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Abstract

Optimal tax and spending allocation rules are derived in an en-
dogenous growth model in which raw labor must be educated to be-
come productive and infrastructure services affect the schooling tech-
nology. The optimal tax rate is found to depend only on the elasticities
of output with respect to infrastructure services and educated labor.
The optimal share of spending on infrastructure (relative to education)
depends also on these elasticities, as well as the quality of schooling
and the degree to which infrastructure services affect the production
of educated labor. Congestion costs in education tend to raise the
optimal share of spending on infrastructure.
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1 Introduction

The impact of public investment on growth has been the subject of much

attention in recent academic research and policy debates (see Zagler and

Durnecker (2003) for an overview). Research has focused in particular on the

effects of public infrastructure, both at the empirical and analytical levels.

At the empirical level, Easterly and Rebelo (1993), in an early contribution,

found a positive association across countries between public investment in

infrastructure (transportation and communications) and growth. In a “re-

run” of the Easterly-Rebelo regressions, Miller and Tsoukis (2001) confirmed

this effect.1 Bose, Haque, and Osborn (2003), using panel data for 30 devel-

oping countries and an econometric methodology that explicitly accounts for

the government budget constraint and possible biases arising from omitted

variables, found that the share of government capital expenditure in GDP is

positively and significantly related to income growth per capita, whereas the

share of current expenditure is not. Calderón and Servén (2004), using a large

sample of countries and panel data covering the period 1960—2000, found that

growth is positively affected by the stock of infrastructure assets.2 Loayza,

Fajnzylber, and Caldéron (2004) found that public infrastructure (measured

by the number of telephone lines per capita) has a positive and significant

effect on growth in Latin America and the Caribbean. Albala-Bertrand and

Mamatzakis (2004) found that in Chile, public infrastructure capital had a

positive effect on private investment in recent years and thus, indirectly, on

1Whereas Easterly and Rebelo (1993) found no effect of infrastructure investment on
private capital formation, and no effect of total public investment on growth, Miller and
Tsoukis (2001) also found a positive and significant effect of overall public investment on
growth.

2In contrast to Bose, Haque, and Osborn (2003), Calderón and Servén (2004) do not
account for the govenrment budget constraint in their estimation. As a result, their
simulation exercises should be viewed with caution.
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growth. Gupta et al. (2005), in a study focusing on 39 low-income countries

during the 1990s, found that the composition of public expenditure mat-

ters significantly in assessing the effects of fiscal policy on economic growth.

Countries where a large fraction of government spending consists of wages

and transfers tend to have slower growth, whereas countries where higher

shares of spending are allocated to capital and nonwage goods and services

tend to have faster growth.3

At the analytical level, much effort has also been devoted to analyzing

the growth effects of public investment (particularly in infrastructure), in the

context of endogenous growth models. A series of contributions, following

an early paper by Barro (1990), treat public investment as a flow–see, for

instance, Turnovsky and Fisher (1995), Corsetti and Roubini (1996), Chang

(1999), Fiaschi (1999), Turnovsky (2000), Eicher and Turnovsky (2000), and

Rivas (2003). By contrast, contributions by Futagami, Morita, and Shibata

(1993), Fisher and Turnovsky (1998), Dasgupta (1999), Rioja (1999), and

Turnovsky (1997, 2004), among others, treat public infrastructure as a stock.

These studies have provided much insight into the determinants of growth-

and welfare- maximizing shares of public investment in infrastructure. For

instance, Barro’s key result, in a model where public spending takes the form

only of production-enhancing services, was shown by Futagami, Morita, and

Shibata (1993) to remain valid in a setting where it is the public capital

stock, rather than the flow of public spending, that affects production. Other

researchers have focused on the broader issue of the optimal fiscal structure,

that is, the simultaneous determination of optimal tax and expenditure rates.

Turnovsky (1996) for instance, considered the determination of the optimal

3It should be noted, however, that this study, like many along the same line, does not
account for spending on maintenance.
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consumption and income tax rates, the share of government spending on

output, and optimal debt in an endogenous growth framework. Addressing

the issue of the optimality of the overall fiscal structure is important for

the design of fiscal reform, given the possible interdependence between tax

collection and the allocation of public resources among alternative forms of

expenditure.

This paper contributes to the existing literature by focusing on the deter-

mination of the optimal tax and expenditure structure in a growth context,

as in Turnovsky (1996). However, unlike Turnovsky, I do so in an endoge-

nous growth model with both physical and human capital accumulation, and

a government that provides infrastructure, education, and utility-enhancing

services. As in Agénor (2004), the model assumes that the economy is en-

dowed only with “raw” labor, and that raw labor must be educated to be-

come productive. Knowledge is thus embodied in (educated) workers, unlike

Lucas-type models where human capital is disembodied and can therefore

grow without bounds. Moreover, in the model infrastructure has a positive

effect on the rate of human capital accumulation. This specification cap-

tures the view that infrastructure services (better roads, reliable access to

electricity, etc.) may enhance the ability of individuals to study and acquire

skills. This is a particularly important consideration for low-income develop-

ing countries. In many of these countries, the lack of an adequate network of

roads makes access to schools (particularly in rural areas) difficult; dropout

rates tend to be higher when children must walk long distances to get to

school. The lack of access to electricity hampers the ability to study, both

in the classroom and at home. In some countries, the lack of adequate toi-

let facilities for girls in rural area schools has led many parents to deny an

education to their daughters. As it turns out, accounting for the impact of
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infrastructure on the schooling technology has important implications for the

determination of the optimal allocation of government expenditure.

Another issue that I address in the paper is the existence of congestion

costs in education. Again, this is a particularly important factor in deter-

mining the quality of schooling in low-income countries, where (according to

recent data from UNESCO and the World Bank) student-teacher ratios may

dramatically exceed average ratios in industrial countries. For instance, at 44

to 1, the pupil-teacher ratio in sub-Saharan Africa is on average three times

higher than that of developed countries; moreover, one in four countries in the

region has ratios above 55 to 1 (see UNESCO (2005)). Much research has ex-

amined the issue of congestion costs in infrastructure, and their implications

for private capital formation and the optimal allocation of public expendi-

ture (see, for instance, Turnovsky (1997), Fisher and Turnovsky (1998), and

Eicher and Turnovsky (2000)). But almost none has focused on congestion

costs in education.4 As discussed later, the existence of these costs also has

important implications for determining the growth-maximizing allocation of

public spending.

The remainder of the paper proceeds as follows. Section II presents the

model. Section III solves for the steady-state growth rate in the decentralized

equilibrium, and examines its dynamic properties. Section IV illustrates

the functioning of the model by considering a revenue-neutral change in the

composition of public spending, namely a switch from spending on education

to infrastructure services. Section IV derives the growth-maximizing fiscal

structure. Section V introduces congestion costs in education in the model,

4Evidence on the impact of the quality of schooling (as proxied by international dif-
ferences in mathematics and science test scores) on growth is provided by Hanushek and
Kimko (2000). Note also that quality can depend also on the intensity of instruction, that
is, the number of contact hours per student year (see UNESCO (2005)).
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and examines the effect of these costs on the optimal allocation of government

expenditure. The final section summarizes the main results of the paper and

offers some concluding remarks.

2 The Model

Consider an economy populated by an infinitely-lived representative house-

hold who produces a single traded good, whose price is fixed on world mar-

kets. The good can be used for either consumption or investment. The econ-

omy’s endowment consists of raw labor, which must be educated (through

a publicly-funded schooling system) to be used in the production process.

The government provides at no charge infrastructure, education and utility-

enhancing services. It levies a flat tax on output to finance its expenditure.

2.1 Production

Output, Y , is produced with private physical capital, public infrastructure

services, educated labor, using a Cobb-Douglas technology:5

Y = Gα
I (χE)

βK1−α−β
P = AP (

GI

KP
)α(

E

KP
)βKP , (1)

where KP is the stock of private capital, GI government infrastructure ser-

vices, E the stock of educated labor, χ ∈ (0, 1) the proportion of the educated
labor force employed in production, AP ≡ χβ > 0, and α, β ∈ (0, 1). Thus,
production exhibits constant returns to scale in all factors. In the present

framework, constant returns to scale in reproducible factors (E and KP ) is

not necessary to generate permanent growth. As long as GI/KP and E/KP

are constant (which turns out to be the case in the steady state), output will

5Throughout the paper, the time subscript t is omitted. A dot over a variable is used
to denote its time derivative.
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exhibit linearity in the stock of private capital. The production function is

then essentially an AK-type technology.

2.2 Household Preferences

The infinitely-lived representative household-producer maximizes the dis-

counted stream of future utility

V =

Z ∞

0

∙
C1−θ

1− θ
+ φ lnGH

¸
exp(−ρt)dt, −∞ < θ ≤ 1, (2)

whereC is consumption,GH utility-enhancing government services, ρ > 0 the

discount rate, σ = 1/θ the intertemporal elasticity of substitution (with θ = 1

corresponding to the logarithmic utility function), and φ > 0 a coefficient

that measures the impact of GH on the household’s instantaneous utility.

Thus, as for instance in Turnovsky (1996, 2000, 2004), Chang (1999), and

Baier and Glomm (2001), publicly-provided services affect the household’s

utility directly. However, unlike these authors, and in line with Cassou and

Lansing (2003), private consumption and public services are assumed to be

additively separable. This is in line with the empirical evidence provided by

Karras (1994), McGrattan, Rogerson and Wright (1997), Chiu (2001), and

Okubo (2003), among others.

Output is taxed at the rate τ ∈ (0, 1). The household spends on consump-
tion and accumulates capital. It receives from the government teachers’ pay,

(1−χ)wGE, where wG is the real wage and 1−χ the proportion of teachers

in the educated labor force. AS noted earlier, education is provided free of

charge and there are no user fees for infrastructure services used in produc-

tion. Thus, public spending-related production rents accrue to the household.

Abstracting from capital depreciation, the household’s resource constraint is

C + K̇P = (1− τ)Y + (1− χ)wGE. (3)
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2.3 Human Capital Accumulation

Raw labor, which grows at a constant rate, n, must be educated before

it can be used in the production process. The production of educated labor

requires the combination of teachers, students, and government infrastructure

services:

Ė = Q[(1− χ)E]κGμ
IL

1−κ−μ, (4)

where Ė is the flow of newly-educated workers, L the number of students,

Q a variable that measures the quality of schooling, and κ, μ ∈ (0, 1). Thus,
the education technology exhibits constant returns to scale in E, GI , and L.

Quality is an increasing function of the ratio of government spending on

education, GE , and the number of teachers:

Q = [
GE

(1− χ)E
]η, (5)

where η ∈ (0, 1). This specification indicates therefore that the quality of
education exhibits decreasing returns to scale with respect toGE/E. Increas-

ing the number of teachers for instance, without increasing at the same time

spending on items such as books, writing materials, meals for students, and

so on, would reduce the ability of the education system to produce educated

labor.

Combining (4) and (5) yields

Ė = (1− χ)κ−η(
GE

E
)η(

E

L
)κ+μ(

GI

E
)μL. (6)

In what follows, I ignore depreciation (or de-skilling) of educated labor.

I also assume that the government’s “admission” policy for students in the

education system is such that it keeps the student-teacher ratio constant:

L

(1− χ)E
= a, (7)
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where a > 0. This rule implies that, along the balanced growth path, where

E grows at a constant rate, L must also grow at the same constant rate.

Moreover, to ensure that this equality holds continuously, I assume that the

growth rate of the total population of raw labor (from which students are

selected), n, is greater than the steady-state growth rate of E.

Using (7), equation (6) can be rewritten as

Ė

E
= AE(

GE

E
)η(

GI

E
)μ, (8)

where AE ≡ a1−κ−μ(1− χ)1−η−μ. Thus, the growth rate of the stock of edu-

cated labor depends on public spending on both education and infrastructure

services per teacher (or educated worker). Note also that, as a result of (7),

it does not matter whether the quality of schooling is defined as a function

of the ratio of government spending per teacher (as in (5)) or per student.

2.4 Government

The government provides infrastructure, education, and utility-enhancing

services to the representative household, pays salaries to teachers, and col-

lects a proportional tax on output. It cannot issue debt and must maintain

a balanced budget continuously.6 Thus, the government’s flow budget con-

straint is given by P
h=I,E,H

Gh + (1− χ)wGE = τY. (9)

Expenditure on all categories of services are taken to be determined as

fractions of tax revenue, so that Gh = υhτY , with υh ∈ (0, 1), and h =

6See Turnovsky (1996, 1997) for the case of debt financing in a similar context. Because
Ricardian Equivalence holds in the present framework, excluding borrowing is simply a
matter of convenience. With government borrowing, agents would foresee that higher
taxation would be required later in order to repay the accumulated debt, and this would
need to be accounted for.
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I, E,H. Teachers’ salaries are also fixed as a fraction ϕ of tax revenue. The

government budget constraint therefore implies thatP
h=I,E,H

υh + ϕ = 1, (10)

which determines residually one of the spending shares.

From (3) and (9), the market-clearing condition for the goods market is

Y = C + K̇P +
P

h=I,E,H

Gh. (11)

3 The Decentralized Equilibrium

In the present setting, a decentralized equilibrium can be defined as follows:

Definition 1. A competitive equilibrium is a set of infinite sequences

for the quantities {C,KP , E}∞t=0, such that {C,KP}∞t=0 maximizes equation
(2) subject to (3), and the path {KP , E}∞t=0 satisfies equations (8), (10), and
(11), for given values of the tax rate, τ , the ratio of government wages to

output, ϕ, and the spending shares on services, υh, with h = I,E,H.

This equilibrium can be characterized as follows. The household-producer

maximizes (2) subject to (3), taking the tax rate, τ , government services and

wage payments, GH and (1 − χ)wGE, as given. The current-value Hamil-

tonian for this problem can be written as

Λ =
C1−θ

1− θ
+ φ lnGH + λ[(1− τ)Y + (1− χ)wGE − C],

where λ is the costate variable associated with constraint (3). Using (1),

first-order optimality conditions for this problem can be written as, setting

s ≡ (1− τ)(1− α− β), so that s ∈ (0, 1):

dΛ

dC
= 0 =⇒ C−θ = λ, (12)
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ρ− λ̇/λ =
dΛ

dKP
= sAP (

GI

KP
)α(

E

KP
)β, (13)

together with the budget constraint (3), the initial condition KP (0) = K0
P ,

and the transversality condition

lim
t→∞

λKP exp(−ρt) = 0. (14)

Equation (12) equates the marginal utility of consumption to the shadow

value of private capital, λ. Equation (13) is the standard Keynes-Ramsey

consumption rule, which equates the rate of return on consumption (given

by the term on the left-hand side) to the after-tax marginal physical product

of private capital (equal to 1− τ times ∂Y/∂KP ).

Combining Equations (12) and (13) yields

Ċ

C
= σ

∙
sAP (

GI

KP
)α(

E

KP
)β − ρ

¸
, (15)

whereas substituting (1) in (3) yields

K̇P = (1− τ)AP (
GI

KP
)α(

E

KP
)βKP + (1− χ)wGE − C. (16)

As shown in the Appendix, equations (8), (10), (15), and (16) can be

further manipulated to lead to a system of two nonlinear differential equations

(see equations (A7) and (A8)) in c = C/KP and e = E/KP . These two

equations, together with the initial condition e0 = E0/K
0
P > 0, and the

transversality condition (13), rewritten as

lim
t→∞

c−1 exp(−ρt) = 0, (17)

determine the dynamics of the decentralized economy. The balanced-growth

equilibrium (BGE) can therefore be defined as follows:
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Definition 2. The BGE is a set of sequences {c, e}∞t=0, spending shares
and tax rate satisfying Definition 1, such that for an initial condition e0 equa-

tions (8) (15), and (16) and the transversality condition (17) are satisfied,

and consumption, the stock of educated labor, and the stock of private capital,

all grow at the same constant rate γ = Ċ/C = Ė/E = K̇P/KP .

The transversality condition (17) is always satisfied along any interior

BGE because consumption and the stock of private capital grow at the same

constant rate, implying that the ratio c = C/KP is also constant.7 Given the

form of the utility function used here, a necessary condition to get bounded

utility (that is, for the integral in (2) to converge) is ρ > (1 − θ)γ. This

condition imposes no restriction when θ > 1. When θ < 1, it imposes an

upper bound on admissible values for the rate of growth. Equivalently, it

requires the rate of time preference to be sufficiently large.

From equations (A4) and (A6) in the Appendix, γ is given by the equiv-

alent forms8

γ = sσAP (υIτ)
α/(1−α)ẽβ/(1−α) − σρ, (18)

γ = AυηEυ
(αη+μ)/(1−α)
I τ (η+μ)/(1−α)ẽω, (19)

where ẽ denotes the steady-state value of e, A a constant term, and

ω =
(η + μ)(α+ β − 1)

1− α
< 0.

As shown in the Appendix, the following proposition can be established:

7Note also that from (1), because Ė/E = K̇P /KP ,

Ẏ

Y
= α

ĠI

GI
+ [β + (1− α− β)]

K̇P

KP
,

and because GI = υIτY (so that the growth rates of GI and Y are the same), output also
grows at rate γ.

8Equation (A3) in the Appendix provides a third equivalent form of γ. But it can easily
be shown that, given the steady-state solution for c, it is in fact equivalent to (18).
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Proposition 1. Along an equilibrium path with a strictly positive growth

rate, the BGE is unique. There is only one stable path converging to this

equilibrium.

This proposition implies therefore that the model is locally determinate.

Its dynamics can be analyzed using phase diagrams, as illustrated in Figure

1. The ė = 0 curve (denoted EE in the figure) always has a positive slope

in c-e space, whereas the slope of the ċ = 0 curve (denoted CC) can be

either upward- or downward-sloping, depending on the size of the elasticity

of intertemporal substitution, σ. The upper (lower) panel corresponds to the

case where σ is relatively high (low), in a sense made precise in the Appendix.

The saddlepath, denoted SS, may therefore have either a positive or negative

slope. Following a jump in c (as a result, for instance, of a change in the

tax rate or one of the spending shares parameters), c and e may or may not

move in the same direction. The reason is that the transitional dynamics

are driven by the ratio of educated labor to private capital, and as this ratio

increases (falls), the marginal productivity of private capital increases (falls)

as well. In turn, this tends to raise (reduce) consumption and investment

over time.

4 Revenue-Neutral Spending Shift

The steady-state effects and transitional dynamics associated with revenue-

neutral changes in spending shares are straightforward to analyze in the

present setting. In particular, the Appendix establishes that an increase in

υI , offset by a reduction in υE (that is, with dυI + dυE = 0, holding τ and

ϕ constant), has an ambiguous effect on the steady-state growth rate, as

summarized in the following proposition:
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Proposition 2. With the tax rate and the share of government spend-

ing on wages held constant, a switch in the composition of public expendi-

ture from education to infrastructure services has an ambiguous effect on the

steady-state growth rate. If infrastructure services do not affect the education

technology (μ = 0), the net effect depends only on α/β. With μ > 0, the net

effect depends also on μ/η.

To understand the intuition behind these results, consider first the case

where μ = 0. Increasing the fraction of government spending on infrastruc-

ture (for a given stock of educated labor) increases the marginal product of

physical capital, which, in turn, raises investment and steady-state growth.

At the same time, however, because the change is revenue neutral (dυI =

−dυE), the ratio of educated labor-physical capital unambiguously falls, as
long as η > 0. Thus, the positive effect of the increase in the share of spend-

ing on infrastructure is accompanied by a lower supply of educated workers,

which tends to lower private production and reduce the growth rate. The net

effect on output and the growth rate, depends on how “productive” the two

inputs are in relative terms, that is, on the ratio α/β. As shown in the Ap-

pendix, if α/β exceeds the elasticity of the steady-state value of the educated

labor-capital ratio with respect to the share of spending in infrastructure, the

growth effect (as well as the effect on the consumption-capital ratio) will be

positive.

With μ > 0, the net effect on the steady-state ratio of educated labor to

physical capital is also ambiguous; it now depends on related not only to how

productive the two types of services are in the production of goods, but also

to how productive they are in the production of educated labor, as measured

by the ratio μ/η. Even if infrastructure services have a small impact on the

production of goods, a high ratio μ/η may still imply an increase in ẽ, c̃, and

15



γ. In the particular case where η = 0, that is, if education services do not

affect the acquisition of skills, the effect on the steady-state growth rate is

unambiguously positive.

Figure 2 illustrates two possible outcomes, with a relatively high value of

the elasticity of intertemporal substitution and a ratio μ/η that is not too

large. In both cases, therefore, the educated labor-capital ratio falls in the

steady state. But the consumption-capital ratio and the growth rate may

either increase or fall, depending on the magnitude of α/β, as noted earlier.

In both panels curve CC shifts to the left, but curve EE can shift either

to the right (upper panel) or the left (lower panel). In the upper (lower)

panel, CC shifts by more (less) than EE and the consumption-capital ratio

falls (increases). The steady-state consumption-capital ratio falls in the first

case and increases in the second.9 As noted ealier, during the transition,

the fall in the educated labor-capital ratio lowers the marginal productivity

of capital, leading to a gradual reduction in the stock of physical capital.

This reduction is large enough to ensure that the consumption-capital ratio

increases over time.

5 The Growth-Maximizing Fiscal Structure

To determine the growth-maximizing fiscal structure in the decentralized

equilibrium involves setting simultaneously the tax rates and expenditure

shares, so that ∂γ/∂τ = ∂γ/∂υh = 0, ∀h. Given the structure of the model,
this problem can be addressed in two stages, the first of which involves solving

for the optimal rate, subject to the constraints that spending shares are

9In both cases, the impact effect is shown as operating in the same direction as the
long-run effect. However, this is always true only if the consumption-capital ratio increases
in the steady state.

16



exogenous. From (18) and (19), the following proposition can be readily

established:

Proposition 3. With all government spending shares held constant, the

growth-maximizing value of the tax rate is τ ∗ = α+ β.

This result generalizes the rule τ ∗ = α, which was first established by

Barro (1990) in a flow model, and subsequently in stock models by Futagami,

Morita, and Shibata (1993), Turnovsky (1997), and Baier and Glomm (2001).

The Barro rule is obtained only in the particular case where educated labor

(or, more generally, human capital) has no effect on production, that is,

β = 0. Note, however, that the optimal tax rate depends only on parameters

characterizing the goods production technology; it is independent not only

of how the revenue is spent (that is, the spending shares υh and ϕ) but also

of the parameters characterizing the education technology.

The second stage involves allocating public expenditure between infrastruc-

ture, education and utility-enhancing services, with the tax rate and the share

of government spending on wages both taken as given. The following propo-

sition can be shown to hold:

Proposition 4. With the tax rate and the share of government spending

on wages held constant, the growth-maximizing composition of public expen-

diture is

υ∗H = 0,
υ∗I
υ∗E

=
α

β
+

μ

η
(1 +

α

β
). (20)

That the optimal value of υ∗H is zero is of course a direct implication

of assuming separability between utility-enhancing government services and

private consumption. As a consequence, spending on this type of services

has no effect on growth, as noted earlier. To provide a more intuitive inter-
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pretation the second result, it is convenient to consider the particular case

where ϕ = 0. Given (10), Proposition 4 implies therefore that

υ∗E =
β

α+ β
(1 +

μ

η
)−1 =

ηβ

(α+ β)(η + μ)
< 1, υ∗I = 1− υ∗E. (21)

Equation (20) implies that if the production function for educated labor

does not depend on infrastructure services, that is, with μ = 0, the optimal

allocation of spending between infrastructure and education would depend

only on the parameters characterizing the goods production technology (the

ratio α/β) not on the education technology, as I have shown elsewhere (see

Agénor (2004)). In addition, from (21) the optimal shares would thus be

υ∗I = α/(α+ β) and υ∗E = β/(α+ β), and, from Proposition 3, the shares of

spending in output would be τ ∗υ∗I = α and τ ∗υ∗E = β.10 In the general case

where μ > 0, however, the education technology does matter for the allo-

cation of government spending; the optimal share of spending on education

(infrastructure) is lower (higher) than otherwise. As can be inferred from

(20), the more productive infrastructure services are in fostering the acquisi-

tion of skills (the higher μ is), or the lower the quality of education (the lower

η is), the higher should be the optimal share of spending on infrastructure

services. Note also that an improvement in the quality of education has no

effect on the optimal allocation of public expenditure if infrastructure ser-

vices do not affect the production of educated labor. And in the limit case

where η −→ 0 (so that public spending on education has no effect on the

schooling technology), υ∗E −→ 0 (or, equivalently, υ∗I −→ 1), as could be

expected.

Given that the optimal tax rate is independent from spending shares, and

conversely that the optimal shares are independent of the tax rate, the results
10The result τυI = α was also derived by Lee (1992) in a model without human capital

accumulation.
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in Propositions 3 and 4 indeed summarize the optimal fiscal structure in a

decentralized economy. The issue to which I turn next is the extent to which

the degree of congestion in the education technology affects the optimal tax

rate and spending shares.

6 Congestion Costs

As noted earlier, much of the endogenous growth literature on congestion

costs has focused so far on two types of congestion costs: those affecting the

use of infrastructure services (or capital) in the production of goods, and

those affecting utility-enhancing services.11 In the context of the present

paper, a more novel issue to consider is the case where it is the use of in-

frastructure services in the education technology that is subject to congestion.

A related issue is the extent to which the quality of education depends on

how crowded classrooms are, with congestion taking the form of threshold

effects.

Specifically, two alternative ways of modeling congestion costs in educa-

tion are considered. The first approach consists of assuming that the pro-

ductivity of infrastructure services falls with an increase in the flow number

of students (or newly-educated individuals), L̇:

Ė = Q[(1− χ)E]κ(
GI

L̇δ
)μL1−κ−μ, (22)

where δ ≥ 0 measures the degree of congestion (with δ = 1 denoting propor-
tional congestion). For instance, too many students using publicly-provided

internet services may slow the speed of access for everybody, thereby dimin-

ishing the usefulness of these services for creating educated labor. Given that
11For examples of the former literature, see Turnovsky (1997), Fisher and Turnovsky

(1998), and Glomm and Ravikumar (1999); for examples of the latter, see Turnovsky
(1996), Rioja (1999), and Piras (2004).
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from (7), Ė = L̇, it is straightforward to show that using equation (22) in-

stead of (4) does not affect any of the previous results regarding the optimal

fiscal structure (Propositions 3 and 4). The reason is clear–equation (22)

boils down to a geometric transformation (will all coefficients multiplied by

(1+δμ)−1) of the original expression for educated labor flows. Although this

changes the stability properties of the model and its transitional dynamics

(and thus the speed of convergence to the BGE), it does not alter the optimal

allocation rule because it is the ratio μ/η that appears in Proposition 4.12

The second approach to account for congestion in the production of ed-

ucated labor is to assume that quality is subject to threshold effects. In the

foregoing analysis, it was assumed throughout that the ratio of students to

teachers, L/(1 − χ)E (denoted by x below) is kept fixed at a by the gov-

ernment. However, whether a is “high” or “low” has obvious implications

for the quality of schooling. Specifically, suppose that the quality of educa-

tion, Q, has a parameter η that can be high or low (ηH or ηL, respectively),

depending on whether the student-teacher ratio is lower or greater than a

threshold value, aC:

Q =

½
QH = xηH ,
QL = xηL ,

if a ≤ aC
if a > aC

.

This specification implies that the model can generate multiple BGEs,

a full characterization of which is beyond the scope of this paper. For the

purpose at hand, it is sufficient to observe that, from Proposition 4, the

two regimes would be characterized by different optimal allocations between

infrastructure and education services: in the ηL-regime, the optimal share

υ∗E would indeed be lower than in the ηH-regime. These results can be

summarized in the following proposition:

12However, the steady-state levels of both c and e are lower.
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Proposition 5. Congestion costs in education (in the form of threshold

effects on the quality of schooling) raise the optimal share of public spending

allocated to infrastructure.

Because the optimal tax rate does not depend on the parameters charac-

terizing the education technology, Proposition 3 is not affected.

7 Concluding Remarks

The purpose of this paper was to study the determination of optimal taxation

and allocation of public resources between utility-enhancing, infrastructure,

and education services. The analysis was based on an endogenous growth

model with two key features: raw labor must be educated to become produc-

tive and infrastructure services affect the schooling technology. Government

spending is financed by a tax on output. The balanced growth equilibrium

was derived, and the transitional dynamics associated with an shift in the

composition of public spending from education to infrastructure services were

analyzed. It was shown that, in general, this shift has an ambiguous effect

on the growth rate and the steady-state values of the consumption-capital

and educated labor-capital ratios.

The third part of the paper focused on the determination of the optimal

tax rate and spending shares. The optimal tax rate was found to be equal

to the sum of the elasticities of output with respect to infrastructure services

and educated labor, and thus to be independent of the schooling technology.

The optimal composition of public spending was shown to be a zero share

for utility-enhancing services, whereas the optimal allocation to infrastruc-

ture (education) services was found to be positively (negatively) related to

the degree to which infrastructure services affect the production of educated
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labor, and negatively (positively) to the quality of schooling. If infrastruc-

ture services are not education-enhancing, the optimal allocation between

infrastructure and education would depend solely on the parameters char-

acterizing the goods production technology. Finally,under the assumption

that congestion costs in education take the form of threshold externalities

associated with the quality of schooling, the optimal share of spending on

infrastructure (education) was shown to be positively (negatively) related to

the degree of congestion in education.

The analysis in this paper could be extended in several directions. A

first area of investigation would be to consider the case where it is the stock

of public capital in infrastructure, rather than the flow of spending on in-

frastructure services, that affect the production technology for goods and

educated labor. I have pursued this line of research in a companion paper

(see Agénor (2005a)), and the results indicate that the optimal rules remain

qualitatively similar to those derived in the present paper. A second direction

would be to consider other forms of distortionary taxation, such as a tax on

consumption, wages, or capital income, as for instance in Turnovsky (2000).

With an endogenous supply of (raw) labor, a tax on wages would also affect

private decisions between labor and leisure, and the rate of growth. A tax on

the returns from private capital would affect decisions between consumption

and investment. Both taxes are likely to have ambiguous effects on growth,

because their adverse effect on private investment and labor supply are offset

by an increase in the stock of public capital.

A third potentially fruitful area of research relates to the role of utility-

enhancing public services. In the model presented in this paper, the utility

function of the representative household was assumed to be additively sep-

arable between private consumption and public services, as suggested by
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some of the empirical evidence. This specification implies that with the tax

rate and the share of government spending on wages held constant, a switch

in the composition of public expenditure from utility-enhancing services to

the provision of either infrastructure or education services is unambiguously

growth-enhancing. This result is of course due to the fact that the share

of spending on utility-enhancing services has no effect on the economy’s

steady-state growth rate, neither directly or indirectly (through changes in

the steady-state value of the ratio of educated labor to physical capital).

However, while separability may be intuitively obvious for some categories

of utility-enhancing public services (such as security or national defense), this

is not quite so for others, such as health services. Better health care, for in-

stance, may have a direct impact on the ability of individuals to consume and

enjoy their free time. In addition, better health may also affect the ability

to produce and study. With a more general (non-separable in C and GH)

utility function, the zero share result mentioned above would not hold, as

can be inferred from the results of Lee (1992), Baier and Glomm (2001), and

Turnovsky (1997, 2004). Indeed, with non separability in preferences, and

possibly an effect of GH on production of goods and educated labor (because

these services are health-enhancing, for instance, and therefore increase the

productivity of production workers, students, as well as teachers) it would

not be optimal to allocate a zero share to that category of spending. Deter-

mining how exactly the optimal rules are affected would represent therefore

a worthwhile complement to the present analysis.
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Appendix

Substituting (9) in (16) using Gh = υhτY yields

K̇P = qAP (
GI

KP
)α(

E

KP
)βKP − C, (A1)

where q ≡ 1 − τ(υI + υE + υH) = 1 − τ(1 − ϕ), with q ∈ (0, 1), given thatX
υh < 1. From (3), we also have q ≡ 1− τ(1− ϕ).
From the definition of GI , and using (1),

GI = υIτY = υIτAP (
GI

KP
)α(

E

KP
)βKP ,

that is, with e = E/KP ,

GI

KP
= υIτAP (

GI

KP
)αeβ,

or equivalently
GI

KP
= (υIτAP )

1/(1−α)eβ/(1−α). (A2)

Substituting (A2) in (A1) yields

K̇P

KP
= qA

1/(1−α)
P (υIτ)

α/(1−α)eβ/(1−α) − c, (A3)

where c = C/KP .
Similarly, using (A2), equation (15) can be rewritten as

Ċ

C
= σ

h
sA

1/(1−α)
P (υIτ)

α/(1−α)eβ/(1−α) − ρ
i
. (A4)

From the definition of GE, and using (1),

GE = υEτY = υEτAP (
GI

KP
)α(

E

KP
)βKP ,

so that, using (A2),

GE

KP
= υEτA

1/(1−α)
P (υIτ)

α/(1−α)eβ/(1−α) = υEA
1/(1−α)
P υ

α/(1−α)
I τ 1/(1−α)eβ/(1−α).

(A5)
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Equation (8) gives

Ė

E
= AE[(

GE

KP
)(
KP

E
)]η[(

GI

KP
)(
KP

E
)]μ = AE(

GE

KP
)η(

GI

KP
)μe−(η+μ),

so that, using (A2) and (A5),

Ė

E
= AE

h
υEA

1/(1−α)
P υ

α/(1−α)
I τ 1/(1−α)eβ/(1−α)

iη
(υIτAP )−μ/(1−α)e−βμ/(1−α)

e−(η+μ).

This expression can be rewritten as

Ė

E
= AυηEυ

(αη+μ)/(1−α)
I τ (η+μ)/(1−α)eω, (A6)

where A ≡ AEA
(η+μ)/(1−α)
P , and

ω ≡ (η + μ)[−1 + β

1− α
] =

η + μ

1− α
(α+ β − 1) < 0,

given that α+ β < 1.
Combining equations (A3), (A4), and (A6) yields

ċ

c
= Γ(υIτ)

α/(1−α)eβ/(1−α) − σρ+ c, (A7)

ė

e
= AυηEυ

(αη+μ)/(1−α)
I τ (η+μ)/(1−α)eω − qA

1/(1−α)
P (υIτ)

α/(1−α)

e−β/(1−α)
+ c, (A8)

where
Γ ≡ A

1/(1−α)
P (σs− q). (A9)

This expression is negative (positive) if σ is lower (higher) than the ratio
q/s:

sg(Γ) = sg(σ − s−1q). (A10)

To investigate the dynamics in the vicinity of the steady state, the system
(A7)-(A8) can be linearized to give∙

ċ
ė

¸
=

∙
a11 a12
a21 a22

¸ ∙
c− c̃
e− ẽ

¸
, (A11)
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where the aij are given by

a11 = c̃, a21 = ẽ,

a22 = ωAυηEυ
(αη+μ)/(1−α)
I τ (η+μ)/(1−α)ẽω − βqA

1/(1−α)
P (υIτ)

α/(1−α)

(1− α)ẽ−β/(1−α)
< 0,

a12 =
βc̃

1− α
Γ(υIτ)

α/(1−α)ẽω/(η+μ),

where ẽ and c̃ denote the stationary values of e and c, and sg(a12) = sg(Γ).13

From (A7), setting ċ = 0 yields

c̃ = σρ− Γ(υIτ)
α/(1−α)ẽβ/(1−α). (A12)

Similarly, from (A8), setting ė = 0 yields

c̃ = qA
1/(1−α)
P (υIτ)

α/(1−α)ẽ−β/(1−α) −AυηEυ
(αη+μ)/(1−α)
I τ (η+μ)/(1−α)ẽω. (A13)

From these two equations, it can be seen that the slopes of the CC and
EE curves are given by

dc̃

dẽ

¯̄̄̄
CC

= −a12
a11

= − βΓ

1− α
(υIτ)

α/(1−α)ẽω/(η+μ),

dc̃

dẽ

¯̄̄̄
EE

= −a22
a21

> 0.

Thus, whereas EE always has a positive slope, the slope of CC is upward-
(downward-) sloping if Γ is negative (positive).

c is a jump variable, whereas e is predetermined over time. Saddlepath
stability requires one unstable (positive) root. To ensure that this condition
holds, the determinant of the Jacobian matrix of partial derivatives of the
dynamic system (A11), ∆, must be negative, that is, ∆ = a11a22−a12a21 < 0.
If a12 > 0, this condition is always satisfied; CC, in that case has a negative
slope (see the upper panel of Figure 1). If a12 < 0, it requires −a12/a11 <
−a22/a21, that is, EE must be steeper than CC, as shown in the lower panel
13Note that from (A3), (A4) and (A6), we also have a22 = ωγ − β(γ + c̃)/(1− α).
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of Figure 1. Note that if σ is sufficiently low, Γ < 0 and a12 < 0 (see (A10)).
The slope of the saddlepath SS, which is given by −a12/(c̃− ν), where ν is
the negative root of the system, is thus positive (negative) if Γ is negative
(positive).
Equation (A12) can be substituted in (A8) with ė = 0 to yield the implicit

form

F (ẽ) = AυηEυ
(αη+μ)/(1−α)
I τ (η+μ)/(1−α)ẽω−σsA1/(1−α)P (υIτ)

α/(1−α)ẽβ/(1−α)+σρ = 0,
(A14)

given that, from (A9), Γ+ qA
1/(1−α)
P = σsA

1/(1−α)
P .

To show that the BGE is unique, note first that from (A14), and using
(18) and (19), or equivalently (A4) and (A6),

Fẽ = (
Ω

γ
)
1/ω

∙
ωγ − β

1− α
(γ + σρ)

¸
, (A15)

where Ω ≡ AυηEυ
(αη+μ)/(1−α)
I τ (η+μ)/(1−α). This expression is negative along a

BGE with a strictly positive γ, given that ω < 0. Thus, F (ẽ) cannot cross
the horizontal axis from below. Now, we also have F (0) = σρ > 0. Given
that F (ẽ) is a continuous, monotonically decreasing function of ẽ, there is a
unique positive value of ẽ that satisfies F (ẽ) = 0. From (A12), there is also
a unique positive value of c̃. Thus, the BGE is unique.
Equations (A12) and (A14) can be used to examine the impact of changes

in spending shares and the tax rate on the steady-state levels of c and e. In
particular, using the implicit function theorem, it can be established that
∂ẽ/∂υI = −FυI/Fẽ is in general ambiguous. Given that, from (A15), Fẽ < 0,
sg(∂ẽ/∂υI) = sg(FυI ). In turn, FυI can be shown to be equal to, in the
“neutral” case where dυI = −dυE (see Proposition 3),

FυI =
−ηγ
υE

+
(αη + μ)γ

(1− α)υI
− α(γ + σρ)

(1− α)υI
,

Suppose that υH = ϕ = 0 so that initially υE = 1− υI . Thus, FυI < 0 if
μ = 0, so that ∂ẽ/∂υI < 0 also.
In general, from (A12),

∂c̃

∂υI
= −Γ(υIτ)α/(1−α)ẽβ/(1−α)

∙
αυ−1I
1− α

+
β

ẽ(1− α)
(
∂ẽ

∂υI
)

¸
.
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Similarly, from (A4),

∂γ

∂υI
= sσAP (υIτ)

α/(1−α)ẽβ/(1−α)
∙
αυ−1I
1− α

+
β

ẽ(1− α)
(
∂ẽ

∂υI
)

¸
Denoting εẽ/υI = (∂ẽ/∂υI)(υI/ẽ), and given that Γ > 0 in Figure 2, we

therefore have

sg(
∂γ

∂υI
) = −sg( ∂c̃

∂υI
) = sg(

α

β
+ εẽ/υI ).

If εẽ/υI < 0 (which is always the case if μ = 0 or more generally if μ/η
is small), the effect on growth is positive if α/β > − εẽ/υI . If εẽ/υI > 0 the
effect on growth is always positive. Graphically, it can be verified from (A12)
and (A14) that a rise in υI always leads to a shift in CC to the left (given
that Γ > 0), whereas the shift in EE can be either to the right (upper panel
of Figure 2) or the left (lower panel).
The impact effect of a rise in υI on the consumption-private capital ratio,

given that de0/dυ = 0, is

∂c0
∂υI

=
∂c̃

∂υI
+

a12
c̃− ν

(
∂ẽ

∂υI
), (A16)

which is also ambiguous in general, given that ∂c̃/∂υI is ambiguous. If ∂ẽ/∂υI
< 0, given that a12 > 0, then ∂c0/∂υI < 0 if ∂c̃/∂υI < 0, as shown in the
upper panel of Figure 2.
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The Balanced Growth Equilibrium
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Figure 2
Shift in the Composition of Government Spending
            from Education to Infrastructure
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