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Abstract

The paper examines the problem of the existence of equilibrium for the
stochastic analogue of the von Neumann-Gale model of economic growth.
The mathematical framework of the model is a theory of set-valued ran-
dom dynamical systems defined by positive stochastic operators with certain
properties of convexity and homogeneity. Existence theorems for equilibria
in such systems may be regarded as generalizations of the Perron-Frobenius
theorem on eigenvalues and eigenvectors of positive matrices. The known
results of this kind are obtained under rather restrictive assumptions. We
show that these assumptions can be substantially relaxed if one allows for
randomization. The main result of the paper is an existence theorem for ran-
domized equilibria. Some special cases (models defined by positive matrices)
are considered in which the existence of pure equilibria can be established.

1 Introduction

This paper examines questions related to the stochastic version of the von
Neumann-Gale growth model (von Neumann (1937), Gale (1956)). Histor-
ically, this was one the first models in Mathematical Economics that led
to a rich and interesting theory (see e.g. Rockafellar (1967) and Makarov
and Rubinov (1977)). Originally, the focus of the theory was on economic
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growth. It has recently been observed (Evstigneev and Taksar (2000), Demp-
ster, Evstigneev and Taksar (2005)) that a stochastic generalization of the
von Neumann-Gale framework can be fruitfully applied to the analysis of
fundamental problems in Mathematical Finance (asset pricing under trans-
action costs, capital growth theory). This observation gave a new momen-
tum to studies in this area, raised new questions and revived interest to
long-standing open problems.

The classical version of the von Neumann—Gale model is purely deter-
ministic. The importance of its stochastic generalizations was realized early
on. First steps in this direction were made in the pioneering contributions
by Dynkin (1971) (see also Dynkin and Yushkevich (1979) Chapter 4), Rad-
ner (1971, 1972) and their research groups in the early 1970s. However,
the initial attack on these problems left many questions unanswered, and
a substantial progress in this area was achieved only in the last decade.
An account of these achievements is given in the survey by Evstigneev and
Schenk-Hoppé (2006), where one can find further references.

The mathematical basis of the von Neumann-Gale model is a theory of
multivalued dynamical systems (e.g. Rockafellar (1967), Akin (1993), Aubin
and Frankowska (1990)). The set-valued operators defining such systems
possess certain properties of positivity, convexity and homogeneity. In the
stochastic case, these operators become random. They map elements of
certain cones of random vectors into convex subsets of such cones.

A central role in the theory is played by the notion of a von Neumann
equilibrium. This notion may be regarded as a generalization of some fun-
damental concepts in the theory of positive operators. Roughly speaking, a
von Neumann equilibrium is a counterpart of a triplet (z, p, @), where z and
a are the Perron-Frobenius eigenvector and eigenvalue of a positive operator
A and p is the Perron—Frobenius eigenvector of the dual to A. For some
classes of stochastic von Neumann-Gale models—the analysis of which can
be reduced to the analysis of single-valued positive random operators—the
existence of an equilibrium follows from appropriate stochastic versions of
the Perron-Frobenius theorem; see Section 6 and Appendix B of the present
paper.

Currently, the existence of a von Neumann equilibrium is established un-
der conditions that also guarantee its stability (the turnpike property)—see
Evstigneev and Schenk-Hoppé (2006) for the statements of the results. Very
few results are available pertaining to stochastic analogues of the classical
linear von Neumann model (von Neumann (1937)). One can argue that
the von Neumann equilibrium is “useful” mainly when it is stable—then
the turnpike provides a good approximation for all rapidly growing paths.
Nevertheless, it is of interest and importance to obtain general existence the-
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orems independent of the issues of stability. The present paper focuses on
this problem.

A well-known way of dealing with existence problems for equilibrium and
optimal solutions is to introduce randomization. A classical example is the
concept of Nash equilibrium in mixed strategies. A whole range of similar
notions and related results are known in control, optimization and games,
e.g. Kreps (1990) and Young (1969). We show that by an appropriate exten-
sion of the model at hand, one can establish the existence of a randomized
von Neumann equilibrium under quite general conditions. This extension is
constructed by using an auxiliary “sunspot” process, serving as an additional
source of randomness.

The structure of the paper is as follows. Section 2 describes the general
stochastic analogue of the von Neumann-Gale model and introduces key con-
cepts associated with it. Section 3 focuses on a class of stationary models
defined by random cones. Section 4 contains statements of the main results
of this work pertaining to randomized equilibria and provides formulations
of some previous results used in the present study. Proofs of the theorems
on randomized equilibria are given in Section 5. Section 6 concentrates on
a special class of models defined in terms of positive random matrices. Two
Appendices, A and B, assemble some general mathematical facts used in this
work.

2 The stochastic version of the von Neumann-
Gale model

2.1. The basic model.

Let (2, F, P) be a probability space and ... CF_1 CFyC F, C...CF
a non-decreasing sequence of g-algebras. Sets in F; are interpreted as events
observable prior to time t. Vector functions of w € {2 measurable with respect
to F; are construed as random vectors whose realizations become known by
time ¢. For each t, we denote by LT(t) the space L;(2, F;, P,R™) consist-
ing of (equivalence classes of) n-dimensional F;-measurable vector functions
z(w) with E|z| = E)_, |z'| < co. The letter E stands for the expectation
with respect to the given probability measure P. We denote by L” (t) =
L (9, F;, P,R™) the space of essentially bounded functions in L}(¢) and by
X, the cone of nonnegative elements in L7 (t).

The stochastic version of the von Neumann—Gale model is specified by
the above probabilistic structure and a family of cones Z; C X;_1 X X, (¢t =
1,2,...). A sequence of random vectors {z;}, z: € X; (N < 00), is called



a path (trajectory) in the model if (z;_1,z;) € Z; for all . Equivalently,
the model can be described by a family of multivalued operators x — A;(x)
(t =1,2,..), where Ai(z) = {y : (x,y) € Z;}. It will be assumed that
Ai(z) # 0 for each z € X;_;, which means that the projection of the cone Z;
on the first factor in the product X;_; X X, coincides with &;_;. It is easily
seen that the graph Z; of the operator x — A;(z) is a cone if and only if the
following homogeneity and convexity conditions hold:

A () T A (Ax), A €]0,00), x € X_y; (1)

0A; (z)+(1—0) A (') C A (z+ (1—-0)2'), z,2’ € X1, 0 €[0,1]. (2)

(A linear combination of two sets in a vector space is defined as the set of
pairwise linear combinations of their elements: A+ A’ ={a+a':a € A,a’ €
A'} and A = {Aa : a € A}.) Clearly, the condition (z;_1, ;) € Z; involved
in the definition of a path {z;} of the dynamical system under consideration
is equivalent to x; € Ay(xi—1).

In addition to the assumption that the sets Z; are cones, we will always
suppose that these sets satisfy the following condition: if (z,y),(«',y') €
Z; and T' € Fy_y, then 1p(z,y) + (1 — 1p)(2',y') € Z;, where 1r is the
indicator function equal to 1 on I' and 0 outside I'. If this condition holds,
the cone Z; is called F;_1-decomposable. This property expresses a possibility
of choice between (z,y) and (z/,y') depending on information contained in
F:_1. Examples of such cones will be considered below.

2.2. Rapid paths.

The main focus of the theory is on paths that grow faster in a sense than
others. A path {z;}Y, (N < 00) is said to be rapid if there exists a sequence
of nonnegative random vectors {p;};*, such that p, € L7(¢),

pexy =1 (a.s.) (3)

for all t > 0, and

E(py/pia7) <1 (4)

for all t > 1 and all (z,y) € Z; with p,_;x > 0. A rapid path maximizes in
each period the expected value of the growth rate (piy: — Pr_1Ys—1)/Ps—1Ys—1
among all paths {yt}ivzo for which p,_ vy, # 0.

The typical interpretation of {p;} in economic contexts is that of prices
depending on the (random) state of the economic environment. A rapid path
achieves the highest expected growth rate of the aggregate value p;z;. The
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fact that p,x; is supposed to be equal to 1 is just a matter of convenience;
instead of the constant 1 we could take any constant, independent of time
and of w.

There are several equivalent ways to define a rapid path. It can be shown
(see Evstigneev and Flam (1998) Proposition 2.2) that if (3) holds, then
condition (4), involved in the definition of a rapid path, can be replaced by
any of the following requirements:

Eln( Py ) <0; (5)

D1
Epy < Ep,_1x; (6)
E (py | Fio1) < pea, (7)

where t > 1, (z,y) € Z; and, additionally, p;_1x # 0 in (5). A rapid path
therefore maximizes the expected logarithmic growth rate, and it maximizes
the one-period expected gain in aggregate value (both in the sense of uncon-
ditional and conditional expectation).

A sequence {p;}}¥,, of nonnegative random vectors is called a dual path
if p, € L}(t) and any of the equivalent conditions (6) and (7) holds. (The
equivalence of these conditions follows from the F;_;-decomposability of Z;.)
It follows from (7) that, for any dual path {p;}’, and any trajectory {y:}& ¢,
the sequence {p;y;}iv, is a supermartingale with respect to the filtration
{F: 1, We say that a dual path {p;}, supports the trajectory {z;}¥, if
pixy = 1 for all t. Thus, a trajectory {z:}, is rapid if and only if there
exists a dual path {p;}X., supporting it.

2.3. Stationary models.

In this paper, we will focus on stationary models. This is the framework
where the notion of a von Neumann equilibrium is defined. The stationary
version of the stochastic von Neumann—Gale model is defined as follows. Sup-
pose that, in addition to the above data, we are given a one-to-one mapping
T : Q — Q (the time shift). The model is called stationary if the following
invariance conditions hold:

(Inv.1) The mappings T' and T~' are F-measurable and preserve the mea-
sure P, i.e., P(T') = P(T~'T") = P(TT) for each ' € F (that is, the trans-
formation T is an automorphism of the probability space (2, F, P)).

(Inv.2) We have
Fin=T'F ={T'T:TeF}) (t=0,+1,+£2,..). (8)



(Inv.3) A pair of vector functions (z,y) € X;—1 X X; belongs to the set Z; if
and only if the pair (T'z,Ty) € X; X X;+1 belongs to the set Z; 1.

Here and in what follows, the letter T' is used to denote both the trans-
formation of Q and the induced transformation (Tz)(w) = z(Tw) acting on
functions of w € ). The transformation T' may be thought of as a shift of
the time scale one unit of time forward. By virtue of (8), a random variable
€ is Fi-measurable if and only if T¢ is F;,;-measurable. Condition (Inv.3),
stated in terms of the cones Z;, can equivalently be formulated in terms of
the operators A;(-) as follows:

Api1(Tz) = TAi(z), € X_s1. (9)

2.4. Balanced paths and von Neumann equilibria.

An infinite path {x;:}$2, is called balanced if there exists a random vector
T € Xy and a random scalar 0 < a € L. (1) such that almost surely®

Ty = a10q...04T; for all t > 1, g =z, and |zo| = 1, (10)
where
o =T o, and 7, = T'z. (11)

Each component z! (: = 1,2,...,n) of a balanced path grows at the same
stationary random rate determined by the growth factor zi(w)/z¢ ,(w) =
o(T'w) and with stationary proportions zi(w)/z(w) = zi(Ttw)/z’(T'w).
Clearly, a pair (z,«) generates a balanced path if and only if

T€X, |r|=1, 0<ac Ll (1), and (z,aTz) € Z;. (12)

A balanced path (10) maximizing the expected logarithmic growth rate
Elno,; (independent of ¢ in view of stationarity) is called a von Neumann
path.

A triple of nonnegative functions

(z,a,p), 0 <z € L%(0), 0< a € LL(1), 0<pe L¥0), (13)

is said to form a von Neumann equilibrium if the following conditions hold:

1All equalities and inequalities between scalar- and vector-valued functions of w are
supposed to hold almost surely (a.s.) and coordinatewise. We will usually omit “a.s.”
where this does not lead to ambiguity.



(a) the sequence x; = a;...0u Ty, To = To (where oy = T ' and 7; = T'x)
is a balanced path; and

(b) the sequence p; = (au...ax) ‘P, Po = po (Where p, = T'p) is a dual
path supporting {z;}.

If the above requirements are met, {z;} is called an equilibrium path
and {p;} an equilibrium dual path. The stationary process aq,..., 0y, ... is
the sequence of random equilibrium growth factors. Dual paths of the form
described in (b) are called balanced.

Under the assumptions we impose on the cones Z;, it can be shown
(Arnold, Evstigneev and Gundlach (1999) Section 3) that a triple (z, a, p) of
the form (13) is a von Neumann equilibrium if and only if

(z,aTz) € Z1, |z| =1, pz =1, (14)
and
E (o ' (Tp)y | Fo) < pz for all (z,y) € Z1. (15)

According to the above definition, a von Neumann equilibrium defines a
balanced path growing at a stationary rate and a balanced dual path sup-
porting it and decreasing at the same rate.

2.5. Assumptions for stationary models.

We introduce assumptions on the cones Z; (or, equivalently, on the op-
erators A;(z) = {y € &; : (z,y) € Z;}) that are used in the analysis of the
stationary stochastic version of the von Neumann-Gale model. In hypothe-
ses (Z.0)—(Z.4), the subscript ¢ ranges over {1,2,...}. In (Z.4) and (Z.5), v
stands for some fixed strictly positive number.

(Z.0) If (z,y) € Z; and ) is a F;_;-measurable random variable with non-
negative real values, then (Az, \y) € Z;, provided Az and Ay are essentially
bounded.

(Z.1) The set Z; is closed in X;_; x X, with respect to a.s. convergence of
sequences uniformly bounded in the norm || - || = esssup| - |.

(Z.2) There is a constant M such that |y| < M|z| for any (z,y) € Z,.
(2.3) If (z,y) € Z;, o' € X1,y € X, ' >z and ¢ <y, then (2/,y) € Z,.
(Z.4) For some (%;_1, ) € Z;, we have g, > ~ye, where e = (1,1,...,1).

(Z.5) There exists an integer m > 1 such that, for every ¢ € {1,...,n} and
every t € {0,1,2,...}, one can find random vectors y; € X}, ..., Yerm € Xirm
satisfying

Yt = €, (yt,yt+1) € Zit1, ey (yt+m—17yt+m) € Zitm, Ytrm = V€. (16)



Condition (Z.0) is a version of the hypothesis of F;_;-decomposability
of the cone Z,. Note that the random variable A involved in this condition
is not necessarily bounded. In view of stationarity, if the above hypotheses
hold for some ¢, they hold for all ¢.

3 Stationary models defined by random cones

3.1. The process of “states of the world” and random cones.

Classes of models most important for the applications in economics and
finance are defined in terms of an exogenous process of random factors.
Let ...,s_1, S0, 81,..- be a stationary random process with values in some
measurable space (s; is the “state of the world” at time t). Let £ be
the space whose elements are sequences w = (...,s_1, S, $1,...). Denote
by F the o-algebra defining the product measurable structure on 2 and
by P the probability measure on F induced by the given stochastic pro-
cess. Define F; (t = 0,%£1,...) as the o-algebra generated by the “history”
s'(w) = (..., 84_1(w), s¢(w)) of the process ...,s_1, So, 81, ... up to time ¢t. (We
write s;(w) for the tth element of the sequence w = (..., s_1, o, 1, ...).) Sup-
pose the shift operator T is given by s;(Tw) = s;y1(w). Then conditions
(Inv.1) and (Inv.2) are fulfilled.

For each s' = (...s;_1, 8;), let G (s*) be a closed convex cone whose ele-
ments are pairs on nonnegative n-dimensional vectors (a, b) € R¥". Suppose
G(s') depends measurably on s, i.e., the Euclidean distance d(c, G(s')) is a
measurable function of s* € ... x § x S for each ¢ € R¥" (the space ... x S x §
is endowed with the product measurable structure). Assume that, for each
st, the following conditions hold:

(G.1) for any a € R”, the set {b: (a,b) € G (s")} is non-empty;

(G.2) the set G (s*) contains with every (a, b) all (¢/,b") such that o’ > a and
0<¥ <b

(G.3) the set G (s') is contained in {(a,b) : |b| < M|a|} where M does not
depend on t and s’;

(G.4) there exists a pair of random vector functions (a(s*~'), b(s')) such that
(a(st71),b(st)) € G(s?) for all s* and b(s*) > ~e.

(G.5) There is an integer m > 1 such that, for every i € {1,...,n} one can
find measurable vector functions y;(s'), ..., ym(s™) satisfying

(e 1Y) € G(sY), (11(5"), 92(5%)) € G(5), ..,



(Un-1(s™7), ym(s™)) € G(s™), Ym(s™) = e

The number v involved in (G.4) and (G.5) is supposed to be non-random
and strictly positive.
Define

Zy ={(z,y) € o1 x X1 (z(w),y(w)) € Gy(w) a. s.}. (17)

For each t, the set Z; is an F;_;-decomposable convex cone in X;_; X X;, and
so the sets Z;, t = 1,2, ..., define a von Neumann-Gale model, which we will
denote by M. This model is stationary because conditions (Inv.1)-(Inv.3)
hold, the latter being valid in view of the relation Gi(w) = G¢—1(Tw). Fur-
thermore, it satisfies conditions (Z.0) and (Z.1), which follow immediately
from (17) and the closedness of G¢(w). Properties (Z.2)—(Z.5) follow from
(G.2)-(G.5), respectively.

Any F,-measurable function of w can be represented as a measurable
function of s'(w). Therefore paths in the model M can be identified with
sequences {xo(s?), z1(s'), z2(s?), ...} of essentially bounded measurable vector
functions satisfying

(@o(s°), m1(s7)) € G(s'), (21(5"),72(5%)) € G(5%), (ma(s?), 73(5°)) € G(5°), .
(18)

(a.s.). Dual paths can be identified with sequences {py, p1, ...} of integrable
vector functions p;(s*) such that

Epy(s")y(s') — Bpea(s')a(s") <0 (19)

for all pairs of bounded measurable vector functions (z(s*™!'),y(s?)) € G(s?)
(a.s.). A dual trajectory {p;} supports a trajectory {z;} if

p0(8°)x0(5°) = p1(sY)z1(s") = pa(s?)z2(s?) = ... = 1 (a.s.). (20)

3.2. Balanced paths and von Neumann equilibria in the model M.

Recall that a pair (z,a) such that ¢ € A, |z|] = 1 and 0 < a €
L! (1) generates a balanced path in a stationary von Neumann-Gale model
if and only if (z,aTz) € Z;. A sequence y;(w) (t = 0,1,...) of functions of
w such that y;(w) is Fi-measurable and y; = y;—1(Tw) can be represented as
y:(w) = y(s*(w)) for some measurable function y(s*) on ... x S x S. (Indeed,
we can represent yo(w) as y(s°(w)), which implies y(s*(w)) = T?y(s*(w)) =
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Tiyo(w) = y(w)). Thus a balanced path in M is generated by a pair
z(s°), a(s') such that

(z(s°), a(s")z(s")) € G(s') and |z(s°)| = 1 (as.). (21)
Balanced paths in M are sequences of the form
zo = z(s%), 71 = a(sH)z(s'), T2 = a(s*)a(s")z(s?), ...

Suppose a pair z,a generates a balanced path in M. Let p(s®) > 0 be an
integrable vector function with values in R?. By virtue of (21), (14) and
(15), the triplet z(s°), a(s'), p(s®) forms a von Neumann equilibrium in the
model M if and only if

p(s9)z(s%) =1 (as.) (22)

and

BEEREI0] < pfs)a(s) for all (o(s)u(s)) € G) (05), (29

where z(s°) and y(s') are measurable and bounded.

4 Existence problem for a von Neumann equi-
librium

4.1. Previous results.

The problem of the existence of a von Neumann equilibrium is central to
the theory under consideration. Up to now, the key result obtained in this
direction has been as follows. The existence of a von Neumann equilibrium
has been established under the assumption that a von Neumann path exists.
More precisely, let B denote the class of those pairs (x, ) which generate
balanced paths, i.e. satisfy (12). Consider the variational problem:

(P) Maximize FIna over all (z,a) € B.
Theorem 1. The following properties of (x,a) € B are equivalent.
(a) (z,a) is a solution to problem (P).

(b) There exists a p € Lt(0), p > 0, such that (z,,p) is a von Neumann
equilibrium.
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The result pertains to the general model described in Section 2.1 and
holds under assumptions (Z.0)—(Z.5). For a proof see Arnold, Evstigneev
and Gundlach (1999) Theorem 1.

Theorem 1 leaves the question of the existence of a von Neumann path
open. In the deterministic case, one can easily provide quite general condi-
tions under which the answer to this question is positive: a von Neumann
path exists if the (non-random) cone Z describing the model is closed and
the inclusion (0,y) € Z implies y = 0. However, in the stochastic case
this issue becomes a substantial problem. Up to now, the existence results
were obtained for models in which the cones Z; satisfy certain conditions
of strict convexity (see Evstigneev and Taksar (2001)). A special class of
models where these conditions are not fulfilled, but the existence theorem
can be obtained, is analyzed in this paper. This class is characterized by
the assumption that the cones Z; are of the form Z, = {(z,y) € X_1 x & :
y < Dy(w)x}, where Dy(w) (t = 0,1,...) is a stationary process of positive
random matrices. In this case, the existence of a von Neumann path reduces
to a stochastic analogue of the Perron-Frobenius theorem—see Appendix B.

All the previous results have been obtained under assumptions guaran-
teeing not only the existence of a von Neumann path, but also its uniqueness
and, moreover, its stability (the turnpike property). In this paper, we relax
these assumptions and establish a general existence theorem, independent of
the issues of stability. To this end we use randomization. By introducing
an additional “source of randomness” into the model at hand, we obtain
the existence of a randomized von Neumann equilibrium under very general
conditions.

4.2. Assumptions and definitions related to randomization.

Suppose a stationary process ..., s_1, 8o, S1, -.. of states of the world and
a random closed cone G(s') are given. Assume that G(-) satisfies conditions
(G.1)—(G.3) and the following assumption:

(G.6) there exists a measurable function ~y(s*) > 0 such that the cone G(s*)
contains (e,y(s')e) for all s* and E|In~v(s')| < oo.

The last condition guarantees the existence of a balanced path whose
expected logarithmic growth rate is finite.

Conditions (G.4) and (G.5) are not supposed to be fulfilled anymore,
unless otherwise stated.

Suppose that together with the process {s;}*, we are given another
stochastic process {(;}*,, with values in some measurable space, i.e. we are
given a probability measure ) on the space of paths

{Ut}iooo, Ot = (St,Ct)a (24)
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such that the projection of ) on € coincides with the original measure P.
The process {0}, is called non-anticipative (with respect to the given
process {s;}*,) if, for each bounded measurable function g(o?), we have

E®[g(c")|..., s_1, 50, 51, ...] = E9[g(a?)|s], t = 0,1, ..., (25)

where o' = (...,04_1,0:) and E? stands for the expectation with respect to
the measure (). Equality (25) means that if we wish to predict o* based on
information about ...,s_1, sg, 81, ..., then what matters is only s‘—the past
and the present of the process {s;}, the probabilistic forecast of ¢* being
independent of the future s;11, S¢42, ... of the process {s;}.

Given a stationary non-anticipative process {o:} = {(s¢,¢{:)}, t = 0, £1,
+2, ..., define

G(c*) = G(sY). (26)

Consider the model M specified in terms of the stochastic process (24)
and the random cone (26). This model will be called the extension of
M corresponding to the stationary non-anticipative process {o;}. Note that,
in the extended model, the random cone G(c%) = G(s*) does not depend on
the process {¢;}. However, the class of paths in M is larger than in M:
these paths might depend not only on {s;}, but also on {(;}.

4.8. Results of this work.

Central results related to randomization are contained in the following
theorem.

Theorem 2. There ezists a stationary non-anticipative extension {o:} =
{(s4,¢)} of the process {s;} such that the extended model M defined in
terms of {o:} has a von Neumann path. If, additionally, the cone G(s") sat-
isfies conditions (G.1)-(G.5), then the model M possesses a von Neumann
equilibrium.

If G(st) satisfies conditions (G.1)-(G.5), then, clearly, G(ot) satisfies
the same conditions, which implies that the model M meets requirements
(Z.0)—(Z.5). By virtue of Theorem 1, this model possesses a von Neumann
equilibrium. Thus the second assertion of Theorem 2 is a consequence of the
first assertion and Theorem 1.

The above results are based on the concept of an extension of the original
model. We now will slightly change the angle of consideration. We assume
that the data of the model are the same (not extended), while the same time
we enlarge the class of paths in the model. Let us say that a stochastic
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process {£o, &, ...} with values in R} defines a randomized path in the model
M if the process {(s:, &)} is non-anticipative and for each ¢ the following
conditions hold:

esssup [&] < 00, (&-1,&) € G(s') (as.)

for all . When speaking of randomized paths, we will assume that the joint
distribution of the processes {&o,&1,...} and {...,s_1, Sq, S1, ...} is given. The
notion of non-anticipativity for a process {&, &, ...} starting from ¢ = 0 is
fully analogous to the notion of non-anticipativity of a process {...¢_1, (o, (1, --- },
we only have to define the “history” of the former as & = (&, &1, ...,&). A
randomized path is called balanced if |§o| = 1, || > 0 for all ¢, and the pairs
of scalars and vectors

(1&e+21/1€e], & /1€:1), £ = 0,

form a stationary random sequence (compare with Radner (1971)). The
process {&o, &1, ...} is called a randomized von Neumann path if it maximizes
the expected logarithmic growth rate EIn(|€:1]/|¢:|) among all balanced
randomized paths.

The following result can be deduced from Theorem 2 (for details see the
next section).

Theorem 3. Let M be the extension of the model M described in Theorem
2 and let {&,&1,...} be the von Neumann path in M. If conditions (G.1)-
(G.5) hold, then {&,&1,...} is a randomized von Neumann path in M and
for any (not necessarily balanced) randomized path {&, &1, ...} in M, we have

sup[Eln || — Elnl&|] < oo. (27)

Property (27) expresses a quasioptimality property of the randomized
path {&,¢&:,...}: it cannot be “infinitely worse” asymptotically than any
other randomized path.

5 Results on randomization: proofs

5.1. The characteristic function of a cone.

Define A = {z € R% : |z| = 1} and put

f(s,a,b) = max{r e R, : (a,rb) € G(s")} (a,b € A). (28)

13



The maximum in (28) is attained and does not exceed M in view of the
closedness of G(s') and condition (G.3). The function f(s',a,b) of a,b € A
is called the characteristic function of the cone G(s'). Put

#(s',a,b) =In f(s',a,b).

Denote by S! the o-algebra defining the measurable structure on the space
St of sequences s' = (..., s0, 1) and by S' its universal completion (i.e. the

intersection of all its completions with respect to all finite measures). Let
B(X) denote the Borel o-algebra on X.

Proposition 1. The function ¢(s',a,b) possesses the following properties:
(i) ¢ is measurable with respect to S x B(A) x B(A),
(i) ¢ is upper semicontinuous with respect to (a,b);
(#i3) the set of values of the function ¢ is contained in [—oo,ln M].

Proof. Assertion (i) follows from Lemma 3 in Evstigneev (1976). Assertions
(ii) and (iii) are straightforward. O

5.2. A mazimization problem involving the characteristic function.

Denote by X the set of all stationary non-anticipative extensions ¢ =
{o¢} = {(st,¢;)} of the process {s;}, t = 0,£1,42,... such that (; takes
values in the unit simplex A. For each o € X define

O(0) = E%(s',G-1, ), (29)

where @ is the probability measure induced by the process o = {0} on the
space of its paths. We will identify processes o = {o;} with such measures
Q@ and write ®(o) and ®(Q) interchangeably.

Consider the spaces 1 = ... x S xS x...and X = ... x Ax A x ... endowed
with the product measurable structures. Put Q) = Q x X. Denote by F the
product o-algebra on Q and by F, (t =0,£1,+£2,...) the o-algebra generated
by {(ss,2:)}, i < t. Let G denote the set of all bounded F-measurable real-
valued functions g(w,z) on Q) that are continuous with respect to z in the
product topology of X and by G; the analogous set of functions measurable
with respect to F;. Let T' denote the transformation of the space 2 := Q2 x X
shifting @ = (w,z) = {(s¢, z;)} into T& = {(s¢41, Te11)}. Random processes
o in X are represented by probability measures Q on = Q x X satisfying
the following conditions:

QU xX)=P{I), TeF (30)

14



(P is a projection of Q);
E9(Tg) = E%(g), g€§ (31)
(stationarity);
E®[g(st,¢Y)|..., s_1, S0, 51, -..] = E®[g(s",¢H)|s'], g€ G, , t =0,+1,..., (32)
(non-anticipativity). The latter condition holds if and only if
Eg(s", ¢)h(w)] = E%{g(s", ") " [h(w)|s']}, (33)

for all t = 0,%£1, ..., for all g € G; and all bounded measurable h(w). Indeed,
if (32) holds, then we have

ECg(s", ("h(w)] = EHEYg(s", {")|w]h(w)} =

E*{Eg(s",¢")]s"h(w)} = E¥g(s", ") EVh(w)|s']},

where EC[h(w)|st] = EP[h(w)|st]. Conversely, it follows from (33) that

ER{E%g(s", ¢")lw]h(w)} = E[g(s", {"Vh(w)] =

E9{g(s, ¢V ECh(w)]s']} = E{Eg(s", ¢")|s'Th(w)},
which implies (32).
Proposition 2. The functional ®(o) attains its maximum on X.

Proof. The proof is based on Theorem A.1 presented in Appendix A. Condi-
tions (Q.1)—(Q.3), needed in order to apply Theorem A.1, follow from (30),
(31) and (33). O

5.3. Proofs of Theorems 2 and 3.

We will obtain Theorem 2 as a consequence of the following proposition.

Proposition 3. Let {(s;,(;)} be a stationary non-anticipative process in the
class X mazimizing the functional (29) among all such processes. Let M be
the extension of the model M corresponding to the process {(s;,(;)}. Then
the model M possesses a von Neumann path.

Proof. Define o; = (s4,(;), 0t = (..., 04_1,0¢). Put z(¢®) = {; and consider a
measurable function a(o') such that

a(Ul) = f(817 CO; Cl)

15



almost surely with respect to the measure () corresponding to the process
{0:}. The existence of a measurable version a (o) of f(s', (y, (1) follows from
assertion (i) of Proposition 1.

We claim that the pair z(0?), a(c?) generates a von Neumann path in
M. By the definition of the function f (see (28)), we have

(G, f(s"560:G1)G1) € G(sY),
which implies
(x(09), a(c)z(c')) € G(s') (as.).

Since z(0%) = {; € A, we obtain that the pair z(c°),a(c') generates a
balanced path in the model M.

Consider any other pair y(c?), 3(c') generating a balanced path in the
model M. We have

(y(a"), B(c")y(c")) € G(s') (as.),
and so
Ble") < f(s',y(0"),y(0")) (as.).
Put ¢ = y(o*). The process {o,} = {(s:,{})} = {(st,y(c?))} is stationary

and non-anticipative because for any bounded measurable function g(-,-) in
G, we have

g(s*, &) = g(s*, (")) = h(o")
for some bounded measurable A(-), and so we have
Elg(s*, )|, 5-1, S0, 81, ---] = E[g(s", {)|s"], t =0, +£1,...,
by virtue of (25). Consequently,

Elnp(o') < Eln f(s',y(0°), y(0")) = Eln f(s', G, G7) <

Elnf(517 CO) Cl) = Elna(01)7
which completes the proof. (Il

Proof of Theorem 2: Follows from Proposition 3. O
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Proof of Theorem 8. Consider any randomized path {&, &, ...} in M. The
process {(st, &)} is non-anticipative, and so

z, = B(&|s') = E(&|w),

where w = (..., s_1, S, ...). Therefore

(-1, ) = B[(61-1,&)|w] € G(s)

(see Arkin and Evstigneev (1987) Appendix II, Lemma 1). Consequently,
{z;} is a path in M and hence in M. It is known that any rapid path is qua-
sioptimal (see Evstigneev and Flam (1987) Proposition 2.5). In particular, a
von Neumann path is rapid if it is supported by a balanced dual path, which
is the case under conditions (G.1)-(G.5) (see Theorem 1). Consequently,

sup[Eln |z;| — Eln|&]|] < co. (34)
It remains to observe that
Eln|z| = Eln E(|&]|s") > E[E(In|&||s")] = Eln &,

which in view of (34) yields (27).

To prove that {&, &1, ..} is a randomized von Neumann path, we take
any randomized balanced path {&, &1, ...} and observe that, for each N and
12

& &l Gl &
N(FE1n — Fln—= = _
( [ |§t—1|) Zz_: |€i1] z; |€z 1|

N
é-i €z
B) In |s|z-_|1| ‘EZ |s|z |1| -

|€N| Bl lénl _
"ol &l

for some constant C' (see (27)). Consequently,

|| €|
Eln———— — Fln— <—=—-0as N — o0,
€1 €| = N

which implies

Eln & —Eln |_§t| <0.
&1 &1

Thus {&,£1, ...} is a randomized von Neumann path. O
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6 Stochastic von Neumann-Gale model de-
fined in terms of positive random matrices

6.1. Model description and the statement of the result.

Let (€2, F, P) be a probability space, T :  — € a mapping and F; (t =
0,41,+2,...) o-algebras satisfying the conditions listed in Section 4.2. For
eacht=0,1,..., let D;(w) be a nonnegative random n X n matrix measurable
with respect to F;. Define

Zy ={(z,y) € X1 x Xy 1 y < Dy(w)z}, (35)

and assume that Dy(Tw) = Dyyi(w) for all ¢ > 0. Formula (35) defines a
von Neumann—Gale model specified in terms of the random cone Gi(w) =
{(a,b) > 0: b < Di{w)a} (see Dempster, Evstigneev and Schenk-Hoppé (2003)
for some applications of such models in Finance).

Put D(w) = D;(w) and suppose that D(w) is uniformly bounded and
there exists a constant v > 0 such that for some Zy € &p, we have Dy > ve.
Further, assume that for some m > 1, the smallest element of the matrix
C(m,w) (see (50) in Appendix B) is greater than . Then conditions (Z.0)—
(Z.5) are satisfied and the following theorem is valid.

Theorem 4. The model (35) possesses a unique von Neumann equilibrium
(z,a,p), where 0 <z € L% (0) and 0 < a € L (1) are the solutions to

a(w)z(Tw) = D(w)z(w), |z(w)| =1 (a.s.)

(cf. (52) in Theorem B.1, Appendiz B) and 0 < p € L1(0) is the (unique)
solution to

E(aY(Tp)D|Fy) = p, pz = 1. (36)

By virtue of (14) and (15), a triple (z, a, p) of functions satisfying (13) is
a von Neumann equilibrium if and only if

oTz < Dz, |z| =1, pz =1, (37)
and
E (aY(Tp)Dy | Fo) < py (38)

for all 0 <y € L2 (0).
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6.2. Several lemmas.

Before proving Theorem 4, it will be convenient to establish the following
three lemmas.

Lemma 1. If functions z(w) > 0 and a(w) > 0 satisfy (52), then they are
bounded above and bounded away from zero.

Proof. Since D(w) is uniformly bounded, there exists a constant M such that
|D(w)b| < M for all b > 0 with |b] = 1. (39)
By virtue of (52), we get a = |aTz| = |Dz| < M. Define
7 (w) = 2(Tw), o = a(T 'w). (40)
From (52), we obtain by induction that
D, D,,_1..Di2g= 04y, Q1 ... 0] Ty, (41)

Since the smallest element of D,,...D; is not less than v > 0 and |z,,| = 1,
equation (41) implies that every coordinate of z,, is not less than yM~™ and
Oy > yM ™1 Consequently, £ > yM™e and o > yM ™1, O

Lemma 2. If functions z(w) > 0, p(w) > 0 and a(w) > 0 satisfy (37)
and (38), then they are bounded above and bounded away from zero, and the
inequalities in (37), (88) hold as equalities.

Proof. In view of (39) and (37), we have a = |aTz| < |Dz| < M. Further,
we observe that |p| > 1 because 1 = pz < |p||z| and |z| = 1. Define

pi(w) = p(T'w). (42)

It follows from (38) that E (a; 'p;Dyy | Fi1) < pr_1y forall 0 <y € L7 (¢ —
1) and hence for all F;_;-measurable y(w) > 0. By induction, this implies

D.D, ;...D
E(pt tL/t—1 1Y

Qg...00

| .’FO) < poy for all 0 <y € L7 (0). (43)

By using the inequalities @ < M, |p;] > 1 and inequality (43) applied to
y =e; and t = m, we find p} > yM ™™, as the smallest element of the matrix
D,,...D; exceeds «y. Setting y = z (= ) in (38), we get Ep;a;'Dizy <
Epoyzo = Epiz; = 1. On the other hand, a;'Dyzy > ; by virtue of (37).
Therefore the nonnegative random variable g := p;(a;'Dizg — ;) satisfies
Eg < 0. This implies g = 0 (a.s.) and hence a; ' D;z¢ = z; because p; > 0.
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Consequently, the inequality in (37) holds as equality (a.s.), i.e. formula (52)
is valid. By virtue of Lemma 1, z and o are bounded away from zero and
infinity. From the equality px = 1, we obtain that p is bounded above.

To complete the proof of the lemma, it is sufficient to establish the first
equality in (36). From (38) we can see that the random variable h := [py —
E (o5 'p1Dy | Fo)lzo is nonnegative. Furthermore, we have Eh = Epoxo —
Eoj'piDizg = 1 — Epyzy = 0. Consequently, A = 0 (a.s.), which implies
po — E (ay'p1D1 | Fo) = 0 because zp > 0 (a.s.). This proves (36). O

Lemma 3. Let z > 0 be an Fy-measurable vector function and o > 0 an
Fi-measurable scalar function satisfying (52). Then there is a unique Fy-
measurable random vector p satisfying (36).

Proof of Lemma 3. We first note that, by virtue of Lemma 1,  and p are
strictly positive and bounded. Let us apply Theorem B.1 to the random
matrix B(w) = D*(w) (the conjugate of D(w)) and to the automorphism
T~ of the probability space (2, F, P). By virtue of this theorem, there exist
a measurable vector function g(w) > 0 and a measurable scalar function
B(w) > 0 such that

Bw)a(T™'w) = B(w)q(w), lgw)|=1. (44)

In view of Remark B.1, we can choose versions of ¢(-) and §(:) such that ¢(-)
is measurable with respect to the o-algebra generated by D(Tw), D(T?w), ...
and (3(-) is measurable with respect to the o-algebra generated by D(w),
D(Tw),....

Define ¢'(w) = q(T'w). Tt follows from (44) that

Bw)d'(w) = ¢'(Tw)D(w), l¢'(w)| =1 (45)

because D(w) = B*(w). (In the notation used in (44), ¢(w) is a column
vector, while in (45), ¢’(w) is a row vector.) Put

P4 (%))
Y= Hew)

The random vector p'(w) is well-defined as |¢'(w)| = 1 and z(w) > 0. By
using (45), we obtain

B(w)p'(w) =p(Tw)D(w), pw)z(w) =1, (46)

where



Observe that (52) and (46) imply #'(w) = a(w). Indeed, we have
a(w) = a(w)p(Tw)z(Tw) = p'(Tw) D(w)x(w) = f'(W)p' (w)z(w) = B'(w).

Define p(w) = E[p'(w)|Fs]. The second equality in (46) implies that p'(w) is
bounded (because z(w) is bounded away from zero.) From the same equality,
we also find that p(w)z(w) = 1 as z(w) is Fo-measurable. Since §'(w) = a(w),
the first relation in (46) gives

P'(Tw)D(w)
a(w)

Elp(Tw)|/]D(w)
afw)

p(Tw)D(w)
a(w)

pw) = B [ Fo] = B [ Fo] = EI | Fol
and so p is a solution to (36).
Let us establish the uniqueness of a solution to (36). Consider some such

solution, p. From (36), we get

D
E[pt+1 t+1 LE]

= D¢,
Ot
which implies
E Pey1 D11 Dy...Dy |.7:t] _ peDys...Dy
Q¢i1...001 Qy...00

Consequently, the random sequence pg, Py, ..., where

_ ptDt---Dl

ag...0

A

Dt (t>1), Po = Do, (47)

is a nonnegative martingale. Note that this sequence is bounded because
Pz = prxy = 1 (see (36)) and z is bounded away from zero. Thus there
exists a limit p = lim;_, P¢ (a.s.). By virtue of (47), we have

. DPi+1Diy1... Do Dy

Qy1...02

A

= Dt+101.

Pe(Tw) Dy (w)
By passing to the limit in this equality and in the equality p.x = 1, we get
P(Tw)D(w) = pa, pr = 1. (48)
Consequently,
p(Tw)D(w) = pa, |p| =1, (49)

where p = p/|p| and & = o|Tp|7*|p|. By virtue of Theorem B.1 (applied to
the operator T~! and the matrix B(w) = D*(w)), the solution p to equations
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(49) is unique. Consequently, the solution p to (48) is unique as well because
p = p|p| and |p| = p(pz)~'. The uniform boundedness of the sequence p;
makes it possible to pass to the limit in the equality E[p:|Fo] = p, which
yields E[p|Fo] = p. Since the solution p to equations (48) is unique, the
solution p = E[p|F;] to (36) is unique too. O

6.3. Proof of Theorem 4.

Existence. Consider the solutions z > 0 and @ > 0 to (52). By virtue of
Remark B.1, we can select versions of the functions z(w) and a(w) such that
x is Fpo-measurable and « is Fj-measurable. By virtue of Lemma 1, we have
z € L*(0) and a € L! (1). Consider the Fyp-measurable random vector p
satisfying (36) (its existence was established in Lemma 3). The functions z,
and p satisfy (37), (38). In view of Lemma 2, p is bounded, hence p € L}(0).
Thus conditions (13), (37) and (38) hold, and so (z, @, p) is a von Neumann
equilibrium.

Uniqueness. Consider a triplet (x,a,p) satisfying (13), (37) and (38).
According to Lemma 2, the inequalities in (37), (38) hold as equalities. Thus
the functions z and « are solutions to (52), hence they are strictly positive
by virtue of Lemma 1, and consequently they are uniquely determined by
virtue of Theorem A.1. The uniqueness of p follows from Lemma 3. O
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Appendix A

Let (2, F, P) be a probability space, X a compact metric space and B the
Borel g-algebra on X. Consider the following convergence of measures on F x
B. Let us say that a sequence of probability measures (),,, on F x B converges
to a measure Q on F x B and write Q,, — Q if [ Qm(dw,dz)g(w,z) —
J Q(dw, dz)g(w, z) for each bounded F x B-measurable function continuous
with respect to x. The set of such functions g will be denoted by G.

Let Q be a set of probability measures () on F x B, possessing the following
properties.

(Q.1) The projection of @ on Qis P,ie. Q(I'x X)=P(I"), T € F.
(Q.2) The set Q is convex.

(Q.3) The set Q is closed under the convergence of measures defined above.
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Denote by F¥ the completion of F with respect to the measure P. Let
f(w,z) be a function on  x X taking values in [—00,00), upper semi-
continuous in z, measurable with respect to ¥ x B, and bounded above
by M(w) > 0 with M := [ M(w)P(dw) < co. For each @ € Q, define
®(Q) = [ Q(dw, dz) f(w, z). The functional ®(Q) is well-defined (because f
is (F x B)®-measurable) and takes values in [—o0, M].

Theorem A.1l. The functional ®(Q) attains its mazimum on Q.

This theorem follows from known results on Young measures—see Balder
(1988) Theorems 2.2 and 2.3.

Appendix B

We formulate a stochastic analogue of the Perron-Frobenius theorem for
positive matrices. Consider a probability space (€2, F, P) and a one-to-one
mapping T : ) —  such that 7' and T~! are measurable and preserve the
measure P. Let D(w) be a measurable function taking values in the set of
nonnegative n X n matrices. Define

C(t,w) = D(T" 'w)D(T" *w)...D(w), t =1,2,..., (50)
and C(0,w) = Id (the identity matrix). Then we have
Ct, T*w)C(s,w) = C(t +5,w), L, > 0, (51)

i.e., the matrix function C(t,w) is a cocycle over the dynamical system
(Q,F,P,T) (see, e.g., Arnold (1998)).

For a matrix D > 0, denote by k(D) the ratio of the smallest element of
the matrix to its greatest element. Let the following condition hold.

(*) There is a (non-random) integer m > 0 for which C(m,w) > 0 and
E|ln k(C(m,w))| < co.

Theorem B.1. There exists a measurable vector function z(w) > 0 and a
measurable scalar function a(w) > 0 such that

a(w)z(Tw) = D(w)z(w), |zw)| =1 (a.s.). (52)

The pair of functions (a(-),z(-)) > 0 satisfying (52) is determined uniquely
up to the equivalence with respect to the measure P. If t — oo, then

C(t, T 'w)a L 2(o) (s
T — a(w) (@s), (53
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where convergence is uniform in a > 0, a # 0.

The above result may be regarded as a generalization of the Perron—
Frobenius theorem on eigenvalues and eigenvectors of positive matrices: z(-)
and a(-) play the roles of an “eigenvector” and an “eigenvalue” of the cocycle
C(t,w). Theorem B.1 is a special case of the result in Evstigneev (1974)
Theorem 1; see also Arnold, Gundlach and Demetrius (1994) Theorem 3.1.

Remark B.1. Let Fy and F; be sub-c-algebras of F such that the
random matrices D(T'w), D(T2w), ... are Fy-measurable and the random
matrices D(Tw), D(T'w), ... are Fi-measurable. We can see from (53) and
(50) that z(-) € F¥ and ¢(-) € Ff, ie., the functions z(-) and ¢(-) are
measurable with respect to the o-algebras Fy and J; completed by all sets
of measure zero. From this it follows that we can select versions of z(-) and
&(-), satisfying (52), which are Fy- and F;-measurable, respectively.
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