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1. INTRODUCTION 

In perfectly competitive labour markets, the imposition of a binding minimum 

wage leads to reductions in aggregate employment and social welfare.  On the other 

hand it is also well-known that monopsony can lead to increases in aggregate 

employment and welfare after a minimum wage imposition, a result which has fuelled 

much debate in the literature (see Manning (2003)).  Bhaskar and To (1999) extend 

the monopsony argument to a differentiated oligopsony; with exogenous, horizontal 

differentiation of non-wage job characteristics (symmetric locations along a Salop 

“circular city”) welfare improvements from minimum wages emerge again via the 

aggregate employment channel.  Our objective is to demonstrate the existence of a 

new channel whereby minimum wages can improve welfare in a differentiated 

oligopsony, namely the choice of non-wage job characteristics.  To do this we switch 

to a Hotelling duopsony (“linear city”) model in which firms choose locations (i.e. the 

non-wage job characteristic) at stage I and wages at stage II of a 2-stage game.  

Following Bhaskar and To (2003) (where there is no welfare discussion) we also 

allow the two firms to differ in their inherent efficiency of employing labour (the 

marginal revenue products differ).  Abstracting from all aggregate employment 

effects we show in detail how the imposition of minimum wages improves social 

welfare via its impact on the non-wage job characteristics.  Indeed (up to a restriction 

regarding existence of pure strategy equilibria) the imposition of a minimum wage 

always improves on the laissez-faire outcome.  Moreover the mechanism is totally 

dependant on the changes in non-wage job characteristics; if such changes are 

impossible (e.g. in a “short-run”) minimum wages reduce welfare. 

The paper therefore studies the laissez-faire market outcome in a Hotelling 

duopsony with asymmetric firm efficiency (section 3), and the social optimum in such 
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a world (section 3 also).  The results of section 3 offer no essential novelty beyond 

that provided by Ziss (1993) in his completely parallel results for the laissez-faire 

outcome and social optima in a Hotelling duopoly with asymmetric marginal costs.  

We go on to study the effect of minimum wages on the market outcome (section 4) 

and on social welfare (sections 5) with the results claimed above.   Section 2 

introduces the framework of our analysis and section 6 concludes. 

 

2. THE FRAMEWORK 

 

 There are 2 firms (i =0,1) producing output from labour at constant marginal 

revenue product of α for firm 0 and β for firm 1, where α > β.  It maybe that the 

marginal physical product is higher at firm 0, or the difference may be caused by firm 

0 selling in a more profitable output market than firm 1; for convenience we refer to 

firm 0 as the efficient firm.  The wage offered by firm i is wi, i = 0,1 and is subject to 

minimum wage legislation whereby only wi ≥ w  can be chosen; throughout we 

assume [ ]β,0∈w  so that the minimum wage does not preclude the operation of either 

firm. 

 Each firm also offers a non-wage job characteristic in the interval [0, 1], a ∈ 

[0, 1] for firm 0 and (1-b) ∈ [0, 1] for firm 1.  There is a continuum of workers whose 

ideal non-wage job characteristics are uniformly distributed over [0, 1].  Taking a job 

at firm i whose non-wage job characteristic is at a distance d from a worker’s ideal 

provides the worker with job utility wi - td
2 where t > 0 is a parameter.  Following 

d’Aspremont et.al. (1979) we assume that each worker supplies inelastically one unit 

of labour to the firm that offers the higher job utility, so that the worker whose ideal 

non-wage characteristic is at x ∈ [0,1] works for firm 0 if 
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2
1

2
0 )1()( xbtwaxtw −−−>−−  and at firm 1 if the inequality is reversed, with 

indifference if there is equality.  If a ≠ 1- b the solution to the equality is 

( ) ( ) )1(2/1
2

1~
10 batwwabx −−−++−= , and the labour market shares or employment 

levels at firm i = 0, 1 will be; 

 

[ ] baifLL

xif

xifx

xif

L −≠−=








≥
∈
≤

= 11,

1~1

1,0~~
0~0

010   (2.1) 

 

If a = 1- b, jobs are homogeneous in their non-wage characteristics.  In this case, 

analogous to homogeneous product Bertrand models with asymmetric costs, we 

assume that the high wage firm gets the whole labour market if w0 ≠ w1, but the 

efficient firm gets the whole market when w0=w1; 

 





−=−=
≥
<

= baifLL
wwif

wwif
L 11,

1

0
01

10

10
0    (2.2) 

 

Firm profits are ( ) ( ) .111000 LwandLw −=−= βπαπ  

 One potential application has the continuum of workers geographical located 

uniformly along Hotelling’s “Main Street”, [0, 1] on which the firm’s locate and 

workers bear quadratic transport costs of travelling to work.  For brevity we use this 

terminology in the sequel, whose main focus is the two stage game where firms at 

stage I choose simultaneously locations a ∈ [0,1] for firm 0 and 1-b ∈ [0,1] for 1, and 

offer wages wi ∈ Wi, i=0, 1, simultaneously at stage II, employing the forthcoming 

labour supply and receiving payoffs = profits.  We assume W0 = [ ]Aw, and W1 = 
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[ ]Bw,  so that firms cannot offer wages in excess of their marginal revenue product.  

We do this to avoid some implausible stage II subgame equilibria when firms 

collocate (a = 1- b) again following the homogeneous product Bertrand lead (see 

Hurter and Lederer (1986) for a discussion). 

 Although the focus is on the case with α>β, we also extend results to the case 

α = β.  With this symmetry (2.2) can be replaced by the analogue of the usual 

symmetric cost Bertrand assumption: 

baifLL

wwif

wwif

wwif

L −=−=








>

=

≤

= 11,

1
2

1
0

01

10

10

10

0    (2.3) 
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3. TWO BENCHMARKS: LAISSEZ-FAIRE MARKET EQUILIBRIUM 
AND THE SOCIAL OPTIMUM 

 
 The two main results of this section pertain to the laissez-faire market 

equilibrium (the subgame perfect equilibrium (SPE) of the 2-stage game when ,0=w  

Theorem 1) and the social optima (Theorem 2).  Both results are due essentially to 

Ziss (1993), where Proposition 2 equates to Theorem 1 and Proposition 4 is the 

analogue of Theorem 2.  However we include full derivations of our results since the 

duopsony setting and notation is quite different from Ziss’s (1993) duopoloy, and 

since we use our supporting lemmas to build the minimum wage analysis of sections 4 

and 5.  We denote ( ) t/βαδ −= as a measure of the efficiency differential between 

the firms. 

Theorem 1 If δ ∈(0,δ*] 0ifand81.0336*where =≅−= wδ , the unique (up to 

symmetry) pure strategy SPE outcome has maximum location differentiation of the 

firms (a=b=0 or 1) and the following wages, market shares and profits; 

( ) ( )2
18
1**

1
2

18
1**

0

6
1

2
1**

16
1

2
1**

0

3
2

3
1**

13
1

3
2**

0

33 δδ
δδ

βαβα

−=Π+=Π
−=+=

−+=−+=

tt

LL

twtw

 

The following lemmas 3.1, 3.2 and 3.3 (proofs for 3.1 and 3.3 are found in the 

Appendix) provide a proof of Theorem 1.  We first describe the best responses and 

Nash equilibrium (NE) in stage II subgames at arbitrary locations (a,b) ∈ [0,1]2.  Let 

( ) [ ]{ }1:1,0, 2 <+∈= babaS , ( ) [ ]{ }1:1,0, 2 =+∈= babaH  and 

( ){ })3)(1(:, babaSbaT +−−−<∈= δ .  Note that the subgame at (a,b) ∈ S has, from 

symmetry, the same outcome as that at (1- a, 1- b) ∈ [0,1]2, so description of subgame 

NE for (a,b) ∈ S ∪ H suffices.  Note also that when δ ≤ 3, T is a nonempty convex 

subset of S, and has an upper boundary in S which is downward sloping with 
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intercepts a = 0, .12,0and14 δδ +−===−−== aabbb  T is the subset of 

locations where the inefficient firm gets positive market share in the wage subgame, 

part of the following lemma 3.1 

Lemma 3.1 

(a)  For a wage subgame with location (a,b) ∈ S, (i) – (iii) describe firm 0’s best 

responses and (iv) – (vi) those of firm 1, where ( )( ),310 babat −+−−−= βγ  

( )( ),110 babat +−−−+=Λ β ( )( ),311 babat +−−−−= αγ
( )( );111 abbat +−−−+=Λ α  

(i) tww += 10 [(1−a)2 − b2]   11if γ<w  

(ii) ( ){ } [ )111
22

12
1

0 ,if]1[ Λ∈−−−+= γα wabtww  

(iii) [ ]α,00 =w     11if w≤Λ  

(iv) tww += 01 [(1−b)2 − a2]  00if γ<w  

(v) ( ){ } [ )000
22

02
1

1 ,if]1[ Λ∈−−−+= γβ wbatww  

(vi) [ ]β,01 =w     00if w≤Λ  

(b)  For a wage subgame with location (a,b) ∈ T, the unique Nash equilibrium wages, 

market shares and profits are; 

( ) ( )( ) ( )( )babatwbabatbaw +−−−−+=−+−−−+= 31,31, 3
1

3
2

3
1*

13
1

3
1

3
2*

0 βαβα  

( ) ( ) ( ) ( ) ( )
)1(6

3,,
16

3, 6
1*

16
1*

0 ba
babaL

ba
babaL

−−
−+−=

−−
+−+= δδ

 

( ) ( )
2

18
1*

1

2

18
1*

0 1
31),(,

1
31),( 






−−
−+−−−=Π






−−
+−+−−=Π

ba
babatba

ba
babatba

δδ

(c) For a wage subgame with location (a,b) ∈ (S ∪ H)/T, the unique Nash equilibrium 

wages, market shares and profits are; 

tbaw += β),(*
0 [(1−a)2 – b2] ( ) β=baw ,*

1  
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0),(1),( *
1

*
0 == baLbaL  

tba −−=Π βα),(*
0 [(1−a)2 – b2]  0),(*

1 =Π ba  

The efficient firm thus sets higher wages in subgames anywhere on S/T, and also 

on ( ) ( ) ( ){ }bawbawTbaT ,,:, *
1

*
00 >∈=  = ( ) ( )( ){ },12:, babaTba −−−>∈ δ  whereas on 

( ) ( )( ){ }babaTbaT −−−<∈= 12:,1 δ  firm 1’s wage is higher.  T1 is non-empty iff 

,2
1<δ  illustrated in figure 3.1. 

Figure 3.1 here 

When (a,b) ∈ T0 for instance, figure 3.2 shows (as BR0, BR1) the best responses 

generating the subgame NE( )])1[(withshown 22 abt −−−> αβ . 

Figure 3.2 here 

To find SPE we need the NE of the “reduced form” stage I location game where 

firm 0 chooses a ∈ [0, 1], firm 1 chooses b ∈ [0, 1] and payoffs are given by 

),(* baiΠ in lemma 3.1.  These payoffs are continuous functions.  We look first at the 

“constrained best response” of the inefficient firm in this game, which solves: 

),(max *
1 ba

b
Π  s.t. .10 ab −≤≤   We denote this solution ),(1 aψ  and )(

~
1 aΠ  are the 

resulting profits. 

For [ ] ( ) 0,,1, *
1 =Π∈ baaa for all [ ],1,0 ab −∈ so ( ) [ ] .0)(

~
1,0 11 =Π−= aandaaψ   

For [ ),,0 aa ∈  firm 1 can attain positive profit only by choosing b so that (a,b) ∈ T, 

but then, from lemma 3.1(b); 

( )( ) ( )( ) 01/311/3/ 18
1*

1 <−−−−−−−−−+−=∂Π∂ babababatb δδ  

Thus ( ) [ ),,0for0,)(
~

and0)( *
111 aaaaa ∈Π=Π=ψ  completing the description of firm 

1’s constrained best responses.  The function )(
~

1 aΠ  thus defined is easily seen to be 

continuous, strictly decreasing on [ )a,0  and constant at 0 on [ ].1,a  
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In firm 1’s unconstrained best response problem, it can also choose 

[ ].1,1 ab −∈  From symmetry the maximum attainable profit over this b interval is 

( ),1
~

1 a−Π  and the unconstrained best response profit for firm 1 is max ( )[ ,
~

1 aΠ  

( )]a−Π 1
~

1  attained at the best responses ( ) ( )aaaifa −−−Π>Π 11,1
~

)(
~

)( 1111 ψψ  if 

)(
~

)1(
~

11 aa Π>−Π  and at ( ){ } ).1(
~

)(
~

if11),( 1111 aaaa −Π=Π−−ψψ  When 

,, 2
1

4
5 >< aδ  which proves, given the earlier monotonicity properties of :)(

~
1 aΠ   

Lemma 3.2 The best response of firm 1 in the reduced form stage I game when 

( ) { } 2
1

2
1

2
1

4
5 1,0andif1,if0is,,0 ==>=<=∈ aifbababδ . 

When 4
5<δ the inefficient firm simply locates as far as possible from the 

efficient firm.  By contrast the efficient firm has a possible incentive to co-locate with 

the inefficient rival since it then (anywhere along H) attains positive profits of βα − . 

The same “centifugal” force that drives the inefficient firm to maximum distance from 

firm 0, also affects firm 0’s decision, but this force is minimized when firm 1 is at the 

centre of [0,1] when the maximum distance is smallest.  Thus one might expect that 

firm 0 will want to co-locate when b is near ,2
1  moving as far away as possible when 

b is sufficiently far from the centre.  This intuition is borne out in the following 

precise statements. 

Lemma 3.3 The best response of firm 0 in the reduced form stage I game is; 

(a) for ( ) { } 2
1

2
1

2
1

4
1 if1,0,if1,if0,,0 ==>=<=∈ bababaδ   

(b) for [ ],, *
4

1 δδ ∈  there is a strictly decreasing function b(δ) with ( ) ,2
1

4
1 =b  

( ) 0* =δb such that a = 0 if b < b(δ), a = { } ( ) babbb −==− 1,if1,0 δ if 

( )( ),)(1, δδ bbb −∈  a = { } ( )δδ bbabbb −>=−=− 1if1and)(1if1,1  

Lemmas 3.2 and 3.3(a) and (b) complete the proof of Theorem 1.   
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Finally when βαδ == so,0 and T = S the statements in Lemma 3.1(a) and (b) 

remain valid.  The remaining locations in Lemma 3.1(c) are now only the co-location 

set H.  On this set the wage subgames are homogeneous Bertrand games with 

constant, symmetric marginal revenue products, and there is now no reason to assume 

that firm 0 will take the whole market when wages are equal; the usual assumption is 

that firms then share the market equally, (2.3) rather than (2.2).  Either way the wage 

subgame payoffs are uniquely 0 for both firms, as in Lemma 3.1(c).  So the reduced 

form stage I game payoffs continue as in Lemma 3.1(b) and (c).  Lemma 3.2(a) 

continues to provide firm 1 best responses in the reduced form game, but firm 0 now 

has a symmetric response – both firms wish to get as far away as possible from the 

rival, reproducing the exact d’Aspremont et.al. (1979) parallel: 

Corollary to Theorem 1    The statement in Theorem 1 remains true with 

.and0 βαδ ==  

Our second benchmark is the social optimum.  A planner now locates the firms 0 and 

1 at a, 1-b [ ]1,0∈  respectively, and dictates the subsets of workers who will work at 

the 2 firms.  We continue to assume that all workers will be employed, the worker 

located at x ∈ [0,1] generating surplus ( )2axt −−α at firm 0 and ( )21 xbt −−−β at 

firm 1.  Without loss of generality a ≤ 1-b and, given such a,b it will be socially 

optimal for some subset [ ] [ ]1,0ˆ,0 ⊂x to work at 0 and for ( ]1,x̂  to work at 1.  Social 

welfare is then the aggregate surplus: 

( )xbaSW ˆ,,  = ( ) ( ) ( )∫ ∫ −−−−−−+
x

x

dxxbtdxaxtxx
ˆ

0

1

ˆ

22 1ˆ1ˆ βα  

        =  ( ) ( ) ( ) ]ˆ1ˆ[ˆ1ˆ 3333
3
1 xbaxbatxx −−+−++−−+ βα   
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Given (a,b) the socially optimal x̂ , ( ),,ˆ bax  equates ( ) ( )22 ˆ1ˆ xbttoaxt −−−−− βα  if 

the resulting [ ],1,0ˆ ∈x  otherwise .1ˆ =x  Hence; 

 ( ) ( )
( )




−−≥
−−≤+−+−−=

22

22
2
1

1if1

1if)1()1(2/
,ˆ

ba

baabab
bax

δ
δδ

 

Substituting the top branch here into the SW formula and writing ba −−=1l  

produces the function; 

( ) ( ) ( ) ( ) ( ){ }31
8
131

8
133

3
1

2
112

2
1

2
1, −−− −++++−−+++= lllll δδδδβα batbattbaf  

Similar substitution of the bottom branch produces; 

( ) ( ) ]1[, 33
3
1 aatbag −+−= α  

Hence the maximum social welfare attainable at locations (a,b) ∈ S∪H is; 

( )( ) ( )
( )




−−≥
−−≤=

22

22

1if),(

1if),(
,ˆ,,

babag

babaf
baxbaSW

δ
δ

 

Theorem 2 Suppose, without loss of generality, that .1 ba −≤   

(a) If [ )4
1,0∈δ the socially optimal location is δδ −=+= 4

10
4
10 , ba  with   and 

market shares δδ 2,2 2
10

12
10

0 −=+= LL  

(b) If 4
1≥δ  the socially optimal locations are [ ]2

10
2
10 ,0, ∈= ba with 

tSW 12
10 −= α  and market shares 0,1 0

1
0
0 == LL  

The proof of Theorem 2 is given in the appendix, and is somewhat different from that 

of Ziss (1993), avoiding the use of Lagrangeans and the somewhat tricky issue of 

appropriate concavity of the social welfare function.  When 0=δ , the socially 

optimal locations are at the quartiles of the location space, and firms have equal 

market share, as in d’Aspremont et al (1979).  As δ increases from 0 to 4
1  the efficient 

firm is moved towards the centre, the distance between firms staying at 2
1  and the 
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efficient market share increasing from 2
1  to 1.  For δ beyond 

4

1
 the efficient firm stays 

at the centre, taking the whole market.  Note that Ziss (1993) assumes a small positive 

set-up cost, so the inefficient firm is not set up when 4
1≥δ .  In contrast when 0=δ  

the  market equilibrium moves the firms to opposite extremes of the location space, 

with equal market share.  In this limit, again as in d’Aspremont et al (1979), the 

market outcome provides socially correct market shares, but too much location 

differentiation.  As δ increases from 0 to ,*δ  the market continues to provide too 

much differentiation, but also allows too much market share for the inefficient firm. 
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4. MINIMUM WAGES AND MARKET EQUILIBRIUM 

Now .0>w  To find the effect on market equilibrium (SPE of the 2-stage game) we 

first identify the effect of the minimum wage on the stage II wage subgames at 

arbitrary stage I locations.  We use the notation ( ) ]1[),( 22
0 abtbaw −−−= α  and 

( ) ].1[),( 22
1 batbaw −−−= β  

Lemma 4.1 (a)  For wage subgames with locations ( ) Tba ∈, and minimum wage 

( ],,0 β∈w  the unique Nash equilibrium wages, prices and profits are; 

(A)  the laissez-faire values described in lemma 3.1(b) iff 

( )],),,([min *
1

*
0 bawbaww ≤  

(B)  ( ) ( )( ),1,1,1, 2
1

0012
1

010 abwLLabLwww +−−=Π−=+−=== α  

( )( )abw −+−=Π 12
1

1 β  iff [ ]),(),,(max 10 bawbaww ≥  

 (C)  ( ){ } ,,]1[ 1
22

2
1

0 wwabtww =−−−+= α  

  ( ){ } ( ) ,114/]1[ 1
22

0 LbatabtwL −=−−−−+−= α  

  ( ){ } ( ) ( ) ,,18/]1[ 11

222
0 Lwbatabtw −=Π−−−−+−=Π βα  

  iff ),(),( *
10 bawwbaw ≥≥  

 (D) ( ){ }]1[, 22
2
1

10 batwwww −−−+== β  

  ( ){ } ( )batbatwLLL −−−−+−=−= 14/]1[,1 22
110 β  

  ( ) ( )[ ]{ } ( )batbatwLw −−−−+−=Π−=Π 18/1,
222

100 βα  

  iff ),(),( *
01 bawwbaw ≥≥   

 (b) For wage subgames with locations (a,b)∈(S∪H)\T and minimum 

wages ( ],,0 β∈w  the unique Nash equilibrium wages, market shares and profits are 

the laissez-fiare values described in Lemma 3.1(c). 
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Proof of Lemma 4.1 

 For (a, b) ∈ S, Lemma 3.1(a) and the quasi-concavity of iπ  as a function of wi 

noted in its proof ensure that the best responses of firm 0 are described by (i) – (iii) 

below, and those of firm 1 by (iv)-(vi): 

 (i) ]])1[(,max[ 22
10 batwww −−+=   11if γ<w  

 (ii) [ ]{ }




 −−−+= 22
10 )1(

2

1
,max abtwww α  [ )111 ,if Λ∈ γw  

 
 (iii) [ ]α,0 ww =      11if w≤Λ  

 
 (iv) ]])1[(,max[ 22

01 abtwww −−+=   00if γ<w  

 

 (v) [ ]{ }




 −−−+= 22
01 )1(

2

1
,max batwww β  [ )000 ,if Λ∈ γw  

 
 (vi) [ ]β,1 ww =      00if w≤Λ  

 
Thus NE for subgames with (a, b) ∈ S and [ ]β,0∈w  correspond to solutions for 

[ ] [ ]βα ,,, 10 wwww ∈∈  of one of (i)-(iii) coupled with one of (iv)-(vi). 

(a) Suppose (a, b) ∈ T.  Comparing the above best responses (i)-(vi) with those of 

Lemma 3.1(a) it is immediate that the laissez-faire outcomes continue as NE iff 

( ) ( )[ ],,,,min *
1

*
0 bawbaww ≤ completing the proof of (A). 

Solutions with www == 10 can be generated by the (ii)/(v) pairing iff: 

 

 (1) ( ) ]1[),( 22
0 abtbaww −−−=≥ α  (2) ( ) ]1[),( 22

1 batbaww −−−=≥ β   

 
 (3) )3)(1(1 babatw +−−−−=≥ αγ  (4) )3)(1(0 babatw −+−−−=≥ βγ  

 
But (1) ⇒ (3) and (2) ⇒ (4).  Thus (ii)/(v) produce NE with www == 10  (and the 

corresponding market shares and profits in (B)) iff (1) and (2) hold.  It is straight 

forward to check that no pairings produce other NE with www == 10 , completing the 

proof of (B). 
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The (ii)/(v) pairing produces solutions with 10 www =≥ iff  

 

( )[ ]{ } wwabtww =−−−+= 1
22

0 ,1
2

1 α and 

 (5) ( ) ]1[),( 22
0 abtbaww −−−=≤ α  (6) )3)(1(1 babatw +−−−−=≥ αγ   

 

 (7) ( )[ ]{ }22
0 1

2

1
batww −−−+≥ β  (8) )3)(1(000 babatw −+−−−=≥>Λ βγ  

 
Substitution of w0 shows (7) is equivalent to ).,(*

1 baww ≥  For (a, b) ∈ T the 

inequalities in (5) and (7) imply those of (6) and (8), so (ii)/(v) produce NE with 

www =≥ 10 (and market shares and profits of (c)) iff (5) and (7) hold.  Again no 

pairings produce other NE with www =≥ 10 , completing (C).  The proof of (D) is 

symmetric to that for (C). 

(b) For (a, b) ∈ S\H, the laissez-faire outcomes in Lemma 3.1(c) always continue 

as NE since for i=0,1 .),(* wbawi ≥≥ β   It is straightforward to check that no pairings 

(of (i)-(iii) with (iv)-(vi)) produce any other NE.  For (a,b) ∈ H, the argument for this 

case in Lemma 3.1(c) ensures that the laissez-faire outcome is the unique NE for any 

[ ],,0 β∈w  completing (b).        � 

Lemma 4.1 shows that there are 4 possible types of wage subgame equilibrium, where 

the minimum wage is (weakly) binding on (A) neither firm, (B) both firms, (C) the 

inefficient firm only and (D) the efficient firm only; we label these different types as 

“type i equlibrium”, i = A, B, C, D.  For given δ the relation between locations and 

wage subgame equilibrium type varies with w  and is now described. 

 Notice first that if **
1ww ≤  then w is never strictly binding on either firm in 

any wage subgame and type A equilibrium occurs at all locations.  Thus the laissez-

faire SPE continues as in Theorem 1 and its Corollary 1: 
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Corollary 2 to Theorem 1 The statements in Theorem 1 and its Corollary 1 remain 

true for any ],0( **
1ww ∈  

 If **
1ww > some wage subgame outcomes (e.g. at a=b=0) will be affected by 

the minimum wage.  The following discussion is truncated to the assumption that 

[ )2
1,0∈δ  (for brevity, and because qualitatively nothing of further interest emerges 

outside this range), and for the time being we focus on ( ).,0 2
1∈δ  The set T1 where 

firm 1 offers the higher wage in laissez-faire wage subgames is then non-empty, and 

the effect of **
1ww >  on wage subgames is described by figure 4.1 and lemma 4.2,   

using the following notation for some critical minimum wages 21,ww  and 3w  (all 

belong to ( )β,**
1w  and 321 www << ); 

( ) ( )δδδδδαα 211;211; 2
1

32
1

21 −−+−=−++−=−= twtwtw  

When 2
10 << δ  figure 4.1 shows how the equilibrium type varies with location as w  

increases from ,**
1w  and Lemma 4.2 is the formal statement.  In the diagram the 

dotted curve is ),)(1(2 baba −−−=δ  the A/C border has ),,(*
1 baww =  the B/C 

border ),,(0 baww =  A/D ),(*
0 baww =  and B/D ).,(1 baww =  

Figure 4.1 here 

Lemma 4.2 Suppose 0 <δ <0.5. 

(a) If 1
**

1 www <≤  there is type C equilibrium if ),(*
1 baww ≥  and type A if 

),(*
1 baww ≤  

(b) If 21 www ≤≤  there is type B equilibrium if ),,(0 baww ≥  type C if 

( )bawwbaw ,),( *
10 ≥≥  and type A if ( )baww ,*

1≤  
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(c) If 32 www ≤≤  there is type B equilibrium if either ( ) ( )bawbaw ,, *
1

*
0 ≥  and 

),,(0 baww ≥ or ( ) ( )bawbaw ,, *
1

*
0 ≤  and ),,(1 baww ≥  type A equilibrium if 

either ( ) ( ) wbawbaw ≥≥ ,, *
1

*
0 or ≥),(*

1 baw  ( ) ,,*
0 wbaw ≥  type C if 

( ) ( )bawbaw ,, *
1

*
0 ≥  and ≥),(0 baw w ( ),,*

1 baw≥  and type D if 

( ) ( )bawbaw ,, *
1

*
0 ≤  and ≥),(1 baw  ( )baww ,*

0≥ . 

(d) If β≤≤ ww3  there is a type B equilibrium if ),,(0 baww ≥  type C if 

( )bawwbaw ,),( *
10 ≥≥  and type A if ( )baww ,*

1≤  

Proof of Lemma 4.2 For given w we consider the following 4 curves in the (a,b) 

plane: 

(1)  ( ),,*
0 baww =  (2)  ( ),,*

1 baww =  (3)  ),,(0 baww =  (4)  ).,(1 baww =   It is easily 

confirmed that (i) these 4 curves intersect only where ),)(1(2 baba −−−=δ  the 

dotted curve in Figure 4.1; (ii) all 4 curves are downard sloping in S; when 

),,(),( *
1

*
0 bawbaw >  (2) lies above (3) in S; when ),,(),( *

0
*
1 bawbaw >  (1) lies above (4) 

in S; the intersection of the 4 curves occurs where ,ifand0 32
1 wwab ≥>≤  which 

produces (d) in Lemma 4.2; the intersection occurs where ,if0 32 wwwa ≤≤≥  which 

produces (c); when 2ww ≤  (b) emerges as long as ,1ww ≥  and (a) is the outcome if 

1ww ≤ .          � 

 For any ( ) [ ],,0and,0 2
1 βδ ∈∈ w  Lemmas 4.1 and 4.2 define the payoffs in the 

reduced form stage I game whose NE correspond to the SPE outcomes.  Suppressing 

the dependence on wandδ  we denote these payoffs as 1,0),,(ˆ =Π ibai , if ,, wδ  and 

(a,b) produce type A equilibrium, ),(ˆ baiΠ  is given by Lemma 4.1(A); and similarly 
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for type B, C and D equilibrium.  The resulting functions +→∪Π RHSi :ˆ  are 

continuous, and differentiable almost everywhere. 

 The nature of the inefficient firm’s constrained best responses in the reduced 

form stage I game (solutions to ),(ˆmax 1 ba
b

Π  s.t. a ≤ 1- b) follows from the following 

properties (i)-(iv) of the derivative ./ˆ
1 b∂Π∂  First remember that 

0),(),(ˆ *
11 =Π=Π baba for ( ) ( ) THSba \, ∪∈  (a subset of the type A equilibrium 

domains in figure 4.1), and we restrict attention to (a,b) ∈ T in (i) – (iv). 

(i) At an interior type A (laissez-faire) equilibrium 

( ) ( )( ),],,,min[where *
1

*
0 bawbaww < as in section 3, .0//ˆ *

11 <∂Π∂=∂Π∂ bb  

(ii)  At an interior type B equilibrium (where either ),(0 baww >  and 

),,(),( *
1

*
0 bawbaw >  or ),(1 baww >  and ( ) ( ))bawbaw ,, *

0
*
1 > , 

( ) .0/ˆ
2
1

1 >−=∂Π∂ wb β  

(iii)  At an interior type C equilibrium ),(( 0 baww <  and  

 

( ) ( ) ( ) ( ) ( ) ( ) 014/]1[/ˆ),,, 22
1

*
1

*
0 <−−−−−−−=∂Π∂> batwAbatwbbawbaw β

 
if ,)1( 2batw −−−< α  which follows from );,(0 baww < thus  

 

.0/ˆ
1 <∂Π∂ b  

(iv) At an interior type D equilibrium ),(( 1 baww <  and ( ) ( )),,, *
0

*
1 bawbaw >  

b∂Π∂ /ˆ
1  has the sign of ( )( ) wbabat −−−−−+ 311β  which is positive 

since ( )( ) ;011 >−+−−−− wbadatβ  here .0/ˆ
1 >∂Π∂ b  

For [ ]1,0∈a  where ( ) Ta ∈0, , firm 1’s constrained best response is, with reference 

to figure 4.1, either at the point b > 0 where (a,b) is on the B/C border (if there is 

such a point), or at the point b > 0 where (a,b) is on the A/D border (if there is 
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such a point), or at b=0 otherwise.  And when (a,0) ∉ T, any b ∈ [0, 1- a] is a 

constrained best response, producing zero profit.  Let ϕ1(a) denote firm 1’s 

constrained best response (correspondence) where [ ],1,0∈a  suppressing the 

dependence on δ and w , and let .12 δ+−=a  Routine calculations produce the 

following precise statement; 

 

Lemma 4.3 Suppose ( ).,0 2
1∈δ  For wage subgames with locations (a,b) 

HS ∪∈ and a minimum wage ],,[ **
1 βww ∈  firm 1’s constrained best response, 

),(1 aφ  is: 

(a) For [ ];,0 aa ∈  

(i)   ( ) 01 =aφ  if 1
**

1 www ≤≤  

(ii) ( ) 01 =aφ for [ ]aa t
w ,1 −−∈ α  and ( ) t

waa −+−= αφ 2
1 1  

for ],1,0[ t
wa −−∈ α  if 21 www ≤≤  

(iii)   with ( ) 1/3241 −−+−= twa β  and ( )+−−= − δα
t
wa 24

1
2
1

2  

( ),22 δ
δ

α −−
t
w

 0)(1 =aφ for [ ],,1 aaa ∈    

( ) ( ) ( ) twaa /3212 2
1 −+++−= βαφ  for [ ]12,aaa ∈  and 

( ) t
waa −+−= αφ 2

1 1  for [ ],,0 2aa ∈  if 32 www ≤≤  

 (iv)   ( ) 01 =aφ  for ],1[ aa t
w−−∈ α  and ( ) t

waa −+−= αφ 2
1 1  

  for ],1,0[ t
wa −−∈ α  if β≤≤ ww3  

(b) for [ ] ( ) [ ].1,0,1, 1 aaaa −=∈ φ  
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The graph of firm 1’s constrained best response is as follows.  If [ ]1,aa ∈  in figure 

4.1(a)-(d) then this best response (correspondence) graph is the set of (a,b) where 

[ ],1,0 ab −∈  from Lemma 4.3(b).  For [ ]aa ,0∈  in figure 4.1(a) the graph is the 

set of (a,b) where b=0; in figure 4.1(b) the graph follows the path Y1, Y2, ( );0,a in 

figure 4.1(c) it follows Y1, Y2, Y3, ( )0,a  and in figure 4.1(d) if follows Y1, Y2, 

( ).0,a  

Note for future reference that a new critical minimum wage value will emerge 

when, in figure 4.1(c), Y2 has a coordinate of .2
1  This requires 

( )( )baba −−−= 12δ  and (e.g.) ( )baww ,*
0=  with ,2

1=a  which become 

( )2
2
12 b−=δ  and ( )( )[ ]bbtw −−+−= 2

7
2
1

3
1 δα  producing the value ww = (say) = 

( ) ( ).,2 322
1 wwtt ∈+− δα  The reason for the criticality of w will be clear after: 

Lemma 4.4 For any ( )2
1,0∈δ  and ],,[ **

1 βww ∈  the unconstrained best response of 

firm 1 in the reduced form stage I game is ( ) ,if 2
1

1 <aaφ  )1(1 1 a−− φ  if 2
1>a  and 

{ })1(1),( 11 aa −−φφ  if ,2
1=a  where )(1 aφ is the constrained best response described in 

Lemma 4.3. 

Proof of Lemma 4.4  

Suppressing other arguments, let )(
~~

1 aπ denote firm 1’s constrained best 

response profits to [ ].1,0∈a  0)(
~~

1 =aπ for [ ],1,aa ∈ from Lemma 4.3(b), where 

2
1>a (since 2

1<δ ); also )(
~~

1 aπ is a continuous function, form figure 4.1 since 

),(ˆ1 baπ is a continuous function.  We now show that )(
~~

1 aπ is a strictly decreasing 

function on [ );,0 a the symmetry arguments used earlier to establish Lemma 3.2 then 

complete the proof of Lemma 4.4. 
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Along vertical segments of firm 1’s constrained best response graph ((0, 0) to 

( )0,a ) in figure 4.1(a), Y2 to ( )0,a  in figures 4.1(b) and (d), Y3 to ( )0,a  in figure 

4.1(c)), ( )2

118
1*

11 3)0,()(
~~

aataa −−−== δππ and .0/
~~

1 <∂∂ aπ  Along segments of 1’s 

constrained best response graph that coincide with the A/D border 

( ))(1.4figureinto 32 cYY  ))(,()(
~~ *

11 abaa ππ =  where b(a) is defined by 

))(,(*
0 abaww = so that ( )0,1)2)(1()(' 1 −∈−+−= −baab  which ensures 0/

~~
1 <∂∂ aπ  

here also.  Finally, along segments of 1’s constrained best response graph that 

coincide with the B/C border (Y1 to Y2 in figures 4.1(b), (c) and (d)), 

( ) ))(1()(
~~

2
1

1 aabwa −+−= βπ  where b(a) is now defined by ))(,(0 abaww =  so 

0)1()(' 1 <−−= −baab  and again .0/
~~

1 <∂∂ aπ      � 

Hence firm 1’s unconstrained best response graph follows the constrained 

graph if [ ]2
1,0∈a  with a jump at 2

1=a  so that for [ ]1,2
1∈a  the unconstrained graph 

extends to include the points (a,b) where 1-b is a constrained best response to 1-a.  

The candidates for pure strategy SPE of the 2-stage game with minimum wage 

],[ **
1 βww ∈  are the points on firm 1’s unconstrained best response graph.  Figure 4.2, 

illustrates in bold firm 1’s unconstrained best response graphs in ;HS ∪  the 

extension to [0,1]2 adds (1- a, 1- b) for each (a,b) HS ∪∈ shown. 

Figure 4.2 here 

Consideration of firm 0’s best responses at points on 1’s best response graph leads to: 

Theorem 3 (a) If ( ) ],,(and,0 **
12

1 www ∈∈δ  the unique (up to symmetry) pure 

strategy SPE outcome has the following locations, wages, market shares and profits: 

(i) (a,b) defined by waw =)0,(*
1 and b=0, ,)0,( 1

*
00 wwaww =>=  

( )0,* aLL ii =  and ( ) ,1,0,0,* =Π=Π iaii  if ( )2
**

1 ,www ∈  



 22 

(ii)  (a,b) and (w0,w1) defined by == ),(),( *
1

*
0 bawbaw  

( )baLLwww ii ,, *
10 ===  and ,1,0),,(* =Π=Π ibaii  if [ ]www ,2∈  

(b)  If ( )2
1,0=δ  and ( ],,βww ∈  there is no pure strategy SPE. 

Proof of Theorem 3 The proof involves a number of steps.   

Step 1 With reference to figure 4.1 and lemma 4.1 we have the following derivatives 

of 0Π when ( ) ., Tba ∈  

(A)  In region A, 0Π is firm 0’s laissez-faire profit and a∂Π∂ /0  has the sign of F(a,b) 

defined in the proof of lemma 3.3.  In particular, since 0/, 02
1 >∂∂< aπδ whenever 

.1 δ−>b  

(B)  In region B, ( ) 0/ 2
1

0 >−=∂Π∂ wa α  

(C)  In region C, a∂Π∂ /0 has the sign of ( )( ).311 abbatw −−−−+−α   But in region 

C, ( ) ],1[ 22 abtw −−−< α so ( )( ).11 abbatw +−−−>−α  It follows that 0/0 >∂Π∂ a  

since ( )babaab +>−+>+− 1i.e.131 . 

(D)  In region D, a∂Π∂ /0 has the sign of ( ) ( ).1 2 wbat −−−− β  But in region D, 

,)1()1)(1( 2batbabatw −−>+−−−>−β  so .0/0 <∂Π∂ a  

Step 2 The derivatives in Step 1 imply that, when ,2
**

1 www ≤≤  the unique (up to 

symmetry) remaining SPE candidate is at the point P indicated in figure 4.2(a) and (b) 

on the border between regions A and C.  Since b=0 here and since Step 1 ensures that 

firm 0 will not want to deviate to any a where ( ) PTa ,0, ∈  is indeed SPE provided 

firm 0’s profit at P is at least as large as at co-location (a=1, b=0).  This will be true if 

( )( ) 01831),( 2

1 ≥−++−= − δδ δ
aaaaH  everywhere on the set 

( ) [ ] [ ] ( ){ }aaaa −≥∈∈ 12and,0,,0:, 2
1

2
1 δδδ .  It is straightforward to check that 
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0/ <∂∂ δH  everywhere on this set.  So the result will follow if ( ) 0, 2
1 ≥aH  for all 

[ ],,0 2
1∈a  or ( ) [ ] 0)1(36)3)(1(21 2 ≥−−+−+= aaaaH for [ ].,0 2

1∈a  But 

( ) 0),0( 2
1 >HH and H is concave, ensuring the desired result and completing the proof 

of (a)(i). 

Step 3 When ,2 www ≤≤  the unique (up to symmetry) remaining SPE candidate is 

at P in figure 4.2(c).  Step 1 ensures that form 0 does not want to deviate from P to 

any location which leaves (a,b) ∈ T.   

We show next that firm 0 does not want to deviate from P to collocate; this requires, 

 βαδπ −≥
−−

+−+−−= 2
18
1*

0 ]
1

3)[1(),(
ba

babatba  

where δ = 2(1 - a - b)(a - b).  Equivalently, 

 )()1(3618]
1

3[)1( 2 baba
ba

baba −−−=≥
−−

+−+−− δδ
 

which becomes [1- (a - b)]2 ≥ 0, and clearly is satisfied.  It remains to show that firm 

0 does not want to deviate from P to any location strictly to the right of firm 1.  For 

convenience let (a*, b*) now denote P; notice that .2
1* <b  From symmetry the profits 

attainable by firm 0 from such right deviations are the same as when firm 1 is at 1 - b* 

and firm 0 chooses strictly to the left of firm 1.  From step 1 the only candidates for 

local maxima of 0π  on this latter set are; 

(a) along the A/c border to the right of P 

(b) in A with a=0 if .11)( ** δ−<−< bb  

The proof of (a) (ii) is completed by showing; 

(i) along the A/c border firm 0’s profits decrease with b. 

(ii)  in A where a = 0 and .0/,1 *
0 <∂∂−< bb πδ  
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For (i): here 2
18
1

0 ]
1

3[)1(
ba

babat
−−

+−+−−= δπ , 

)3()1(),( 3
1

3
2

3
1*

1 babatbaww +−−−−+== βα  so that  

da/db = - (1+ b)(2 - a)-1, and )3()1( baba +−−−<δ  

Differentiating 0π  totally with respect to b and using the da/db expression shows that 

( ) )9(1if0/0 babaddbd +−−−<<π  which follows since )3()1( baba +−−−<δ  

For (ii): it follows straightforwardly that, with a = 0, ( ) .351/iff0/*
0 bbb −<−<∂∂ δπ  

Using the restriction bbb +<−−< 1)1/(,1 δδ and the required inequality follows as 

b < 1. 

Finally, for ww > as in figure 4.2(d), Step 1 ensures that P (the only candidate) is not 

an equilibrium completing (b).       � 

When twww −===== αβαδ 21
**

1,,0 and .3 α== ww  In this limit the arguments 

leading to Theorem 4, in particular part (a)(ii), can be applied to provide: 

Corollary to Theorem 3 If 0=δ  and ( )β,**
1ww ∈  the unique (up to symmetry) 

pure strategy SPE outcome has ( )( ) 2
1

102
1 ,/1 ==−−== LLtwba α  and 

( ).2
1

10 w−== αππ  
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5. SOCIAL WELFARE AND MINIMUM WAGES 

As w increases from **
1w  the SPE change as indicated in Theorem 3.  In terms of 

figure 4.2, as w increases from **
1w  to ,2w  the SPE locations have b=0 with a 

increasing from 0 to ( );2112
1 δ−− as w increases from 2w  to ,w  SPE locations 

follow the dotted curve ( )))(1(2 baba −−−=δ  with (a,b) increasing from 

( )( )0,2112
1 δ−− at 2w  to ( );2/, 2

1
2
1 δ− and for w  > w  there is no pure strategy 

SPE.  Theorem 4 below answers the question: what happens to social welfare in pure 

strategy SPE as w increases from **
1w  to w ?  Some preliminary points are; 

i) All pure strategy SPE for w ∈ ],,[ **
1 ww  occur in (on the border of) region A, so the 

efficient firm market share is )1(6/)3(6
1

0 babaL −−+−+= δ  

ii)Let SW ( )w  denote the value of social welfare in the pure strategy SPE at minimum 

wage w ∈ ],,[ **
1 ww  and let SW ( )**

1w =SW** denote its laissez-faire value. 

iii)Let SW° denote the value of social welfare at the social optimum. 

 

Theorem 4  Suppose ( )2
1,0∈δ  and ],[ **

1 www ∈ . 

(a) SW ( )w  is strictly increasing for ],[ 2
**

1 www ∈ . 

(b) If [ )2
1

5
2 ,∈δ then SW ( )w  is strictly increasing for all 

],[ **
1 www ∈  

(c) If ( )5
2,0∈δ there is a unique minimum wage, *w  say, which 

maximizes SW ( )w  over ],[ **
1 www ∈ ; at *w , a+b > .2

1  

(d) SW ( )w  > SW** for all ],[ **
1 www ∈ . 

(e) SW° > SW ( )w  
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Proof of Theorem 4 

First note that substitution of the laissez-faire SPE (a = b = 0, δ6
1

2
1

0 +=L ) into SW(a, 

b, L0) produces, after some manipulation: 

 2
36
5

2
1

12
1**1 / δδβ ++−=− tSWt  

 (a) For ],,[ 2
**

1 www ∈  SPE locations are b = 0 and a = a ( )w , where a ( )w  

is defined by ).3)(1()0,( 3
1

3
2

3
1*

1 aataww −−−+== βα  It follows that  

( ) 13' −= twa (4-2a)-1 > 0.  Social welfare can then be written as a function of a, on the 

domain where [ )2
1,0∈a  and )1(2 aa −≥δ ; 

 ( ) ( ) ( ) ]1[1)( 3
0

3
0

3
3
1

00 LaLatLLaSW −+−+−−+= βα  

where ( ) ( ).16
36

1
0 a

aL
−

++= δ
  Since 0)(' >wa it suffices to show that 'SW (a) > 0 on 

its domain.  Differentiation and manipulation produces 

( )
[ ] 






−
+−






−
+++−+









−
+=−

a
a

a
aaa

a
aSWt

1
113

1
3

1
14)('36 2

2
1 δδδδ

 

  aa
a

2615910
)1(

5 2
2

2

−−++
−

= δδ
 

Since aa 2)1/( ≥−δ  on the domain, 

 01569)('36 21 >−−≥− aaaSWt  for [ ),,0 2
1∈a completing the proof of (a). 

 (b)/(c) For ( )www ,2∈ SPE locations are ( )wa  and b = b(a) where b(a) is 

defined by ))(1(2 baba −−−=δ  for ]),211( 2
1

2
1 δ−−∈a  and (e.g.) ( )wa  is defined 

by ( )( ).)(3)(1))(,( 3
1

3
2

3
1*

1 abaabatabaww +−−−−+== βα   Since 

),21/()21()(' baab −−=  it follows from ( ))(,*
1 abaww =  that ( )wa'  = 18t-1 (1-2b)-1  

(1 - a - b) > 0.  Again social welfare can be written as a function of a where 

( ) ];,211( 2
1

2
1 δ−−∈a  
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SW(a) = ])1()([)1( 3
0

3
0

33
3
1

00 LbaLbatLL −−+−++−−+ βα  

where )1(2
1

0 abL +−= and b = b(a). Since 0)(' >wa the sign of )(' wSW  coincides 

with that of 'SW (a).  Differentiation and manipulation produces 

 3
2
1221 )1()21()21()()(')21( baabbabaaSWbt −−+−−−−−=−− δ  

Some manipulation and substitution of )1/(2
1 baba −−=− δ  produces: 

 ),()1)(12(4)53()(').21()1(4 3221 smsssaSWbst =−−−−=−−− δ say, where s 

= a + b. 

It is easy to check that ( ) 0)(',02
1 <> smm for [ ]5

3
2
1 ,∈s and 0)( <sm for ( ).1,5

3∈s  It 

follows that SW(a) has a unique maximum on ],,211(( 2
1

2
1 δ−−  and is increasing 

(resp., decreasing) to the left (resp., right) of this value.  When 

−== 2
1

2
1 ,ba 2/1,2/ δδ −=s  and ( )2/1 δ−m has the sign of .25 −δ  (b) and (c) 

now follow. 

(d) From (a), (b) and (c) it suffices to show that ( ) .**SWwSW >  At ,w  

2/, 2
1

2
1 δ−== ba  and the required inequality becomes after manipulation; 

09184520)( 23 <−+−= yyyyn  

 where ( ).1,02/ ∈= δy   Now n(0) < 0, n(1) < 0, n is concave on [ ],,0 4
3  

convex on [ ].1,4
3  A straightforward calculation shows that at the unique stationary 

point on [ ] 0)(,,0 4
3 <yn  which ensures the result. 

 (e) This follows since at the unique social optimum 2
1=+ oo ba  whereas at 

the SPE location which maximizes social welfare .2
1>+ ba     � 

Hence, as the minimum wage increases from ,**
1w  the effect is to increase social 

welfare (up to the pure strategy existence limit )ww =  if [ )2
1

5
2 ,∈δ (part(b)).  If 
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( )5
2,0∈δ  the minimum wage (again up to the limit )ww =  always improves on 

laissez-faire (part (d)), but now the improvement is not monotonic over the whole w  

range (parts (a) and (c)), social welfare reaching a maximum at some ( ).,**
1

* www ∈   

Although minimum wages (up to the pure strategy existence limit) always improve on 

laissez-faire, they never allow attainment of the full social optimum (part (e)). 

On the other hand when ,,,,0 321
**

1 ααβαδ ==−===== wwtwww  and the 

arguments of Theorem 4 produce instead: 

Corollary to Theorem 4 If 0=δ and ( )β,**
1ww ∈  there is a unique minimum 

wage which maximizes ),(wSW  namely ,2
1* tw −= α  and now ( ) ;* oSWwSW =  

again ( ) **SWwSW >  for all ( ).,**
1 βww ∈  

So with symmetric firm efficiency, minimum wages across the whole range ( )β,**
1w  

improve on laissez-faire, but the unique social welfare maximizing minimum wage 

now implements the full social optimum. 

The above shows that in the “long-run”, via its impact on the non-wage job 

characteristic, the imposition of a minimum wage is welfare-improving over laissez-

faire.  Finally we consider the “short-run” impact in which we assume that the non-

wage job characteristic remains fixed at its laissez-faire level of a = b = 0 or 1 (we 

continue to restrict attention to δ < ½). The short-run affect of a minimum wage is as 

follows, from Lemma 4.1; 

(A)   If **

1
ww ≤  wages and market shares remain at the laissez-faire levels described          

in Theorem 1  

(B)  If βα ≤≤− wt  the minimum wage binds on both firms ( www == 10 )    

       producing equal market shares 
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(C)   If w1 tw −≤≤ α**  then =0w ½ ( tw −+α ), w1= w , 

       L0  = ( tw +−α )/4t and L1 = 1-L0  

Adapting the previous general formula, social welfare in the short run (SSW) depends  

on the minimum wage as follows: 

SSW (w ) = −−+ )1( 00 LL βα ⅓   t [ 3
0L + ( 3

0 )1 L− ] 

Where  L0  = L 0  ( w ) and; 

      L0  ( w ) = L 0
**  if w 1w≤ **  

      L0  ( ttww 4/)() +−= α  if **
1w  tw −≤≤ α  

L 0  ( )w = ½ if βα ≤≤− wt  

When δ > 0, w1
** <α  - t and it is straightforward to check that the (continuous) 

function SSW is strictly decreasing then over the interval  [w1 ** , t−α ], constant 

elsewhere.  Thus; 

Theorem 5  Suppose δε (0,½), then SSW (w ) < SW **  for all w  ε ( **
1w , β ] 

And when δ = 0, SSW ( )w is constant everywhere; 

Corollary to Theorem 5  If δ = 0 then minimum wages have no short-run effect on  

social welfare. 

Thus in the short-run minimum wages typically (δ>0) reduce social welfare from the 

laissez faire level. What happens is that the minimum wage first binds only on the 

inefficient firm with the efficient firm responding by also increasing its wage from the 

laissez-faire level, but by less than the inefficient firm’s (forced) increase.  As a result 

the inefficient firm’s market share increases, which causes the fall in welfare. Thus 

the positive long run welfare impact of minimum wages in Theorem 4 is driven by 

and dependent on the effect of minimum wages on the non-wage job characteristics. 
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6. CONCLUSIONS 

We have shown how the imposition of minimum wages can be welfare improving on 

laissez-faire, because of their impact on firms’ choice of non-wage job characteristics.  

In the context of a Hotelling duopsony, jobs are horizontally differentiated (e.g. by 

location) and the effect of the minimum wage is to narrow the gap between 

“locations” chosen by firms compared to the maximum differentiation chosen under 

laissez-faire (at least when the efficiency differential between firms is small enough), 

in a welfare improving way.  The paper thus provides a new route through which 

minimum wages can be “a good thing”, over and above the beneficial employment 

effects of the previous literature.  It also generates a natural question for further 

research in the differentiated oligopsony framework, namely the effect of minimum 

wages on vertically differentiated job characteristics (e.g. quality of the work 

environment), as opposed to our horizontal differentiation. 
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APPENDIX 

Proof of Lemma 3.1  (a)  From the definitions of ;~and0 xΠ  

(1) 00 =Π   ])1[(i.e.,0~if 22
10 abtwwx −−−≤≤  

(2) ( )xw ~
00 −=Π α  ( ] ])1[(]1[(i.e.,1,0~if 22

10
22

1 batwwabtwx −−+≤<−−−∈  

(3) 00 w−=Π α  0
22

1 ])1[(i.e.,1~if wbatwx ≤−−+≥  

It is easy to check that (1), (2) and (3) define Π0 as a continuous, quasi-concave 

function of w0 over the whole range [0,α] (constant at 0 over the range of (1), strictly 

concave over (2) and linear, decreasing over (3)). 

If ,0~then11 ≤Λ≥ xw  and so ,000 =Π=L  for all [ ]α,00 ∈w .  Thus any [ ]α,00 ∈w  is 

a best response for firm 0 to .11 Λ≥w  If 11 Λ<w  then strictly positive profits are 

attainable by firm 0 (by choosing εεα ,0 −=w small enough), and a best response 

must lie in the range of (2) above.  In this range, 0Π is a strictly concave function of 

w0 with stationary point { }])1[( 22
12

1
0 abtww −−−+= α  which lies in the range of 

(2), and so is the best response, iff [ )., 111 Λ∈ γw   If 011 , Π< γw  is increasing over the 

range of (2) so the maximum of 0Π  occurs at ])1[( 22
10 batww −−+= , which is 

therefore the best response.  Interchanging 0/1 subscripts, a/b and ,/ βα  and 

replacing ( )xbyx ~1~ −  produces the firm 1 result.  Thus the set of subgame NE for 

(a,b) ∈ S correspond to simultaneous solutions of one of (i) – (iii) in (a) with one of 

(iv) – (vi), where [ ] [ ].,0and,0 10 βα ∈∈ ww   

(b) Assume (a,b) ∈ T and consider the (ii)/(v) pairing.  The equations intersect at 

( ) 1,0,,* == ibaww ii  and the resulting w0, w1 satisfy the inequalities in (ii)/(v) iff 

( )( ) ( )( ).,or31 Tbababa ∈+−−−<δ   It is straightforward to check that no pairings 
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produce any other NE for (a,b) ∈ T, which completes the proof of (b), using the NE 

wages to derive the corresponding market shares and profits.   

(c) Assume (a,b) ∈ S/T.  Consider the (i)/(vi) pairing where w1 = β in (vi).  The 

resulting wages ( )ββ =−−+= 1
22

0 ],)1[( wbatw  satisfy the required inequalities iff 

( )( ).31 baba +−−−>δ   The (ii)/(vi) pairing with w1 = β produces 

( )[ ]{ }22
0 1

2

1
abtw −−−+= βα , w1 = β which satisfies the inequalities iff 

( )( ),31 baba +−−−=δ  in which case w0 = ].)1[( 22 bat −−+β  Again one can check 

that no pairings produce other NE for (a,b) ∈ S/T and that the NE wages produce the 

market shares and profits in (c).  Consider now the case (a,b) ∈ H.  From the 

definition of L0 for this case, if β=1w , firm 0 attains 00 >−=Π βα with w0 = β, 

which cannot be improved upon ( ).0, 00000 =Π⇒<−<−=Π⇒> ββααβ www   

If ,0 β=w  firm 1 can do no better than choose w1 = β giving .01 =Π   Thus 

β== 10 ww is a NE.  This is the unique NE: if 101 then www =< β is again 0’s best 

response giving ,01 =Π but ( )0,1 ><+ εβεw  strictly improves for 1; market shares 

and profits are as claimed, completing the proof.   � 

Proof of Lemma 3.3 

Suppose .0 *δδ ≤<  From lemma 3.1 we have;  

(i) ( ) 012/*
0 >−=∂Π∂ ata  when (a, b) ∈ (S ∪ H)\T and a < 1. 

(ii) When (a, b) ∈ T, 






 −−−
−−








 −++
−−

=∂Π∂ ba
ba

ba
ba

ta 31
1

3
118

1
/*

0

δδ
 

whose sign coincides with that of F(a,b) = ( )( ).311 baba ++−−−δ  The curve F(a,b) 

= 0 intersects the boundary of T where ( )( )baba +−−−= 31δ uniquely at ,2
1=a  

,1492
1 −−= δb  the boundary of T where a = 0 uniquely at ,1 δ−=b  and is 
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downward sloping in T between these intercepts when .4
3≤δ  For ],,( *

4
3 δδ ∈  the 

curve slopes down when 3a+2b > 1, but is upward sloping when 3a+2b < 1 (with a 

turning point at b = 2 - δ3 , a = 3
1 (1-2b)).  In each case, 0/*

0 >∂Π∂ a to the right of 

the curve and 0/*
0 <∂Π∂ a to the left. 

Consider 0’s constrained best response problem: ( ) [ ].1,0s.t.,max *
0 baba

a
−∈Π  Define 

G(b,δ) = ),1(),0( *
0

*
0 bbb −Π−Π on the domain ( ]*,0],1,0[ δδδ ∈−∈b .  Then; 

,183
1

)1(
18

1
),(

2












−







 −+
−

−= δδδ b
b

btbG  

( ) 0443
118

1
53

1
3

118

1
/ <−







 −+
−

≤






 −+
−








 −+
−

=∂∂ bb
b

tb
b

b
b

tbG
δδδ

 

and .domaintheon1
1

using06
1

/ 9
1 







 +≤
−

<






 −−
−

=∂∂ b
b

b
b

tG
δδδ  

Thus there is a decreasing function b(δ) on the domain ],0( *δδ ∈  such that b=b(δ) iff 

G(b,δ)=0, b < b(δ) iff G(b,δ) > 0 and b > b(δ) iff G(b,δ) < 0.  Moreover ( ) 1lim
0

=
→

δ
δ

b  

(since G(1,δ) → 0 as δ→0), ( ) 2
1

4
1 =b  ( )( )0,since 4

1
2
1 =G  and ( ) 0* =δb (since 

( ) ( ) *2
18
1 when0]183[,0 δδδδδ ==−+= tG ). 

In the case where ( ],,0 4
3∈δ  the derivative signs in (i) and (ii), and the downward 

slope of the curve F(a,b) = 0 imply that a = 0 and a = 1-b are the only 2 candidates for 

0’s constrained best response when ],1,0[ δ−∈b and it follows from the previous 

paragraph that a = 0 if b < b(δ), { }ba −= 1,0  if b=b(δ) and a = 1-b if b > b(δ).  

Moreover ( ) ( )
2

18
1*

0 3
1

1,0 






 −+
−

−=Π b
b

btb
δ

is continuous and strictly decreasing in b, 

and βα −=−Π ),1(*
0 bb independent of b.  When ( ) ( ) 2

1
4
1 ,,0 >∈ δδ b  and using the 
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symmetry of the (a,b) and (1-a, 1-b) subgames, 0’s unconstrained best response is as 

described in (a).  When [ ] ( ) 2
1

4
3

4
1 ,, ≤∈ δδ b  and the symmetry ensures the 

unconstrained best response of (b). 

When ],,( *
4
3 δδ ∈  the above arguments ensure the unconstrained best responses in 

(b) if ].1,32[ifor]1,0[ δδ −∈−∈ bb  When ( )δδ 32,1 −−∈b  the candidates for 

0’s constrained best response are a= 1-b and the value of a where (a,b) ∈ T is on the 

upward sloping part of the F(a,b) = 0 curve; let a = a(b) denote this curve, defined by 

F(a,b) = 0 and 3a+2b < 1 for ( ).32,1 δδ −−∈b  Along this curve 0’s profit is 

( )( )bba ,*
0Π  whose derivative with respect to b is –4(1-a-b) < 0.  Also 

( ) ( ) 01898,1 9
1 <−−−=− δδδδ tG so ( ) ,1 δδ −<b  and a = 1-b is 0’s constrained 

best response to any b > b(δ), as in the last paragraph, producing again the (b) 

statement.         � 

Proof of Theorem 2 First note the following features of f(a,b).  

(i) ( ) ( ) ( ) ( )11
1 221

8
1221

8
12

2
122

2
1 +−+−+−−+=

∂
∂ −−−−−

lllllll δδδδδδ a
a

f

t
 

  22
4
12

4
12

2
1 −++−= ll δδ a  

(ii) 22
4
12

4
12

2
11 −++−−=

∂
∂

ll δδ b
b

f

t
 

(iii) Equating (i) and (ii) to 0, f has a unique stationary point δδ −=+= 4
1

4
1 , ba  

with ( ) ., 48
12

2
1* tttfbaf −+−== δδα  Now consider problem 1: 

( ) .),(,1s.t.),(max 22

),(
HSbababag

ba
∪∈−−≥δ  The solutions are ,2

1=a  

,and,if],[ 2
1

4
1

2
1

4
1 =<−∈ ab δδ  [ ] ;if,0 4

1
2
1 ≥∈ δb  in both cases the optimal value 
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is .12
1* tg −= α  If ,1≥δ  the feasible set for problem 1 is S ∪ H and the solution to 

problem 1 is then necessarily the social optimum. 

Suppose 1<δ  from now on. 

Next consider problem 2: ( ) .),(,1s.t.),(max 22

),(
HSbababaf

ba
∪∈−−≤δ  The feasible 

set is nonempty (with a non-empty interior) and compact, so there is a solution.  But 

solutions cannot occur, 

(1) on the feasible set boundary where )1,0[,0 δ−∈= ba  since 

;01
1

/
2

4
11 >







 −+
−

=∂∂− b
b

aft
δ

 

(2) on the feasible set boundary where )1,0[,0 δ−∈= ab  since 

0
1

1/
2

4
11 >









−
−−=∂∂−

a
abft

δ
 there. 

In addition, when 4
1≥δ the (unique) stationary point is not interior to the feasible set, 

so any solution to problem 2 belongs to the boundary where ( ) 221 ba −−=δ  and 

.0, ≥ba   But f and g coincide on this boundary which was also feasible, but not 

optimal, in problem 1.  It follows that the solution to problem 1 provides the social 

optimum for all ,4
1≥δ  completing (b).  Finally, when ,4

1<δ  the stationary point of f 

is interior to the feasible set of problem 2 with value ;*f  moreover ** gf >  then.  

Thus the (unique) stationary point is the only solution candidate interior to the 

feasible set for problem 2, and there cannot be a boundary solution.  So the stationary 

point solves problem 2 and, since ,** gf >  provides the social optimum; hence (a). 

           �
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