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Abstract

Our aim in this paper is to reveal some of the hidden power of Marshall�s

analysis of partial equilibrium, even when agents have opportunities to ma-

nipulate the market and choose to act strategically. Speci�cally, we explain

how to construct strategic versions of Marshallian supply and demand curves.

With a �nite set of players on each side of the market, non-trivial Nash equi-

libria of the game are in 1�1 correspondence with intersections of the strategic

supply and demand curves. This equivalence can be used to analyze prop-

erties of equilibria such as existence and uniqueness even when the players

are heterogeneous. It also enables us to investigate which of the conven-

tional comparative statics results of Marshallian analysis survive strategic

price manipulation by buyers and sellers. Finally, we show that strategic

manipulation is always achieved by withholding goods or money and that

the possibility for such play diminishes under replication and vanishes in the

limit.

Keywords: Strategic Marshallian cross, strategic market game, imperfect

competition.

JEL codes: C72, D43, D50.



1 Introduction

Marshallian partial equilibrium analysis rests on several assumptions, price-

taking by all agents being principal among them. To quote Marshall [18]:

�Thus we assume that the forces of supply and demand have free play; that

there is no combination of dealers on either side, but each acts for himself,

and there is much free competition; that is buyers compete freely with buyers

and sellers compete freely with sellers.�

This is perhaps most elegantly formalized in its general equilibrium ver-

sion by Aumann [4], where the cooperative-game concept of core equivalence

lends support to price taking. An alternative justi�cation can be grounded

in non-cooperative strategic market games of Shapley and Shubik [23], [24],

[12], [17]. With a continuum of non-atomic players in such a game, strategic

play leads to competitive outcomes; as Dubey, Mas-Colell and Shubik put it:

�price-taking behavior is, in a mass market, the natural consequence of �mes-

sage taking�behavior�[13]. When the number of agents is large but �nite,

competitive outcomes may often be regarded as approximate solutions, using

limiting theorems as justi�cation (see, for example, [14] and [23]). Here, we

o¤er an alternative view: even when agents are �nite in number and take ad-

vantage of their strategic opportunities, the Marshallian framework may still

be used to study equilibria, provided the appropriate interpretation of sup-

ply and demand schedules is used. This approach can be extended to multi-

market equilibrium, but we focus here on partial equilibrium, since de�nite

results in comparative statics and uniqueness of equilibrium, for example,

are more readily available in this setting, allowing us to make illuminating

comparison with results obtained under price-taking assumptions.

We study the market for a single consumption good, payments being made

with commodity money. All players are endowed with either the consumption

good (sellers) or with money (buyers), but not both and have preferences

that can be represented by a utility function. A further natural assumption,

following Marshall is that preferences are quasi-linear in money [18]: �When

a person buys anything for his own consumption, he generally spends on it

a small part of his total resources;. . . In [such a case] there is no appreciable
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change in his willingness to part with money.� (A formal study of this

assumption has been conducted by Vives [26].) However, for our purposes

we can use the weaker assumption of binormality: both consumption and

money are normal goods.

We consider a simultaneous-move game in which sellers o¤er all or part

of their endowment of the consumption good to buyers who make money

bids, up to their endowment, for a share of the total o¤ered by sellers. The

share received by any buyer depends positively on their bid and, to respect

anonymity, negatively on the aggregate bids of other buyers. The total money

bid is divided amongst sellers in a similar way, as an increasing function of

a seller�s o¤er and a decreasing function of the o¤ers of other sellers. In

Section 2, we discuss speci�c sharing rules. The key feature of this setup is

that payo¤s depend on other players�strategies only through aggregate bids

and o¤ers. In Game Theory in the Social Sciences [25] Shubik commented on

games with a single aggregate: �Games with the above property have more

structure than a game selected at random. How this structure in�uences the

equilibrium points has not yet been explored in depth.� An investigation of

this issue has recently been conducted by Cornes and Hartley [11] building

on earlier work of Novshek [20] in industrial economics and Andreoni [2]

in public economics amongst others. The game considered here has two

aggregates, which necessitates an extension of the approach in [11] closely

based on competitive methodology.

We focus attention on non-autarkic Nash equilibria in which there is

trade (total bids and o¤ers are positive). Our aim is to show how such equi-

libria can be studied using a modi�ed competitive approach. Competitive

equilibrium has two essential components: (i) agents make best responses to

the economic environment which frames their decision-making under the pre-

sumption that they are unable to in�uence that environment directly and (ii)

these optimal decisions are consistent with that environment. In an exchange

economy, the economic environment is summarized by a price vector, (i) be-

comes constrained utility maximization and (ii) is market clearing. When

agents fully exploit the strategic possibilities open to them, the competitive

approach can be adapted by modifying part (i) to allow for the direct e¤ect

2



of agents�choices on the environment of the other agents. This requires, for

any environment, that each agent i 2 I has a strategy bsi that is a unique best
response to every strategy pro�le of the other agents that, together with bsi,
forms the given environment. (When agents behave parametrically, bsi is sim-
ply the conventional optimal choice in competitive equilibrium.) Condition

(ii) requires that the strategy pro�le bs = (bsi)i2I derived from an environment
be consistent with that environment. This is equivalent to requiring bs to be
a Nash equilibrium. In games of the type described above, the environment

can be summarized by the levels of aggregate bids B and aggregate o¤ers Q.

Given an environment (B;Q) and an o¤er q0i, the set of strategies forming

the given environment all have aggregate o¤er Q � q0i and aggregate bid B.
Since the payo¤s of seller i depend only on qi; B and Q, its best responses

depend only on Q�qi and B. Binormality implies additionally that such best
responses are unique; we refer to this best response as the replacement value

of player i to (B;Q). If the sum of replacement o¤ers to (B;Q) is Q(> 0)

and the sum of replacement bids to (B;Q) is B (> 0), then (B;Q) is a Nash

equilibrium. Conversely, all non-autarkic pure strategy Nash equilibria can

be obtained in this way.

It is insightful to apply this result by adopting an equivalent parametriza-

tion of the environment, which consists of strategic price p = B=Q together

with aggregate bids in the case of buyers and aggregate o¤ers in the case

of sellers. Then consistency can be decomposed into two steps. Firstly, one

establishes the existence of P S � 0 such that, for any level of the strategic
price p > P S, there is a unique level of aggregate o¤ers Q that is the sum

of replacement o¤ers to (pQ;Q). Such a Q is the only possible aggregate

o¤er in any equilibrium in which strategic price is p. Viewed as a mapping

from strategic prices to aggregate o¤ers, we refer to this as the strategic

supply schedule. This schedule is independent of buyers, depending only on

the endowments and preferences of sellers. It takes fully into account the

possibilities for strategic manipulation open to sellers. The terminology also

re�ects the fact that, as the number of sellers is increased by replication,

the strategic supply curve approaches the competitive supply curve. Buyers

can be treated in a similar fashion: there is a unique level of aggregate bids
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that is the sum of all bidders replacement bids to (B;B=p) provided p < PB,

where PB is a (possibly in�nite) threshold price. The strategic demand curve

is obtained by dividing this aggregate bid by p and takes full account of the

strategic opportunities available to buyers. The consistency condition for

Nash equilibrium from the previous paragraph translates into our fundamen-

tal result: every strategy pro�le is a non-autarkic Nash equilibrium1 if and

only if the corresponding aggregate o¤er and strategic price lie on the inter-

section of supply and demand curves. This determines equilibrium at the

level of aggregates: bB and bQ. Individual equilibrium strategies are given

by the (unique) replacement bids and o¤ers to
� bB; bQ�. Thus non-autarkic

Nash equilibria are in 1�1 correspondence with intersections of the strategic

supply and demand curves.

This result can be used to apply a competitive approach to economies

in which agents exercise market power. For example, strategic supply and

demand curves cross at least once if and only if P S < PB. Since it is possi-

ble to express P S and PB in terms of marginal rates of substitution at the

initial endowments, we can derive necessary and su¢ cient conditions for a

non-autarkic equilibrium2. These show that, if the economy has no price-

taking equilibrium, the only strategic equilibrium is autarky. However, it

is possible to have only an autarkic strategic equilibrium even if there is a

competitive equilibrium: strategic e¤ects may prevent agents realizing any

gains from trade even when these exist. Further restrictions on payo¤s are

required to rule out multiple non-autarkic equilibria. For example, if the

di¤erence between strategic demand and supply is monotonic these curves

cross at most once. Since strategic demand is always decreasing in price,

conditions on sellers that give increasing strategic supply ensure a unique

equilibrium. One such condition is that each seller�s competitive supply is

1It is an artefact of the game that setting all bids and o¤ers to zero is always an
equilibrium. Indeed, the presence of such autarkic equilibria is a complicating factor in the
conventional analysis of market games, since it precludes, for example, direct application
of standard �xed point theorems when showing that non-autarkic equilibria exist. The
competitive approach circumvents such di¢ culties by analyzing non-autarkic equilibria
directly.

2A similar approach leads to conditions for determining whether individual players are
active in equilibrium.
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non-decreasing. If, in addition, P S < PB, the curves cross exactly once;

this is the strategic Marshallian cross3 that ensures the existence of a unique

non-autarkic equilibrium.

This competitive approach can also be used to study comparative statics.

As an example, consider an economy in which all players have binormal

preferences and suppose a quantity tax is imposed on sellers all of which

have non-decreasing competitive supply. The conventional result that price

rises and quantity traded falls is robust to strategic manipulation. This can

be justi�ed by �rst showing that the strategic supply curve (with price on

the vertical axis) shifts upwards and then applying the standard argument

to conclude that, in equilibrium, strategic price increases (possibly by more

than the tax) and trade is reduced.

Another application of the competitive approach examines the e¤ect of

adding or removing buyers or sellers or changing endowments. For example,

an extra active seller or increase in an incumbent seller�s endowment increases

strategic supply, shifting the supply curve to the right at the current equi-

librium. With binormal preferences and increasing competitive supply, the

result is a fall in strategic price and a rise in trade. Similarly, an extra active

buyer shifts the strategic demand schedule upwards, resulting in an increase

in strategic price and a reduction in trade. Thus, additional players (or in-

creases in endowments) increase competitiveness on the side of the market

they join, re�ecting similar results under price-taking.

The construction of strategic supply and demand suggest that, when

agents have little market power, these functions approach their competi-

tive equivalents and indeed, under replication, strategic supply and strategic

demand per replica do tend to their competitive equivalents. This implies

that strategic price tends to competitive price and quantities per replica also

converge. Furthermore, convergence is always from below: strategic supply

and demand per replica are always less than the price-taking versions. Sell-

ers exert market power by withholding the consumption good and buyers by

withholding money.

Under proportional sharing the game above reduces to that of bilateral

3We respect the Marshallian precedent by putting price on the vertical axis.
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oligopoly as presented by Gabszewicz and Michel [16]. Bloch and Ghosal [7]

studied existence and uniqueness in this game under the additional assump-

tion that a common utility function can be used to describe preferences of all

players. The full symmetry assumptions were relaxed in Bloch and Ferrer [6]

in their discussion of trade fragmentation, but these authors proved only ex-

istence of non-trivial equilibria. More recently, Amir and Bloch [1], focussing

on comparative statics, extended the results of Bloch and Ghosal to games in

which symmetry is only imposed on each side of the market, allowing buyers

to have di¤erent preferences from sellers, and imposing weaker additional

conditions on preferences; for example, they show that gross substitutes im-

ply uniqueness as in general equilibrium. The competitive approach requires

no symmetry assumptions and its conclusions for existence, uniqueness and

comparative statics encompass all existing results known to the authors as

well as clarifying the analysis.

After describing the details of the game and our assumptions on pref-

erences in the next section, we investigate the existence of strategic supply

and demand curves and prove the equivalence between their intersections

and Nash equilibria in Section 3. The following four sections are devoted to

applications of this result. We �rst derive necessary and su¢ cient conditions

for the existence of a non-autarkic equilibrium and show that these imply

that strategic e¤ects may prevent a non-autarkic equilibrium even though

gains from trade are possible. This section also discusses su¢ cient condi-

tions for a unique non-autarkic equilibrium. The comparative statics studied

in Section 6 include adding extra players, modifying endowments and impos-

ing a tax. In the next section we study the relationship between strategic

and competitive supply and demand curves and equilibria when the market

is thickened by replication. After a conclusion, the �nal section (appendix)

contains proofs.

2 Strategic trade

The setting for our partial equilibrium analysis is a market with two com-

modities, a consumption good and commodity money, in which the players
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are partitioned into participants on either side of the market for the con-

sumption good. Speci�cally, the set of players is H = HS [ HB, where

HS\HB = ?. Endowments of the two goods are (eh; 0) if h 2 HS and (0; eh)

if h 2 HB, where eh > 0 for all h 2 H and the �rst component refers to the

consumption good. We interpret players in HS as sellers and those in HB

as buyers of the consumption good. It is convenient to rule out monopoly

and monopsony:
��HS

�� ; ��HB
�� � 2, where jXj denotes the cardinality of X.

The strategy sets are the intervals Sh = [0; eh] for all h 2 H. Sellers choose
an o¤er qh 2 Sh for all h 2 HS and we write Q for the aggregate o¤erP

h2HS qh. Buyers choose a bid bh 2 [0; eh] for all h 2 HB and we write B for

the aggregate bid
P

h2HB bh. We write SS =
Q
h2HS Sh and SB =

Q
h2HB Sh

for the sets of strategy pro�les of sellers and buyers, respectively. Given a

strategy pro�le (q;b) 2 SS � SB in which Q;B > 0, the rules of the game

must specify how the aggregate o¤er is distributed amongst the buyers and

aggregate bid amongst the sellers. In general, this may be accomplished by

sharing rules !Sh : SS ! [0; 1] for each seller h 2 HS and !Bh : SB ! [0; 1] for

each buyer h 2 HB, satisfying
P

h2HS !Sh (q) =
P

h2HB !Bh (b) = 1 for all q

and b. The corresponding allocation is fxhgh2H, where

(xh1; xh2) =

( �
eh � qh; !Sh (q)B

�
if h 2 HS or�

!Bh (b)Q; eh � bh
�
if h 2 HB.

(1)

If Q = 0 or B = 0 or both, we take fxhgh2H to be the initial allocation;
no trade takes place. Finally, player h evaluates allocations using the weak

preference relation 3h over non-negative bundles of the two goods.
We require the sharing rule !Sh (q) to be a function of qh andQ (anonymity),

increasing in q; decreasing in qh0 for h0 6= h (monotonicity) and satisfyP
h2HS !Sh (q) = 1 for all strategy pro�les q. A similar restriction is imposed

on !Bh . Here, we focus on sharing rules of the form

!Sh (q) = �S
qh
Q
+
�
1� �S

�
�h for all h 2 HS, and

!Bh (b) = �B
bh
B
+
�
1� �B

�
�h for all h 2 HB;
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where 0 � �h � 1 for all h. For such sharing rules, !Sh (q) depends only on
qh and Q and we abuse notation by writing it !Sh (qh; Q). Similarly, we write

the sharing rule for buyers as !Bh (bh; B). When �
S = �B = 1 we have fully

proportional sharing and the game is equivalent to a Shapley-Shubik strategic

market game [23] as applied to bilateral oligopoly by Gabsewicz and Michel

[16]. With �B < 1, the aggregate o¤er is divided into two portions; the �rst

is distributed in proportion to bids and the bidder h receives the exogenous

share �h of the second, irrespective of their bid. Similar considerations apply

to sellers.

We seek a Nash equilibrium of this game; that is, a strategy pro�le

fqhgh2HS, fbhgh2HB for which the corresponding allocation (1) has the prop-

erty that, if (x0h1; x
0
h2) is the allocation resulting from a unilateral change

of qh to q0h for some h 2 HS, or from bh to b0h for some h 2 HB, then

(xh1; xh2) 3h (x0h1; x0h2) for all h 2 H.

2.1 Preferences

We assume that preferences are convex, continuous and strictly increasing in

both arguments. Thus, the upper preference set Ph (x) =
�
y 2 R2+ : y 3h x

	
is convex, closed and has recession cone R2+. It follows that there will be a
supporting line to Ph (x) at x with non-positive slope and we write @h (x) for

the set of absolute values of such slopes. Thus, � 2 @h (ex) if and only if the
line

x2 = ex2 � � (x1 � ex1)
supports Ph (ex) at ex. If x lies on the vertical axis, there will be a vertical
supporting line; to recognize this, we will include +1 in @h (x). When pref-

erences are representable via a continuously di¤erentiable utility function,

@h (x) has a single member, the marginal rate of substitution at x, except

possibly on the axes. The correspondence @h can be regarded as the pro-

jection of the inverse of the demand correspondence onto prices. Since the

demand correspondence is convex-valued and upper hemi-continuous (see,

for example Arrow and Hahn [3]), this property also holds for @h.

Partial equilibrium analysis typically assumes quasi-linear preferences.
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However, for our purposes the weaker assumption of binormality will su¢ ce:

both goods are normal. In particular, this implies that marginal rates of

substitution increase under moves to the north-west:

x1 � x01; x2 � x02; � 2 @h (x) ; �0 2 @h (x0) =) � � �0, (2)

where the �nal inequality is strict if x1 < x01 and x2 > 0.

Although our framework is that of an exchange economy, it can be rein-

terpreted as a model with production on the part of sellers, provided sellers

have no desire to consume the output and have production opportunities

exhibiting non-decreasing returns to scale.

3 Strategic supply and demand

The game described has an autarkic (no-trade) equilibrium in which qh = 0

for all h 2 HS and bh = 0 for all h 2 HB. In the sequel, we focus on

non-autarkic equilibria in which Q;B > 0.

In this section, we show how such equilibria can be studied using strategic

versions of Marshallian supply and demand curves. We begin by focusing on

the game played by sellers when aggregate bids are held �xed. We then

study the buyers�side of the market and, in the �nal subsection, we examine

consistency requirements for an equilibrium and de�ne strategic supply and

demand functions.

3.1 The sellers�partial game

For a given aggregate bid B, the game played by sellers can be viewed as

dividing the output of a jointly owned production process, in which the share

of B received by seller h is !Sh (q) when the o¤er pro�le is q 2 SS. We follow
the techniques of Cornes and Hartley in analyzing such aggregative games

(see, for example, [9], [10], [11] for applications to contest theory and common

access resource games).

The essence of the approach is to circumvent some of the complications
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that arise when working directly with best responses for heterogeneous play-

ers. Instead, we start by asking: what strategy choices by seller h 2 HS are

consistent with an equilibrium in which the aggregate o¤er and bid take the

values Q and B? We write RSh (Q;B) for this set of strategies and observe

that q 2 RSh (Q;B) if and only if q � Q and q is a best response to (Q� q; B).
For Q;B > 0, this requires q to satisfy

�
eh � q; !Sh (q;Q)B

�
3h x for all x 2 S,

where

S =
��
eh � q0; !Sh (q0; q0 +Q� q)B

�
: q0 2 [0; eh]

	
.

Noting that S is the upper boundary of a convex set, we have q 2 RSh (Q;B)
if and only if 0 < q � min fQ; ehg and

�S
B (Q� q)

Q2
2 @h

�
eh � q; !Sh (q;Q)B

�
, (3)

or q = 0 and

�S
B

Q
2 @�h

�
eh; !

S
h (0; Q)B

�
, (4)

where �� 2 @�h (x) if and only if �
� � � for some � 2 @h (x). Note that our

inclusion of +1 in @h (x) on the vertical axis avoids the need for an explicit

boundary condition like (4) at q = eh.

We can view Rh as a set-valued mapping de�ned on Q and we prove in the

Appendix that (3) has a unique solution in q when preferences are binormal.

Lemma 3.1 If Q;B > 0 and the preferences of seller h 2 HS are binormal,

RSh (Q;B) is a singleton.

De�ning p = B=Q to be the strategic price, this lemma implies that, for

any Q;B > 0, the set Rh (Q; pQ) contains a single element, q. We write

sSh (p;Q) for q=Q and refer to sSh as the share function of seller h. In the

Appendix, we prove that, considered as a function of Q, the share function

takes one of three forms depending on the values of p, �S and �h. To induce
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seller h to make a positive o¤er, the strategic price must exceed a threshold,

p�h = fmax @h (eh; 0)g =�S:

For p � p�h, the share function is identically zero. For p > p�h, the form of the
share function depends on the value of �S. If �S = 1 or �h = 0, seller h will

make a positive o¤er irrespective of the o¤ers of the other sellers; the share

function is positive for all Q > 0. If �S < 1 and �h > 0, seller h will always

receive a positive transfer and, if this is large enough, will prefer to make no

o¤er. There will be a dropout value of the aggregate o¤er, Q�h (p), and the

share function is positive if and only if Q < Q�h (p). Furthermore, Q
�
h (p) is

the minimum value of Q satisfying4

�Sp 2 @�h
�
eh;
�
1� �S

�
�hpQ

�
. (5)

Whatever the form of the share function, it is continuous, strictly decreasing

where positive and asymptotic to or meets the Q axis. Formally, we have the

following result, proved in the Appendix.

Lemma 3.2 Suppose the preferences of seller h 2 HS are binormal.

1. If 0 < p � p�h, then sSh (p;Q) = 0 for all Q > 0.

2. If p > p�h; �
S < 1 and �h > 0, then sSh (p;Q) is zero for all Q � Q�h (p)

and positive and strictly decreasing for 0 < Q < Q�h (p). Furthermore,

it is continuous for all Q > 0 and satis�es

sSh (p;Q) �! 1� p
�
h

p
as Q �! 0. (6)

3. If p > p�h and, either �
S = 1 or �h = 0, then sSh (p;Q) is positive, con-

tinuous and strictly decreasing for all Q > 0. Furthermore, it satis�es

(6) and sSh (p;Q) �! 0 as Q �!1.
4Note that p > p�h implies that Q

�
h (p) > 0.
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When �S = 1 or �h = 0, it is convenient to de�ne Q�h (p) = +1, which
means that in all cases the share function is positive for p > p�h and Q <

Q�h (p). Note that, if @h (eh; 0) = f0g, then p�h = 0 so the share function is

always positive for Q < Q�h (p) and approaches 1 as Q �! 0 for all p. In

particular, this will be the case when indi¤erence curves are asymptotic to

the axes. (Such an assumption is frequently made to ensure interior equilibria

in market games. See Peck et al. [21] for a precise statement.)

3.2 The buyers�partial game

The results we have described for sellers hold mutatis mutandis for buyers.

Here, we simply summarize the results, omitting proofs which are essentially

the same as those for sellers.

For any h 2 HB, we de�ne RBh (Q;B) to be the set of bids by h which are

consistent with aggregate o¤er and bid: Q;B. We have b 2 RBh (Q;B) if and
only if 0 � b � min fB; ehg and�

�B
Q (B � b)
B2

��1
2 @h

�
!Bh (b; B)Q; eh � b

�
(7)

or b = 0 and �
�B
Q

B

��1
2 @+h

�
!Bh (0; B)Q; eh

�
where �+ 2 @+h (x) if and only if �

+ � � for some � 2 @h (x).

Lemma 3.3 If Q;B > 0 and the preferences of buyer h 2 HB are binormal,

RBh (Q;B) is a singleton.

If p > 0 and B > 0, the set RBh (B=p;B) contains a single element: b. We

write sBh (p;B) for b=B and refer to s
B
h as the share function of buyer h. For

buyers, the threshold price is de�ned to be p�h = �
Bmin @h (0; eh). (Note that

if @h (0; eh) = f+1g we take p�h = +1.) In this case, a buyer will only make
a positive bid in equilibrium if the equilibrium price exceeds her threshold

price and the aggregate bid of the other buyers does not exceed the dropout
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value B�h (p), which, for �
B < 1 and �h > 0, is the supremum of B satisfying

p

�B
2 @+h

��
1� �B

�
�h
B

p
; eh

�
.

If �B = 1 and �h = 0, we take B�h (p) = +1.

Lemma 3.4 Suppose the preferences of buyer h 2 HB are binormal.

1. If p � p�h, then sBh (p;B) = 0 for all B > 0.

2. If 0 < p < p�h, �
B < 1, �h > 0 and B�h (p) < 1 then sBh is zero for all

B � B�h (p) and is positive and strictly decreasing for 0 < B < B�h (p).
Furthermore, sBh is continuous for B > 0 and satis�es

sBh (p;B) �! 1� p

p�h
as B �! 0. (8)

3. If 0 < p < p�h and �
B = 1 or �h = 0 or B�h (p) = 1 then sBh (p;B) is

positive, continuous and strictly decreasing for all B > 0. Furthermore,

it satis�es (8) and sBh (p;B) �! 0 as B �!1.

If @h (0; eh) = f+1g and, in particular, if indi¤erence curves are asymp-
totic to the axes, then p�h = +1. In this case, the share function is never
identically zero and approaches 1 as B �! 0.

3.3 Share functions and equilibria

Share functions can be used to characterize non-autarkic equilibria of the

market game. The following lemma, which is proved by straightforward

de�nition chasing, gives the required conditions.

Lemma 3.5 The strategy pro�le
�bq; bb� 2 SS � SB is a Nash equilibrium if

and only if

bqhbQ = sSh

�bp; bQ� for all h 2 HS, (9)

bbhbB = sBh

�bp; bB� for all h 2 HB, (10)
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where bp = bB= bQ.
It is convenient to write

SS (p;Q) =
X
h2HS

sSh (p;Q) , (11a)

SB (p;B) =
X
h2HB

sBh (p;B) , (11b)

for the aggregate share functions of sellers and buyers respectively. Note

that bB and bQ are positive equilibrium values of aggregate bids and o¤ers if

and only if SS
�bp; bQ� = SB �bp; bB� = 1. The remainder of this subsection is

devoted to elucidating the relationship between these equilibrium conditions

and the Marshallian cross with strategic versions of supply and demand.

For any h 2 HS with binormal preferences and p > 0, we can regard

sSh (p;Q) as a function of Q. Lemma 3.2 implies that this function is contin-

uous, strictly decreasing where positive and vanishing or identically zero in

the (large Q) limit. These properties are inherited by SS (p;Q). Therefore,

SS (p;Q) = 1 has a unique solution in Q if and only if

lim
Q�!0

SS (p;Q) =
X
h2HS

max

�
1� p

�
h

p
; 0

�
> 1.

Since the sum is an increasing function of p, this inequality holds if and only

if p > P S, where P S denotes the unique solution of

X
h2HS

max

�
1� p�h

P S
; 0

�
= 1, (12)

provided not all p�h are zero. (If p
�
h = 0 for all h 2 HS, the same conclusion

is valid with P S = 0.) The following lemma formalizes these observations.

(The �nal assertion in the lemma is proved in the Appendix.)

Lemma 3.6 If all sellers have binormal preferences, the equation SS (p;Q) =
1 has no solution in Q > 0 for p � P S and a unique solution for p > P S,

which we write Q (p). Furthermore, Q (p) is continuous where de�ned.
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We have seen that, if the equilibrium price exceeds a threshold price,

the aggregate o¤er must be su¢ ciently small to induce a seller to make a

positive o¤er. The lemma shows that strategic price must exceed P S to

induce a positive o¤er in aggregate.

A similar result holds for the opposite side of the market in which we

write PB for the unique solution of

X
h2HB

max

�
1� P

B

p�h
; 0

�
= 1, (13)

unless p�h = +1 for all h 2 HB, in which case we de�ne PB = +1 .

Lemma 3.7 If all buyers have binormal preferences, the equation SB (p;B) =
1 has no solution in B > 0 for p � PB and a unique solution for p < PB,
which we write B (p). Furthermore, B (p) is continuous where de�ned.

The proof of this lemma is similar to that of Lemma 3.6 and omitted.

We de�ne X S1 (p) = Q (p) and XB1 (p) = B (p) =p and refer to X S1 as the
strategic supply function and XB1 as the strategic demand function for the

consumption good. Strategic supply [demand] represents the total quantity

of the consumption commodity that sellers [buyers] will o¤er [demand] when

the price is p, fully taking into account all strategic possibilities open to

players on both sides of the market. It follows from Lemma 3.5 that there

will be an equilibrium with a positive price bp if and only if these functions take
equal values: non-autarkic equilibria can be characterized by the intersection

of the strategic supply and demand functions. The following fundamental

proposition gives a precise statement.

Proposition 3.1 Suppose that all players have binormal preferences. There
is a Nash equilibrium with aggregate o¤er bQ > 0 and bid bB > 0 if and only
if X S1 (bp) = XB1 (bp), where bp = bB= bQ.
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Lemmas 3.1 and 3.3 imply that, in equilibrium, aggregate bids and o¤ers

determine the complete strategy pro�le:

bqh = X S1 (bp) sSh �bp; bQ� for all h 2 HS,

bbh = bpXB1 (bp) sBh �bp; bB� for all h 2 HB.

Thus non-autarkic Nash equilibria are in (1�1) correspondence with inter-

sections of the strategic supply and demand curves. This result allows us

to address existence and uniqueness of Nash equilibria simply by counting

the intersections of these curves. We can also use it to investigate compara-

tive statics by determining the e¤ect of parametric changes on the strategic

supply and demand curves (through an examination of the e¤ect of these

changes on share functions). We start by looking at existence in the next

section.

4 Existence

Proposition 3.1 implies that there is a non-autarkic equilibrium if and only

if the strategic demand and supply curves intersect. Since X S1 is de�ned for
p � P S and XB1 for p � PB, it follows that, if PB � P S, then there can

be no positive p for which X S1 (p) = XB1 (p) and therefore only the autarkic
equilibrium exists. To investigate the converse of this result requires more

information on strategic demand and supply functions. The following lemma,

proved in the Appendix, provides this for the buyers�side.

Lemma 4.1 If all buyers have binormal preferences pXB1 (p) is bounded and
XB1 (p) �! 1 as p �! 0. If PB < +1, then XB1 (p) �! 0 as p �! PB

from below.

A similar result applies on the sellers�side; its proof is omitted.

Lemma 4.2 If all sellers have binormal preferences X S1 (p) is bounded and
pX S1 (p) �! 1 as p �! 1. If P S > 0, then X S1 (p) �! 0 as p �! P S from

above.
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From these lemmas, if 0 < P S < PB < +1, then XB1
�
P S
�
> 0 =

limp�!PS X S1 (p). In a neighborhood of P S, strategic demand exceeds strategic
supply. Similarly, in a neighborhood of PB, this ordering is reversed. By

continuity, there is p 2
�
P S; PB

�
for which strategic demand and strategic

supply are equal. This is illustrated in Figure 1, which shows an example

with three equilibria with prices bp1, bp2 and bp3. Note that, as drawn, price
and aggregate o¤er are inversely related in equilibrium. We will see in the

next section that this is always true when there are multiple equilibria. If

PB = +1, we can conclude from Lemmas 4.1 and 4.2 that pX S1 (p) > pXB1 (p)
and hence X S1 (p) > XB1 (p) for su¢ ciently large p. Once again, we can deduce
that the strategic demand and supply curves cross. Similarly, if P S = 0

then XB1 (p) > X S1 (p) for su¢ ciently small p. This establishes the following
necessary and su¢ cient conditions for an equilibrium with positive trades.

Figure 1: (Inverse) Strategic supply and demand and the existence of Nash
equilibria.
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Theorem 4.1 Suppose all players have binormal preferences. There is a
non-autarkic equilibrium if and only if PB > P S.

In the next subsection, we discuss the implications of this theorem for

gains from trade in bilateral oligopoly.

4.1 Autarkic equilibria and gains from trade in bilat-

eral oligopoly

In this subsection, we apply Theorem 4.1 with5 �S = �B = 1 to a discus-

sion of conditions under which gains from trade are possible but strategic

opportunities prevent trade from taking place in equilibrium. In particular,

we show that this occurs if and only if PB � P S but

max
h2HB

p�h > min
h2HS

p�h (14)

and demonstrate that this may be possible if the market is thin enough. We

note that the �nice�autarkic equilibrium of the example discussed by Cordella

and Gabszewicz [8] has this property.

Intuitively, if there are no possible gains from trade, we would expect only

the autarkic equilibrium. We can con�rm this by noting that (12) implies

that

1 =
X
h2HS

max

�
1� p�h

P S
; 0

�
�
X
h2HS

�
1� minh2HS p�h

P S

�
,

which can be rearranged as

P S �
��HS

��
jHSj � 1 minh2HS

p�h. (15)

Similarly, the de�nition of PB implies

PB �
��HB

��� 1
jHBj max

h2HB
p�h. (16)

5We impose this restriction to avoid over-complicating the presentation.

18



To have a non-autarkic equilibrium requires PB > P S by Theorem 4.1, im-

plying (14). This inequality says that there is a seller with a marginal rate

of substitution exceeding that of some buyer at their endowment points and

therefore that gains from trade are possible.

The converse to this result need not be true. This is most easily seen

when p�h = p�S for all h 2 HS and p�h = p�B for all h 2 HB. Then, it is

straightforward to check that the inequalities (15) and (16) hold as equalities.

This permits the possibility that p�B > p
�
S but P

B � P S, provided there are
not too many buyers and sellers. So gains from trade are possible between

any seller and any buyer but the only equilibrium is autarkic. Strategic

interactions implicit in the market game prevent the players from realizing

these gains. Note however that p�B > p
�
S implies that P

B > P S if
��HS

�� and��HB
�� are both large enough. Provided the market is su¢ ciently thick, even

strategic players will realize gains from trade in equilibrium. However, this

requires su¢ cient players on both sides of the market. It is possible to have

oligopolistic sellers who could pro�tably trade with any individual buyer but

are prevented by strategic considerations from doing so, however many buyers

there are. This happens if

p�S < p
�
B <

��HS
��

jHSj � 1p
�
S:

That thick markets allow players to realize possible gains from trade is

true in general if we thicken the market by replication. If we replicate the

economy m times, (12) can be written �
�
P S (m)

�
= 1=m, where

� [p] =
X
h2HS

max

�
1� p

�
h

p
; 0

�

and P S (m) is the value of P S in this economy. Since � is a continuous

and increasing function of p we deduce that P S (m) is decreasing in m

and approaches minh2HS p�h as m �! 1. A similar argument shows that

PB (m), the value of PB in this economy, is increasing in m and approaches

maxh2HB p�h as m �! 1. We deduce that, if there are gains from trade:
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maxh2HB p�h > minh2HS p�h, then P
B (m) > P S (m) for all large enough m and

Theorem 4.1 implies that there will be a non-autarkic equilibrium for all such

m.

5 Uniqueness

When preferences are binormal, it follows from Proposition 3.1 that there will

be a unique non-autarkic equilibrium if and only if the strategic demand and

supply curves intersect once and only once. One straightforward condition for

this is that the excess strategic demand: � (p) �= XB1 (p)�X S1 (p) be a strictly
decreasing function of p at least for p 2

�
P S; PB

�
. However, this condition is

stated in terms of strategic excess demand, a derived concept, rather than the

primitives of the game, i.e. players�preferences. We now consider su¢ cient

conditions for excess demand to be a decreasing function and �rst observe

that, under our continuing assumption of binormality, strategic demand falls

with price. This is proved in the Appendix.

Lemma 5.1 If all buyers have binormal preferences, then XB1 is a strictly

decreasing function of p 2
�
0; PB

�
.

It follows from the lemma that non-decreasing strategic supply is a suf-

�cient condition for a unique equilibrium. Just as with price-taking sellers,

binormality of preferences alone does not allow us to draw such a conclu-

sion; additional restrictions on preferences are required. Indeed, suppose

that seller h has competitive supply correspondence:

eXc
h (p; e) = fq 2 [0; e] : p 2 @h (e� q; pq)g ,

for price p and endowment e. We say that seller h exhibits increasing compet-

itive supply if the player�s supply correspondence is upwards sloping. That

is, for any e > 0, p0 > p > 0, if x 2 eXc
h (p; e) and x

0 2 eXc
h (p

0; e) we have

x0 � x.
If all sellers have increasing competitive supply, total competitive supply

with any given set of endowments is increasing. The following result, proved
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in the Appendix, shows that, under the same assumption, strategic supply

is also increasing.

Lemma 5.2 If all players have binormal preferences and all sellers have in-
creasing competitive supply, X S1 is a non-decreasing function of p 2

�
P S;1

�
.

The following result, which encompasses the existence and uniqueness

theorem proved by Amir and Bloch [1] for market games which are symmetric

on each side of the market, combines the results of these observations.

Theorem 5.1 Suppose all players have binormal preferences and all sellers
have increasing competitive supply. There is a unique non-autarkic equilib-

rium if and only if PB > P S.

A su¢ cient condition for increasing competitive supply is that prefer-

ences are quasi-linear in money, for then @h (x1; x2) is independent of x2 and

convexity implies that competitive supply is increasing. Alternatively, when

preferences can be represented by a smooth quasi-concave utility function,

the �rst of the inequalities in the gross substitutes condition of Amir and

Bloch [1] also implies that competitive supply is increasing.

Corollary 5.1 If PB > P S, all buyers have binormal preferences and ei-

ther (i) all sellers have quasi-linear preferences, or (ii) the preferences of all

sellers satisfy the gross substitutes condition, there is a unique non-autarkic

equilibrium.

Proposition 3.1, which underpins these results, can be viewed as �strate-

gic market clearing�in the goods market. A similar result can be obtained

by focussing on the market for commodity money. It is readily veri�ed that,

with the natural de�nitions of strategic demand and supply for money, Wal-

ras�law holds. Consequently, strategic market clearing for one good implies

the same property for the other. It follows that uniqueness can be estab-

lished by showing that there is a unique point at which strategic demand

and supply for money intersect. By symmetry, we conclude that, if pref-

erences are binormal and satisfy the appropriate modi�cation of increasing
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supply (reverse the roles of x1 and x2), the equilibrium is unique. Hence, this

additional assumption on buyers�preferences also guarantees uniqueness and

can be used to avoid placing additional restrictions on sellers�preferences.

Indeed, the gross substitutes conditions of [1] entail both original and modi-

�ed versions of increasing competitive supply. However, the modi�ed version

is not typically valid for preferences that are quasilinear in goods.

5.1 Coalition proofness

Under the assumptions of Theorem 5.1, the game has two equilibria; one au-

tarkic and one non-autarkic:
�bq; bb�. Bernheim et al�s re�nement of coalition-

proofness [5] allows us to select the latter. The argument rests on three fun-

damental observations (of which we omit detailed proofs). Let K be a proper
subset of the players and use K to denote the complement of K. Fix all the
strategies of players in K at their equilibrium values and consider the game

with player set K in which outcomes are determined by the strategies chosen
in K together with the strategies

�bqh;bbh� for h 2 K via (1) and preferences
are f3hgh2K. The competitive approach can be modi�ed to establish our �rst
observation: under the assumptions of Theorem 5.1, if bqh > 0 for at least

one h 2 K, or bbh > 0 for at least one h 2 K (or both) this game has a unique
equilibrium

�bqh;bbh�
h2K
. A similar approach also proves that, if bqh = 0 for

all h 2 K and bbh = 0 for all h 2 K (or both), this game has two equilibria:�bqh;bbh�
h2K

and the autarkic equilibrium. Finally, we observe that a seller

for whom bqh > 0 or a bidder for whom bbh > 0 strictly prefers the outcome
in
�bq; bb� to that in the autarkic equilibrium, whereas an inactive player is

indi¤erent between the equilibria or prefers the former. This is a consequence

of players choosing best responses and of convexity of preferences.

It follows from these three observations that, under the assumptions of

Theorem 5.1, there is no non-empty subset of players all of whom will wish to

deviate from the non-autarkic equilibrium. Such an equilibrium is therefore

robust to coalitional deviations. By contrast, the autarkic equilibrium is not

robust to such deviations; the subset of players active in the non-autarkic

equilibrium can pro�tably deviate to their strategies in that equilibrium, but
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this is not susceptible to further deviations. Of course, if there is no non-

autarkic equilibrium, the autarkic equilibrium is trivially coalition proof.

Theorem 5.2 If all players have binormal preferences and all sellers have
increasing competitive supply, there exists a unique coalition-proof equilib-

rium. This is autarkic if and only if PB � P S.

6 Comparative Statics

In this section, we demonstrate how the competitive approach may be applied

to comparative statics. We make no attempt to be exhaustive and consider

only three illustrative cases: changes in the number of players, changes in

endowments and the imposition of quantity taxes. Throughout this section,

we assume that preferences are binormal and that all sellers have increasing

competitive supplies.

6.1 Adding players

Suppose that an additional buyer joins a game which has non-autarkic equi-

librium with strategic price bp > 0 and aggregate bid bB. We assume that
the new player, k, has binormal preferences and, to avoid changing payo¤s

of incumbents, that �k = 0. The equilibrium value of the aggregate share

function for buyers increases by sBk
�bp; bB�; this increase is strict if and only

if bp < p�k and 0 < bB < B�h (bp), by Lemma 3.4. With the additional buyer,
SB
�bp; bB� > 1 and, as Lemma 3.4 implies that SB (bp;B) is decreasing in

B, we deduce that B (p) increases and the increase is strict at p = bp. We
conclude that the strategic demand function: B=p increases in the same way.
This is illustrated in Figure 2 for the case in which p�k lies between the existing

equilibrium price and PB. The monotonicity properties speci�ed in Lemmas

5.1 and 5.2 allow us to conclude that the equilibrium price and quantity

traded both increase. The following proposition includes as a special case a

result of Amir and Bloch [1] for symmetric bilateral oligopoly games.
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Figure 2: The e¤ect of adding a buyer for whom p�k > bp (primes denote new
levels).

Proposition 6.1 Suppose a new buyer with binormal preferences and �h = 0
joins a game in which all players have binormal preferences and all sellers

have increasing competitive supply. Then the aggregate bid, o¤er and strate-

gic price do not decrease and increase strictly if the new buyer is active in

equilibrium.

The increases in aggregate bid and o¤er are immediate from Q (bp) =
X S1 (bp) and B (bp) = bpXB1 (bp) since both p and XB1 (p) rise. Of course, if p�k � bp
or bB � B�k (bp), then sBk �bp; bB� is zero; the additional buyer does not bid and
the equilibrium is otherwise unchanged.

A similar approach can be applied to an additional seller, k0. In this case,

the strategic supply function increases and the increase is strict if bp > p�k0 and
0 < Q < Q�k0 (bp). Consequently, under these conditions, the equilibrium price
falls and the equilibrium quantity traded rises, whereas there is no change

if p�k0 � bp or Q � Q�k0 (bp). In this case, aggregate o¤ers also increase but
we cannot draw a de�nite conclusion for aggregate bids, since the price falls.
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The asymmetry with the case of an additional buyer arises because we only

suppose that supply of the consumption good is increasing in the price. If

we additionally assume that the supply of commodity money by each buyer

is increasing, we could conclude that aggregate bids would increase, leading

to a fall in price if the new player is active.

Finally, observing that whether a buyer or a seller is added to the game,

trade in the consumption good increases, leads to the following corollary.

Corollary 6.1 Suppose new players all satisfying �k = 0 are added to a

game and, in the enlarged game, all players have binormal preferences and

all sellers have increasing competitive supply. Then, if any of the new players

are active in the new equilibrium, trade in the consumption good increases.

6.2 Changes in endowments

A similar approach can be used to study changes in endowments. For exam-

ple, consider the change in equilibrium when the endowment of the consump-

tion good of seller h increases from eh to e0h. (We use primes to refer to the

new game.) It follows immediately from the de�nition that p�0h � p�h; an in-
crease in endowment may induce a positive o¤er from a seller who did not pre-

viously trade, but the opposite is never true. Furthermore, Q�0h (p) � Q�h (p).
When the seller makes a positive o¤er in both cases, the share function in-

creases.

Lemma 6.1 Suppose the preferences of seller h 2 HS are binormal. If p >

p�0h and 0 < Q < Q
�0
h (p), then s

S0
h (p;Q) > s

S
h (p;Q).

This lemma is proved in the Appendix and has the consequence that

strategic supply X S1 (p) increases for p > p�0h . We conclude, as in the previous
subsection that, if the original equilibrium price exceeds p�0h , then at the new

equilibrium, price falls and trade increases.

A similar result holds for a change in some buyer�s endowment of money

from eh to e0h > eh. Here p
�0
h � p�h. Lemma 6.2 is the equivalent of Lemma

6.1 for buyers; its proof is similar and omitted.
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Lemma 6.2 Suppose the preferences of buyer h 2 HB are binormal. If

p < p�0h and 0 < B < B
�0
h (p), then s

B0
h (p;B) > s

B
h (p;B).

As above, we conclude that, if the original equilibrium price is less than

p�0h , then at the new equilibrium, price rises and trade increases.

Proposition 6.2 Consider a game in which all players have binormal pref-
erences and all sellers have increasing competitive supply. If the endowments

of some or all players increase, either the equilibrium is unchanged or the ag-

gregate quantity traded increases. In the latter case, (i) if the endowments of

all buyers remain unchanged, the strategic price falls, (ii) if the endowments

of all sellers remain unchanged, the strategic price rises.

6.3 Taxes

In this subsection, we apply the competitive approach to study the e¤ects of

taxation when players have market power. The sharing rules !Sh and !
B
h can

be viewed as taxation and redistribution within the model. However, our

aim here is to analyze quantity taxation to fund public goods and services

and so we set �S = �B = 1. (Gabzsewicz and Grazzini [15] examine the use

of taxes to restore e¢ ciency in bilateral oligopoly.) Suppose that a speci�c

tax is imposed on the consumption good and paid in units of commodity

money. If the level of the tax is t, the allocation corresponding to a strategy

pro�le of bids and o¤ers, (q;b), is

(xh1; xh2) =

(
(eh � qh;max fp� t; 0g qh) if h 2 HS,

(bh=p; eh � bh) if h 2 HB,

where p = B=Q. This formulation supposes that the tax is collected from

sellers and that each seller�s tax liability is limited above by their revenue.

This limit will not bind in a non-autarkic equilibrium; it cannot be a best

response to make a positive o¤er resulting in negative revenue.

The tax will leave buyers� share functions unchanged. Share functions

for sellers are de�ned as before. Extending our previous notation, we let
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RSh (Q;B; t) denote the set of strategies of seller h compatible with an equi-

librium in which aggregate o¤ers and bids areQ and B, respectively. If B > 0

and preferences are binormal, RSh (Q;B; t) is a singleton. This is established

by essentially the same proof as given in the Appendix for the case t = 0

(Lemma 3.1).

For any p > 0 and Q > 0, the set RSh (Q; pQ; t) contains a single element:

q and we write sSh (p;Q; t) for q=Q. Lemma 3.2 continues to hold provided

we replace p�h with p
�
h + t and set �

S = 1.

We wish to compare the strategic supply functions with and without the

tax and this entails comparing the share functions. This is done in the next

lemma, proved in the Appendix.

Lemma 6.3 Suppose �S = 1 and the preferences of seller h 2 HS are binor-

mal. If p > p�h + t, then

sSh (p;Q; t) � sSh (p� t;Q; 0) ,

for all Q > 0. If @h (x) is a singleton in the interior of R2+, the inequality is
strict.

Note that the �nal condition in the lemma will hold if preferences can be

represented by a di¤erentiable utility function.

Using an obvious extension of our previous notation, the aggregate o¤er

satis�es

1 = SS (p;Q (p; t) ; t) � SS (p� t;Q (p; t) ; 0) ,

by Lemma 6.3. Since aggregate share functions are decreasing in Q, we

deduce that

Q (p; t) � Q (p� t; 0) .

Thus, the strategic supply function shifts upwards by at least t. We conclude

that the equilibrium price rises and the quantity traded falls.

Proposition 6.3 Consider a game in which all players have binormal pref-
erences, all sellers have increasing competitive supply and �S = �B = 1.
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Imposing a speci�c tax will raise the price paid by buyers and reduce the

quantity traded.

This proposition would appear to suggest that the possibility of strategic

manipulation makes no di¤erence to the qualitative e¤ects of imposing a tax.

However, this would be misleading. For example, observe that, in contrast to

the competitive case, the strategic supply function moves up by at least t and

strictly more than t if @h is everywhere a singleton. This raises the possibility

of �tax overshifting�: a price rise exceeding the tax. This phenomenon is

well recognized in conventional oligopoly. See, for example, the account in

Vives [27] of work by Seade [22]. In the game studied here, tax overshifting

will occur for any set of smooth suppliers�preferences provided the strategic

demand curve is steep enough.

7 Strategic and competitive equilibria

In this section, we compare strategic with Marshallian supply and demand

curves. To clarify the exposition by permitting a direct comparison between

strategic and competitive demand and supply, we assume �S = �B = 1

throughout this section.

Cournot oligopolists exercise monopoly power by restricting output. We

will show that the same is true of players who can manipulate prices in

partial equilibrium. First, we need some new notation. If h 2 HS, we will

write zSh (p) for the quantity of the consumption commodity which seller h

would supply if the price ratio were p and she were a price taker. That is

zSh (p) =
eXc
h (p; e). Note that � = z

S
h (p) satis�es

p 2 @h (eh � �; p�) . (17)

When preferences are binormal, it is straightforward to show that zSh is con-

tinuous and zSh (p) = 0 for p � p�h, whereas zSh is strictly positive and strictly
increasing for p > p�h. The following lemma, proved in the Appendix, implies

that strategic behavior entails restricting supply.
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Lemma 7.1 Suppose �S = 1, seller h has binormal preferences and p > p�h,
Q > 0. Then

QsSh (p;Q) < z
S
h (p) .

Summing the inequalities in the lemma and, using the equilibrium re-

quirement that the aggregate share function (11a) equals unity, gives

X S1 (p) = Q (p)
X
h2HS

sSh (p;Q (p)) < ZS (p) ,

where ZS (p) denotes the aggregate Marshallian supply of the consumption

commodity.

Corollary 7.1 Suppose �S = 1 and all sellers have binormal preferences,

then X S1 (p) < ZS (p) for all p > P S.

Similar conclusions apply to buyers. If h 2 HB, we write zBh (p) for the

quantity of the consumption good which price-taking buyer h would demand

if the price ratio were p. The following lemma for buyers has a similar proof

to Lemma 7.1.

Lemma 7.2 Suppose �B = 1, buyer h has binormal preferences and 0 < p <
p�h, Q > 0. Then

BsBh (p;B) < pz
B
h (p) .

Summing the inequalities in the lemma and using the equilibrium condi-

tion,

XB1 (p) =
B (p)
p

X
h2HB

sBh (p;B (p)) < ZB (p) ,

where ZB (p) is aggregate Marshallian demand.

Corollary 7.2 Suppose �B = 1 all buyers have binormal preferences, then

XB1 (p) < ZB (p) for all 0 < p < PB.

These corollaries show that Marshallian supply and demand curves lie

to the right of the corresponding strategic curves6. It follows that strategic

behavior reduces the quantity traded.
6With quantity on the horizontal axis.
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Theorem 7.1 If �S = �B = 1, all players have binormal preferences and

all sellers have increasing competitive supply, the quantity traded in Nash

equilibrium cannot exceed that in competitive equilibrium.

Note that, as shown in Section 4, this does not preclude positive compet-

itive trade, and yet no trade when agents act strategically.

7.1 Competitive limit

As markets get thicker, we expect the Nash equilibrium of the market game

to approach the competitive equilibrium of the corresponding limit economy.

A discussion of competitive limits in strategic market games with interior

solutions is given by Dubey and Shubik [14] and Mas-Colell [19].

In this subsection, we study strategic supply and demand schedules in

large games and show that they approach competitive versions in the limit.

Formally, we examine m-fold replications of the basic game and investigate

the limits of strategic supply and demand per replica, as m �! 1. Note
that the equilibrium requirements can then be written

SS (p;Q) =
X
h2HS

sSh (p;Q) =
1

m
,

SB (p;B) =
X
h2HB

sBh (p;B) =
1

m
,

where the sum is over players in the basic game. For any p, we let Qm (p)
and Bm (p) denote the solutions of these equations, as a function of p. Let
pm be a solution in p of pQm (p) = Bm (p), which is unique if sellers have
increasing competitive supply, and let Qm = Qm (pm). Thus (mQm; pm)

is the intersection point of the strategic supply and demand curves of the

m-fold replicated game. The Marshallian supply and demand functions in

the corresponding economy are simply multiplied by m and therefore the

competitive price and quantity are pC and mQC, where pC and QC are the

competitive price and quantity in the unreplicated economy.
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Lemma 7.3 Suppose �S = 1 and all sellers have binormal preferences and
p > 0, then

Qm (p)
m

�! ZS (p)

msSh (p;Qm (p)) �!
zSh (p)

ZS (p)
for all h 2 HS

as m �!1 for all p > minh2HS p�h.

This result is proved in the Appendix. The �rst limit shows that strategic

supply per replica approaches Marshallian supply pointwise. A similar result

holds for buyers, but the proof is omitted.

Lemma 7.4 Suppose �B = 1 and all buyers have binormal preferences, then

Bm (p)
pm

�! ZB (p)

msBh (p;Bm (p)) �!
zBh (p)

ZB (p)
for all h 2 HB

as m �!1 for all 0 < p < maxh2HB p�h.

That strategic supply and demand curves per replica approach the cor-

responding competitive curves suggests that the same is true for equilibria.

Note, however, that we have only proved pointwise convergence whereas to

draw this conclusion directly requires uniform convergence. Nevertheless, we

can use a more indirect argument, given in the Appendix, to show conver-

gence of the Nash equilibrium (per replica) to the competitive solution.

Theorem 7.2 If �S = �B = 1, all players have binormal preferences and all
sellers have increasing competitive supply, then pm �! pC and Qm=m �!
QC as m �!1.

8 Conclusions

We have shown how much of Marshallian competitive supply and demand

analysis remains applicable even when agents have signi�cant opportunities
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for strategic manipulation of the price. The analysis raises the question

of whether this competitive approach to strategic behavior is more widely

applicable, for example to general equilibrium with multiple markets. A

further question is whether market power of buyers in a Cournot oligopoly

can be analyzed by replacing competitive with strategic demand in a two-

stage game. Both of these topics are currently under investigation.

A Appendix (proofs)

Proof of Lemma 3.1. Note that the locus of points
�
eh � q; !Sh (q;Q)B

�
is a downwards sloping curve. On such a curve, the mapping from q to mar-

ginal rates of substitution is typically multi-valued. In the �rst part of the

proof we show (in two steps) that its inverse is single valued.

The �rst step is to use upper hemi-continuity to show that, for any � � 0,
there exists a q 2 [0; eh] for which

� 2 e@h �eh � q; !Sh (q;Q)B� , (18)

where e@h (x) = @h (x) for x1 < eh and e@h (x) = @�h (x) for x1 = eh. Clearly,
upper hemi-continuity extends from @h to e@h. Now consider the set

� =
n
q : 0 � q � eh; e@h �eh � q; !Sh (q;Q)B� \ [0; �] 6= ?o .

Since e@h has a closed graph, � is closed. Hence, � contains its maximum in q,
which we write q. If q = eh, (18) holds with q = q, since e@h �0; !Sh (eh; Q)B�
is unbounded above. If q < eh, we can �nd a sequence fqng in the comple-
ment of � convergent to q, together with a convergent sequence f�ng, which
satis�es �n � � and

�n 2 e@h �eh � qn; !Sh (qn; Q)B�
for all n. Taking the limit n �!1, using upper hemi-continuity, we deduce
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that e@h �eh � q; !Sh (q;Q)B� contains both limn!1 �
n � � and �0 � � (the

latter since q 2 �). So, (18) holds by convexity of @h.
The second step is to show that the solution of (18) is unique in q. This

follows by observing that, if 0 � q0 < q � eh and (18) holds for primed and
unprimed variables, binormality implies �0 < �.

This result allows us to de�ne a function � : R+ �! [0; eh], where � (�) is

the unique q satisfying (18). We observe that upper hemi-continuity implies

that � is continuous and binormality (2) implies that � is non-decreasing.

Furthermore, � (0) = 0, since 0 2 e@h �eh; !Sh (0; Q)B�. The optimality condi-
tion (3) is equivalent to q being a �xed point of ', where

' (q) = �

�
�S
B (Q� q)

Q2

�
.

Since, ' is continuous, non-increasing and ' (Q) = 0, there is a unique �xed

point of ' in [0; Q].

Proof of Lemma 3.2. Optimality conditions (3) and (4) imply that

� = sSh (p;Q) is the unique solution of

�Sp (1� �) 2 e@h �eh � �Q; !Sh (�Q;Q) pQ� , (19)

where e@h is de�ned in the preceding proof.
First, consider the case p � p�h. Then, if we had � > 0 for some Q > 0,

(19) and binormality would imply

�Sp � �Sp (1� �) > �Sp�h,

since �Sp�h 2 @h (eh; 0), eh��Q < eh and !Sh (�Q;Q)Qp > 0. This contradicts
binormality and means that sSh (p;Q) = 0 for all Q > 0.

For the rest of the proof, we will assume p > p�h. Observe that s
S
h (p;Q) =

0 if and only if (5) and, by de�nition, this holds if and only if Q � Q�h (p).
We prove that sSh (p;Q) is decreasing in Q where positive by supposing
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that 0 < Q0 < Q < Q�h (p) and s
S
h (p;Q) = � � �0 = sSh (p;Q0). Then,

eh � �Q < eh � �0Q0,
!Sh (�Q;Q) pQ > !

S
h (�Q

0; Q0) pQ0,

�Sp (1� �) 2 @h
�
eh � �Q; !Sh (�Q;Q) pQ

�
,

�Sp (1� �0) 2 @h
�
eh � �0Q0; !Sh (�Q0; Q0) pQ0pQ0

�
,

and so binormality implies � < �0, a contradiction.

The preceding result implies that � = limQ�!0 s
S
h (p;Q) exists. Taking

limits in (19) and using the upper hemi-continuity of @h shows that

�Sp (1� �) 2 @h (eh; 0) .

By de�nition of p�h, we have p (1� �) � p�h. Strict inequality would imply
the existence of Q > 0 satisfying

�Sp
�
1� sSh (p;Q)

�
2 @h (eh; 0) ,

which would contradict (19) and binormality. Hence, p (1� �) = p�h which
establishes the �rst limit. The second limit (in the third part of the lemma)

follows directly from sSh (p;Q) � eh=Q.
It remains to establish continuity, so suppose Q �! Q0 and assume �rst

that Q0 < Q�h (p). Since shares lie between 0 and 1, there is a sequence

fQng1n=1, convergent to Q0 and such that
�
sSh (p;Q

n)
	
converges to �0, say.

Taking limits in (19), using the upper hemi-continuity of @h and exploit-

ing (19) again, shows that �0 = sSh (p;Q
0). Since all such sequences have

this limit, continuity is established. To prove continuity at Q0 = Q�h (p)

entails showing that, for any sequence fQng1n=1 converging to Q�h (p) from
below, �0 = 0. Taking limits in (19), using upper hemi-continuity shows

that �Sp (1� �0) 2 @h (x0), where

x0 =
�
eh � �0Q�h (p) ; !Sh

�
�0Q�h (p) ; Q

�
h (p)

�
pQ�h (p)

�
.

But �0 > 0 would imply that x01 < eh and x02 >
�
1� �S

�
�hpQ

�
h (p) and
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therefore, by (5) and binormality, �Sp < �Sp (1� �0) giving a contradiction.
Hence, �0 = 0.

Completion of proof of Lemma 3.6. We �rst note that the share

function sSh (p;Q) of seller h is a continuous function of p. This follows from

the optimality conditions (3) and (4)) by a similar argument to that in the

last paragraph of the proof of Lemma 3.2. Hence, SS (p;Q) is also continuous

in p.

Next, we observe that, if �S = 1 or �h = 0, then psSh (p;Q) is a strictly

increasing function of p for �xed Q. This follows by re-writing (3) as

(p� fp�g) 2 @h
�
eh �

fp�gQ
p

; fp�gQ
�
.

By an argument similar to that in the proof of Lemma 3.2, we can see that

fp�g non-increasing with p is incompatible with binormality (2).
We are now in a position to prove continuity, so suppose that p �! p0 >

0. If we did not have Q (p) �! Q (p0), there would be a sequence fpng1n=1
convergent to p0 and satisfying either (a) Q (pn) �! eQ 6= Q (p0) or (b)
Q (pn) �! 1 as n �! 1. But, in case (a) we could take limits in the
equilibrium equation

SS (pn;Q (pn)) = 1

to obtain SS
�
p0; eQ� = 1, which would imply eQ = Q (p0), a contradiction. In

case (b), if �S = 1 or �h = 0, we could de�ne p = max pn and p = min pn > 0.

Then, for any h 2 HS and positive integer n, we can use the fact that psSh is

increasing, to deduce

0 � sSh (pn;Q (pn)) �
p

pn
sSh (p;Q (pn)) �

p

p
sSh (p;Q (pn)) .

It follows from Lemma 3.2 that sSh (p
n;Q (pn)) �! 0 as n �! 1. This also

holds for �S < 1 and �h > 0, since Lemma 3.2 implies that sSh (p
n;Q (pn)) is

identically zero for large enough n. It follows that SS (pn;Q (pn)) �! 0. In

particular, SS (pn;Q (pn)) < 1 for all large enough n, which would contradict
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the de�nition of Q (pn), establishing continuity.

Proof of Lemma 4.1. Boundedness is immediate from the de�nition:

pXB1 (p) = B (p) and the feasibility condition that B is bounded above by the
aggregate endowment of buyers.

We establish that XB1 (p) �! +1 as p �! 0 by contradiction. If not, we

could �nd a sequence fpng, such that, as n �! 1, we would have pn �! 0

and

XB1 (pn) �! � > 0,

�nh = sBh (p
n;B (pn)) �! !� h for all h 2 HB,

for some  !� h 2 [0; 1]. We have used the fact that the vector (�nh)h2HB lies

in a compact set (a simplex) for all n. Noting that, for all h 2 HB, the

optimality condition (7) can be written

pn

�B (1� �nh)
2 e@h ���B�nh + �1� �B� �h�XB1 (pn) ; eh �XB1 (pn) pn�nh� ,

where e@h (x) = @h (x) for x2 < eh and e@h (x) = @+h (x) for x2 = eh. We

can take limits and use hemi-continuity of e@h (inherited from that of @h) to

deduce that 0 2 @+h (x1; eh) where x1 =
�
�B !� h +

�
1� �B

�
�h
�
�, the claimed

contradiction of strictly increasing preferences.

Finally, suppose that p �! PB < +1 from below and pXB1 (p) 9 0.

Since B (p) = pXB1 (p) is bounded, we could �nd a sequence approaching PB

from below on which B had a limit B > 0. But taking the limit of the equilib-
rium condition SB (p;B (p)) = 1 on the sequence would give SB

�
PB;B

�
= 1.

This contradiction with Lemma 3.7 proves that B and therefore XB1 vanish
in the limit.

Proof of Lemma 5.1. We �rst rewrite the optimality condition for
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buyers (7) as

p

�B (1� �)
2 e@h��B

p

� �
�B� +

�
1� �B

�
�h
�
; eh �

�
B

p

�
p�

�
, (20)

where � = sBh (p;B) and e@h is as de�ned in the preceding proof. We will
show, by contradiction, that sBh is non-decreasing in p 2 (0; p�h) and strictly
decreasing where positive, provided B=p is held �xed. For suppose, p0 > p

and either (i) �0 > � or (ii) �0 � �, �0 > 0, where �0 = sBh (p
0;Bp0=p). We

would have�
B

p

� �
�B� +

�
1� �B

�
�h
�
�

�
B

p

� �
�B�0 +

�
1� �B

�
�h
�
,

eh �
�
B

p

�
p� � eh �

�
B

p

�
p0�0,

p

1� � <
p0

1� �0 .

Note that in case (i) the �rst inequality is strict and in case (ii) the second

inequality is strict. This is the claimed contradiction with binormality (2).

If p < PB we can deduce that SB (p;B) strictly decreases with p provided

B=p is held �xed.

Hence, if 0 < p0 < p < PB,

SB
�
p0;
B (p)
p
p0
�
> SB

�
p;
B (p)
p
p

�
= 1 = SB (p0;B (p0)) .

Since SB (p;B) is strictly decreasing in B, where positive (using Lemma 3.4),

we deduce that B (p) p0=p < B (p0), proving the lemma.

Proof of Lemma 5.2. Our �rst step is to show that, if all sellers have

binormal preferences and increasing competitive supply, then

x02 > x2 > 0; � 2 @h (x1; x2) ; � > 0) 9�0 2 @h (x1; x02) s.t.
�0

x02
<
�

x2
, (21)

The argument is by contradiction, so suppose that we have x02 > x2 > 0; � 2
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@h (x1; x2) and
�0

x02
� �

x2
> 0 for all �0 2 @h (x1; x02) .

By de�nition of competitive supply, we have x2=� 2 eXc
h (�; e), where e =

x1 + x2=�. Now de�ne p� = x02�=x2 > � and choose any q 2 eXc
h (p

�; e). The

de�nition of competitive supply puts

p� 2 @h
�
x1 +

x2
�
� q; p�q

�
.

If we had q > x2=�, then

x1 +
x2
�
� q < x1,

p�q >
x2
�

x02�

x2
= x02

which implies p� > �0, since seller h has binormal preferences. We must

therefore have q � x2=�, which is the claimed contradiction with increasing
competitive supply (as eXc

h (p; e) increasing in p and p
� > � implies q > x2=�).

The second step is to use the optimality condition (19), where � =

sSh (p;Q), to show, by contradiction, that s
S
h is non-decreasing in p for �xed

Q. For, suppose p0 > p and �0 = sSh (p
0;Q) < �. There are two possibilities

(i) p0�0 � p�, or (ii) p0�0 > p�.
In case (i) and using the fact that !Sh is non-decreasing in its �rst argu-

ment, we have

eh � �0Q > eh � �Q, (22)

!Sh (�
0Q;Q) p0Q � !Sh (�Q;Q) pQ,

�S (1� �0) p0 > �S (1� �) p,

contradicting binormality (2).

In case (ii), it follows from the de�nition of the sharing rules that

!Sh (�
0Q;Q) p0Q > !Sh (�Q;Q) pQ
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and therefore (21) implies the existence of

�0 2 e@h �eh � �Q; !Sh (�0Q;Q) p0Q�
such that

�0

!Sh (�
0Q;Q) p0Q

<
�Sp (1� �)
!Sh (�Q;Q) pQ

. (23)

Since

�Sp0 (1� �0) 2 e@h �eh � �0Q;!Sh (�0Q;Q) p0Q�
and (22) also holds in case (ii), binormality would imply

�Sp0 (1� �0) � �0.

Substituting this inequality in (23) and using the expression !Sh, shows, after

some manipulation that �0 > �, contradicting our initial supposition.

Hence, if p0 > p > P S,

SS (p0;Q (p)) � SS (p;Q (p)) = 1 = SS (p0;Q (p0)) ,

from which we can deduce that Q (p0) � Q (p), by Lemma 3.2. It follows
that strategic supply is non-decreasing in p:

Proof of Lemma 6.1. If Q � Q�h (p) the result is trivial, so assume
Q < Q�h (p). If p

�0
h < p � p�h, the share function is identically zero for the

original endowment and positive for the increased endowment (by Lemma

3.2) so the result is obvious. When p > p�h, the proof is by contradiction.

Fixing p;Q > 0 and using the optimality condition (19), suppose we had

e0h > eh and

�0 = sS0h (p;Q) � � = sSh (p;Q) .
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Then, we would also have

e0h � �0Q > eh � �Q,
!Sh (�

0Q;Q) pQ � !Sh (�Q;Q) pQ,

�Sp (1� �0) � �Sp (1� �) .

Note that � > 0 since p > p�h and Q < Q
�
h (p), so these inequalities contradict

binormality (2).

Proof of Lemma 6.3. Writing � = sSh (p;Q; t) and �
0 = sSh (p� t;Q; 0),

and recall that with �S = 1, !Sh (�Q;Q) = � and e@h = @h. Then the �rst

order conditions (19) imply

p (1� �)� t 2 @h (eh � �Q; [p� t]�Q) ,
(p� t) (1� �0) 2 @h (eh � �0Q; [p� t]�0Q) .

The proof is by contradiction, so suppose we had � > �0. Then, we would

also have

eh � �Q < eh � �0Q,
[p� t]�Q > [p� t]�0Q,

p (1� �)� t < (p� t) (1� �0) .

The last inequality is justi�ed by noting that it follows from � > �0 and

t > 0. This set of inequalities contradicts binormality (2).

If @h (x1; x2) is a singleton, except possibly on the boundary, we could

not have � = �0, for this would imply p (1� �) � t and (p� t) (1� �) were
distinct members of

@h (eh � �Q; [p� t]�Q) ,

a contradiction.

Proof of Lemma 7.1. The proof is by contradiction. Let � = zh (p)
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and � = sSh (p;Q). Suppose we had Q� � �. Then, we would have

eh � �Q � eh � �,
p�Q � p�.

Binormality (2) and conditions (17) and (19) imply that p (1� �) � p and
hence � = 0. This contradicts Lemma 3.2 since p > p�h:

Proof of Lemma 7.3. Fix p > minh2HS p�h. From the preamble to the

lemma and Corollary 7.1, we have 0 � Qm (p) � mZS (p). It follows that
the sequence fQm (p) =mg lies in a compact set. The lemma is proved by
showing that all convergent subsequences converge to ZS (p) :

Suppose thatQm (p) =m converges toQ� on a subsequence. For anym and
h 2 HS, let �mh = sh (p;Qm (p)) and observe that the equilibrium condition

mSS (p;Qm (p)) = 1

implies that the vector (m�mh )h2HS lies in the
��HS

��� 1-dimensional simplex.
Since this is a compact set, there is a sub-subsequence on which (m�mh )h2HS

converges to (��h)h2HS, say, in the simplex. Optimality condition (19) can be

written

p (1� �mh ) 2 @h
�
eh �m�mh

Qm (p)
m

; pm�mh
Qm (p)
m

�
,

for all h 2 HS. Taking the limit on the sub-subsequence and using the upper

hemicontinuity of @h we have

p 2 @h (eh � ��hQ�; p��hQ�) ,

for all h 2 HS, where we use the fact that �mh �! 0. This states that

��hQ
� = zSh (p) for all h 2 HS. Summing over h 2 HS gives Q� = ZS (p),

completing the proof of the �rst limit. The second result follows since all

subsequences of
�
(m�mh )h2HS

	
converge to

�
zSh (p) =Q

��
h2HS.
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Proof of Theorem 7.2. First consider prices. For any " > 0, let

eQ = max�ZS �pC � "� ; ZB �pC + "�	 .
Since ZS is strictly increasing and ZB strictly decreasing, the former lies

below the latter on the vertical line Q = eQ and Lemmas 7.3 and 7.4 imply

that, for all large enough m, the graph of Qm (p) =m cuts this line below the

graph of Bm (p) =pm. This means that their intersection: (Qm=m; pm) lies to
the right of the line (from their monotonicity properties) and therefore

p� " < pm < p+ ",

proving the �rst assertion. This argument is illustrated in Figure 3.

A similar argument applied to quantities with eQ = QC � " shows that
QC � " < Qm=m < QC, for all large enough m.

Figure 3: Competitive equilibrium versus Nash equilibrium.
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