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GROSSMAN [1998] and GROSSMAN and KIM [2002] studyetlevel of predation and
production in a primitive economy where individuasource endowments follow a 2-class
distribution. Here we allow endowments to followeneral continuous distribution, and we study
the impact of changes in inequality in this disitibn. General comparative static results are
obtained using the Relative Differential Inequalityncept, whose properties in the continuous
distribution setting are detailed, complementingwn results for the discrete distribution case.
(JEL: D31, D63, D50, D74)
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1. Introduction

The paper has two purposes. The first objectiv® istudy the impact of changing inequality in
resource endowments on the level of predation aratiystion in a primitive economy,
specifically that of GROSSMAN [1998] and GROSSMARNdaKIM [2002]. The second aspect
(following MOYES [1994] in the discrete distributiccase) is to detail properties of the “relative
differential inequality (RDI)” concept for the casé continuous distributions, and to show how
(following CHIU and MADDEN [1998]) this concept care brought to bear on the primitive
economy inequality analysis.

There is a common, if usually loose belief thatré@ses in inequality in a society exacerbate
problems with criminal and other destructive ortyeeeking behaviour by individuals. One
precise statement supporting this belief is CHId 88ADDEN [1998], who study the impact of
income inequality in a neighbourhood on the housiagket and the level of burglary. Our main
objective is to provide an analogous precise stateénn the context of a primitive economy
where there is no public provision of defence afparty, and private provision is insufficient to
deter predatory acts against the property of othEne model we use is that of GROSSMAN
[1998] and GROSSMAN and KIM [2002], except that ieplace Grossman and Kim’s two-class
distribution of resource endowments across theegpgiith a general continuous distribution. We
confirm, in various ways, the expected consequeotegreasing inequality.

Properties of the RDI concept in the context o€dite distributions have been extensively studied
by MOYES [1994], CHATEAUNEUF [1996], and SAVAGLI®000, 2001], following the initial
idea of MARSHALL, WALKUP and WETS [1967]. In Secti® we define RDI in the continuous
distribution setting and prove its main propertieselation to Lorenz inequality, analogous to
discrete results in MOYES [1994], CHATEAUNEUF [1996nd SAVAGLIO [2000, 2001]; we
also show how RDI manifests itself within the wallewn classes of income distribution
functions of the uniform and Pareto families. Trsefulness of RDI then emerges in Section 3,
with the detailed insights it provides regardingdnality in the primitive society model.

2. Relative Differential Inequality and Lorenz Inequality

Consider first two discrete distribution9(=(xl,xz,...,xn) and y=(y1,y2,...,yn) both

ranked with 0<x <X,<...<X, and 0<y, <y,<..<y . Then X is said to Lorenz

dominate y (see, e.g. LAMBERT [2001]) if and only if:

k n k n
ZX/ZK >Zyi/2yi, k=1,2,..n-1
i=1 i=1 i=1 i=1

On the other handX dominatesy in the relative differential inequality (RDI) seng and only
if:



X/ Vs <% /¥, 1=12,..n= 1

Following MARSHALL ET AL. [1967] and MARSHALL and OKIN [1979], MOYES [1994],

CHATEAUNEUF [1996] and SAVAGLIO [2000,2001] haveudied RDI in the discrete setting.

Two particular properties are:

(a) RDI induces a sub-ordering of that created by Lordaminance—RDI dominance implies
Lorenz dominance, but the converse is not generalle (see MOYES [1994],
CHATEAUNEUF [1996], and SAVAGLIO [2001]).

(b) RDI dominance is equivalent to Lorenz dominanceewomry subset oi{l,Z,...n} (see

MOYES [1994], Remark 2.4, p.279).

A third property follows, noting thatx; ZXJ- and Y, Zyj are the increments to the
j=1 i=1

ordinates of the Lorenz curves fot and y betweeni—1 and i, and defining “the Lorenz

curve for X is everywhere less curved than that fgr" to mean that the ratio of these

n n
increments, X Z yj/yi Z X; is decreasing ini . Immediately we have:

j=1 j=1
(c) X dominates y in the RDI sense is equivalent to the Lorenz cufee X being
everywhere less curved than that fyr.

Our objective in this section is to report variqueperties of RDI, including parallels to (a), (b)
and (c), in the continuum, rather than discretgrggt

We model the continuum case via its inverse distidm function K :[O,]] - R U{+00},
L iy

where K is a continuous, non-decreasing function, wh EEK (I)dl is finite and where

K (I) >0 somei D[O,]] . Some examples that will recur are:

The equal distribution K (I) =k>0,i D[O,]]

The uniform distribution family with parametens and m: K(i)=n+(m—n)i where

m=n>0.

The Pareto distribution family with parametets and a : K(i)=b(1—i)_a where

b>0, O<a <1

The Lorenz curve for K is the graph of LK:[O,ZI]—>[O,1 ,  where



dI/I di , and is differentiable a¥ is continuous. The Lorenz
comparison of 2 distributions K and M is:
Definition 1K Lorenz dominateM if and only if L, (J) > L, (j) forall j D(O,l).

The relative differential inequality comparison is:
Definition 2 K dominatesM in the relative differential inequality (RDI) sensf and only if

K(i)/M(i)<K(j)/M(j) forall i,j0[0,1] wherei>j.
The link between these two concepts stems from:

Definition 3K Lorenz dominateM on the subsetS = [a, b] O [O,ZI] where a<b, if and only

it [Tk ()i /[ K ()di>['M()di/["M(i)di foral jO(ab).

Theorem 2.1K dominatesM in the RDI sense if and only K dominatesM on any subset

S=[ab]O[0,], a<b.
Proof Only if Supposé& RDI dominatesvl, and jO(a,b), i0(a,j), [ab]O[0,], a<b.
Then for all i J(a, j),
K(j)/M(j><K(i)/M(i>:»K(j)L (i)ai <M ()] K (i)
= [/ ()di/[ M () > K (i)/m (i) @)

We need to show for allj 0(a,b):
Ui (i) /7K (i) > [ (i) /M (i or
LjK(i)di/U ()d|+_[ ()d.}j ()on/[ja (i)di+LbM(i)di]or

(i) du/j d|> du/j 2.2)

Now with K D( I b) and following analogously the derivation of (2.1):

K(K)/M (K) <K (3)/M (3) = K (1)/M (1) > [ K (k) ak /[ M (2.3)
(2.1) and (2.3) imply (2.2), as required.

If  SupposeK Lorenz dominatesM on any [a,b]D[O,]] ,a<b. We need to show

! The more usual definition (e.g. LAMBERT [2001])ifsterms of the direct (rather than inverse) disttion
function, jyde X /Iyde (x) where J =K™, y=K(0), y=K(1), y=K(j). Integration by parts

shows the equwalence.f xdd (x) =yd () —LyJ (x)d(x)= LJ K(i)di-
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K(i)/M (I) is decreasing or[O,]]. Suppose not. TherK(i)/M (I) is weakly increasing
on some interval[a, b] < [0,]], a<b;for | D(a, b), [ D(a, j) and analogous to “only if”,

K(i)/m(i)zK(i)/M(i)=K(i)/M (] (i)ai/ ™ ( (2.4)

And for kD(j,b):

K(K)/M (k)= K (3)/M ()= [ K (K)dk /"M (k) ak= K (1)/M (]). (2.5)

(2.4) and (2.5) imply:
[7K (k) ok~ 'K (k) dk . [[K(i)d
"M (K)ak ="M (k)ak  ['Mm (i

M (i)di /["M (i)di 2 [k (i)di /[ K

which contradicts the supposed Lorenz dominan¢€@ferM on [a, b] . [ |

, which implies

Theorem 2.1 characterizes RDI in terms of the Loreurves for each subset of the population.
Theorem 2.2 provides an alternative RDI characédn, solely in terms of the standard (whole
population) Lorenz curve and its curvature.

Definition 4 The Lorenz curve foK is everywhere less curved than that Kbrf and only if

di (j)/dj/dLy, (j)/di is decreasingin jO(0,1).
Of course, sincel, (O) =L, (O) =0 and L, (1) =L, (1) =1, this curvature property

implies that L, (j) > L, (j), j D(O,ZI) and soK Lorenz dominatedl. It characterizes RDI

exactly however:
Theorem 2.2 K dominatesM in the RDI sense if and only if the Lorenz cuna K is
everywhere less curved than thatKbr

du, (3)/d _ K () J,M()d
d, (1)/d M(J) ['k(i)di

Proof

which shows that the curvature is decreasing if amlg if K(j)/M (j) is decreasing, oK

RDI dominates\. [ |

It is clear that RDI is in general a more demandintgrion than Lorenz. In the rest of this section

we offer a number of remarks and results whichaaie on the extent of these extra demands,
focusing first on the uniform and Pareto exampliesirns out that, for each of these families, any

2 distributions within the family are RDI comparaphnd the RDI comparison always coincides
with Lorenz:



Theorem 2.3 For two uniform distributiorK (with parametersn, n and p =m/n) andM (with

parametersm’, n' and p'=m’/n") the following three statements are equivalent:

() K Lorenz dominateM;

() K dominatedM in the RDI sense;
(1 p<p.

Proof

Let K andM defines 2 uniform distributions as described ia gtatement of Theorem 2.3. The
Lorenz curve ordinates fét andM are, respectively;

L (i) =[2+(p-2)i*]/(1+p). L, (i) =[2+(p=2)i*]/(1+p)

K Lorenz dominateM if and only if, for all i 0(0,1)

2i(1+ p)+(1+ p)(p-2i*> 2( B p)+( o) (0o + N’

which becomes2i (o'~ p)>2(p~p) and holds if and only ifo'> p, establishing the

equivalence of (I) and (lll).

Define Q(i) = (dLy (i)/di)/(dL, (i)/di). Then:

1+p' 1+(p-Di
= ! -
1+p 1+(p=1i

Q(i)
and dQ(i)/di <0 if and only if p'> p. Thus the Lorenz curve fd is everywhere less
curved than that for M if and only ifo'> p. The equivalence of (Il) and (lll) follows from
Theorem 2.2. |

Theorem 2.4For two Pareto distributionK (with parametersb,@) and M (with parameter

b',a"), the following three statements are equivalent:

() K Lorenz dominateM;

() K dominatedM in the RDI sense;
(1 a<a'.

Proof

Let K and M define 2 Pareto distributions as described in stadement of Theorem 2.4. The
Lorenz curve ordinates fét andM are, respectively:

L (i)=1-(1-i)a, L, (i)=1-(1-1)

Now L, (I) > L, (I) for all i D(O,l) if and only if a >a', establishing the equivalence of

a-1 a'-1
a a’
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() and (ll). Define: |
Q(i) = (oL, (1)) /(aL,, (i)/ci) = 2232 ffa-i)ar

a a'-1
and dQ(i)/di <0 if and only if @ <a', establishing the equivalence of (Il) and (llljav

Theorem 2.2. [ ]

In the uniform casep =1 corresponds to complete equality, higher valuaticating RDI

dominated distributions. Correspondingly in the eBarcase,@ =0 is complete equality and
increasing @ generates RDI dominated distributions. However mansons between these
families are quite different:

Theorem 2.55uppose is a uniform distribution (with parametens, n, o = m/n) andM is a
Pareto distribution (with parametels, ).

(a) K dominatesM in the RDI sense if,o—lD[O,a’] ;

(b) K andM are not RDI comparable ito—lD(a’,OO) ;

(c) K Lorenz dominate if p—lD[O, 2a)

Proof
(@ For K and M as described in the statement of Theore2.5,

K(i)/M (I) = n[1+(,0—1)i:|(1—i)a/b. Hence:

=2 (o1 a-1) -aa-) (ar(o- 1)< @™ (1-i) < (03" +

which holds for all i D(O,l) , comparing the linear functions df on the right and left, iff

p-1<a . Thus, when p-1<a , K(i)/M (I) is decreasing throughouEO,]],
establishing (a).
(b) When p-1>a . d[M(i)/K(i)]/di>(0 for i>(<)j  where
j=(1+ a)_l[l+a(p— ])_1} 0( 0,3, precluding RDI comparability.

(c) The Lorenz ordinates for K and M are:

L (1) =[2i (=) i7]/(1+6) L (1) =1-(a-1)

Consider(a,p) pairs along the Iinea':,B(p—l) where pD{1,1+%J (so aD[O,l))



and Whereﬁ>% (sop-1< 2r . The required Lorenz dominance is then that, foy a
1 1
U 4,1+— =
pofuarg] 3
o(i)=2j+(p-1) > +(p+ (1= )" ~(p+ 2> C forall jO(0,1). When p=1,
@(j)=0 forall jO(0,1). We show that for allj (0,1), d¢/0p >0 if pD{l,l+%]

and 3> % , which will establish the result.

dglap= i -1+(1-j) "V - B(1+ p) (1= ) On( 1 j) > ¢

i1 (5)>g(i)=In(2- i), where f (i)=[1-(2+1)(2- 1) | /8(2+ p).

Now £ (j)=(1- )" [ B(p-9)(1+ )~ (2 1)]/B( 2 p).

Hence f'(0)>g'(0)=-1 as p=1, ,8>%.

Moreover ()= p(p-1)(1- )" [3-j-B(p-1(1+)]/B(2 p)= C for al

jD(O,l) as ,8(,0—1)<1. Thus f is convex, g is strictly concave, f (0)=g(0)= 0,

f'(0)>g'(0), and sod¢/dp >0 as required.

Theorem 2.5 implies that, whep —10] (a’, 20’) the uniform distribution Lorenz dominates, but

does not RDI dominate, the Pareto distributionstpresenting a continuous distribution example
(see MOYES [1994] for a discrete example) of how tlorollary to Theorem 2.1 is only a
one-way implication.

Finally an empirical pointer to the extra demandsR®| compared with Lorenz dominance.
Using SHORROCKS’ [1983] income distribution by decifor 19 countries as a discrete
distribution, and computing curvature of Lorenzvas for the discrete case as described in (c) at
the start of this section, we found 20 cases afypsé RDI comparability, compared to 80 cases of
Lorenz comparability. Specifically, in the RDI sen®enmark dominates Columbia, Finland and
Malaysia, Japan dominates Brazil, Sri Lanka, FidJaRanama, Netherlands, Malaysia and
Columbia, New Zealand and Sri Lanka dominate Fihl@weden dominates Malaysia, Columbia,
Panama and Finland, Tanzania dominates Brazil, @kiidates Netherlands, Malaysia and
Columbia (see GU [2005]).

3 A Modéd of a Primitive Economy



GROSSMAN [1998] and GROSSMAN and KIM [2002] havedied a primitive economy model
where individuals decide whether to become produoempredators, where producers acquire an
endowment of resources and allocate part of tlsiguree to its defence (the rest to the production
of consumables), and where predators prey on thsuomables of producers. They assume that
there is a given distribution of potential resousmedowments that follows a (discontinuous)
two-class distribution, and study the equilibriuevél of predation, and related matters, in this
setting. In what follows we assume that the resuweadowment distribution is a general,
continuous distribution, showing, in particularatithe RDI concept allows strong statements
about how the level of inequality in resource endwnts affects the level of predation and other
aspects of the primitive economy.

We think of a continuum of agent'sD[O,]] who face the choice of becoming a producer or a
predator. We letr denote the fraction of predators, 4o-r will be producers, and we denote
R= r/(l— r). If agent i decides to be a producer he acquires a resoudoevement of F (I) ,

where F is a continuous distribution function, and all@sata fraction of this endowment

g (i,r) to its defence, investing the rest in the productf consumables. We assume a unit of

resources produces a unit of consumables, for &iitypland G(i,r)(= g (i,r)/(l— g (i ,r)))
denotes the ratio of endowments producerllocates to defence to the resources he invests i
production. After predation producdr retains the fractionp(i,r) of the consumables that he

has produced, where
1

" eRe ()

and where@ >0 is a parameter measuring the effectiveness optedation technology in the
economy.

(3.1)

Thus produceri loses the fractionl— p(i ,r) of his consumables to predation. If individuial
chooses to be a predator then we assume that lsendbecquire his own (potential) resource

endowment F (I) , and instead receives an equal shé];ér) of the aggregate consumables lost

to predation by producers.

As a result of these assumptions, the (final) comion of produceri, C(i , r) is:

C(i,r)=p(i,r)oF (i)/(1+G(i.r)) (3.2)

where ]/(1+G(i ,r))= 1—g(i ,r) is the proportion of resources invested in productby



produceri,so F (i)/(1+G(i ,r)) is the total consumables produced by

On the other hand each predator ends up with tine sanount of consumables, namely:

D(r)= [ [1- p(i,r)][i%?r)di/r 3

iONP

where “NP” denotes the set of non-predators (redpcers). Here the numerator is the aggregate
amount of consumables lost to predation by prodifcer

Producer i choosesG(i,r) to maximize C(i,r), taking r (and so R) as given. The

solution to this problem shows that all producesose the sameG(i , r):

G(i,r)=voR=G(r) 4B.
Thus producer and predator consumption become:

c(i,r)= F0) (3.5)

(1+1/9r/(1— r))2

o(r)=- YD) ey )

(1+ W)Z jONP

4  Equilibriumand Inequality in the Primitive Economy

Suppose a fraction of predatorsD(O,l) satisfiesC(r,r) = D(r). From (3.5), C(i,r) is
weakly increasing ini , so thatC(i,r)S D(r), i<r and C(i,r)z D(r), i=>r.Hencer

has the property that for individualisD[O,r] predation (rather than production) is an optimal
choice and fori D[r,l] production is optimal, creating the fractiah of predators andL—r

of producers with NP = [r,l] . This defines the natural equilibrium concepttfa@ model:

Definition 4.1 rD(O,l) is an interior equilibrium level of predation ifné only if

2 |f there is a large finite number of individuaB whose endowment distribution is approximatd’r_y(i) , then

the numerator is],/n of aggregate consumables lost to predators, butttihe denominator is alsﬂ}/n of the

total number of predators, leaving (3.3) unchan@ater aggregates used in this paper also igrdreas this
causes no qualitative difference, as here.



C(r,r) = D(r) with the set of producerdNP =[r,1].

Rearranging the equatioﬁl(r, r) = D(r) and using NP =[r,1] , the equilibrium condition is

equivalently r D(O,l) where qo(r) =l//(r) and :

Ar) = 0. o) =[ F () /F (1)

Here ¢(r) defines a strictly concave function on the inter}@,1], with (0)=g¢(1) =0,
maximum  at r:% and ¢'(0)=+c0, @'(1)=-c0. (r) also defines a continuous
function on [0,4] , with /(0)>0(=+e if F(0)=0), ¢(1)=0 (by definition if
F(1) =+ ), and wherey is decreasing andy(r)=1-r for all r0[0,1] (since

IlF (i)di > (1—r) F (r) as F is weakly increasing).

r

In the case of an equal distributioR (I) =k>0 forall i D[O,ZI] ), t//(r) =1-r andthereis
a unique interior equilibrium withr = 49/(1+ 6?) . Since ¢/ (r) >1-r for any other distribution,
r= 0/(1+ 6’) is a lower bound on equilibrium predation levelr a Pareto distribution,
z//(r) = (1—0’)_1(1— r) and it is straightforward to calculate the uniguterior equilibrium as

r= 6’/[0+(1— a’)z} , Which coincides of course with the equal disttiimu when @ =0, and

also shows that the equilibrium level of predaiiocreases monotonically witlr . In particular,
from Theorem 2.4, if K and M are two Pareto disitibns the equilibrium level of predation is
higher under M than under K if and only if K RDIdates M.

Figure 1 iIIustratest/J(r) for a Pareto distributionm(r), and the unique interior equilibrium at

rt.

10



v

Figure 1

The equilibrium also has a natural stability propefor r < r, t//(r) > ¢7(r) , Which implies

D(r)>C(r,r) so that ifiD[O,r] were predators, individuai D[r,r+£) some £>0

would prefer to become predators, increasihgtowards r. Conversely withr > r", the same

dynamic would lead tor falling towards r" . Hence we say that an equilibriunﬁ D(O,l) is

(globally) stable when(//(r) > (<) q)(r) for r < (>) r, clearly true in Figure 1.

The following provides a neat and more generali@gfit condition for existence, uniqueness and
stability.

Theorem 4.]Supposel//(r) = J-rlF (i)di/F (r) is convex. Then there exists a unique interior

equilibrium level of predation, and the equilibriusrstable.

Proof Let l7(r)=qa(r)—l/1(r) . is strictly concave with /7(1)=O and
/7(0)=—l//(0)< O . Moreover for r sufficiently close to 1, /7(r)>0 since
imp(r)/a-r)=+e . as  limg(r)/(1-r)=+(¢(1)=-w)  and
—lﬂ(r)/(l—r) > —t//(O) for all r <1 (¢ is convex). It follows that there exists a unique

interior equilibrium 1 0(0,1) where 7(r)>0(<0) for r>r*(r <r*) which also

ensures stability. [ |
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For a uniform distribution,w(r)Z{l—r+;(p—1)(l—r2)}/[1+(,0—:I)r], which is

easily shown to be convex, guaranteeing a unicaldesequilibrium in this case also. Moreover

Ow(r)/ap has the sign of(l—r) ensuring that the equilibrium level of predatiocreases

(from the equal distribution value 09/(1+9) at p=1) as p increases. Hence, via

Theorem 2.3, there is the same link between RDIidante and the equilibrium level of
predation as in the Pareto case. In fact thisirduite general.

Theorem 4.2 Suppos&K andM are two RDI comparable resource distributions Wwigenerate

unique, interior and stable equilibrium levels akdgation r, and r,, respectively, in two

primitive economies with the same predation teabgwlparameterd. Then r, <r,, if and

only if K dominatesV in the RDI sense.

Proof  Define ¢, (r)=[K(i)di/K(r) and g, (r)=[M(i)di/M(r,) . and
supposeK dominatesM in the RDI sense. TherK (i)/M (i)<K(r)/M(r) for all
r0(0.9) . i0(r,1), so [K(i)di <[K(r)/M(r)]['M(i)di and g (r)<e, (1)
for all r3(0,1). It follows that the assumed unique, stable eoilm under K (r,, where

Wy (rK) =¢)(rK)) must be smaller than the assumed unique, stajiditegium under M (,, ,

where ¢, (rM ) = ¢7(rM ) )- |

The importance and role of RDI in this result issnerought out further with an example which
shows that the statement in Theorem 4.2 does n@iretrue if one replaces “RDI dominance” by
“Lorenz dominance”.

1
Let M be a Pareto distribution with parametdds>0 and @ ==. Then ¢, (r) = 2(1—r)
2
and r,, =6/(6+1/4) is the unique level of predation. Assung@<1/4 so thatr, <1/2
(and the equilibrium is on the upward sloping pairtthe 40(r) graph—see figure 1K is

defined as follows, wherd <d <M (r,, ):

12



K(i):{M(i)_J’ i>r,

M (r,)-9,i<r,
The transition from M to (the continuouk)involves a lump sum fall in income (by) for all

iD[rM,l], with equal incomes foriD[O,rM]. Although K(i)/M (i) is decreasing for

[ D[O,r,\,I ] , it is increasing fori D[rM ,1] soK andM are not RDI comparable. However fa¥

small enoughk Lorenz dominateM, as follows.

The Lorenz curves fdf andM are defined by:
Ly (1) =1-(1-1)"
N [M(ry)-0]i/u it j<r,
H ()= {ra[M (r,)-0]+20[ (-1, )"~ (1=1)""]- (i -n, )} [ iti=r,
where #=1,[M(r,)=3]+2b(1~1,)-0(1-1,). For j<r,  calculations reveal that
Le (1)>Ly (i) if Le(ry)>Ly (ry ). which requires:
o< b[(1+ 46?)]/2 - 1} (4.1)

Similar (tedious) calculations reveal thay (j)>L,, (j) for jO[r,.] if

g+t

2 _
RN
(0+1J

4

In fact (4.1) implies (4.2), sk Lorenz dominateM if (4.1) holds. Nevertheless we now see there

0<2b 1 4.2)

is a unique equilibrium undét, 1., wherer, >r,, .
ForK:
2b(1-r)"* -3 (1-r)
b(1-r)"*-5
2b(1-1,, )% -
M

M ()

It is straightforward to check tha, (I, ) >, (r,) for all >0 and sincey, (r) is

if r=r,

W (r)=

ry =T+ _ng—rM) if r<r,

linear with slope-1 whenr <r,, , there is certainly no equilibrium und#r with r D[O,rM]

13



1
(since r,, < E). Moreover (again tedious) calculations show that (r) is convex on[r,\,I ,1]

if o< 3b(1+ 46’)1/2, which is again ensured by (4.1). Thus (4.1) esstinat there is a unique

equilibrium undekK, r,, with r, >, , although K Lorenz dominatés.

Moreover it is straightforward to check that theame ofK andM coincide if:
40+ 2
d/b=

- = 4.3
(46+1)"* @)

For any >0, the d/b in (4.3) satisfies (4.1) also. In this case thigjue equilibrium undek,

Ic, has r, >r,, althoughK dominatesvl in the generalized Lorenz sense (or equivalentipe

second-order stochastic dominance sense—see SHORR{1083], LAMBERT [2001]). Hence
the statement of Theorem 4.2 does not remain frume replaces RDI dominance by either
Lorenz dominance or generalised Lorenz dominance.

The economic intuition behind Theorem 4.2 and theva conterexample is as follows. f, is
the equilibrium undeM, then C(rM,rM)= D(rM), so the “marginal individual” atr,, is

indifferent between predation and production. Sggpihe set of predators stays [ﬁ, rM] for
now, butM gives way to a new distributidf. For the previously marginal individual the effect

C depends on the change froiv (rM ) to K (rM ) and the effect oD depends on the change

1 - 1 N

from I M(j)dj to I K(j)dj . These effects are only from the upper tail of the
™ ™

distributions, and increases in inequality witHirstupper tail cause D to increase more than C for

the marginal individual so that, individuals ier,r,\,I +£], some £>0 would become

predators undek, increasing the equilibrium level of predation.uShincreases in inequality in
this way, in the upper tail of the distribution,ciease equilibrium predation, and Nf RDI
dominateK such an increase emerges. The same increaseajumlitg in the upper tail occurs in
the counterexample, but there, in the lower th#,ihcrease in equality leads to Lorenz dominance
of K overM.

5. Further Comparative Satics of the Primitive Economy

If r isan equilibrium level of predation, we have tbibowing aggregates and shares:

L,y g
(1) The aggregate resources realised in the econom;f ds’e(l )dl ;
r

14



(i) From (3.4) a fractiong =\/ﬁ/(1+\/ﬁ), where R=r/(1—r), of aggregate

resources are devoted to defence of propertyg rcl)K (i)di are aggregate resources
devoted to defence;

(iii) Hence aggregate consumption (=production of conblespis U = (1— g)frlK (i)di :
which is also aggregate utilitarian social welfare;

(iv) From (3.1) and (3.4) the producer share of aggeegahsumption isp =1—g whilst

1- p isthe predator share;
1
(V) Hence aggregate producer consumption (or welfase)Jj = p(l—g)f K(i)di
r

. . . —_— l - -
whilst that of predation idJ, = (1— p)(l— g)_[r K (I)dl :
Clearly g is an increasing function oR and r, hence:

Theorem 5.1 Suppos&K andM are two RDI comparable resource distributions Wwigenerate

unique and stable equilibrium levels of predatign and r,, respectively, in two primitive

economies with the same technology paraméerThen the fractiong of aggregate resources
devoted to defence of property is higherMnthan inK, and the predator (producer) share of
aggregate consumptioth— p (p) is higher (lower) in M than in K if and only K dominates

M in the RDI sense.
Proof Immediate from Theorem 4.2 sinagg =1— p is increasing inr . [ |

Thus, in the more unequal econon, {n the RDI sense) not only is the level of préaatathigher,

but also the fraction of aggregate resources dedvoteefence and the predator share of aggregate
consumption are higher. These fractions and sithmesnd only on the extent of inequality (in the
RDI sense) in the underlying potential resourcéritlistion (given the commord). However
movements of aggregates (given the comn#dyn depend in general on other features of the
resource distribution. We use:

Definition 5.1 K dominatedM in the first-order stochastic dominance (FSD) sghand only if

K(i)>M (i), i0[o0,q].
Theorem 5.2 Suppose&K dominatesM in both the RDI and FSD senses, wh&randM are

resource distributions which generate unique aablstequilibrium levels of predatiorr,, and
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r, respectively, in two primitive economies with teme technology parametét. Then:

(a) Aggregate resources realised are highét than inM;
(b) Aggregate consumptiorlf ) is higher inK than inM;

(c) Aggregate producer consumptidd () is higher inK than inM.
Proof

N .
() From Theorem 4.2}, <r,, , so FSD ensurei K(i)di>| M(i)di;

K ™

(b) From Theorem 5.1,g in K (g say) is lower than in M @, ), so, from (a),

(1-90) [, K(i)di >(1-g,)[ M (i)d:

(c) From Theorem 5.1,p in K ( pc ) is higher than in M (p,, ), so, from (b),

P (1- gK)fK K (i)di > py (1- gy )I:A M (i )di m

Thus aggregate realised resources, consumptionliterian social welfare) and producer
consumption are absolutely higher in richer, mogeia¢ economiesK in the FSD and RDI
senses).

6. Conclusion

We have conducted two exercises in this paperhénfirst exercise, we bridged a gap in the
literature by examining the properties of RDI imtinuous distributions and the equivalence of
RDI and Lorenz inequality in some frequently uspdcsal distributions. In the second one, we
extended the primitive economy model in GROSSMAB9H] and GROSSMAN and KIM [2002]

to allow individual endowments to follow a genecahtinuous distribution. For a distribution to

RDI dominate another requires Lorenz dominance @wer subset of the population. In the
primitive economy model the level of predation ssentially dictated by resource inequality in
upper tails of the distribution, which is picked bp the RDI concept, but not by Lorenz (or

generalised Lorenz) dominance. This allows a nunabgrecise and quite general comparative
static statements relating to the effect of ineiqaln the level of predation and other features of
the primitive economy. We hope to have demonstrdted usefulness of RDI in economic

modelling, which we expect could be much more widead.
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