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Abstract

This article investigates the sensitivity of kernel-based conditional moment

tests to unconsidered misspecifications in the main parametric model under

evaluation. We establish a relationship between the asymptotic insensitivity

of a test to a particular source of misspecification, and its asymptotic inde-

pendence with the corresponding kernel-based score test, of the restrictions

imposed by the uconsidered misspecification.
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1 Introduction

This article studies the sensitivity of kernel-based test to the so called unconsidered

local alternatives. The term was introduced by Godfrey and Orme (1996) to refer

to any alternative hypothesis locally distinct from that implicit alternative against

which a particular test statistic has highest power (see Davidson and MacKinnon,

1987). These departures are local in a Pitman sense (Pitman, 1949), so that they will

vanish asymptotically to a suitable rate, to prevent the power of the test converging

to one as the sample size approaches infinity. In the framework of this article, the

rate at which these alternatives converge to zero will be slower than the square root

of the sample size.

The behavior of kernel-based conditional moment tests under unconsidered al-

ternatives is of great interest. When the true process that generated the data is

known, tests can be constructed so as to be robust against certain types of misspec-

ification (see Bera and Yoon, 1993). In practice full knowledge of the generating

process is hardly ever available, and therefore a test thought to be robust to a type

of misspecification might not be so. Generally speaking, Conditional Moment tests

can be constructed to work either as a test for general misspecification, or they

can be devised to isolate and detect a particular type of misspecification (such as

asymmetry or heteroskedasticity). If the test is intended to be a very general test

for misspecification, then it is expected that the test is able to detect any arbitrary

type of discrepancy between model and generating process, including unconsidered

local alternatives. However, if the test is designed to isolate a particular type of

misspecification, then it is desirable that the specification test be insensitive to local
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misspecification for which it was not designed. For example, one would want that a

consistent conditional moment test for conditional heteroskedasticity be not affected

by local misspecifications in the conditional mean of the distribution. Therefore, it

is important to have a characterization of the conditions under which an arbitrary

test is affected by unconsidered local alternatives.

In this article we are going to focus on the class of kernel-based, Consistent Con-

ditional Moment Tests. Members of these class are Zheng (1996) and Fan and Li’s

(1996) test for regression analysis, Zheng’s (2000) nonparametric tests for condi-

tional symmetry in a density function, or Hsiao and Li (2001) test for conditional

heteroskedasticity, to mention but a few. These are all tests of a single moment con-

dition. However Delgado, Dominguez and Lavergne (2001) show that the method can

be extended to evaluate several restrictions simultaneously, and we adopt their ap-

proach in this article. In general all these tests can be understood as nonparametric

versions of Newey’s (1985) class of asymptotic chi-square Conditional Moment tests.

Unlike these methods, their nonparametric counterparts have an asymptotic normal

distribution and they are consistent against any type of misspecification. However,

a stylized fact about these tests, is that they are undersized, and their performance

can be disappointing for moderate samples, specially if the number of conditioning

variables is large. On the other hand, bootstrap methods have been successfully

employed to correct these deficiencies (see, for example, Li and Wang, 1998), so that

consistent methods remain a very attractive instrument for model discrimination.

This article characterizes under what circumstances a kernel-based Conditional

Moment test will be affected by a type of unconsidered alternative. Our analysis can
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be understood as an analysis of asymptotic relative efficiency for the type of tests

under consideration, by constructing a generating process dependent on one or several

sequences of Pitman alternatives. However, we split the parameter space to allow the

consideration to two important situations. Firstly, we could examine the behavior of

a test when there are different types of departures from the null model. Thus, if we

were testing for heteroskedasticity, our framework would allow to study the properties

of the test when there are departures such as non-normality, omission of variables

in the conditional mean, autocorrelation and so on. Secondly, the settings in this

article allow to study the impact of underparameterisation. Finally, we provide the

reader with a very simple check to detect when a particular kernel-based conditional

moment test will be sensitive to a certain type of unconsidered alternative. As

will be explained, this check relates the asymptotic insensitivity of a test with its

asymptotic independence with a kernel-based score test of the restrictions implied

by the unconsidered local alternatives. A number of examples are provided on how

to use our check in practice.

The structure of the paper is as follows. Section 2 sets the framework for our

analysis and introduces the main result. Conditions are maintained very general, so

that our analysis applies to cross-section and time-series data. Section 3 establishes a

relationship between the sensitivity of kernel-based tests and a nonparametric score

test of the significance of the local misspecification. Section 4 provides some examples

on how to implement our results in practice. Section 5 is the closing section and

contains some final remarks. Throughout the paper, we use the following notation:∑
i =

∑N
i=1,

∑
i1,··· ,im =

∑
i1
· · ·
∑

im
=
∑N

i1=1 · · ·
∑N

im=1,
∑

(i,j) =
∑N

i=1

∑N
j 6=i,j=1,
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etc. For any real number a, |a| = +
√
a2 will denote its absolute value, whilst for and

arbitrary vector, a, or matrix, A, ‖a‖ = +
√

a′a, and ‖A‖ = +
√
tr (A′A).

2 Assumptions and Limit Distribution of the Test

Statistic.

Suppose that an econometrician is interested in studying the validity of an par-

ticular model, and a random sample from a population {Wi}N
i=1 = {Yi, X

′
i, Z

′
i}

N
i=1

is available, where y ∈ Y ⊆ R, x ∈ X ⊆ Rdx , z ∈ Z ⊆ Rdz and, therefore, w ∈

W = Y × X × Z ⊆ R× Rdx×Rdz . For simplicity of exposition it is assumed that Y

is the dependent variable of interest, which may be modelled conditionally on X and

Z, and X is a continuous random variable with probability density function f(x),

although this could be weakened (see for example, Raccine and Li (2004)). Following

Godfrey and Orme (1996, Section 3), it will be assumed that the Data Generation

Process (DGP) is characterized by a finite dimensional parameter vector, θ ∈ Θ, with

true value denoted by θ∗. The variables X and Z (or some subset of them) may in-

form estimation of the unknown parameter vector, whereas only X will be employed

in the construction of the Kernel-based conditional moment tests. In general, how-

ever, the functional form for the conditional distribution of Y given X = x, Z = z,

is unknown and estimators are obtained by maximizing some estimation criterion

denoted

QN (θ) ≡ QN (θ;W1, ...,WN) .
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Clearly, QN (θ) accommodates maximum likelihood estimation (if the conditional

distribution of Y were to be specified up to a knowledge of the unknown parameter

vector) Non-Linear Least Squares and Generalized Method of Moments (GMM) (in

which case −QN (θ) would be the appropriate quadratic form to optimize). It is

not the purpose of this paper to dwell on the regularity conditions on QN (θ) which

underpin consistent estimation of θ∗; rather, it is assumed that the implied estimator

has the usual root-n consistency properties.

In order to undertake the sensitivity analysis of the test statistic to unconsidered

local alternatives, the null model being estimated and tested needs to be defined

and to do so it will be convenient to partition the unknown parameter vector as

θ′ = (θ0, θ1, ..., θL) , with θp ∈ Θp, p = 0, 1, · · · , L, being (dp × 1) , and d =
∑L

p=0 dp.

The null model is then obtained by imposing the (d− d0) restrictions of H: θ1 = θ2 =

... = θL = 0, which provides the estimator θ̂′ =
(
θ̂0, 0

′, ..., 0′
)

as a solution to

max
θ0

QN (θ0, 0, ..., 0) .

It is important to recognize that H only imposes restrictions on θ and does not, in

itself, imply anything about the conditional distribution of Y given X, under these

restrictions, such as conditional moments.

The adequacy of this null model is to be tested using the framework of, for exam-

ple, Zheng (1996), Delgado,Dominguez and Lavergne (2001) or Hsiao and Li (2001),

in which the null hypothesis specifies a set of R conditional moment restrictions, in

addition to the parametric restrictions of H. Specifically, a set of R random func-

tions, denoted m(W ; θ)′ =
(
m(1)(W ; θ), ...,m(R)(W ; θ)

)′
, are defined such that the
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null and alternative hypotheses are, respectively,

H0 : Pr [EH [m (W, θ∗) |X = x] = 0] = 1, for some θ∗0 ∈ Θ0 (1)

H1 : Pr [EH [m (W, θ) |X = x] = 0] < 1, for all θ0 ∈ Θ0. (2)

Note that EH[.] implies that expectations are taken under the parametric restrictions

of the null model, H, so that the last (d− d0) elements in θ∗ (and θ, respectively) are

set to zero in (1) (and (2), respectively). The test procedure is a consistent test of

H0 against H1, in that it will reject H0 with probability approaching 1 as N →∞, if

H1 is true (where H1 simply states that H0 is false) within the restrictions imposed

by H. The test statistic employed is Kernel-based and defined by

T̂N = Nhd/2

1
N(N−1)

∑
r

∑
(i,j) t

(r)
ij (θ̂)√

Σ(θ̂0)

where: t
(r)
ij (θ̂) = Kh,ijm

(r)(Wi, θ̂)m
(r)(Wj, θ̂), Kh,ij = 1

hdK
(xi−xj

h

)
, K(ζ) is a Kernel

function, h a bandwidth parameter and Σ(θ̂0) is any consistent estimator of

Σ(θ∗0) = 2
∑
r,s

E
[{
M(rs) (X)

}2
f (X)

] ∫
K2 (ζ) dζ,

whereM(rs) (x) = EH
[
m(r)(W ; θ∗)m(s)(W ; θ∗)|X = x

]
, f(x) is the density ofX, and

notice again that expectations respect the parametric restrictions ofH. One such con-

sistent estimator is Σ(θ̂0) = 2hd

N(N−1)

∑
r,s

∑
(i,j) t

(r)
ij (θ̂)t

(s)
ij (θ̂); see Delgado, Dominguez

and Lavergne (2001). Under H0, and various primitive regularity conditions depend-
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ing on the nature of the data available (see, Zheng, 1996, Delgado, Dominguez and

Lavergne, 2001, or Hsiao and Li, 2001, Racine and Li, 2004), T̂N
d→ N (0, 1) , whilst

under H1, Pr
(
T̂N > δN

)
→ 1 for any positive stochastic sequence δN = o

(
Nhd/2

)
,

which implies that the corresponding one-sided test procedure is consistent. An

asymptotically equivalent version of the test statistic can be expressed, rather sim-

ply, as

T̂#
N =

∑
r

∑
(i,j) t

(r)
ij (θ̂)√

2
∑

r,s

∑
(i,j) t

(r)
ij (θ̂)t

(s)
ij (θ̂)

. (3)

Following Godfrey and Orme (1996), by allowing θp 6= 0, p = 1, ..., L, (in a manner

described below), we will be able to characterize the limiting distribution of the test

statistic associated with testing H0 under sources of misspecification indexed by θp.

Two scenarios can be investigated. Firstly, the behavior of the test statistic based

on VN(θ̂) = 1
N(N−1)

∑
r

∑
(i,j) t

(r)
ij (θ̂) in the presence one or more departures from the

null model defined by the restrictions of H. For example, consider the null model

which specifies Yi = X ′
i1θ01 + Ui, EH [U |X] = 0 and EH [U2|X] = θ02, where Xi1

is a sub-vector of Xi and θ0j is a sub-vector of θ0, j = 1, 2. A consistent test for

heteroskedasticty (see, for example, Delgado, Dominguez and Lavergne, 2001) can

be analyzed in situations where Yi = X ′
i1θ01 + l(Xi)

′θ1 + Ui, where l(X) is some

vector function of X. Secondly, the impact of underparameterisation of the relevant

type of departure can be analyzed. Thus, in the previous example, suppose that the

alternative is Yi = X ′
i1θ01 + g(Zi)

′θ1 + Ui, but that the test procedure is designed to

check EH [U |X] = 0 (so that the wrong set of conditioning variables are employed in

the Kernel-based test for misspecified functional form).
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In order undertake this analysis, some additional structure is required. Firstly, it

is assumed that

Pr [E [m(W, θ∗)|X = x] = 0] = 1, for some θ∗ ∈ Θ (4)

so that the set of R random functions do indeed have zero conditional mean when all

possible sources of misspecification are accounted for. Thus, in the first example of

the preceding paragraph (with R = 1), m(1)(W ; θ) = (Yi −X ′
i1θ01 − l(Xi)

′θ1)
2 − θ02,

whilst under the restrictions of H, m(1)(W ; θ) = (Yi −X ′
i1θ01)

2 − θ02. Secondly, for

p = 1, 2, ..., L, θ∗p = γp/
√
Nhd/2, where γp, (dp × 1) , satisfies that 0 ≤ ‖γp‖ <∞ and

γp 6= 0 for at least one p. This defines a sequence of local unconsidered alternatives.

In general, standard first order asymptotic theory reveals that θ̂0 − θ∗0 = Op(N
−1/2),

under such a sequence.

In this paper we study the behavior of the test indicator

VN(θ̂) =
1

N (N − 1)

∑
r

∑
(i,j)

t
(r)
ij (θ̂)

under the framework described above. In order to undertake our analysis we employ

some high level assumptions which justify the limiting distribution results and various

mean value expansions employed.

Firstly, we assume that the Kernel satisfies standard conditions such that K :

Rd → R is bounded and symmetric, with
∫
K (ζ) dζ = 1,

∫
K (ζ) ‖ζ‖ dζ < ∞.

We require a central limit theorem for the second order degenerate U-statistic,

VN(θ∗) = 1
N(N−1)

∑
r

∑
(i,j) t

(r)
ij (θ∗). This is given by Hall(1984) and de Jong (1987)
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for independent data and generalized by Fan and Li (1999) for the weakly dependent

data case. In particular, it is often assumed that h → 0, Nhd → ∞ as N → ∞, in

the case of independent data, but Fan and Li (1999) require slightly stronger restric-

tions on h for the weakly dependent data case. These results imply that under the

sequence of local alternatives

Nhd/2VN(θ∗)
d→ N (0,Σ(θ∗0)) .

In order to justify the second order mean value expansion employed in deriving the

limiting distribution result, the following will suffice and are standard (see for exam-

ple proofs in Zheng, 1996, Delgado, Dominguez and Lavergne, 2001, and Hsiao and

Li, 2001), although they demand that the m(r) (W ; θ) are continuously differentiable

in θ as many times as required,

S
(r)
1N(θ∗)

=
1

N (N − 1)

∑
(i,j)

Kh,ij

{
m

(r)
i (θ∗)

[
∇m(r)

j (θ∗)
]

+m
(r)
j (θ∗)

[
∇m(r)

i (θ∗)
]}

= Op

(
N−1/2

)

S
(r)
2N(θ̄)

=
1

N (N − 1)

∑
(i,j)

Kh,ij

{[
∇m(r)

i (θ̄)
]′
∇m(r)

j (θ̄) +m
(r)
i (θ̄)

[
∇2m

(r)
j (θ̄)

]}
= Op (1)
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where θ̄ lies on a line segment joining θ̂ and θ∗ and m
(r)
i (θ) = m(r)(Wi; θ), ∇m(r)

i (θ) =

∂m(r)(Wi; θ)

∂θ′
, ∇2m

(r)
i (θ) =

∂2m(r)(Wi; θ)

∂θ∂θ′
. These conditions actually derive from

more primitive assumptions that would naturally be employed when constructing a

Zheng type test statistic of (4) based the consistent estimator θ̃ = arg maxθ QN (θ),

which removes the parametric restrictions of H. For example, S
(r)
1N(θ∗) = Op(N

−1/2)

is just an extension of Zheng (1996, Lemma 3.3b) which itself derives from The-

orem 3.1 in Powell, Stock and Stoker (1989). Furthermore, it is easy to see that

S
(r)
2N(θ̄) = S

(r)
2N(θ∗)+Op(N

−1/2) and a result similar to the one which establishes that

S
(r)
1N(θ∗) = Op(1) reveals that

S
(r)
2N(θ∗) =

1

N (N − 1)

∑
(i,j)

Kh,ij

[
∇m(r)

i (θ∗)
]′
∇m(r)

j (θ∗) + op(1) = Op (1)

Under these assumptions, we can now establish the main result of the article.

Theorem 2.1 Consider the statistic VN(θ̂) defined above and suppose that the var-

ious high level assumptions are satisfied. Then, under the null hypothesis,

Nhd/2VN(θ̂)
d→ N (b(θ∗0),Σ(θ∗0)) , (5)

b(θ∗0) =
∑

r

E
[{

Λ(r) (X)
}2
f (X)

]

where Λ(r) (x) = EH

[∑
p

∂m(r)(Wj; θ
∗)

∂θ′p
γp |X = x

]
.
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Proof 2.1 A second order mean value expansion of Nhd/2VN(θ̂) about θ̂ = θ∗ yields

Nhd/2VN(θ̂) = Nhd/2VN(θ∗)

+Nhd/2

{∑
r

S
(r)
1N(θ∗)

}
(θ̂ − θ∗)

+Nhd/2(θ̂ − θ∗)′

{∑
r

S
(r)
2N(θ̄)

}
(θ̂ − θ∗)

where (θ̂ − θ∗)′ =
(
(θ̂0 − θ∗0)

′, −1√
Nhd/2

γ′1, ...,
−1√

Nhd/2
γ′L

)
and θ̂0 − θ∗0 = Op(N

−1/2).

This implies that Nhd/2
{∑

r S
(r)
1N(θ∗)

}
(θ̂ − θ∗) = Op(h

d/2) = op(1). Furthermore,

let ∇pm
(r)
i (θ) =

∂m(r)(Wi; θ)

∂θ′p

Nhd/2(θ̂ − θ∗)′
{
S

(r)
2N(θ̄)

}
(θ̂ − θ∗)

= Nhd/2(θ̂ − θ∗)′

 1

N (N − 1)

∑
(i,j)

Kh,ij∇′m
(r)
i (θ∗)∇m(r)

j (θ∗)

 (θ̂ − θ∗) + op(1)

= hd/2
√
N(θ̂0 − θ∗0)

′

 1

N (N − 1)

∑
(i,j)

Kh,ij∇′
0m

(r)
i (θ∗)∇0m

(r)
j (θ∗)

√N(θ̂0 − θ∗0)

+2
√
hd/2

 1

N (N − 1)

∑
(i,j)

Kh,ij

{
L∑

p=1

γ′p∇′
pm

(r)
i (θ∗)

}
∇0m

(r)
j (θ∗)

√N(θ̂0 − θ∗0)

+
1

N (N − 1)

∑
(i,j)

Kh,ij

{
L∑

p=1

γ′p∇′
pm

(r)
i (θ∗)

}{
L∑

p=1

∇pm
(r)
j (θ∗)γp

}
+ op(1)

=
1

N (N − 1)

∑
(i,j)

Kh,ij

{
L∑

p=1

γ′p∇′
pm

(r)
i (θ∗)

}{
L∑

p=1

∇pm
(r)
j (θ∗)γp

}
+ op(1).

Finally, standard results on U-statistics reveal that, under the sequence of local al-

12



ternatives,

1

N (N − 1)

∑
(i,j)

Kh,ij

{
L∑

p=1

γ′p∇′
pm

(r)
i (θ∗)

}{
L∑

p=1

∇pm
(r)
j (θ∗)γp

}

p→ E


{
EH

[(
L∑

p=1

∇pm
(r)(θ∗)γp

)
|X

]}2

f(X)


Thus,

Nhd/2VN(θ̂) = Nhd/2VN(θ∗) + b(θ∗0).

Remark 2.1 If generated regressors, rather than X, are to be used in the construc-

tion of the test statistic then the Kernel is required to be continuously differentiable

and the corresponding Mean Value Expansion and definitions of S1N and S2N will

need to be modified accordingly. The method of proof then follows the arguments of

Hsiao and Li (Theorem 5.1, 2001).

3 Insensitivity to Unconsidered Local Alternatives

The previous section has shown that unconsidered local alternatives shift the centre

of the asymptotic distribution of kernel-based conditional moment tests by a quantity

b (θ∗0) =
∑

r

E
[{

Λ(r) (X)
}2
f (x)

]
(6)

which is a function of Λ(r) (X) = EH

[(∑L
p=1∇pm

(r)(θ∗)γp

)
|X
]
. The magnitude

of the shift is thus related to the individual marginal contribution of each depar-

ture to the rth moment condition evaluated by the statistic T#
N . These marginal
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contributions are logically measured by the gradients ∇pm
(r) (.).

Ultimately, the question of sensitivity to unconsidered local alternatives reduces

to whether b (θ∗0) = 0 or not. If we were using the statistic T̂#
N above as a general

procedure to evaluate the overall adequacy of the econometric model, then we would

expect b (θ∗0) to be different from zero whenever unconsidered local departures are

present, so that the null model be rejected at some pre-established significance level

α. However, if T̂#
N is used to isolate and identify particular errors of specification,

then it is desirable that the test be insensitive to local misspecification for which it

was not designed. In accordance to the previous discussion, T̂#
N will be insensitive

to the whole collection of departures represented by θ1, · · · , θP whenever b (θ∗0) = 0,

and this condition is attainable if, for all p and r,

EH

[(
L∑

p=1

∇pm
(r)(θ∗)γp

)
|X

]
= 0 (7)

Note that a sufficient condition for this to happen is that all the gradients ∇pm
(r)(θ∗)

are zero.

The above expression implies a result relating the asymptotic insensitivity of T̂#
n

to the collection {θp}L
p=1 of local alternatives, and the asymptotic independence of T̂#

n

with an equivalent kernel-based score test of the null hypothesis H: θ1 = θ2 = ... =

θL = 0. To develop this result, let us assume that the sequence of local alternatives

θ1, · · · , θL had been considered in the model, so that the density function associated

to the econometric model had been specified as f (W ; θ), for θ′ = (θ′0, θ
′
1, · · · θ′L). We

can make θ2 = · · · = θL = 0 without any loss of generality, so that only θ1 is present
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in the generating process and thus, the vector of parameters in the model can be

partitioned as θ′ = (θ′0, θ
′
1). The test T̂#

n can be easily adapted to evaluate the d−d1

restrictions H: θ1 = 0. In particular, a kernel-based score test could be constructed

as

T̂ S
N =

∑
(i,j) t

S
ij(θ̂)√

2
∑

(i,j)

[
tSij(θ̂)

]2
where: tSij(θ̂) = Kh,ij

∂f(Wi;θ̂)
∂θ′

1

∂f(Wj ;θ̂)
∂θ1

. Under the alternative hypothesis,

EH

∂f
(
Wi; θ̂

)
∂θ′1

|X = x

 6= 0,

so that large values of T̂ S
N would be observed.

Consider now the arbitrary test T̂#
N in (3). From the Information Matrix equality,

we know that

EH

[
∂m(r) (W, θ)

∂θ1

|X = x

]
= EH

[
m(r) (W, θ)

∂f (W, θ)

∂θ1

|X = x

]
(8)

The above equality represents the expected marginal variation of the function m(r) (.)

with respect to θ1 as a function of the statistical correlation between the moment

functions in the tests T̂#
N and T̂ S

N . In particular, if T̂#
N is insensitive to the local depar-

ture θ1, so that EH

[
∂m(r)(W,θ)

∂θ1
|X = x

]
= 0 then EH

[
m(r) (W, θ) ∂f(W,θ)

∂θ1
|X = x

]
= 0,

ensuring that the functions m(r) and ∂f/∂θ1are uncorrelated conditional on X. A

suitable Law of Large Numbers will ensure that the asymptotic correlation between

T̂#
N and T̂ S

N will tend to zero as N →∞, allowing us to establish the following, which
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is the main result of this article.

Lemma 3.1 A Kernel-Based Consistent Conditional Moment Test, T̂#
N , of M mo-

ment restrictions will be insensitive to the pth unconsidered local alternative, when-

ever T̂#
N is asymptotically uncorrelated with the corresponding nonparametric score

test T̂ S
N of H: θp = 0.

In practice, the problem of studying the sensitivity of a kernel-based consistent con-

ditional moment test to a collection of unconsidered local alternatives reduces to

evaluating condition (7). Under the assumptions enforced to justify the asymptotic

results, the functions m(r) (.) are differentiable, condition (7) can be studied. The

only difficulty associated with the problem is to calculate the gradient of the vector

m(r) (W, θ).

The result established in Lemma (3.1) resembles the result obtained by Godfrey

and Orme (1996) for parametric conditional moment tests. In particular, their result

related the asymptotic insensitivity of a parametric conditional moment test to its

asymptotic independence with the appropriate Lagrange Multiplier test of the null

hypothesis H: θj = 0, where θj is a vector of unconsidered local alternatives. How-

ever, the applicability of their result is subject to the estimation method employed to

approximate the values of the parameters in the model. Thus, while some of the re-

sults they present are satisfied in a Maximum Likelihood framework, the same result

need not hold true when GMM is employed. Unlike in the mentioned article, result

(3.1) does not depend on the loss function employed to estimate θ̂ and therefore, our

results will be true whether θ̂ was calculated by Maximum Likelihood, GMM or any

other method.
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4 Examples

We finish this article by illustrating how to use our check in practice. The examples

here are of limited scope, however our condition can be applied to much more complex

testing environments.

Example 4.1 The first example to illustrate the results introduced in the previous

sections uses the following regression model,

Y = X ′
1β1 +X ′

2β2 + ui, ui ∼ IID
(
0, σ2

u

)
(9)

where β1 = O (1), β2 = O
(
Nhd/2

)−1
, and X1, X2 are vectors of regressors. While X1

is incorporated to the researcher’s econometric model, X2 is not observed. Therefore

the estimated model is Y = X ′
1β1 + ui, and the term X ′

2β2 configures a sequence of

unconsidered local alternatives.

After the model is estimated, one might be interested in testing if the error terms

are normally distributed. Following the article by Jarque and Bera (1980), the null

hypothesis that u has a Gaussian distribution function can be tested by studying the

two following conditions simultaneously:

H0 : E
[
u3|X

]
= 0 and E

[
u4|X

]
− 3σ4

u = 0 (10)

Ha : Either E
[
u3|X

]
6= 0 or E

[
u4|X

]
− 3σ4

u 6= 0 (11)

A consistent kernel-based version of the Jarque-Bera statistic can be constructed by

modifying in the appropriate way the statistic T#
N is defined in (3) . Letting m(1) (W, θ) =
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u3, m(2) (W, θ) = u4 − 3σ2
u and substitution of u and σ2

u by, say, least squares esti-

mators will lead to a feasible test for normality; namely,

T JB
N =

∑
(i,j) t

JB
ij (θ̂)√

2
∑

(i,j)

[
tJB
ij (θ̂)

]2
where tJB

ij = Kh,ji

{
û3

i û
3
j + (û4

i − 3σ̂4
u)
(
û4

j − 3σ̂4
u

)}
. Under the null hypothesis the

test has an asymptotic standard normal distribution, provided that the model for

the conditional mean had been correctly specified. The question arising is, in what

way the above test might be affected by potential local Pitman misspecification in the

conditional mean. Whether the test is sensitive to such form of misspecification can

be checked by examination of the condition in equation (2.1). It will be sufficient just

to consider EH

[(∑L
p=1∇pm

(r)
j (θ∗)

)
|X
]
, since γp is a nonzero vector of constants.

Note that,

EH
[(
∇pm

(1)(θ∗)
)
|X1

]
= EH

[(
∂m(1) (β1, β2)

∂β′2

)
|X1

]
= EH

[
3u2X2|X1

]
6= 0

EH
[(
∇pm

(2)(θ∗)
)
|X1

]
= EH

[(
∂m(2) (β1, β2)

∂β′2

)
|X1

]
= EH

[
4u3X2|X1

]
6= 0

The overall consistent Jarque-Bera test is not insensitive to
√
Nhd/2 local misspeci-

fication in the conditional mean, so that one won’t be able to distinguish those situ-

ations when rejection of the null is due to the non-normality of the test from those

situations when rejection of the null is due to some sort of local alternative present

in the conditional mean of the regression model.

Example 4.2 The second example consides a duration model. For instance, as-
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sume that T represents duration of unemployment and imagine, for simplicity, that

a proportional hazard Weibull model has been proposed to undertake the study. The

evolution of the variable across time can be explained by the influence of a set of

regressors entering to the regression model below:

Y = X ′
1β1 +X ′

2β2,N + u (12)

In the above equation, X1,X2 are vectors of regressors, such that E [u|X1, X2] = 0.

The dependent variable in the above regression function is Y = −α ln (T ), where α is

a parameter. The parameter vectors in the right hand side are such that β1 = O (1),

and β2,N = O
(
Nhd/2

)−1
. In particular, we assume that X2 is unobserved, so that

the term X ′
2β2,N constitutes a sequence of unconsidered Pitman local alternatives.

Therefore, the researcher only estimates Y = X ′
1β1 + u. The error term is assumed

to follow a Type I extreme value distribution (see Kiefer, 1988), and then, the above

model can be estimated by Maximum Likelihood.

A conditional moment test for the overall validity of the Weibull specification

can be constructed by using the generalized residuals associated to the model, which

are defined as ε = ε (T |X1, X2; β1, β2,N , α) = tα exp (X ′
1β1 +X ′

2β2,N), where ε (.)

denotes the integrated hazard function. It is well known that the above generalized

residuals follow a unit exponential distribution (Kierfer, 1988), so that E [εr] = r!,

and E [log (ε)] = −0.5772, and, hence, the above functions should have zero expected

value under the null hypothesis. Following Jaggia (1991) and Lancaster (1985) the
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validity of the model can be tested by using the functions

m(1) (.) = ε2 − 2 (13)

m(2) (.) = log (ε)− ψ (1) (14)

= α ln(t) + β′1X1 +X ′
2β2,N − ψ (1)

(for ψ (r) = ∂ log Γ(r)
∂r

and Γ (r) denotes the gamma function) which have zero expected

value under the null hypothesis that the Weibul model is correctly specified. Under

the null hypothesis, E
[
m(1)|X1

]
= E

[
m(2)|X1

]
= 0 so that the appropriate test for

the Weibul model can be obtained by letting

tij = Kh,ji

{(
ε̂2

i − 2
) (
ε̂2

j − 2
)

+ (log (ε̂i)− ψ (1)) (log (ε̂j)− ψ (1))
}

(15)

in the test (18), where ε̂ = tα̂ exp
(
β̂′1X1

)
and â, β̂1 are the ML estimators of α and

β1 respectively.

In a strictly nonparametric framework, Godfrey and Orme (1996) showed that the

corresponding Conditional Moment test was insensitive to local departures vanishing

at rate
√
N . When the nonparametric equivalent is considered, we observe that

EH

(
∂m(1)

∂β2,N

|X1

)
= 2ξ (X2)u

2 6= 0 (16)

EH

(
∂m(2)

∂β2,N

|X1

)
= ξ (X2) 6= 0 (17)

so that the test based on condition (15) will be affected by the presence of the above

unconsidered local alternatives. Therefore the above kernel-based test would be sensi-
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tive to local departures present in the regression function, so that the null hypothesis

could be rejected, not because of an incorrect choice of the model, but because the

presence of unconsidered local alternatives.

Example 4.3 The third example considers tests for conditional heteroskedasticity.

In the parametric literature there are plenty of competing tests for such hypothesis

(see, for instance pioneering work by Breusch and Pagan (1979), Godfrey (1978),

or White (1980). Many of these tests are subject to two problems of opposite sign.

On the one hand, they might lack power when errors follow certain types of het-

eroskedastic pattern. On the other hand, these tests are known to be sensitive to

local misspecifications in the conditional mean of order
√
N , what will result in

rejection of the null hypothesis more often than expected. To illustrate these sit-

uations, consider the following simple example. A regression model such as Yi =

β1Xi + ui, for ui = h (σ2
0 + θZi) ei, ei ∼ n.i.d. (0, σ2) and Xi, Zi are exogenous, and

E [Xiui] = 0. A score test of homoskedasticity is based on N−1
∑n

i=1 û
2
i

(
Zi − Z̄

)
, for

Z̄ = N−1
∑n

i=1 Zi. Under Ho : θ = 0, E
[
u2

i

(
Zi − Z̄

)]
= 0. Therefore,

∑n
i=1 û

2
i

(
Zi − Z̄

)
√
nτ

A∼ N (0, 1)

for τ = var
(
u2

i

(
Zi − Z̄

))
, so that, given a consistent estimator, τ̂ of τ , we have

(∑n
i=1 û

2
i

(
Zi − Z̄

)
√
nτ̂

)2

A∼ χ2
1

Now, if Zi = Xi, then E
(
u2

i

(
Xi − X̄

))
= 0 under the alternative hypothesis, so
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that the numerator of the test will be close to zero. The null hypothesis will thus be

accepted, even though disturbances are heteroskedastic. On the other hand, suppose

that Yi = βiXi + δnn
−1/2 + ui, for δn = O (1), and ui ∼ n.i.d (0, σ2

0). It follows that,

under the null hypothesis, for any exogenous Zi, E
[
u2

i

(
Zi − Z̄

)]
= δ2

n, so that

∑n
i=1 û

2
i

(
Zi − Z̄

)
√
nτ

A∼ N
(
δ2
n, 1
)

so that the test will have a non-central chi-square distribution, leading to rejection

of the null when one should actually accept it. Thus, this test is sensitive to local

misspecification in the conditional mean.

Consistent kernel-based tests for heteroskedasticity can be constructed by appro-

priately modifying the statistic in (3) -see Delgado et al (2001) and Hsiao and Li

(2001). Unlike those parametric tests mentioned above, these tests exhibit nontrivial

power under any type of heteroskedasticity. However, there is a second advantage

associated to such a procedure. As we show following this test will be insensitive to

local misspecifications in the mean of order O
(
nhd/2

)−1/2
. The result will follow by

application of the result introduced in the previous section.

Suppose, thus, that we have a regression model, such as Yt = r (Xt, θ
∗) + ui, for

some (k1 × 1) vector of regressors Xt. The null hypothesis is Ho : E (u2
t |Zt) = σ2

u,

where Zt is a vector of random variables. Under the alternative, E [u2
t |Zt] = q (Zt) 6=

σ2
u. The variables in Zt could be a set of exogenous, independent regressors (as in

Delgado et al, 2001), but it could also include weakly dependent data and endogenous

variables (as in Hsiao and Li (2001)). In particular, Zt could include unobservable

generated regressors which need to be estimated. One such situation would arise, for
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instance, if one suspects that the error process could follow an ARCH-type structure.

Without loss of generality, we could write Zt = Vt + εi, where εt ∼ iid (0,Ω) for

some diagonal variance matrix Ω. Now, T#
N will be based on the moment function

m (Wt, θ
∗) = u2

t − σ2
u = [Yt − r (Xt, θ

∗)]2 − σ2
u, which under the null hypothesis will

satisfy

E
[(
u2

t − σ2
)
E
[
u2

t − σ2
u|Zt

]
f (Zt)

]
= 0, a.s.

Since ut, σ
2
u are not observable, replace them by the squared residuals, û2

t , and any

consistent estimator of σ2
u, an obvious choice being σ̂2

u = N−1
∑
û2

t . So, on letting

m̂ = û2 − σ̂2
u, the appropriate Consistent Conditional Moment test is defined as

follows:

TH
n =

1

N (N − 1)

N∑
(t,s)

K̂h,ts

(
û2

t − σ̂2
u

) (
û2

s − σ̂2
u

)
(18)

where,

K̂h,ts =
1

hd
K

(
Ẑt − Ẑs

h

)

and Ẑ is an estimation of Z. Hsiao and Li show that

√
Nhd/2TH

N√
Σ̂n

d→ N (0, 1)

where

Σ̂H =
2hd

N (N − 1)

N∑
(t,s)

K̂2
h,ts

(
û2

t − σ̂2
u

)2 (
û2

s − σ̂2
u

)2
(19)

Obtaining the distribution of the statistic under so general conditions requires further

structure on the behavior of the bandwidth parameter h and the smoothness properties
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of the kernel density -see Hsiao and Li (2001) for the details. In particular h =

O (n−α), for 0 < α < 7d/8, when dependent data appears in the sample, whilst if

generated regressors are used, then nh4−d/2 →∞ is required to ensure the asymptotic

negligibility of higher order terms in the asymptotic expansion of the test. In the case

of independent regressors, only nhd/2 →∞ is required.

Suppose now, that the conditional mean of the model is a sequence of Pitman

DGP’s with an structure similar to the following

Yt = X ′
1tθ

∗ +X ′
2tδN + u, for u ∼ i.i.d

(
0, σ2

u

)
(20)

where δN is a sequence of order O
(
Nhd/2

)−1/2
.We might suspect that the conditional

variance of ut might follow a process depending on some regressors Z, which could

be, for example u2
t−1. Under the local misspecification, we have

mt (θ) = u2
t − σ2

u = [Y −X ′
1tθ

∗ −X ′
2tδN ]

2 − σ2
u (21)

In order to study if the test TH
n will be affected by misspecification, we only need to

check condition (7), obtaining that

EH [(∇pm(θ∗)δN) |Z ] = δNEH [(∇pm(θ∗)) |Zt ] = δNEH [−2uX2|Z] = 0

Therefore, we conclude that the test for heteroskedasticity will not be affected by local

misspecifications in the mean of order O
(
Nhd/2

)−1/2
.
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5 Conclusion

This paper studied the sensitivity of a Consistent Conditional Moment test to un-

considered local alternatives vanishing at rate O
(
Nhd/2

)−1/2
. In general, these tests

will detect this type of local departures, so that the null hypothesis will be rightly

rejected. When applied workers need to isolate a particular type of error in their

model, kernel-based conditional moment tests must be designed so that they are in-

sensitive to departures for which it they were not designed. In these situations, one

can make use of the condition presented in this article in order to characterize the

type of unconsidered departures that might distort the behavior of the test of inter-

est. This allows to tailor tests so that their performance is not affected by certain

types of unobserved local departures. We conjecture that the results presented here

might also apply more generally to arbitrary consistent tests, not only those based

on kernels. However a formal proof of this claims is required and we leave that for

future research.

University of Manchester, United Kingdom
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