlying
probability space generated by st, t = 1, 2, ....

1A closed set C(s) is said to depend measurably on the parameter s if for each point x the
distance between x and C(s) is a measurable function of s.
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A dual path p1, p2, ... is said to support a path x0, x1, ... if

(1.4) pt+1xt = 1 (a.s.)

for all t ≥ 0. A trajectory is called rapid if there exists a dual trajectory supporting
it. The term is motivated by the fact that

Et(pt+1yt)
ptyt−1

≤ Et(pt+1xt)
ptxt−1

= 1 (a.s.)

for each path y0, y1, ... with ptyt−1 > 0 (see (1.3) and (1.4)). This means that
a rapid path x0, x1, ... maximizes the conditional expectation of the growth rate
at each time t, the maximum being equal to 1. Growth rates are measured in
terms of random linear functions pta. In the applications, vectors xt constituting
trajectories can represent, e.g., commodity bundles or portfolios of assets; then pt

are interpreted as prices.
A path x0, x1, ... is called balanced if there exists a measurable vector function

x(s0) ≥ 0 and a measurable scalar function λ(s1) > 0 such that E ln λ(s1) < +∞,

(1.5) x0(s0) = x(s0), xt(st) = λ(st)...λ(s1)x(st), t = 1, 2, ...,

and

(1.6) |x(s0)| = 1 (a.s.).

Such trajectories grow at a stationary rate and with stationary proportions defined
by λ(st) and x(st), respectively. Clearly a pair of bounded measurable functions
x(s0) ≥ 0 and λ(s1) > 0 generates a balanced path if and only if condition (1.6)
holds and

(1.7) (x(s0), λ(s1)x(s1)) ∈ C(s1) (a.s.).

By virtue of stationarity of the process (st), the functional E ln λ(st) does not
depend on t. A balanced path maximizing this functional is termed a von Neumann
path.

A dual path p1, p2, ... is called balanced if there exist measurable vector and scalar
functions p(s1) ≥ 0 and λ(s1) > 0 such that

(1.8) p1(s1) = p(s1), pt(st) =
p(st)

λ(st−1)...λ(s1)
, t = 2, 3, ...,

and

(1.9) E|p(s1)| < ∞.

We have

(p1, E1p2) = (p(s1),
E1p(s2)
λ(s1)

)

and

(pt, Etpt+1) = (
p(st)

λ(st−1)...λ(s1)
,

Etp(st+1)
λ(st)...λ(s1)

), t = 2, 3, ...,

From this we can see that a pair of measurable functions p(s1) ≥ 0 and λ(s1) > 0
generates a balanced dual path if and only if

(1.10) (p(s1),
E1p(s2)
λ(s1)

) ∈ C×(s1) (a.s.)

and condition (1.9) holds. (We use here the fact that if E|p1| < ∞, then E|pt| < ∞
for all t; this is so under the assumptions we impose below.)
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A triplet of measurable functions x(s0) ≥ 0, p(s1) ≥ 0, λ(s1) > 0 forms a von
Neumann equilibrium if the sequence x0, x1, ... defined by (1.5) is a balanced path
and the sequence p1, p2, ... defined by (1.8) is a dual balanced path supporting it.
The last condition holds if and only if

(1.11) p(s1)x(s0) = 1 (a.s.).

Therefore a triplet x(s0) ≥ 0, p(s1) ≥ 0, λ(s1) > 0 is an equilibrium if and only if
the measurable functions x, p and λ satisfy (1.6), (1.7), (1.9), (1.10) and (1.11). It
can be shown (see Proposition 3 below) that if (x, p, λ) is an equilibrium then the
pair (x, λ) generates a von Neumann path. Note that the latter is rapid because it
is supported by the dual trajectory p1, p2, ....

Consider for the moment the deterministic case, i.e. assume that S consists of a
single point, and suppose that

C = {(a, b) ∈ Rn
+ × Rn

+ : b ≤ Ha},
where H is a positive matrix (all inequalities between vectors are understood co-
ordinatewise). Then (x, p, λ) is a von Neumann equilibrium if and only if λ is the
Perron-Frobenius eigenvalue of A, and x and p are the Perron-Frobenius eigenvec-
tors of A and of the conjugate to A, respectively. In random systems defined in
terms of positive matrices, x, p and λ are stochastic analogues of such eigenvec-
tors and eigenvalues—see Evstigneev [9], Arnold, Demetrius and Gundlach [3], and
Kifer [18].

Let us formulate the assumptions we impose on the dynamical system at hand.
For each st, the cone C(st) is supposed to satisfy the following conditions:

(C.1) For any a ∈ Rn
+, the set {b : (a, b) ∈ C (st)} is non-empty.

(C.2) The set C (st) contains with every (a, b) all (a′, b′) such that a′ ≥ a and
0 ≤ b′ ≤ b.

(C.3) There exists a constant M such that |b| ≤ M |a| for all (a, b) ∈ C (st) and
st.

Clearly, it is sufficient to define C(st) and impose conditions (C.1) – (C.3) for
some particular t, say t = 0. Then C(st) will be defined and will satisfy conditions
(C.1) – (C.3) for all integers t. The conditions imposed are quite standard in the
theory under consideration (in the economic applications, property (C.2) is referred
to as a ”free disposal hypothesis”).

We will also assume that the following requirement is fulfilled.
(C.4) There exist a constant γ > 0 and an integer l ≥ 1 such that for every

i = 1, ..., n one can find measurable vector functions y1,i(s1), ..., yl,i(sl) satisfying

(1.12) (ei, y1,i) ∈ Z1, (y1,i, y2,i) ∈ Z2, ..., (yl−1,i, yl,i) ∈ Zl, yl,i ≥ γe.

We write e for the vector (1, ..., 1) ∈ Rn, and we denote by ei the vector in Rn

whose all coordinates are equal to zero except the ith coordinate which is equal to 1.
According to (C.4), one can reach the strictly positive vector γe in l steps starting
from any of ei, i = 1, 2, ..., n. It is known [16, 17] that even in the deterministic
case an equilibrium might fail to exist if condition (C.4) does not hold. It follows
from (C.2) – (C.4) that

(1.13) (e, δe) ∈ C(st) (a.s.),

where δ = M1−lγ (because |yl−1,1| ≤ M l−1 and yl,1 ≥ γe), which yields Et|pt+1| ≤
δ−1|pt| (a.s.) for any sequence of measurable functions p1(s1), p2(s2), ... satisfying
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(1.3). Consequently, for any such sequence we have E|pt| < ∞, t = 1, 2, ..., if and
only if E|p1| < ∞. It follows from (C.3) that λ(st) ≤ M for any balanced path
(1.5), and so the functional E ln λ(st) is well-defined (but, generally, may take on
the value −∞).

The main result of this paper is the following theorem.
Theorem 1. Under assumptions (C.1) – (C.4), a von Neumann equilibrium

exists.
Previous results of this kind (see [13] and references therein) were obtained under

certain assumptions of strict convexity of the cones C(st). Under these assumptions,
an equilibrium not only exists, but is also in a sense stable. Conditions (C.1) -
(C.4), which are fully analogous to those used in the deterministic case (see, e.g.,
[21, 22, 27]), do no guarantee stability. The question whether they are sufficient
for the existence of equilibrium in the stochastic case was open. Theorem 1 gives a
positive answer to this question.

The strategy of the proof of Theorem 1 which we follow is classical and goes
back to Dvoretzky, Wald and Wolfowitz [5]. It is based on the idea of ”elimination
of randomization”. We first construct an appropriate extension, σt = (st, s

′
t), t =

0,±1, ..., of the given stochastic process ..., s0, s1, ... such that the new dynamical
system defined in terms of ..., σ0, σ1, ... possesses an equilibrium. The auxiliary
process ..., s′0, s

′
1, ... serves as an additional source of randomness. Then, using

some subtle properties of convexity, we eliminate randomization and establish the
existence of equilibrium in the original system.

The paper is organized as follows. In Section 2 we discuss links between the
notions of a dual path and equilibrium introduced above and somewhat different
but closely related notions considered in the literature—this is needed in order to
make use of some results of previous work. In Section 3, we state the results of
previous studies we employ and outline the plan of the proof of the main theorem.
Section 4 contains some auxiliary propositions. In Section 5 we establish a key
result needed for proving Theorem 1. The proof is completed in Section 6. Section 7
discusses the question of uniqueness of an equilibrium growth factor. The Appendix
contains statements of some general facts used in this work.

2. Dynkin’s and Radner’s approaches to duality

In the definition of a dual path given in Section 1, we follow essentially the
approach of Dynkin [6, 7]. Another version of this concept was introduced by
Radner (see, e.g., [25, 26]). Dynkin and Radner both dealt with somewhat different
models, and when referring to their work, we adjust their considerations for the
present context. According to Radner’s approach (as applied in our context), a
dual path is defined as a sequence of non-negative measurable vector functions
q(s0), q1(s1), ... such that E|qt(st)| < ∞ and

(2.1) Et−1(qtv) ≤ qt−1u (a.s.)

for all (u, v) ∈ Zt. We will refer to such sequences as R-dual paths. Since C(st) is
a cone, the set Zt contains with each pair of vectors (u, v) all pairs (λu, λv), where
λ(st−1) ≥ 0 is any bounded measurable scalar function. This implies that condition
(2.1) is equivalent to

(2.2) E(qtv) ≤ E(qt−1u).
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An R-dual path is balanced if there are measurable vector and scalar functions
q(s1) ≥ 0 and λ(s1) > 0 such that

(2.3) q0(s0) = q(s0), qt(st) =
q(st)

λ(st)...λ(s1)
, t = 1, 2, ...,

and E|q(s0)| < ∞. These definitions lead to the following version of the concept
of a von Neumann equilibrium. Let us say that a triplet of measurable functions
x(s0) ≥ 0, q(s0) ≥ 0, λ(s1) > 0 forms an R-equilibrium if E|q(s0)| < ∞, conditions
(1.6) and (1.7) hold,

(2.4) q(s0)x(s0) = 1 (a.s.),

and

(2.5) E0
q(s1)v(s1)

λ(s1)
≤ q(s0)u(s0) (a.s.)

for all (u(s0), v(s1)) in Z1. By virtue of condition (2.5), the sequence (2.3) is an
R-dual balanced path, and in view of (2.4) it supports the balanced path (1.5) in
the sense that qtxt = 1 (a.s.) for all t ≥ 0.

Radner’s approach appears to be more natural in the economic applications:
R-dual paths admit a clear interpretation as price systems supporting optimal tra-
jectories of economic dynamics. In this connection, most of the studies on stochastic
von Neumann-Gale dynamical systems have dealt with what we call here R-dual
paths and R-equilibria. However, it has been recently shown [4] that Dynkin’s ap-
proach is preferable in the applications related to finance. In the present work, this
approach serves as a powerful mathematical tool, playing a key role in the proof
of the main existence theorem. Dealing with the notion of equilibrium defined in
accordance with Dynkin’s concept of duality, we employ a number of known results
about R-equilibria and the following fact.

Theorem 2. An equilibrium exists if and only if an R-equilibrium exists.
Thus, the two notions of equilibrium are essentially equivalent. However, there

is an asymmetry between the ”if” and ”only if” assertions in the above theorem.
Given an equilibrium, one can immediately construct an R-equilibrium by taking
some conditional expectations. To construct the former from the latter, one needs
a more sophisticated argument using Lagrangian duality for convex variational
problems in spaces of measurable functions (see Proposition 1 below).

Proof of Theorem 2. Let x(s0) ≥ 0, p(s1) ≥ 0, λ(s1) > 0 be a triplet of mea-
surable functions forming an equilibrium, i.e. satisfying (1.6), (1.7), (1.9) and
(1.10). Define q(s0) = E(p(s1)|s0). By virtue of (1.10), [E1p(s2)]v(s1)/λ(s1) ≤
p(s1)u(s0) (a.s.) for all (u(s0), v(s1)) in Z1. By taking the conditional expectation
E(·|s0) of both sides of the last inequality and using the fact that E[p(s2)|s1] =
q(s1), we obtain (2.5). Condition (2.4) holds as a consequence of (1.11), and so
x(s0), q(s0), λ(s1) is an R-equilibrium.

To prove the converse assertion, consider an R-equilibrium x(s0), q(s0),
λ(s1) and define r(s1) := q(s1)/λ(s1). We have E|r(s1)| < ∞ by virtue of (2.5),
(1.13) and the fact that E|q(s0)| < ∞. From (2.5) we obtain:

(2.6) E[r(s1)v(s1)− q(s0)u(s0)] ≤ 0

for all (u(s0), v(s1)) in Z1. By virtue of Proposition 1 we prove below, this im-
plies the existence of a measurable vector function g(s1) such that E|g(s1)| <
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∞, E0g(s1) = 0 and

(2.7) E[r(s1)v(s1)− q(s0)u(s1)]− Eg(s1)u(s1) ≤ 0

for all essentially bounded measurable (u(s1), v(s1)) such that (u(s1), v(s1)) ∈
C(s1) (a.s.). We will denote the class of such functions (u(s1), v(s1)) by W .

Define p(s1) = q(s0)+ g(s1). We claim that x(s0), p(s1), λ(s1) is an equilibrium.
To prove this, from (2.7) we obtain

(2.8) E
q(s1)v(s1)

λ(s1)
− Ep(s1)u(s1) ≤ 0

for all (u, v) ∈ W . Since (u(s1), 0) ∈ C(s1) for any non-negative u(s1) (this follows
from (C.1) and (C.2)), the last inequality implies Ep(s1)u(s1) ≥ 0 for any bounded
measurable u(s1) ≥ 0. Consequently, p(s1) ≥ 0 (a.s.). Denote by Ĉ(s1) the set
of those (a, b) ∈ C(s1) which satisfy |a| ≤ 1 and by Ŵ the class of all measurable
functions (u(s1), v(s1)) such that (u(s1), v(s1)) ∈ Ĉ(s1) (a.s.). By virtue of (C.3)
all such (u, v) are essentially bounded, and so Ŵ ⊆ W . Inequality (2.8), holding
for all functions (u, v) ∈ Ŵ , implies that for almost all s1,

(2.9)
q(s1)b
λ(s1)

− p(s1)a ≤ 0 for all (a, b) ∈ C(s1) with |a| ≤ 1

(see Proposition A.5 in the Appendix). We can drop the constraint |a| ≤ 1 in
(2.9) because C(s1) is a cone. Since E0p(s1) = E0[q(s0) + g(s1)] = q(s0), we have
E1p(s2) = q(s1). Thus, with probability one,

[E1p(s2)]b
λ(s1)

− p(s1)a ≤ 0 for all (a, b) ∈ C(s1),

which yields (1.10).
By setting a = x(s0) and b = λ(s1)x(s1) in (2.9), we get 1 = q(s1)x(s1) ≤

p(s1)x(s0) (a.s.) (see (2.4)). On the other hand,

Ep(s1)x(s0) = E{E0[p(s1)]}x(s0) = Eq(s0)x(s0) = 1.

Therefore p(s1)x(s0) = 1 (a.s.), which proves (1.11). Thus x(s0), p(s1), λ(s1) is an
equilibrium. ¤

In the class W of essentially bounded measurable vector functions (u, v) sat-
isfying (u(s1), v(s1)) ∈ C(s1) (a.s.), consider the subclass W0 consisting of those
(u, v) for which there exists a measurable function u′(s0) coinciding with u(s1)
(a.s.). Clearly, those and only those (u, v) in W belong to W0 which satisfy
u(s1) = E0u(s1) (a.s.). From (2.6), we get

(2.10) F (u, v) := E[r(s1)v(s1)− q(s0)u(s1)] ≤ 0

for all (u, v) ∈ W0. In the course of the proof of Theorem 2, we used the following
fact.

Proposition 1. If inequality (2.10) holds for all (u, v) ∈ W0, then there exists an
integrable vector function g(s1) such that inequality (2.7) holds for all (u, v) ∈ W .

Inequality (2.10) says that the maximum of the functional F (u, v) on the set
of (u, v) ∈ W satisfying the ”non-anticipativity constraint” u(s1) = E0u(s1) (a.s.)
is zero. The function g(s1) plays the role of a Lagrange multiplier relaxing this
constraint. Lagrange multipliers of this kind were first considered by Rockafellar
and Wets [28]. In the proof below, we use techniques outlined in [10].
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Proof of Proposition 1. Denote by Lk
∞(t) the Banach space of essentially bounded

measurable vector functions x(st) with values in Rk. We will regard functions
w = (u, v) in W as elements of L2n

∞ (1). Consider the operator B transforming
w = (u, v) ∈ W into Bw := u(s1) − E0u(s1). This is a continuous linear operator
of L2n

∞ (1) into Ln
∞(1). We can characterize W0 as the set of those w ∈ W for which

Bw = 0. According to (2.10), the function w̄ := 0 is a solution to the problem of
maximization of the linear functional F (z) on the convex set W subject to the linear
constraint Bw = 0. To analyze this problem we will use a version of the Kuhn-
Tucker theorem formulated in the Appendix as Proposition A.6. We will apply
this result to the Banach spaces D1 := L2n

∞ (1) and D2 := Ln
∞(1). Condition (a)

of Proposition A.6 follows from the fact that the set C(s1) contains {(a, b) ∈ R2n
+ :

a ≥ e, 0 ≤ b ≤ δe} (see (1.13)), which implies that the constant vector function
w̃ := (2e, δe/2) is an interior point of W satisfying Bw = 0. Indeed, the open ball
W̃ in L2n

∞ (1) consisting of those w for which ess sup |w(s1)− w̃| < δ/2 is contained
in W (we may assume without loss of generality that δ < 1). Assumption (b) is
fulfilled because the image B(D1) is a closed subspace of Ln

∞(1). It consists of those
u ∈ Ln

∞(1) for which E0u = 0. Requirement (c) is satisfied since F is bounded on W̃
in view of integrability of r(s1) and q(s0) (see (2.10)). Thus, by virtue of Proposition
A.6, there exists a functional π ∈ [L2n

∞ (1)]∗ such that F (w) + 〈π, Bw〉 ≤ F (w̄) for
each w ∈ W .

Consider the decomposition π = πa + πs of π as described in Proposition A.7.
Let h(s1) be an integrable function with values in Rn such that 〈πa, u〉 = Ehu for
all u ∈ Ln

∞(1), and let χk(s1) (k = 1, 2, ...) be measurable functions with values 0
and 1 satisfying

〈πs, u〉 = 〈πs, χku〉, Eχk → 0, ||(1− χk)E0χ
k||∞ → 0

The functions χk are the indicators of the sets Γk described in Proposition A.7
(G being the σ-algebra generated by s0). Fix any w = (u, v) ∈ W and define
w′ := (u′, v′) := (E0u, 0),

wk := (uk, vk) = (1− χk)w + χkw′ (k = 1, 2, . . .).

We have w′, wk ∈ W , and so

(2.11) F (wk) + 〈πa, uk − E0uk〉+ 〈πs, uk − E0uk〉 = F (wk) + 〈π,Bwk〉 ≤ 0.

Since the functions wk are uniformly bounded and converge to w in L1, we have
F (wk) → F (w) (see (2.10)) and 〈πa, uk−E0uk〉 → 〈πa, u−E0u〉. Let us show that
〈πs, uk − E0uk〉 = 〈πs, χk(uk − E0uk)〉 → 0. Since πs is continuous in || · ||∞, it is
sufficient to verify that ||ψk||∞ → 0, where ψk := χk(uk −E0uk). We have ψk = 0
when χk = 0. If χk = 1, then

ψk = E0u− E0(1− χk)u− E0(χkE0u) = E0[uχk − uE0χ
k)] =

E0(1− χk)E0(χku)− E0[(1− χk)uE0χ
k].

Consequently, ||ψk||∞ ≤ 2||u||∞ · ||(1 − χk)E0χ
k||∞ → 0. Thus, by passing to the

limit in (2.11), we obtain

(2.12) F (u, v) + Eh[u− E0u] ≤ 0 for all (u, v) ∈ W.

Define g(s1) := E0h(s1)− h(s1). Inequality (2.7) follows from (2.12) in view of the
identity Eh[u− E0u] = E[h− E0h]u. ¤



VON NEUMANN–GALE DYNAMICAL SYSTEMS 9

3. Plan of the proof of the main result

In the proof of Theorem 1, we will use several results of previous work, first of
all, Theorem 3 below. Recall that throughout the paper we always assume that
conditions (C.1) – (C.4) hold.

Theorem 3. If a von Neumann path exists, then an equilibrium exists.
The existence of an R-equilibrium in a system possessing a von Neumann path

is proved in [2, Theorem 1]. Theorem 3 follows from this result and Theorem 2.
To formulate the next result let us introduce some definitions. Let D denote

the stochastic von Neumann-Gale dynamical system defined by the stationary
stochastic process ..., s−1, s0, s1, ... and the cone C(s1) which are supposed to be
fixed throughout the paper. Suppose that together with the random sequence
.., s−1, s0, s1, ..., we have another random sequence .., s′−1, s

′
0, s

′
1, ... with values in

some measurable space. In other words, suppose we are given a probability measure
Q on the space of paths

(3.1) σ∞ := (σt)+∞−∞, σt := (st, s
′
t),

of the process ..., σ−1, σ0, σ1, ... such that the projection of Q on the space of paths
s∞ := (st)+∞−∞ of the original process ..., s−1, s0, s1, ... coincides with the given
measure P . We shall say that the process..., σ−1, σ0, σ1, ... is non-anticipative (with
respect to ..., s−1, s0, s1, ...) if, for each bounded measurable function g(σt), we have

(3.2) E[g(σt)|s∞] = E[g(σt)|st], t = 0,±1, ...,

where σt = (..., σt−1, σt) and E stands here for the expectation with respect to
the measure Q. Equality (3.2) means that if we wish to predict σt based on in-
formation about ..., s−1, s0, s1, ..., then what matters is only st = (..., st−1, st)—the
past and the present of the given process {st}, the probabilistic forecast of σt being
independent of the future st+1, st+2, ... of it.

Given a stationary non-anticipative process σt = (st, s
′
t), t = 0, ±1, ±2, ..., define

(3.3) C(σt) = C(st).

Consider the system D specified in terms of the stochastic process σt = (st, s
′
t),

t = 0, ±1, ±2, ..., and the random cone (3.3). This dynamical system will be called
the extension of D corresponding to the stationary non-anticipative process (σt).
Note that, in the extended system, the random cone C(σt) = C(st) does not depend
on the process (s′t). However, the class of paths in D is of course larger than in D:
these paths might depend not only on (st), but also on (s′t).

Theorem 4. There exists a stationary non-anticipative extension σt = (st, s
′
t),

t = 0, ±1,..., of the process st, t = 0,±1, ..., such that the extended dynamical sys-
tem D defined in terms of (σt) has a von Neumann path and hence an equilibrium.

The analogous result pertaining to R-equilibria is established in [12, Theorem
2]. Combined with Theorem 3, it implies the existence of an extension D of the
original system D possessing an equilibrium.

The plan of the proof of Theorem 1 is as follows. Consider an extension D of the
given system D (defined in terms of an appropriate non-anticipative process (σt)) in
which an equilibrium x(σ0), p(σ1), λ(σ1) exists. Let x0, x1, ... be the von Neumann
path in D defined by x0(σ0) = x(σ0) and xt(σt) = λ(σt)...λ(σ1)x(σt). Put wt(st) =
E(xt(σt)|st) (t = 0, 1, ...). We show (Proposition 5) that w0, w1, ... is a path in D
and D, and there exists a constant d ≥ 0 such that E ln |wt(st)| − tE ln λ(σt) ≥
−d, t = 0, 1, ..., for all t. The last inequality means that the path w0, w1, ... cannot
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grow ”infinitely slower” than x0, x1, .... We consider the L1 closure clL of the convex
hull L of the set functions ln |wt(s1)| − ln |wt−1(s0)|. By using the above growth
property of w0, w1, ..., we prove (Theorem 5) that λ(σ1) is homological to some
function µ(s1) in clL. Two functions λ(σ1) and λ′(σ1) are said to be homological
if λ′(σ1) = φ(σ0)λ(σ1)φ(σ1)−1 for some φ(σ0) > 0. Since all elements in L are
measurable functions of s1, every element in the L1 closure of L can be represented
by a measurable function of s1. Having proved that λ(σ1) is homological to a
measurable function of s1, we derive from this (Theorem 7) that there exists a pair
x̌(s0), λ̌(s1) generating a balanced path in D with E ln λ̌(s1) = E ln λ(σ1). Since
λ(σ1) maximizes E ln λ(σ1) in D, the last equality shows that x̌(s0), λ̌(s1) generates
a von Neumann path in D. By virtue of Theorem 3, this implies the existence of
an equilibrium in D.

4. Some auxiliary propositions

Proposition 2. Let (x, p, λ) be an equilibrium. Then there exists a constant
κ > 0 such that p(s1) ≥ κe and λ(s1) ≥ κ.

Proof. The equality p(s1)x(s0) = 1 implies

(4.1) |p(s1)| = |p(s1)||x(s0)| ≥ p(s1)x(s0) = 1.

Consider the functions y1,i, ..., yl,i described in (C.4) and the sequence p1, p2, ...
defined by (1.8). Since p1ei, p2y1,i, ..., pl+1yl,i is a supermartingale, we have

E(
p(sl+1)yl,i

λ(sl)...λ(s1)
|s1) = E(pl+1yl,i|s1) ≤ p1ei = pi(s1),

where pi(s1) is the ith coordinate of p(s1). In the above formula, p(sl+1)yl,i ≥
γ|p(sl+1)| ≥ γ and λ(sl)...λ(s1) ≤ M l. Consequently, pi(s1) ≥ α, where α =
γM−l, i = 1, ..., n.

To show that λ(s1) is uniformly bounded away from zero define

yt(st) =
n∑

i=1

xi(s0)yt,i(st), t = 1, ..., l.

By virtue of convexity of C(st) and (1.6), we have (x0, y1) ∈ Z1, (y1, y2) ∈ Z2, ...,
(yl−1, yl) ∈ Zl, yl ≥ γe, where x0 = x(s0). In view of (C.3), |γe| ≤ M l−1|y1(s1)|
and so |y1(s1)| ≥ M1−lγ. From (1.10) and (1.11), we get

λ(s1)−1[E1p(s2)]y1(s1) ≤ p(s1)x(s0) = 1,

which implies λ(s1) ≥ [E1p(s2)]y1(s1) ≥ α|y1(s1)| ≥ αM1−lγ. It remains to define
κ as the smallest of the numbers αM1−lγ and α. ¤

Proposition 3. If (x, p, λ) is an equilibrium, the sequence defined by (1.5) is a
von Neumann path.

Proof. Consider a pair of measurable functions x′(s0) ≥ 0, λ′(s1) > 0 gener-
ating some balanced path. Then |x′(s0)| = 1 (a.s.) and (x′(s0), λ′(s1)x′(s1)) ∈
C(s1) (a.s.). By using (1.6), we find

λ′(s1)λ(s1)−1E(p(s2)|s1)x′(s1) ≤ p(s1)x′(s0),

which yields

(4.2) E ln[λ′(s1)λ(s1)−1] ≤ E ln p(s1)x′(s0)− E ln[E(p(s2)x′(s1)|s1)],
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where E ln p(s1)x′(s0) = E ln p(s2)x′(s1) = E[E ln(p(s2)x′(s1)|s1)]. By applying to
ξ := p(s2)x′(s1) and f(x) := ln x Jensen’s inequality (see Proposition A.2, part (a),
in the Appendix), we obtain that the right-hand side of (4.2) is not greater than
zero. (Here, κ ≤ ξ ≤ |p(s2)|, and so Eξ < ∞ and E| ln ξ| < ∞.) ¤

Let (x, p, λ) be a von Neumann equilibrium. A path w0, w1, ... is called good (cf.
Gale [15]) if

(4.3) E ln |wt| − tE ln λ(st) ≥ −d, t = 0, 1, ...,

for some constant d ≥ 0. According to (4.3), the von Neumann path defined by
(1.5) does not grow ”infinitely faster” than w0, w1, ... (which motivates the above
term).

We will denote by T the operator transforming a function x(st) into x(st+1)
(t = 0,±1, ...). If a measurable function x is in L1 (i.e. E|x| < ∞), then for any
m = 0,±1, ... the function Tmx is in L1 and

(4.4) Ex = E(Tmx), TmE(x(st)|st−1) = E(x(st+m)|st+m−1)

by virtue of the stationarity of the process (st).
Consider a good path (wt). It follows from (4.3) that |wt| > 0 (a.s.). For each

t = 1, 2, ..., define

(4.5) µt(st) =
|wt(st)|

|wt−1(st−1)| , µt(s1) = T−(t−1)µt(st).

Proposition 4. The following inequalities are valid: µt ≤ M , E| ln µt| < ∞ and

(4.6) [
N∑

t=1

E ln µt(s1)]−NE ln λ(s1) ≥ −D, N = 1, 2, ...,

for some constant D ≥ 0.
Proof. The first inequality follows from (C.3). To prove the second and the

third, it is sufficient to prove the analogous inequalities for the random variables µt

(see (4.4)). We have ln µt = ln |wt| − ln |wt−1|, where ln |wt| ≤ t ln M + ln |w0| by
virtue of (C.3). From (4.3) it follows that E ln |wt| > −∞ and E ln |wt−1| > −∞,
which implies that ln |wt| and ln |wt−1| are in L1, and so lnµt is in L1. Further, we
have

N∑
t=1

E ln µt =
N∑

t=1

[E ln |wt| − E ln |wt−1|] =

E ln |wN | − E ln |w0| ≥ NE ln λ− d− E ln |w0|,
which shows that D can be defined as d + E| ln |w0||. ¤

5. An approximation theorem

Consider a von Neumann equilibrium (x, p, λ), a good path w0, w1, ... and the
functions µt(s1) defined by (4.5). Denote by L the convex hull of the set of functions
{ln µt(s1), t = 1, 2, ...} and put K(s1) = |p(s1)|.

Theorem 5. There exists a sequence of measurable functions ξm(s1) in L (m =
1, 2, ...) and a measurable function φ(s0) such that

(5.1) ξm(s1) → ln λ(s1) + lnφ(s0)− ln φ(s1) (L1)

and

(5.2) κ ≤ φ(s0) ≤ K(s1).
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This result will be applied in Section 6 to an extensionD of the original dynamical
system D in which an equilibrium exists. The essence of Theorem 5 lies in the
following. According to this theorem, there exists a function, ξ(s1) := ln λ(s1) +
ln φ(s0) − ln φ(s1), having the following properties: (a) exp(ξ(s1)) is homological
to the von Neumann growth factor λ(s1), and (b) ξ(s1) can be approximated in L1

by convex combinations ξm(s1) of the functions ln µt(s1), t = 1, 2, ..., where µt(s1)
are the growth factors associated with a good path.

Proof of Theorem 5. Since (wt−1, wt) ∈ C(st), we have λ(st)−1Etp(st+1)wt ≤
p(st)wt−1. This inequality implies

ln
µt

λ(st)
= ln

|wt|
λ(st)|wt−1| ≤ ln

p(st)vt−1

Etp(st+1)vt
= − ln

Etp(st+1)vt

p(st)vt−1
,

where vt(st) := wt |wt|−1 and µt(st) = |wt|/|wt−1|. Consequently, we have

T−(t−1) ln
µt

λ(st)
≤ T−(t−1)[− ln

Etp(st+1)vt

p(st)vt−1
],

which yields

ln
µt

λ(s1)
≤ − ln

[E1p(s2)]TT−tvt

p(s1)T−(t−1)vt−1
= − ln

[E1p(s2)]Tvt

p(s1)vt−1
=

(5.3) = − ln
E1[p(s2)Tvt]

p(s1)vt−1
= − ln

E1{T [p(s1)vt]}
p(s1)vt−1

= − ln
E1{Tγt}

γt−1
,

where vt(s0) := T−tvt(st) and γt(s1) := p(s1)vt(s0). Since |vt(s0)| = 1, we have

(5.4) κ ≤ γt(s1) ≤ K(s1) [= |p(s1)|],
where κ > 0 and EK(s1) < ∞.

From (5.3) we obtain that the random variables νt(s1) := lnµt(s1) − ln λ(s1)
satisfy

(5.5) νt ≤ − ln
E1{Tγt}

γt−1
, t = 1, 2, ...,

and from (4.6) we get

(5.6)
N∑

t=1

Eνt ≥ −D, N = 1, 2, ....

To complete the proof of the theorem, it is sufficient to prove the following propo-
sition.

Proposition 5. Let νt(s1), t = 1, 2, ..., be a sequence of functions in L1 satisfy-
ing inequalities (5.5) and (5.6), where D ≥ 0 is a constant and γt(s1), t = 1, 2, ...,
are measurable functions meeting the requirement (5.4). Then there exists a mea-
surable function φ(s0) satisfying (5.2) and a sequence of measurable functions
ζm(s1) belonging to the convex hull of the set {νt(s1), t = 0, 1, ...} such that
ζm(s1) → ln φ(s0)− ln φ(s1) in L1.

Proof. From (5.5) we obtain

N∑
t=1

νt ≤ −
N∑

t=1

ln
E1(Tγt)

γt−1
=
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−
N∑

t=1

ln
E1(Tγt)

γt
−

N∑
t=1

ln
γt

γt−1
= −

N∑
t=1

ln
E1(Tγt)

γt
− ln γN + ln γ0,

and so

(5.7) ξN :=
1
N

N∑
t=1

νt ≤ − 1
N

N∑
t=1

{ln[E1e
Tβt

]− βt}+ εN ,

where εN := (ln γ0 − ln γN )/N and βt(s1) := ln γt(s1). The random variables εN

converge to zero a.s. and in L1 because ln κ ≤ ln γN ≤ ln K(s1) for all N (see
(5.4)).

By using the concavity of the operator ξ 7→ [− ln(E1e
ξ)] (see Proposition A.3 in

the Appendix), we get

− 1
N

N∑
t=1

ln[E1e
Tβt

] ≤ − ln[E1e
TψN

] (a.s.)

where ψN (s1) := N−1
∑N

t=1 βt(s1). This inequality, combined with (5.7), yields

(5.8) ξN ≤ − ln(E1e
TψN

) + ψN + εN .

Note that the random variables γt, βt, Tβt, eTβt

and ψN are in L1 because

(5.9) κ ≤ γt ≤ K(s1), ln κ ≤ βt ≤ lnK(s1), ln κ ≤ ψN ≤ ln K(s1).

It follows from (5.9) that |ψN (s1)| is bounded by an integrable random variable
Ψ(s1) := | ln κ|+ | ln K(s1)|.

By using the Komlós theorem (see Proposition A.1), we can select a sequence
N1 < N2 < ... such that

(5.10) πm :=
1
m

m∑

i=1

ψNi → ψ (a.s.)

for some ψ = ψ(s1) with ln κ ≤ ψ(s1) ≤ ln K(s1). Since |ψN (s1)| ≤ Ψ(s1), where
EΨ < ∞, this convergence will be also in L1. From (5.8), we get

ζm(s1) :=
1
m

m∑

i=1

ξNi ≤
1
m

m∑

i=1

[− ln(E1e
TψNi )] + πm +

1
m

m∑

i=1

εNi ≤

(5.11) − ln(E1e
1
m

Pm
i=1 TψNi ) + πm + εm = − ln(E1e

Tπm

) + πm + εm,

where εm := m−1
∑m

i=1 εNi → 0 a.s. and in L1. The second inequality in the above
chain of relations follows from the concavity of the operator ξ 7→ [− ln(E1e

ξ)] and
the fact that eψN ∈ L1 (see (5.9)). By virtue of (5.6), we have EξN ≥ −D/N , and
so Eζm ≥ −dm, where dm := Dm−1(N−1

1 + ... + N−1
m ) → 0.

Put ηm(s1) := − ln(E1e
Tπm

) + πm + εm and θ(s1) := eψ(s1). Observe that
κ ≤ θ(s1) ≤ K(s1) and

(5.12) ηm → − ln(E1e
Tψ) + ψ = − ln E1(T θ) + ln θ a.s. and in L1,

Indeed, πm → ψ, εm → 0 a.s. and in L1. The random variables eTπm ≥ 0 converge
to eTψ a.s. and are bounded by an integrable random variable K(s2), consequently,
E1e

Tπm → E1e
Tψ a.s. and in L1. This implies ln E1e

Tπm → ln E1e
Tψ a.s. and in

L1 because κ ≤ E1e
Tπm ≤ E1K(s2) and lnκ ≤ ln E1e

Tπm ≤ ln E1K(s2) (see (5.9)
and (5.10)).
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We have shown that Eζm ≥ −dm, where dm → 0. Therefore and by virtue of
(5.12),

(5.13) E(ηm − ζm) ≤ Eηm + dm → −E ln E1(Tθ) + E ln θ.

In (5.11) we established that ηm − ζm ≥ 0. Consequently, Eηm + dm ≥ 0, and so
−E ln E1(Tθ)+E ln θ ≥ 0. On the other hand, Jensen’s inequality (see Proposition
A.2, assertion (a)) implies ln E1(Tθ) ≥ E1 ln(Tθ) (a.s.). Thus

E ln E1(Tθ) ≥ E[E1 ln(Tθ)] = E ln(Tθ) = E ln θ,

and so

(5.14) −E ln E1(Tθ) + E ln θ = 0.

From (5.13) and (5.14), we find 0 ≤ E(ηm − ζm) ≤ Eηm + dm → 0, and so
E(ηm − ζm) → 0, which means that ηm − ζm → 0 (L1) because ηm − ζm ≥ 0.

We have shown that ηm−ζm → 0 in L1. On the other hand, ηm → − ln E1(T θ)+
ln θ in L1 (see (5.12)). Consequently, ζm → − ln E1(T θ)+ln θ in L1. The functions
ζm(s1) belong to the convex hull of the set {νt(s1), t = 0, 1, ...} because

ζm =
1
m

m∑

i=1

1
Ni

Ni∑
t=1

νt

(see (5.7) and (5.11)).
It remains to show that there exists a measurable function φ(s0) for which

θ(s1) = φ(s0) (a.s.). To this end observe that E ln E0θ = E ln E1(Tθ) = E ln θ =
EE0 ln θ by virtue of (5.14). On the other hand, Jensen’s inequality (see Proposi-
tion A.2, part (a)) gives lnE0θ− E0 ln θ ≥ 0. Both random variables ln E0θ and
E0 ln θ are in L1 because κ ≤ θ(s1) ≤ K(s1). Consequently, ln E0θ = E0 ln θ, which
in view of part (b) of Proposition A.2 implies the equality E0θ = θ (a.s.). Thus we
can define φ(s0) as E0θ. Inequality (5.2) follows from the analogous inequality for
θ. ¤

6. Existence of a von Neumann path

By virtue of Theorem 4, there exists a stationary non-anticipative extension σt =
(st, s

′
t), t = 0,±1, ..., of the process (st), such that the extended dynamical system

D defined in terms of the process (σt) possesses an equilibrium x(σ0), p(σ1), λ(σ1).
Consider the von Neumann path x0, x1, ... in D defined by x0(σ0) = x(σ0) and
xt(σt) = λ(σt)...λ(σ1)x(σt). Put

(6.1) wt(st) = E(xt(σt)|st), t = 0, 1, ....

Proposition 6. The sequence w0, w1, ... is a good path in the dynamical system
D.

Proof. First of all, we observe that w0, w1, ... is a path in D. Indeed, we have
(xt−1(σt−1), xt(σt)) ∈ C(st) (a.s.), and so E[(xt−1(σt−1), xt(σt))|s∞] ∈ C(st) (a.s.),
see Proposition A.4 in the Appendix. Since the process (σt) is non-anticipative
with respect to (st), we get E[xt−1(σt−1)|s∞] = E[xt−1(σt−1)|st−1] = wt−1 and
E[xt(σt)|s∞] = E[xt(σt)|st] = wt. Thus we obtain (wt−1, wt) ∈ C(st) (a.s.), which
means that (wt) is a path in D and hence in D.

To show that w0, w1, ... is a good path in D, we write

E ln |wt| = E ln |E(xt|st)| = E ln E(|xt||st) ≥
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(6.2) E[E(ln |xt||st)] = E ln |xt| = tE ln λ(σt).

In this chain of relations, we have E|xt| < ∞ and E| ln |xt|| < ∞ because |xt| is
bounded and | ln |xt|| = | ln λ(σ1) + ... + ln λ(σt)|, where κ ≤ λ(σt) ≤ M by virtue
of Proposition 2. Consequently, we can use Jensen’s inequality (Proposition A.2 in
the Appendix), which yields the inequality in (6.2). From (6.2), we conclude that
E ln |wt| − tE ln λ ≥ 0, and so the path w0, w1, ... is good. ¤

From Theorem 5 and Proposition 5, we deduce the following result.
Theorem 6. There exist measurable functions µ(s1) and φ(σ0) such that φ

satisfies

(6.3) κ ≤ φ(σ0) ≤ |p(σ1)|
and

(6.4) λ(σ1) = φ(σ1)µ(s1)φ(σ0)−1 (a.s.).

Proof. Consider the good path w0, w1, ... considered in Proposition 5 and the
random variables µt(s1), t = 1, 2, ... defined by (4.5). By applying Theorem 5 to the
dynamical system D and the good path (6.1), we construct a sequence of measur-
able functions ξm(s1) belonging to the convex hull of the set {ln µt(s1), t = 1, 2, ...}
and converging in L1 to ln λ(σ1)+ ln φ(σ0)− ln φ(σ1), where φ(σ0) is measurable
and satisfies κ ≤ φ(σ0) ≤ |p(σ1)|. Consequently, there exists a measurable func-
tion ξ(s1) such that ξ(s1) = ln λ(σ1)+ ln φ(σ0)− ln φ(σ1) (a.s.). We have eξ(s1) =
λ(σ1)φ(σ0)φ(σ1)−1 (a.s.), and so λ(σ1) = φ(σ1)eξ(s1)φ(σ0)−1 (a.s.). Thus it re-
mains to define µ(s1) = eξ(s1). ¤

Remark. In the above argument we used the following fact. Let (Ω,F , P ) be
a probability space and G a sub-σ-algebra of F . If a sequence of G-measurable
random variables ξm(ω) converges in L1 to a random variable ψ(ω), then there
exists a G-measurable random variable ξ(ω) such that ψ(ω) = ξ(ω) (a.s.). To show
this consider a subsequence ξmk(ω) converging to ψ(ω) a.s. and observe that the
function ξ(ω) defined as lim ξmk(ω) when this limit exists and is finite, and as 0
otherwise, is G-measurable and satisfies ξ(ω) = ψ(ω) (a.s.).

Theorem 7. A von Neumann path in the dynamical system D exists.
Proof. Let (x, p, λ) be an equilibrium in D. According to Theorem 6, the function

λ(σ1) admits a representation (6.4) where µ(s1) is a measurable function of s1 and
φ(σ0) is a measurable function of σ0 satisfying (6.3). Since (x(σ0), x(σ1)λ(σ1)) ∈
C(s1) (a.s.), we have

(x(σ0), x(σ1)φ(σ1)µ(s1)φ(σ0)−1) ∈ C(s1) (a.s.).

By using the fact that C(s1) is a cone, we obtain

(x(σ0)φ(σ0), x(σ1)φ(σ1)µ(s1)) ∈ C(s1) (a.s.).

Consequently, (x∗(σ0), x∗(σ1)µ(s1)) ∈ C(s1) (a.s.), where x∗(σ0) := φ(σ0)x(σ0).
The functions x∗(σ0) and µ(s1)x∗(σ1) are integrable because |x∗(σ0)| = φ(σ0) ≤
|p(σ1)| and µ(s1)|x∗(σ1)| ≤ M |x∗(σ0)|. By virtue of Proposition A.4, we have

(E(x∗(σ0)|s∞), µ(s1)E(x∗(σ1)|s∞))) ∈ C(s1) (a.s.),

which yields

(6.5) (E(x∗(σ0)|s0), µ(s1)E(x∗(σ1)|s1))) ∈ C(s1) (a.s.)
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because E(x∗(σ0)|s∞) = E(x∗(σ0)|s0) (a.s.) and E(x∗(σ1)|s∞) = E(x∗(σ1)|s1)
(a.s.) in view of the non-anticipativity of the process (σt).

Define x′(s0) := E(x∗(σ0)|s0), ρ(s0) := |x′(s0)| = E(|x∗(σ0)||s0) and x̌(s0) :=
x′(s0)/ρ(s0). Then

(6.6) ρ(s0) = E(|x∗(σ0)||s0) = E(|φ(σ0)||s0) ≥ κ, |x̌(s0)| = 1,

and by virtue of (6.5),

(6.7) (x̌(s0), λ̌(s1)x̌(s1)) ∈ C(s1) (a.s.),

where λ̌(s1) := ρ(s0)−1µ(s1)ρ(s1). By using (6.6), we find κ ≤ ρ(s0) ≤ E(|p(σ1)||s0),
and so E| ln ρ(s0)| < ∞. It follows from (6.3) and (6.4) that E| ln µ(s1)| < ∞. Thus,
E ln λ̌(s1) = E ln µ(s1)+ E ln ρ(s1)− E ln ρ(s0) = E ln µ(s1). Analogously, by us-
ing (6.3) and (6.4), we obtain E ln µ(s1) = E ln λ(σ1), which gives E ln λ̌(s1) =
E ln λ(σ1).

We have constructed a pair of measurable functions x̌(s0) ≥ 0, λ̌(s1) > 0 gen-
erating a balanced path in the dynamical system D (see (6.6) and (6.7)) and such
that E ln λ̌(s1) = E ln λ(σ1). By virtue of Proposition 3, E ln λ(σ1) ≥ E ln λ′(σ1)
for any pair x′(σ0), λ′(σ1) generating a balanced path in the dynamical system D,
and hence E ln λ(σ1) ≥ E ln λ′(s1) for any pair x′(s0), λ′(s1) generating a balanced
path in D. This means that x̌(s0), λ̌(s1) defines a von Neumann path in D. ¤

Theorem 1 is an immediate consequence of Theorems 3 and 7.

7. On the uniqueness of an equilibrium growth factor

Although our assumptions do not guarantee the uniqueness of an equilibrium,
it can be shown that an equilibrium growth factor is unique up to homological
equivalence.

Theorem 8. Let (v, p, λ) and (w, q, µ) be two equilibria. Then there exists a
measurable function γ(s1) > 0 such that µ(s1) = γ(s1)λ(s1)γ(s0)−1.

Proof. We will write w0 for w(s0), w1 for w(s1), µ1 for µ(s1), etc.. From the
definition of an equilibrium, we obtain

µ1
p̂1w1

p1w0
≤ λ1, λ1

q̂1v1

q1v0
≤ µ1,

where p̂1 = E1p2, q̂1 = E1q2. Consequently,

p̂1w1

p1w0
≤ λ1

µ1
≤ q1v0

q̂1v1

and so

0 = E ln
p2w1

p1w0
≤ E ln

p̂1w1

p1w0
≤ E ln

λ1

µ1
≤ E ln

q1v0

q̂1v1
≤ E ln

q1v0

q2v1
= 0,

where the first and the fourth inequalities follow from Proposition A.2 (a). From
the above relations we get E ln λ1 = E ln µ1, E ln E1(p2w1) = E ln p2w1 and
E ln E1(q2v1) = E ln q2v1. This implies by virtue of Proposition A.2 (b), the ex-
istence of measurable functions γ1 = γ(s1) and δ1 = δ(s1) such that q2v1 = γ1

(a.s.) and p2w1 = δ1 (a.s.). Then q1v0 = γ0 and p1w0 = δ0. Thus we have δ1/δ0 ≤
λ1/µ1 ≤ γ0/γ1, which yields 0 = E ln(δ1/δ0) ≤ E ln(λ1/µ1) ≤ E ln(γ0/γ1) = 0.
Thus λ(s1)/µ(s1) = γ(s0)/γ(s1), which proves the theorem. ¤
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Appendix

The Appendix contains statements, and in several cases short proofs, of some
general facts used in this work. The results are presented in a form convenient for
application in this work (sometimes not in their most general form).

Proposition A.1 (Komlós [19]). Let ξ1, ξ2, ... be random vectors in Rn with
supE|ξN | < ∞. Then there exists a random vector ξ and natural numbers N1 <
N2 < ... such that

(7.1) m−1(ξN1 + ... + ξNm) → ξ (a.s.),

and (7.1) holds for any subsequence of {Nm}.
Let (Ω,F , P ) be a probability space and G a sub-σ-algebra of F . We write EG

and PG for the conditional expectation and the conditional probability given G.
Proposition A.2 Let f(x) be a Borel function defined on an interval (a, b)

(−∞ ≤ a < b ≤ +∞) and let ξ(ω) be a random variable taking values in (a, b)
such that E|f(ξ)| < ∞ and E|ξ| < ∞ (a.s.). (a) If f(x) is concave, then f(EGξ) ≥
EGf(ξ) (a.s.). (b) If f(x) is strictly concave and f(EGξ) = EGf(ξ) (a.s.), then ξ
coincides a.s. with a G-measurable random variable.

Assertion (a) is a version of Jensen’s inequality for conditional expectations—
see, e.g., Loève [20, Section 9.3]. Assertion (b) can be proved by modifying the
argument used for proving (a) in [20, Section 9.3].

Denote by E the set of random variables ξ such that Eeξ < ∞. Note that this
set is convex because the function ex is convex.

Proposition A.3. The operator ξ 7→ ln EGeξ is convex on the set E and maps
this set into itself.

The second assertion follows from the relations E exp(ln EGeξ) = E(EGeξ) =
Eeξ. Let r ∈ (0, 1) be a number and ξ, η two random variables such that Eeξ < ∞
and Eeη < ∞. The convexity of the operator under consideration means that
ln EGerξ+(1−r)η ≤ r ln EGeξ+ (1 − r) ln EGeη or, equivalently, EGerξ+(1−r)η ≤
(EGeξ)r(EGeη)1−r. By setting α = erξ and β = e(1−r)η, we rewrite this inequal-
ity as EGαβ ≤ [EG(α1/r)]r[EGβ1/(1−r)](1−r), which is the Hölder inequality for
conditional expectations (see, e.g., [20, Section 25.1]).

Let C(ω) ⊆ Rn be a non-empty closed set G-measurably depending on ω.
Proposition A.4. If C(ω) is convex and if ξ(ω) is a random vector such that

ξ(ω) ∈ C(ω) (a.s.) and E|ξ(ω)| < ∞, then E(ξ(ω)|G) ∈ C(ω) (a.s.).
For a proof see [1, Appendix II, Lemma 1].
Proposition A.5. Let f(ω, x) be a real-valued jointly measurable function os

ω ∈ Ω and x ∈ Rn such that for x ∈ C(ω) we have |f(ω, x)| ≤ K(ω), where
EK(ω) < ∞. Let ξ̄(ω) be a measurable vector function such that ξ̄(ω) ∈ C(ω)
(a.s.). Then the following assertions are equivalent. (i) The inequality Ef(ω, ξ(ω)) ≤
Ef(ω, ξ̄(ω)) holds for all measurable functions ξ(ω) satisfying ξ(ω) ∈ C(ω) (a.s.).
(ii) With probability one,

(7.2) f(ω, ξ̄(ω)) = max
x∈C(ω)

f(ω, x).

The result can be obtained by using a measurable selection theorem (see [1,
Appendix I]).

Let D1 and D2 be Banach spaces, W a convex subset of D1, F : W → (−∞,+∞)
a concave functional and B : D1 → D2 a continuous linear operator. Assume that
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the functional F (w) attains its maximum on the set {w ∈ W : Bw = 0} at some
point w̄.

Proposition A.6. Let the following conditions hold. (a) The set {w ∈ W :
Bw = 0} contains a point belonging to the interior of the set W . (b) The image of
D1 under the mapping B : D1 → D2 is a closed subspace of D2. (c) The functional
F (·) is bounded below on some open subset of W . Then there exists a continuous
linear functional π on the space D2 such that F (w) + 〈π, Bw〉 ≤ F (w̄) for each
w ∈ W .

This result is an infinite-dimensional version of the Kuhn-Tucker theorem for
concave optimization problems with linear equality constraints. The functional π
is a ”Lagrange multiplier” associated with the constraint Bw = 0. Proposition A.6
is a consequence of Proposition 1 in [10].

Let L∞ = L∞(Ω,F , P,Rn) be the Banach space of essentially bounded random
vectors with values in Rn with the norm || · ||∞, and let L∗∞ be the dual of L∞.

Proposition A.7. Any functional π ∈ L∗∞ can be decomposed into the sum
π = πa + πs of two functionals πa ∈ L∗∞ and πs ∈ L∗∞ possessing the following
properties:

(π.1) There exists a vector function h(ω) such that E|h(ω)| < ∞ and 〈πa, u〉 =
Eh(ω)u(ω) for all u ∈ L∞.

(π.2) There exists a sequence of F-measurable sets Γ1,Γ2, . . . such that P (Γk) →
0 and 〈πs, u〉 = 〈πs,1Γk

u〉 for all k = 1, 2, . . . and u ∈ L∞.
For each σ-algebra G ⊆ F , one can select sets Γk in (π.2) with the following

additional property:

(7.3) ||1Ω\Γk
PG(Γk)||∞ → 0.

The main content of the above proposition, providing a decomposition of any
functional π ∈ L∗∞ into a sum πa + πs of an absolutely continuous and singu-
lar ones, is the Yosida-Hewitt theorem [30]. To obtain the additional property
(7.3), we may assume without loss of generality that the sets in Γk in (π.2) sat-
isfy P (Γk) < k−2. Define Γ′k := {ω : PG(Γk) ≥ k−1} and ∆k := Γk ∪ Γ′k. Then
〈πs,1∆k

u〉 = 〈πs,1Γk
1∆k

u〉 = 〈πs,1Γk
u〉 = 〈πs, u〉 because Γk ⊆ ∆k. Further,

P (Γ′k) ≤ kE[PG(Γk)] = kP (Γk) ≤ k−1, and so P (∆k) ≤ k−2 + k−1 → 0. Finally,
1Ω\∆k

PG(∆k) ≤ 1Ω\∆k
PG(Γk +Γ′k) = 1Ω\Γk

1Ω\Γ′k [PG(Γk)+PG(Γ′k)] ≤ k−1, which
shows that the sets ∆k possess the properties listed in (π.2) and (7.3).
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