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Abstract

This paper employs first order asymptotic theory in order to estab-
lish the asymptotic distribution of the F-test statistic for fixed effects,
under non-normality of the errors, when N →∞ (the number of cross-
sections) and T is fixed (the number of time periods). Three theoretical
results emerge: (i) the standard F-test procedure will still deliver as-
ymptotically valid inferences; (ii) under local (pure) random effects,
the F-test statistic is asymptotically proportional to the random ef-
fects test statistic and, therefore, both tests have the same asymptotic
power; (iii) under local fixed, or random effects which are correlated
with the regressors, the F-Test will have higher asymptotic power than
the random effects test.

1 Introduction

Although there is a large statistics and econometrics literature on analysis of
variance testing, it appears that results concerning the asymptotic properties
of the commonly used F-test (for fixed effects) remain incomplete. First,
virtually all standard econometric texts quote this test (and the statistic it
is also reported by software packages such as STATA), but there is little or no
comment on the finite sample importance of the normality assumption when
T (the number of time periods) is fixed, or small, relative to N (the number

∗We are grateful to Les Godfrey, Denise Osborn and Joao Santos-Silva for their helpful
comments, and also to three referees whose constructive comments greatly improved the
quality of this paper. The second author received financial support from the Graduate
School of Social Sciences and the School of Economic Studies, University of Manchester.
Address correspondence to: Takashi Yamagata, Faculty of Economics, University of Cam-
bridge, Sidgwick Avenue, Cambridge CB3 9DE, UK; e-mail: ty228@econ.cam.ac.uk
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of cross-sections). An exception is Wooldridge (2002, p.274) who remarks
that the asymptotic distribution (large N, fixed T ) is unknown under non-
normality and to the best of our knowledge this remains true. Second, there
appears to be no theoretical results available which explain the asymptotic
relationship between the F-test statistic and the commonly used random
effects test (RE-test) statistic; hereafter denoted FN and RN , respectively.

The current paper addresses both these issues by deriving the limit dis-
tribution of the appropriately normalised and centred F-test statistic in the
context of static panel data, under general non-normality of the errors, when
N → ∞ and T fixed. Asymptotic local analysis is employed in order that
the asymptotic sampling behaviour of this statistic can be analysed not
only under the null (as a special case) but also more generally in the pres-
ence of individual effects. In this context, individual effects can be either
fixed, random but correlated with the included regressors or purely ran-
dom (uncorrelated with the included regressors). Three theoretical results
emerge: (i) under the null (and local alternatives) the limit distribution of√
N (FN − 1) is normal, however the standard F-test procedure will still de-

liver asymptotically valid inferences; (ii) under local (pure) random effects,
FN is asymptotically proportional to RN and, therefore, both tests have
the same asymptotic power; (iii) under local fixed effects, or random effects
which are correlated with the regressors, the RE-test procedure will have
lower asymptotic power than the F-test procedure. Monte Carlo evidence
is presented which supports these findings and suggests that the standard
F-test procedure performs well, even in quite small samples, under non-
normality and is preferable to one which uses the approximating normal
distribution in order to obtain finite sample critical values. Moreover, the
F-test is found to be at least as powerful as the RE-test, as predicted by
first order theory.

The plan of this paper is as follows. Section 2 introduces the notation and
both test statistics. Assumptions are introduced in Section 3, justifying the
ensuing asymptotic analysis which characterises the asymptotic behaviour
of the F-test statistic, including its relationship with the RE-test statistic
under the null and local alternatives. All proofs of the main propositions
are relegated to the Appendix. Section 4 illustrates the main findings by
reporting the results of a small Monte Carlo study and Section 5 concludes.

2 The Notation, Model and Test Statistics

2.1 Notation and Model

In the standard linear panel data model, individual effects for cross section
i are introduced as follows

yi = αiιT +Xiβ1+ui, i = 1, ..., N (1)
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where yi = (yi1, ..., yiT )0, ui = (ui1, ..., uiT )0, ιT is a (T × 1) vector of ones,
and Xi = (xi1, ...,xiT )

0 a (T ×K) matrix. The innovations, uit, have zero
mean and finite constant variance, 0 < σ2 < ∞, for all i and t, and the αi
are the individual effects. By stacking the N equations of (1), the model for
all individuals becomes

y = Dα+Xβ1+u, (2)

where y = (y01, ...,y0N)
0 and u = (u01, ...,u0N )

0 are both (NT × 1) vectors,
α = (α1, ...,αN)

0 is a (N × 1) vector, D = [IN ⊗ ιT ] is a (NT × N) ma-
trix, X = (X01, ...,X0N)

0 is a (NT ×K) matrix, and [D,X] has full column
rank. Thus, for the purposes of the current exposition, xit = (xit1, ..., xitK)0,
(K × 1) , contains no time invariant regressors, in particular a constant term
corresponding to an overall intercept, since in the context of fixed effects
this allows estimation of all the unknown regression parameters,

¡
α0,β01

¢0
,

as follows.
In general, define the projection matrices, PB = B(B0B)−1B0 andMB =

INT −PB, for any (NT × S) matrix B of full column rank, with B̃ =MDB
being the residual matrix from a multivariate least squares regression ofB on
D which is, of course, the within transformation. For example, conformably
with X, X̃ =(X̃01, ..., X̃N )0, where X̃i has rows (xit − x̄i)0 , i = 1, ...,N, and
x̄i = T

−1PT
t=1 xit and similarly for ỹ.

1 Then the fixed effects (least squares
dummy variable) estimator of β1 in (2) is given by

β̃1 = (X
0MDX)

−1X0MDy (3)

= (X̃0X̃)
−1
X̃0ỹ

and the corresponding estimator of α is

α̃ = (D0MXD)
−1D0MXy. (4)

The null model of no individual effects is the pooled regression model of

y = β0ιNT +Xβ1 + u, (5)

= Zβ + u,

where Z = [ιNT ,X] , with zit = (1, xit1, ..., xitK)0, which delivers the ordinary

least squares estimator β̂ =
³
β̂0, β̂

0
1

´0
= (Z0Z)−1Z0y.

The standard F-test for fixed effects requires estimation of both (2),
treating the αi as unknown parameters, and (5), whilst the standard RE-test
only requires estimation of (5). In order to provide a framework in which
to investigate the limiting behaviour of the F-test and RE-test statistics,
under both fixed and random effects, the individual effects are assumed to
have the form α = β0ιN + δ, δ = (δ1, ..., δN )

0. Fixed effects correspond
1To see this, note that PD = IN ⊗ T−1ιT ι0T .
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to the αi, i = 1, ..., N, being fixed unknown parameters (or, equivalently,
δ1 ≡ 0 with β0 and δi, i = 2, ...,N, being the fixed unknown parameters).
The case of random effects is accommodated when the δi, i = 1, ..., N are
random variables. In general, equation (1) will be employed to characterise
the data generation process with the restrictions of H0 : δ = δ1ιN providing
the null model of no individual effects (notice that δ = 0 belongs to this
set of restrictions). Specifically, when considering the alternative of fixed
effects the (N − 1) restrictions placed on (2) are H0 : Hα = 0, where
H = [ιN−1,−IN−1] , whilst for random effects the null is H0 : var (δi) = 0.

2.2 The Test Statistics

2.2.1 The F-test statistic

Consider, first, the standard F-test for fixed effects which is based on the
statistic

FN =
(RSSR −RSSU )/(N − 1)
RSSU/(N(T − 1)−K) , (6)

where RSSR = û0û is the restricted sum of squares (from the pooled re-
gression (5)) with û =MZy, and RSSU = ũ0ũ is the unrestricted sum of
squares (from the fixed effects regression (2)) with ũ =MX̃ỹ, the residual
vector from regressing ỹ on X̃. If normality and strong exogeneity were im-
posed such that, conditional on X, ui ∼ N(0,σ2IT ), i = 1, ...,N, then a
standard F-test would be exact. However, as Wooldridge (2002, p274) re-
marks, “... the properties of this test as N →∞ with T fixed are unknown
without the normality assumption.”2

To appreciate the difficulties with standard asymptotic arguments, note
that (6) can also be expressed as

FN =

√
Nα̃0H0

h
N−1H (D0MXD)

−1H0
i−1√

NHα̃

(N − 1) σ̃2 , (7)

where σ̃2 = RSSU/(N(T − 1) −K). Since, in general, σ̃2 is consistent for
σ2, the asymptotically validity of the F-test procedure would usually rest
on WN = (N − 1)FN having a limiting χ2 distribution, in the absence of
normality. However, this can not obtain with T fixed and N → ∞, since
neither the dimension of Hα̃ nor N−1H (D0MXD)

−1H0 is bounded. In
fact, it is shown below that, under non-normality,

√
N (FN − 1) has a limit

normal distribution so that WN = Op(N).
2 Interestingly, though, a recent result by Qin and Wan (2004, Theorem 3) implies that

the null distribution of (6) is still exactly central F whenever the distribution of the error
vector is a member of the class of spherically symmetric distributions; for example, a
multivariate Student’s t distribution. However, the independence assumption employed
in Section 3 only allows normality of the errors, within this class, and thus the approach
of Qin and Wan (2004) offers no additional generality, as far as the distribution of (6) is
concerned.
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2.2.2 The Random Effects test statistic

Define vi =
PT
t=1 uit andA = A0 = ιT ι

0
T−IT , so that

PN
i=1 v

2
i−
PN
i=1

PT
t=1 u

2
it =

u0 (IN ⊗A)u. Then, the RE-test statistic is constructed as

RN =

s
NT

2 (T − 1)
∙
û0 (IN ⊗A) û

û0û

¸
(8)

which has a limit standard normal distribution, as N →∞, under H0. This
statistic, and associated test procedure, is now well established in the litera-
ture; see, for example, Breusch and Pagan (1980), Chesher (1984) and Honda
(1985). More generally, and under the assumption of homoskedasticity, RN
can be regarded as test for serial correlation in the uit as pointed out by
Wooldridge (2002, p.265). However, the intimate (asymptotic) relationship
between FN and RN has not previously been uncovered.

3 Asymptotic Properties of FN

In this section we describe the properties of FN , under both local fixed and
random effects, by (i) deriving its asymptotic distribution, and (ii) estab-
lishing its asymptotic relationship with RN . In the subsequent analysis,
and without assuming normality, asymptotic theory is employed in which
N → ∞ and T is fixed. To facilitate this, the following assumptions are
made, which are of the sort found in, for example, White (2001, p.120):

Assumption 1:

(i) {Xi,ui}Ni=1 is an independent sequence;
(ii) E (ui|Xi) = 0;
(iii) E (uiu0i|Xi) = σ2IT , 0 < σ2 <∞.
Assumption 2:

(i) E
h
|ziskuit|2+η

i
≤ ∆ < ∞ for some η > 0, all s, t = 1, ..., T, k =

1, ...,K + 1, and all i = 1, ..., N ;

(ii) E
h
|zitk|2+η

i
≤ ∆ <∞ for some η > 0, all t = 1, ..., T, k = 1, ...,K +1,

and all i = 1, ...,N ;

(iii) QN = E (Z0Z/N) is uniformly positive definite;

(iv) Q̃N = E
³
X̃0X̃/N

´
is uniformly positive definite.

Assumption 3:
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(i) E
£
u2itu

2
is

¤
= σ4, for all i and t 6= s;

(ii) E
h
|uit|4+η

i
≤ ∆ < ∞ for some η > 0, all t = 1, ..., T, and all i =

1, ...,N.

Assumption 4:

(i) αi = β0 +
δi
N1/4

, i = 1, ...,N ;

(ii) E |δi|2+η ≤ ∆ <∞ for some η > 0, and all i = 1, ..., N ;

(iii) E
£
δ0δ/N

¤
is uniformly positive, where δ0 = (δ1, ..., δN ) .

Assumption 1 (i) reflects independent sampling of cross-section units
and 1(ii) imposes a strong exogeneity assumption on Xi, implying that
E(X̃0iui) = 0 and thus ruling out (for example) lagged dependent variables.
Moreover, by 1(iii), the elements of ui are uncorrelated, but not neces-
sarily independent. These familiar assumptions are found, for example, in
Wooldridge (2002, Section 10). Assumption 2, together with Assumption
1, delivers consistency and asymptotic normality of both the pooled and
fixed effects least squares regression estimators (β̂ and β̃1, respectively) and
corresponding error variance estimators, and follow directly the approach of
White (2001, Exercises 3.14, 5.12 and 6.2).

If Assumption 1 (ii) is weakened to E (X0iui) = 0, or even E (xituit) = 0
(zero contemporaneous correlation), β̃1 is not guaranteed to be consistent
and, when it is inconsistent, the F -test statistic asymptotically invalid any-
way, even under normality; for example, in the presence of lagged dependent
variables - see the discussion in Wooldridge (2002, Sections 10.5 and 11.1).
Assumption 3(i) ensures that elements of

©
u2it
ªT
t=1

are serially uncorrelated,
and together with the uniform bound Assumption 3(ii), justifies the limit
distribution obtained in Proposition 1 below.3 Finally, Assumption 4 char-
acterises the alternative data generation process and permits the investiga-
tion of asymptotic power, under local individual effects, by restricting the
test criteria under consideration to be Op (1) with well defined limit distri-
butions. As well as fixed effects (with the δi being non-stochastic) it also
accommodates local random effects by defining δi = τεi, τ > 0, i = 1, ..., N,
where the εi are independently distributed with zero mean and unit variance,
and also distributed independently of uit for all i, t. In this case, Assump-
tions 4(ii) and (iii) ensure that N−1δ0δ = τ2N−1

PN
i=1 ε

2
i = Op (1) , and

converges to τ2 in probability. If the εi are also distributed independently of
Xi, then we have “pure” random effects whilst if the εi are correlated with
Xi (but var (εi|Xi) = τ2) then we have “correlated” random effects. (As

3Assumptions 2(i), 3(i), 3(ii) could be replaced by uit being iid and independent of
xitk.
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pointed out by Wooldridge (2002, p.252), in microeconometric applications
of panel data models with individual effects, the term fixed effect is gener-
ally used to mean correlated random effects, rather than αi being strictly
non-stochastic.)

Before proceeding with the formal asymptotic local analysis, it is worth
reviewing the special case of normality and non-stochastic (αiιT ,Xi), with
αi = O (1) . Under (2) with α = β0ιN + δ, standard (finite sample) dis-
tribution theory shows that (6) has a (singly) non-central F -distribution
with non-centrality parameter which can be expressed as σ−2δ0D0MZDδ,
which is identically zero when δ = δ1ιN . (In the simple model of yit =
αi + uit, and writing αi = β0 + δi, this non-centrality parameter is equal to
T
σ2
PN
i=1

¡
δi − δ̄

¢2, where δ̄ = N−1PN
i=1 δi; see, for example, Scheffe (1959).)

From the exact properties of a non-central F -distribution, the approximate

mean for large N is E [FN ] ∼= 1 + σ−2
δ0D0MZDδ

N
. The asymptotic results

obtained in the next section, are consistent with this.

3.1 The Asymptotic Distribution of the FN

The asymptotic distribution of FN under non-normality is given by following
limiting distribution result.

Proposition 1 Under model (2) and Assumptions 1 to 4,
√
N (FN − 1) =

Op(1), with

√
N (FN − 1) = 1√

N

u0 (IN ⊗A)u
(T − 1)σ2 +

λN
σ2

+ op (1)

and √
N (FN − 1)− λN

σ2
d→ N

µ
0,

2T

T − 1
¶

where

λN =
δ0D0MZDδ

N
≥ 0.

Proof. See Appendix.

Notice that, by Assumptions 2(iii) and 4(iii), for example, λN need not
necessarily converge, but it will be O(1), at most. In the special case no
individual effects with δ = δ1ιN , λN ≡ 0, as it should be (this includes
the case of δ = 0). Proposition 1 remains consistent with the limiting
properties of the exact distributional results obtained under normality, and
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non-stochastic (αiιT ,Xi), insofar that the mean in the asymptotic (i.e.,
approximate large N) distribution of FN , given by Proposition 1, is

E [FN ] ∼= 1 + σ−2
δ0D0MZDδ

N
.

Under the null of H0 : δ = δ1ιN , Proposition 1 implies that asymptoti-

cally valid inferences can be obtained by employing F ∗N =
q

N(T−1)
2T (FN − 1)

in conjunction with (one-sided, positive) critical values from a standard nor-
mal distribution; the test is one-sided since λN ≥ 0. Nonetheless, the usual
F-test procedure for fixed effects remains asymptotically valid in the sense
that use of FN in conjunction with F distribution critical values, will still
provide asymptotically valid inferences, despite non-normality of the inno-
vations, uit.

To see this, let cN be any chosen critical value from an F distribution
with n1 and n2 degrees of freedom, respectively, where n1 = N − 1 and
n2 = N(T − 1) −K. The probability of not rejecting the null (the actual
significance level) is given by Pr (FN ≤ cN ) = Pr (F ∗N ≤ c∗N) , where c∗N =q

N(T−1)
2T (cN −1). Then, if ξN has an F distribution with n1 and n2 degrees

of freedom, the discrepancy between the actual and nominal significance
level is, therefore,

|Pr (FN ≤ cN)− Pr (ξN ≤ cN)| = |Pr (F ∗N ≤ c∗N)− Pr (ξ∗N ≤ c∗N)|
≤ sup

z
|Pr (F ∗N ≤ z)− Pr (ξ∗N ≤ z)|

≤ sup
z
|Pr (F ∗N ≤ z)− Φ (z)|

+sup
z
|Pr (ξ∗N ≤ z)− Φ (z)|

where ξ∗N =
q
N(T−1)
2T (ξN − 1) and Φ (.) denotes the standard normal dis-

tribution function. Now, by Proposition 1, the first term of the right hand
side is o(1). The second term is also o(1) from elementary probability dis-
tribution theory. Therefore, using critical values from the F distribution,
in conjunction with the statistic FN , becomes increasingly like using critical

values from the N
µ
1,

2T

N(T − 1)
¶
distribution, which is the approximate,

large N, distribution of FN .
Under pure local random effects X0Dδ

N = τ TN
PN
i=1 εix̄i = op (1) , (since

var
³
1
N

PN
i=1 εix̄i

´
= o(1)) so that λN = δ0D0Dδ

N = T τ2 1N
PN
i=1 ε

2
i
p→ T τ2.

Then, with a slight adaptation of the proof, we obtain the following Corollary
to Proposition 1:
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Corollary 1 Under the alternative of local random effects, and under the
assumptions of Proposition 1,

√
N (FN − 1) d→ N

µ
T τ2

σ2
,
2T

T − 1
¶
.

Therefore, the F-test will have non-trivial asymptotic local power against
random effects. In fact, a stronger result will be established in Section 3.2
which shows that, under local “pure” random effects, the F-test statistic is
proportional (asymptotically) to the RE-test statistic, and will thus posses
the same asymptotic power. However, under local “correlated” random
effects the F-test will possess higher asymptotic power than the RE-test.

3.2 The Relationship with RN

Under the null of no individual effects, it is readily shown that

1√
N

∙
û0 (IN ⊗A) û
û0û/NT

¸
=

1√
N

∙
u0MZ (IN ⊗A)MZu

u0M0
Zu/NT

¸
=

1√
N

u0 (IN ⊗A)u
σ2

+ op (1)

using the fact that N−1/2u0MZ (IN ⊗A)MZu = N−1/2u0 (IN ⊗A)u +
op(1) and u0MZu/NT

p→ σ2. Therefore, by Proposition 1, the asymptotic
standard normal RE-test statistic (8) can be expressed as

RN =

(r
T − 1
2T

)√
N [FN − 1] + op (1) .

Extending this analysis, the following Proposition establishes the as-
ymptotic relationship between the two test statistics, under local individual
effects (fixed or random). Apart from being of some interest in its own right
it also helps explains some of the Monte Carlo evidence previously reported
by Moulton and Randolph (1989) and Baltagi et al (1992).

Proposition 2 Under model (2) and Assumptions 1 to 4,

RN =

(r
(T − 1)
2T

)√
N [FN − 1]−

s
T

2 (T − 1)γN + op (1)

where

γN =
δ0D0Z (Z0Z)−1 (Z̃0Z̃) (Z0Z)−1Z0Dδ

N
≥ 0

and the limit distribution of
√
N [FN − 1] is given by Proposition 1.

Proof. See Appendix.
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Again, γN need not converge to a positive constant, but it is Op(1). As
with Proposition 1, γN ≡ 0 obtains under H0 : δ = δ1ιN , as it should,
since (Z0Z)−1 Z0Dδ = (δ1,0

0)0 and the top-left, (1, 1) , element of Z̃0Z̃ is
0. Under the alternative of “pure” local random effects γN = op(1) since
Z0Dδ
N = op (1) , and we obtain the following Corollary:

Corollary 2 Under the alternative of local random effects, and under the
assumptions of Proposition 1,

RN =

(r
(T − 1)
2T

)√
N [FN − 1] + op (1)

d→ N

Ã
τ2

σ2

r
T (T − 1)

2
, 1

!
.

Since RN and F ∗N =
q

N(T−1)
2T (FN − 1) are asymptotically equivalent,

both the RE and F-test procedures will have identical asymptotic power
functions, under local random effects. This conclusion helps explain the re-
sults reported by Moulton and Randolph (1989) and Baltagi et al (1992),
whose analyses (undertaken under the assumption normality) are consistent
with the theoretical findings presented here. However, under local fixed ef-
fects or random effects which are correlated Xi, the F-test can have greater
asymptotic power. In particular, when individual effects are correlated with
the mean values of the regressors, Z0Dδ = T

PN
i=1 δiz̄i 6= 0 and is Op (1) ,

implying γN > 0 so that a test based on RN should have lower asymp-
totic local power than one based on FN . This makes intuitive sense, since
FN is designed to test for individual effects which are correlated with z̄i,
whereas RN is constructed on the assumption that the individual effects
are uncorrelated with all regressor values. The importance of distinguishing
between individual effects which are correlated or uncorrelated with regres-
sors, rather than simply labelling them fixed or random, is discussed by
Wooldridge (2002, Section 10.2).

In summary, the two propositions presented in this section suggest that,
under in the absence of individual effects, applied workers can be fairly
confident of the F-test being robust to non-normality. Moreover, under the
alternative of local random effects, the F-test statistic will be asymptotically
proportional to the RE-test statistic and, therefore, the two procedures will
have the same asymptotic power. However, under local individual effects
which are fixed/correlated with the regressors, the F-test should have the
greater asymptotic power.

In the next section, the preceding analysis is supported by the results of
a small Monte Carlo experiment which illustrates the asymptotic robustness
of the F-test to non-normality and its power properties relative to the RE-
test.
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4 Monte Carlo Simulation

In order to shed light on the relevance of the preceding asymptotic analysis
for finite sample behaviour, this section reports the results of a small Monte
Carlo experiment which investigates the sampling behaviour of FN , F ∗N and
RN under a variety of error distributions using N = 20, 50, 100, T = 5. The
null model employed is

yit =
3X
j=1

zit,jβj + uit

where zit,1 = 1, zit,2 is drawn from a uniform distribution on (1, 31) inde-
pendently for i and t, and zit,3 is generated following Nerlove (1971), such
that

zit,3 = 0.1t+ 0.5zit−1,3 + υit,

where the value zi0,3 is chosen as 5 + 10υi0, and υit is drawn from the
uniform distribution on (−0.5, 0.5) independently for i and t, in order to
avoid any normality in regressors. These regressor values are held fixed over
replications. Also, observe that the regression design is not quadratically
balanced.4 Table 1 shows the largest value of hs/h̄, where hs is the sth

diagonal elements of PZ, s = 1, 2, ..., NT and h̄ is the average of hs, and the
number of leverage points, where hs/h̄ > 2,5 confirming that the regressors
used are not quadratically balanced.

[Table 1 about here]

Under the null, both FN and SN have sampling distributions which are
independent of the βj and σ

2. Therefore, without loss of generality, the coeffi-
cients are set as βj = 1 for j = 1, 2, 3 and the error terms, uit, are all iid(0, 1)
in the experiments. They are drawn from the following distributions and
standardised: (i) standard normal distribution (SN); (ii) Student’s t distri-
bution with 5 degrees of freedom (t(5)); (iii) uniform distribution over the
unit interval (UN); (iv) mixture normal distribution from either N (−1, 1)
and N (1, 1) with equal probability of 0.5 (MN); (v) log-normal distribution
(LN); and, (vi) chi-square distribution with 2 degrees of freedom (χ2(2)).

The sampling behaviour of three tests are investigated using 5000 repli-
cations of sample data and employing a nominal 5% significance level based
on the predictions of the asymptotic theory presented in Section 3.6 Specif-
ically, the behaviour of the following three tests is investigated:

4The results of Ali and Sharma (1996) show that, with a quadratically balanced design,
the effects of non-normality on the F -test for linear restrictions in the linear model is
minimal. Hence the Monte Carlo design guards against that possibility.

5See Belsley et al. (1980) for the discussion of leverage points.
6A full set of results employing 1%, 5% and 10% nominal significance levels are available

upon request.
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1. F-test: Reject H0 if FN > c, where Pr (ξN > cN ) = 5%, and ξN ∼
F (N − 1, 4N − 2) .

2. Standard Normal F-test: Reject H0 if F ∗N =
q

2N
5 (FN − 1) > 1.645.

3. Standard Normal RE-Test: Reject H0 if RN > 1.645.

Table 2 shows the estimated significance levels for the tests based on FN ,
F ∗N and RN , as described above, for all error distributions.

7

[Table 2 about here]

The F-test will be exact under normality, since FN is an exact pivot,
and the results reflect this. Under non-normality such a procedure is only
asymptotically valid, although it performs well (in terms of agreement be-
tween estimated and nominal significance levels) for all designs.8 Similarly,
the random effects test based on RN exhibits quite close agreement between
nominal and estimated significance levels. These results support the as-
ymptotic analysis of Section 3 and suggest that standard F-test procedure
(as reported in standard econometric texts) remains robust to non-normality
even in small samples. (Of course, since FN is asymptotically pivotal, the re-
sults of Beran (1988) imply that improved finite sample performance may be
obtained through the use of bootstrap critical values; see Yamagata (2004)
who provides evidence which confirms this.) On the other hand, the one-

sided test based on F ∗N =
q

2N
5 (FN − 1) is typically over-sized and should

not, therefore, be relied upon to provide asymptotically valid inferences,
under the null.

We now turn to a comparison of power but, due its poor sampling behav-
iour under the null, we do not consider F ∗N further. In order to save space,
only results for errors drawn from a standard normal distribution, a mix-
ture normal distribution and a chi-square distribution, as described above,
are reported. Individual effects are introduced through αi, as described in
equation (1), and constructed as:

αi = τωi (9)

7We also considered another test, based on a scaled version of RN and critical values
from a F distribution. However as this seems rather ad hoc and its sampling behaviour
under the null was found to be extremely poor it is not considered further in this paper.

8With LN errors at the 10% nominal significance level, not reported here, it appeared
somewhat less satisfactory with N = 20, although this problem disappeared when N = 50.
Under skewed χ2(2) errors there is still very good agreement between estimated and
nominal significance levels. However, the kurtosis is much less in this case (6) than for
the log-normal errors (113.94), suggesting that finite sample behaviour is more sensitive
to excess kurtosis as, for example, implied by the work of Box and Andersen (1955), but
in the non-regression context.
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with
ωi = gi(z̄i) + εi, (10)

where τ is a constant to control the cross section variation of αi, the εi
are iid N(0, 1 − R2), gi(z̄i) =

√
R2 (ι03z̄i/s) with ι3 = (1, 1, 1)0, s being the

standard deviation of ι03z̄i, and the R2 is from the regression of (10). With
this set up, the variance of ωi is always unity across designs. The value
of R2 is set at either 0 or 0.5; the former to examine the individual effects
which are uncorrelated with regressors, the latter to examine those which
are correlated with regressors. To sum up, four experiments are conducted
and within each experiment values of τ = 0.05, 0.1, 0.2 are considered, so as
to provide a range of powers for the two test procedures.
Experiment FE 1

R2 = 0.5, so that the εi are drawn independently, once, from a N (0, 0.5)
distribution, for i = 1, ..., N, and then held fixed across all 5000 replications
of sample data.
Experiment FE 2

R2 = 0.0, so that the εi are drawn independently, once, from a N (0, 1)
distribution, for i = 1, ..., N , and then held fixed across all 5000 replications
of sample data.
Experiment RE 1

R2 = 0.5, so that the εi are drawn independently from a N (0, 0.5) dis-
tribution, for i = 1, ..., N , and for each replication of sample data.
Experiment RE 2

R2 = 0.0, so that the εi are drawn independently from a N (0, 1) distri-
bution, for i = 1, ..., N , and for each replication of sample data.

[Table 3 about here]

Table 3 reports the results. The first two experiments, FE 1 and FE 2
correspond to “fixed” effects, with FE 1 generating correlation between the
fixed effect and the regressor values. In FE 2 there is no such correlation.
The second two experiments, RE 1 and RE 2 correspond to random effects,
with non-zero correlation between the random effects and the regressors
in RE 1, but not in RE 2. Consistent with Proposition 2, the rejection
frequencies of F-test is higher than the corresponding rejection frequencies
of the RE-test under experiments FE 1 and RE 1, but they are very similar
under experiments FE 2 and RE 2 for all error specifications considered.

5 Conclusions

This paper has addressed an apparent gap in the econometrics literature - as
identified, for example, by Wooldridge (2002) - by providing the asymptotic
distribution of the standard F-test statistic for fixed effects, in a static panel

13



data model, under non-normality and fixed time periods. To the best of
our knowledge this result is new. Interestingly, it has been shown that
the commonly cited F-test procedure remains asymptotically valid. The
second contribution of this paper is to uncover the asymptotic relationship
between the F-test and the RE-test statistics. Under local (pure) random
effects, they share the same asymptotic power, whilst under local fixed (or
correlated) individual effects the F-test enjoys higher asymptotic power.

To assess the efficacy of these theoretical results, Monte Carlo evidence
has been presented which suggests that, even under non-normality of the
errors, (i) the use of the traditional F distribution does indeed provide an
excellent guide to finite sample behaviour, under the null, even in quite small
samples; and (ii) the F-test always rejects as least as often as the RE-test
under both random and fixed effects, with higher rejection frequencies when
the effects are correlated with the regressors.

These results will be of use to applied workers since they not only confirm
the robustness of the standard F-test procedure to non-normality, even in
small samples, but also imply that the F-Test can be employed as a general
test for the presence of individual effects (fixed or random) without loss of
power.
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APPENDIX

Proof of Proposition 1.

Define FN =
SN

σ̃2
, where SN = (RSSR −RSSU )/(N − 1), so that

σ2
√
N(FN − 1) =

σ2

σ̃2
√
N
¡
SN − σ̃2

¢
=
√
N
¡
SN − σ̃2

¢
+ op (1)

because σ̃2 − σ2 = op(1). We first show that

√
N
¡
SN − σ̃2

¢
=

1√
N

u0 (IN ⊗A)u
(T − 1) + λN + op (1) .

By the Frisch—Waugh theorem, RSSU is identical to that obtained from the
ordinary least squares regression of ỹ on X̃, so that

RSSU = u
0MDMX̃MDu

= u0
¡
MX̃ −PD

¢
u,

sinceMDMX̃MD =MD

¡
MX̃ −PD

¢
=MX̃−PD, so that σ̃2 = 1

N(T−1)−K
£
u0
¡
MX̃ −PD

¢
u
¤
.

However, substituting for y from (1) and using Assumption 4(i) which states
that α = β0ιN +N

−1/4δ,

RSSR = y0MZy

= u0MZu+
2

N1/4
u0MZDδ+

1√
N
δ0D0MZDδ.

Note that this follows from the fact that MZDα =MZδ, since MZDιN =
MZιNT ≡ 0. Thus, SN − σ̃2 can be expressed as

SN − σ̃2 = −u
0PZu
N − 1 +

u0PX̃u
N − 1 +

u0PDu
N − 1 +

2

N1/4

u0MZDδ

N − 1 +
1√
N

δ0D0MZDδ

N − 1
− N

N(T − 1)−K
∙
u0u
N
− u

0PX̃u
N

− u
0PDu
N

¸
=
u0PDu
N − 1 −

1

T − 1
u0u
N

+
1

T − 1
u0PDu
N

+
1√
N

δ0D0MZDδ

N − 1 + op(N
−1/2)

=
1

NT

NX
i=1

v2i −
1

N(T − 1)
NX
i=1

TX
t=1

u2it +
1

NT (T − 1)
NX
i=1

v2i

+
1√
N

δ0D0MZDδ

N − 1 + op(N
−1/2)

=
1

N(T − 1)

Ã
NX
i=1

v2i −
NX
i=1

TX
t=1

u2it

!
+

1√
N

δ0D0MZDδ

N − 1 + op(N
−1/2)

=
u0 (IN ⊗A)u
N (T − 1) +

1√
N
λN + op

³
N−1/2

´
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recalling that vi =
PT
t=1 uit. The second equality follows because (i) both

u0PZu and u0PX̃u are Op(1), under Assumptions 1 and 2; (ii)
N

N(T−1)−K =
1

(T−1)+O(N
−1); (iii) (N − 1)−1 u0Dδ = (N − 1)−1PN

i=1 viδi = Op
¡
N−1/2

¢
,

under Assumptions 1(i),1(ii),2(i) and 4(ii), 4(iii) which ensure that a Cen-
tral Limit Theorem holds forN−1/2

PN
i=1 viδi; and, (iv)

Z0Dδ
N = T

N

PN
i=1 δiz̄i =

Op (1) , at most, under Assumptions 2(ii) and 4(ii) which ensure that a Law
of Large Numbers applies to 1

N

PN
i=1 δiz̄i, since by Chebsyshev’s Inequality

and η > 0

E |δiz̄i|1+η ≤
q
E |δi|2+2η E |z̄i|2+2η ≤ ∆ <∞.

The third equality uses u0PDu =
1

T

PN
i=1

³PT
t=1 uit

´2
= Op (N) , so that

u0PDu
N − 1 =

1

(N − 1)T
NX
i=1

v2i

=
1

NT

NX
i=1

v2i +
1

N (N − 1)T
NX
i=1

v2i

=
1

NT

NX
i=1

v2i +Op(N
−1).

The fifth equality follows from the fact that

λN =
δ0D0MZDδ

N

= T

(
1

N

NX
i=1

δ2i − T
Ã
1

N

NX
i=1

δiz̄
0
i

!µ
Z0Z
N

¶−1Ã 1
N

NX
i=1

δiz̄
0
i

!)
= Op(1)

by Assumptions 2(ii), 2(iii) and 4(ii),4(iii), so that
δ0D0MZDδ

N − 1 = λN +

Op(N
−1), and the fact that u0 (IN ⊗A)u =

PN
i=1 v

2
i −

PN
i=1

PT
t=1 u

2
it.

Second, to establish the limit distribution, write

√
N
¡
SN − σ̃2

¢
=

1

(T − 1)√N
NX
i=1

Wi + λN + op(1)

where the Wi = u0iAui are independent, by Assumption 1(i). It is easy
to determine that E(Wi) = 0, since the uit are serially uncorrelated by
Assumption 1(iii). Since the elements of

©
u2it
ª
are also serially uncorrelated

by Assumption 3(i), a little calculation reveals that (because the diagonal
elements of A are zero)

var(Wi) = 2σ
4tr
¡
A2
¢

= 2σ4T (T − 1) <∞
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where tr(.) signifies trace. Finally, since |Wi| = |u0iAui| ≤ |ui|2 ||A|| , where
|ui|2 =

PT
t=1 u

2
it and ||A|| =

p
tr (A0A) =

p
T (T − 1), we have that for

some η > 0,

E |Wi|2+η ≤ (T (T − 1))1+η/2E
¯̄̄̄
¯
TX
t=1

u2it

¯̄̄̄
¯
2+η

≤ (T (T − 1))1+η/2
"
TX
t=1

n
E
¯̄
u2it
¯̄2+ηo 1

2+η

#2+η
≤ (T (T − 1))1+η/2

h
T∆

1
2+η

i2+η
= (T (T − 1))1+η/2 T 2+η∆ = O(1).

Thus, a standard (Liapounov) Central Limit Theorem yields,
√
N
¡
SN − σ̃2

¢−
λN

d→ N

µ
0,
2σ4T

T − 1
¶
, and the result follows, which completes the proof. ¥

Proof of Proposition 2

We can write RN =
½r

1

2T (T − 1)
¾
HN

σ̂2
, where σ̂2 = û0û/NT and

HN =
1√
N

£
û0 (IN ⊗A) û

¤
=

1√
N

£
y0MZ (IN ⊗A)MZy

¤
.

We show that

HN =
1√
N

£
u0 (IN ⊗A)u

¤
+ (T − 1)λN − TγN + op (1)

σ̂2 = σ2 + op (1)

and the result follows, from Proposition 1.
Making the substitution of MZy = N−1/4MZDδ +MZu, under Assump-
tion 4(i) as before, we have

HN =
1√
N

£
u0 (IN ⊗A)u

¤
+
1

N

£
δ0D0MZ (IN ⊗A)MZDδ

¤
+

1√
N

£
u0PZ (IN ⊗A)PZu

¤
− 2√

N

£
u0 (IN ⊗A)PZu

¤
+

2

N3/4

£
u0MZ (IN ⊗A)MZDδ

¤
=

4X
j=0

VjN
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The first term, V0N = 1√
N
[u0 (IN ⊗A)u] is Op(1), by Proposition 1, and we

show that V1N = (T − 1)λN−TγN+op(1), whilst VjN = op(1), j = 1, 2, 3, 4.
Before proceeding, note the following results:

1.
Z̃0Z̃
N

=
Z0Z
N
− T
N
Z̄0Z̄, where Z̄, (N ×K + 1) , has rows z̄0i = T

−1PT
t=1 z

0
it.

2.

Z0 (IN ⊗A)Z
N

=
1

N

(
NX
i=1

Ã
TX
t=1

zit

!Ã
TX
t=1

z0it

!
−

NX
i=1

TX
t=1

zitz
0
it

)

= T 2
Z̄0Z̄
N
− Z

0Z
N

= (T − 1)
µ
Z0Z
N

¶
− T

Ã
Z̃0Z̃
N

!
= Op(1)

3. Z0 (IN ⊗A)Dδ = (T − 1)Z0Dδ =T (T − 1)
PN
i=1 ziδi.

4. δ0D0 (IN ⊗A)Dδ = (T − 1) δ0D0Dδ =T (T − 1)PN
i=1 δ

2
i .

Then,

V1N =
1

N

£
δ0D0 (IN ⊗A)Dδ − δ0D0PZ (IN ⊗A)Dδ

−δ0D0 (IN ⊗A)PZDδ + δ0D0PZ (IN ⊗A)PZDδ
¤

=

"
T (T − 1)

N

NX
i=1

δ2i − 2 (T − 1)
δ0D0Z
N

µ
Z0Z
N

¶−1 Z0Dδ
N

+
δ0D0Z
N

µ
Z0Z
N

¶−1(
(T − 1)

µ
Z0Z
N

¶
− T

Ã
Z̃0Z̃
N

!)µ
Z0Z
N

¶−1 Z0Dδ
N

#

= (T − 1) δ
0D0MZDδ

N
− T δ

0D0Z
N

µ
Z0Z
N

¶−1ÃZ̃0Z̃
N

!µ
Z0Z
N

¶−1 Z0Dδ
N

= (T − 1)λN − TγN .

Noting that

δ0D0MZDδ

N
=
T

N

NX
i=1

δ2i −
δ0D0Z
N

µ
Z0Z
N

¶−1 Z0Dδ
N

= Op(1).
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V2N =
1√
N

h
u0Z

¡
Z0Z

¢−1
Z0 (IN ⊗A)Z

¡
Z0Z

¢−1
Z0u

i
=

1√
N

"
u0Z√
N

µ
Z0Z
N

¶−1½Z0 (IN ⊗A)Z
N

¾µ
Z0Z
N

¶−1 Z0u√
N

#
= Op

³
N−1/2

´
.

V3N =
2√
N

h
u0 (IN ⊗A)Z

¡
Z0Z

¢−1
Z0u

i
= 2

"½
u0 (IN ⊗A)Z

N

¾µ
Z0Z
N

¶−1 Z0u√
N

#

= −2
"(

1

N

NX
i=1

TX
t=1

uitz
0
it −

T

N

NX
i=1

viz̄
0
i

)µ
Z0Z
N

¶−1 Z0u√
N

#
= Op

³
N−1/2

´
because, underAssumptions 1 and 2, both 1

N

PN
i=1

PT
t=1 uitz

0
it and

T
N

PN
i=1 viz̄

0
i

are Op
¡
N−1/2

¢
.

V4N =
2

N3/4

£
u0 (IN ⊗A)Dδ − u0PZ (IN ⊗A)Dδ

−u0 (IN ⊗A)PZDδ + u0PZ (IN ⊗A)PZDδ
¤

=
2

N1/4

"
(T − 1) 1√

N

NX
i=1

viδi − (T − 1) u
0Z√
N

µ
Z0Z
N

¶−1 Z0Dδ
N

−
√
N

½
u0 (IN ⊗A)Z

N

¾µ
Z0Z
N

¶−1 Z0Dδ
N

+
u0Z√
N

µ
Z0Z
N

¶−1½Z0 (IN ⊗A)Z
N

¾µ
Z0Z
N

¶−1 Z0Dδ
N

#
= Op

³
N−1/4

´
,

Finally, and using previous results,

σ̂2 =
y0MZy

NT

= N−1/2
δ0D0MZDδ

NT
+ 2N−1/4

δ0D0MZu

NT
+
u0MZu

NT

=
u0u
NT

+Op

³
N−1/4

´
= σ2 + op (1) .

This completes the proof ¥

20



Table 1: Leverage Points

N = 20 50 100

The maximum value of hs/h̄ 5.4 5.7 5.3
The number of leverage points 5 16 30

Table 2:Estimated Size of the Tests at 5% Level

FN F ∗N RN
errors N = 20 50 100 20 50 100 20 50 100

SN 5.48 4.98 4.88 8.62 7.16 6.10 4.72 4.56 4.64

t(5) 4.70 4.48 5.38 7.94 6.58 6.88 4.00 4.20 4.98

UN 5.24 4.64 5.34 8.50 6.56 6.88 4.52 4.36 5.14

MN 5.20 5.06 5.42 8.58 7.30 7.28 4.38 4.68 4.98

LN 4.28 5.36 5.70 7.06 7.22 6.60 3.82 5.04 5.40

χ2(2) 5.06 4.70 5.48 8.06 6.46 6.88 4.24 4.34 5.04

Notes:

Single (resp. double) underline denotes that the rejection frequency is not consistent with the true

significance level being at most 0.5 % (resp. 1%) from the nominal level.

See Godfrey and Orme (2000).
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Table 3: Estimated Power of Tests at 5% Level

Errors SN

Design FE 1 FE 2 RE 1 RE 2

τ N FN RN FN RN FN RN FN RN
0.05 20 15.84 12.48 11.34 10.16 19.82 14.78 14.90 13.56
0.05 50 42.34 35.08 42.34 40.70 28.72 23.82 26.70 25.30
0.05 100 52.46 46.60 52.04 50.76 44.52 39.28 42.74 41.52

0.1 20 32.28 24.82 19.70 18.04 40.24 31.02 29.38 27.06
0.1 50 81.56 73.98 81.32 80.42 62.60 54.54 57.16 55.50
0.1 100 91.68 88.22 91.08 90.74 84.98 79.68 82.00 81.42

0.2 20 66.46 56.38 42.22 40.26 75.86 65.92 58.50 55.78
0.2 50 99.66 99.04 99.42 99.40 95.30 91.50 91.38 90.86
0.2 100 100.00 99.94 100.00 100.00 99.78 99.60 99.70 99.70

Errors MN

Design FE 1 FE 2 RE 1 RE 2

τ N FN RN FN RN FN RN FN RN
0.05 20 16.16 12.54 11.90 10.62 19.84 15.64 15.88 14.44
0.05 50 40.04 32.42 40.20 39.08 28.80 23.02 25.28 23.92
0.05 100 52.28 46.86 51.32 50.58 43.30 38.38 41.12 39.90

0.1 20 32.12 24.62 20.40 18.76 41.20 31.34 30.36 28.24
0.1 50 80.72 72.34 80.74 80.06 61.76 53.48 55.52 53.92
0.1 100 92.14 88.82 92.02 91.60 83.82 79.70 81.08 80.32

0.2 20 66.08 55.62 42.22 40.32 75.48 65.94 58.78 56.44
0.2 50 99.54 98.94 99.58 99.54 95.80 92.26 91.32 90.80
0.2 100 100.00 100.00 100.00 100.00 99.88 99.78 99.58 99.54

Errors χ2(2)

Design FE 1 FE 2 RE 1 RE 2

τ N FN RN FN RN FN RN FN RN
0.05 20 16.32 12.80 11.02 9.74 20.32 15.42 16.14 14.24
0.05 50 42.38 34.88 41.92 40.76 29.38 24.18 26.36 25.00
0.05 100 51.86 45.76 51.38 50.30 42.78 37.60 40.92 39.66

0.1 20 33.64 25.88 21.38 19.56 41.60 33.12 31.58 29.32
0.1 50 81.56 74.02 81.90 80.84 63.80 55.16 58.14 56.74
0.1 100 92.04 88.32 91.32 91.18 84.40 79.78 81.12 80.66

0.2 20 67.06 58.78 44.56 42.62 74.98 65.52 59.60 57.44
0.2 50 99.22 98.36 99.22 99.18 94.60 91.48 90.52 90.00
0.2 100 99.98 99.96 99.96 99.96 99.64 99.34 99.28 99.24
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