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ABSTRACT

When seasonal time series are periodically integrated, we show that the any cointegration is
either full periodic cointegration or full nonperiodic cointegration, with no possibility of
cointegration applying for only some seasons. In contrast, seasonally integrated series can be
seasonally, periodically or nonperiodically cointegrated, with the possibility of cointegration
applying for a subset of seasons. Cointegration tests are analysed for periodically integrated
series. A residual-based test is examined and its asymptotic distribution is derived under the
null hypothesis of no cointegration. A Monte Carlo analysis confirms the size properties of the
test and shows it to have good power. The role of deterministic terms in the cointegrating test
regression are also investigated. Further, we show that the asymptotic distribution of the error-
correction test for periodic cointegration derived by Boswijk and Franses (1995) does not apply
for periodically integrated processes, and we derive this distribution for the case of

uncorrelated periodically integrated processes.



1. Introduction

To date, cointegration analyses of long run relationships in seasonal time series have been
conducted primarily in terms of the separate (zero and seasonal frequency) unit roots implied
by the seasonal differencing filter, which leads to the concept known as seasonal cointegration;
see Hylleberg, Engle, Granger and Yoo (1990) (HEGY), Engle, Granger, Hylleberg, Lee
(1993), Lee (1992), Johansen and Schuamberg (1999), Cubadda (2001) among others.
However, cointegration may also be considered season by season, and this route leads to so-
called periodic cointegration, which is examined by Birchenhall, Bladen-Hovell, Chui, Osborn
and Smith (1989), Franses and Kloek (1995), Franses and Boswijk (1995), and others.

Seasonal cointegration can apply only for seasonally integrated (S/) processes, which
are nonstationary processes which are made stationary by the application of annual
differencing. In an analogous way, periodic cointegration can apply for periodically integrated
(PI) processes, which are nonstationary but rendered stationary by application of a seasonally
varying quasi-difference filter. In an S/ process, nonstationary unit root behaviour exists not
only at the longrun (or zero) frequency, but also at all the seasonal frequencies. Although not
always discussed, the implication of these seasonal unit roots is that the seasons of the year are
not cointegrated with each other, and hence “summer may become winter”; see, for example,
Osborn (1991) or Ghysels and Osborn (2001). From an economic perspective, this implication
may be unattractive. On the other hand periodically integrated processes may be more plausible
than seasonally integrated ones, because they allow for nonstationarity in conjunction with
cointegration applying between the separate seasons of the year (Osborn, 1991, Franses, 1996).

Although there has been little analysis of seasonal versus periodic cointegration,
Franses (1993, 1995) shows that these imply different parameter restrictions on the
cointegrating relationships when S/ processes are considered. In other words, periodic
cointegration can apply between seasonally integrated, as well as between periodically

integrated, processes. Boswijk and Franses (1995) propose a Wald test for periodic



cointegration in S/ processes and derive its asymptotic distribution, which they assert also
applies when the individual series are PI. However, the present paper shows that this test has a
different asymptotic distribution under the null hypothesis when applied to PJ, rather than S/,
processes. Indeed, since quarterly P/ and SI processes differ in that the former implies one
underlying unit root process across the four seasons whereas the latter implies four distinct unit
root processes, we might anticipate that these cases will give rise to different asymptotic
distributions.

From a theoretical perspective, the distribution of tests for periodic integration in P/
processes is unresolved. A system approach, in which an equation is estimated for observations
relating to each season for each variable, can theoretically be applied (see, for example,
Ghysels and Osborn, 2001, pp.171-176). However, this is likely to be feasible in practice only
where data are a relatively high frequency are available, as in the application of Haldrup et al.
(2005). Although a two-step approach of the Engle-Granger (1987) type can be adopted (as in
Birchenhall et al., 1989, or Franses and Kloek, 1995), unless testing is undertaken separately
for each season, which is likely to be inefficient, the asymptotic distribution of the test statistic
is again unknown. Franses (1996, p.182) proposes testing for periodic cointegration through
the application of the Boswijk-Franses (1996) PI test to the first-stage residuals over all
seasons and speculates as to its asymptotic distribution. The present paper contributes to this
strand of literature by establishing that this test statistic follows the Phillips and Ouliaris (1990)
distribution, which enables asymptotically valid inference to be undertaken.

Prior to deriving the distributions of the test statistics for P/ processes, Section 2
discusses the cointegration possibilities for these processes, which formalises the discussion in
Ghysels and Osborn (2001, pp.168-171). When the series are PI, we show that the only
cointegration possibilities are periodic cointegration or nonperiodic cointegration, with
cointegration for any one season implying cointegration for all seasons. The section also

compares this to the wider set of possibilities for S/ processes. Section 3 then derives the



asymptotic distribution of the residual-based cointegration test for P/ processes, which is
followed (Section 4) by an analysis of the asymptotic distribution of the Boswijk-Franses
(1995) cointegration test when applied to uncorrelated P/ processes. A Monte Carlo analysis in
Section 5 examines the finite sample distribution of the residual-based test, including an
analysis of the role of deterministic terms in the regression, with a concluding section

completing the paper.

2. Periodic Integration and Cointegration

2.1 Properties of Periodically Integrated Processes

Consider a univariate time series x,;, where the first subscript refers to the season (s) and the
second subscript to the year (7). For simplicity of exposition, we assume that the data are
quarterly and that observations are available for precisely N years, so that the total sample size
is 7= 4N, with initial values x40 = 0. The annual difference operator is Ay, = 1 — L4, where L is
the usual lag operator that works on the seasons (L'x;; = x,.x.). Note that, through out the
paper, it is understood that X,k = X4.4+5.-1 for s —k < 0.
We assume, for simplicity of exposition, a first-order periodic process
Xso = @ Xs-10 T €t (1)

where ey, 1s white noise, then x,,; is a periodically integrated process, if @ @dsds = 1. In such a
PI(1) process, nonstationarity arises from a single common trend shared by the four quarterly
observations of the time series; equivalently; there are three cointegration relationships
between the quarters. It is convenient to explore this through the representation referred to as
the vector of quarters (VQ) representation by Franses (1994), which is based on the vector X, =
(X117, X210, X31, X47)" and disturbance process E,= (e, €21, €31, €ar). The VQ representation is

(DOXT :CDIXT—I +ET (2)



where

1 0 0 0 00 0 ¢

¢, 1 0 0 000 0
D, = , ©, = 3)

0 —-¢ 1 0 000 0

0 0 -¢ |1 000 0

To reduce the VQ system for the P/(1) process in (1) to stationarity, consider the vector
MA [VMA] in the annual difference AsX;= X, - X1, given by
AsX, = (@9 — OIL")E, = C(L")E.. (4)
This VMA process is noninvertible, because the matrix C(L4) has three unit roots. Therefore,
C(1) is of rank one and it is possible to write

C(1)=0y—0,=ab’ (5)

where a = (1, ¢, g3, hdsds), b = (1, S s, b, ¢1). Further details of the above can be
found in Boswijk and Franses (1996), Franses (1994), Ghysels and Osborn (2001), among

others.

An implication of (4) and (5) is that the four elements of X, share a single common
stochastic trend, given by b'z;l E, , to which they adjust with periodic adjustment coefficients

given by the elements of a; see Boswijk and Franses (1996) for further discussion.

2.2 Cointegration for PI Processes

(O]
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Now consider the mx1 vector process x, = [x , x™ 7', for which we assume that each x'7’

is a PI(1) process, satisfying

4
xs('i') = ¢S(A])xs('£,r + e;;) Wlth H¢5§/) = 1 7j = 19 ey M (6)
s=1
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where E _=(e )" is vector white noise with E[EE'] = ) positive definite'.

Therefore, we can define the VQ representation as in (2)/(3) for each
XU =, x,xD x0y, =1, ..., m.

Cointegration can then be defined as follows:

DEFINITION 1. The mx1 vector x, of PI processes satisfying (6) is periodically cointegrated

if there exist mXr matrices as such that the linear combinations o 'xs; are stationary for each

s=1,...,4.

Although not formally defined in this way, the idea of periodic cointegration appears to have
been applied first by Birchenhall ez al. (1989).

In their discussion of periodic cointegration, Boswijk and Franses (1995) distinguish
full and partial periodic cointegration, where the former corresponds to Definition 1 and the
latter to the situation where stationary linear combinations ¢ x;, exist for only some s =1, ...,
4. However, Ghysels and Osborn (2001) show that partial periodic cointegration cannot apply
between two PI(1) processes; such processes are either (fully) periodically cointegrated or no
cointegrating relationship exists for any s = 1, ..., 4. This result is generalized in Lemma 1 for

the case of m PI(1) processes.

LEMMA 1. Consider the mx1 vector xy of PI processes of (6), such that the m<r matrix o of

rank r defines all linearly independent stationary linear combinations oy 'x,, for some s =1, ...,

4. Then:
(i) as, together with the coefficients ¢;” (s=1,2,3,4;7=1, ..., m) of (6), determine the

mxr matrix og of rank r, which must exist for each g =1, 2, 3, 4, g # s such that oy x4 is

stationary,

! Although periodic variation in £ can be permitted, the purpose of our analysis is to analyse the implications of
periodically varying coefficients.



(ii)  Nonperiodic cointegration with a;= o (s = 1, 2, 3, 4) applies if and only if § =¢,, j =

1, ..., min (6).

The first part of Lemma 1 implies that there must be the same number of cointegrating
relationships between PI(1) processes for all seasons s = 1, 2, 3, 4. Hence, as in the bivariate
case considered by Ghysels and Osborn (2001), partial periodic contegration cannot apply
between PI(1) processes. Further, given the cointegrating vectors that apply for one season and
the univariate P/ coefficients of (1), then all four sets of cointegrating relations can be
determined. Part (ii) further establishes that the same (nonperiodic) cointegrating relations can
apply over seasons if and only if all processes have identical univariate P/ coefficients. The
proof of this Lemma?, rests on the fact that the VQ process corresponding to a PI(1) variable is
driven by a single unit root process. The stationary relationships between observations for the

seasons that exist for each X =[x” x{” x x{?] then imply that cointegrating relations

for the vector x;, can be mapped from season to season.
Conventional cointegration between /(1) processes provides a special case of Lemma 1,

where the same cointegrating relations apply for all seasons (quarters) of the year and all

# of (6) are unity.

2.3 Cointegration for S/ Processes

Unlike the quasi-differencing x; - @x;.1; of (1) with ¢ @3¢ = 1 that renders the PI(1)
process stationary, first order seasonally integrated, or SI(1), processes are made stationary and
invertible by annual differencing. As is now well know, such processes contain four unit roots,
implying that the quarters of the year are not cointegrated with each other; Osborn (1993) and
Franses (1994) provide discussions of some of the implications. In the context of cointegration

between elements of an mx1 vector x,, if each element is S/(1) then the lack of cointegration

2 All proofs can be found in the Appendix.



across the seasons implies that distinct contegrating relations can apply for each of the vectors

x fors =1, 2, 3, 4. This is the essence of Lemma 2.

LEMMA 2. Consider the mx1 vector x_, =[x, ..., x!" 1 of SI processes. Then the existence of

ST
an mxr matrix os of rank r such that os'xs is stationary for some s = 1, ..., 4 has no

implications for the existence or nature of cointegration across the elements of X for q # s.

An immediate consequence of Lemma 2 is that full and partial periodic cointegration are
possibilities for S/(1) processes.

So-called seasonal cointegration, which corresponds to cointegration at the distinct
seasonal spectral frequencies, is another possibility for S7 processes and is analysed by Engle,
Granger, Hylleberg and Lee (1993), Cubadda (2001), Johansen and Schaumberg (1999) and
Lee (1992). However, our analysis focuses on testing for periodic cointegration. More
specifically, we are particularly interested in testing for cointegration for P/ processes.
However, the case of ST processes is relevant, since Boswijk and Franses (1995) claim that the

same asymptotic distribution applies for their test for S7 and PI processes.

3. Residual-Based Test for Periodic Cointegration

This section analyses the periodic analogue of the Engle-Granger (1987) test, which applies a
test for P/ to the residuals from a first-stage regression. We first set out the test regression and
then, before obtaining the distribution of the test statistic in subsection 3.3, subsection 3.2

examines the properties of the processes in (6) in the absence of cointegration.

3.1 The Test Regression

As usual, a residual-based test requires that the potential cointegrating relationship being

examined is unique. That is, either there exists at most one cointegrating vector or, if there



potentially exist 1< k& < m cointegrating vectors between the separate series, then (exclusion)
restrictions are imposed to ensure uniqueness. From the analysis of the previous section, we
know that cointegration applying for one season between P/ processes implies cointegration for
all seasons. Therefore, it is anticipated that efficiency gains will result by considering all
seasons jointly.

To keep notation simple, our analysis in Section 3.3 below assumes only one
cointegrating relationship may exist across the m variables. Arbitrarily normalising on the first

element of x, we propose fitting the regression

2 = fi B.D, Xty ()

i=2 s=l

and then applying the periodic integration test of Boswijk and Franses (1996) to the residuals

A

v.=x" =" 3.x" . The intuition is that, in the absence of cointegration, the residuals v,
i=2

follow a nonstationary PI process (see Franses, 1996, pp.181-182).

Now, partition x;, as
xsr = (xglr)f' Zsr ')" Zsr '= (xii)’ R xs(“’rn) )' (8)
so that z;; comprises the vector of right-hand side variables in (7). We assume thatall j =1, ...,

m variables are PI(1) processes, as in (6), with variance-covariance disturbance matrix

corresponding to the system being

E[E, B, =5 = {"“ ”} )

o, X

zz

where X in (9) partitioned conformably with x;, in (8).

3.2 Properties of the P/ System

As discussed in Section 2.1 above, the matrix C?(L*) in the VMA representation for each

process j = 1, ..., m has three unit roots, and hence

10



C(j)(l) — (@Bj) _ @Y)): a(‘i)b(j)', j=1.,m (10)
) — ) AWD A 50 A 40 ) — ) 4D 4D 4D 5 40
where a’ =[1, ¢,”, ¢,"¢,”, 6,"¢,"¢," 1", b =L 74,4, "0, ']

Stacking the processes and using the annual difference representation of (4), we can

write

A4Xr :®3E: _®TE:—1 (1T)

where A4XT=(A4X§1>',A4X§2)',---,A4X§'">'), AXY = (A A XD, A AxY) and

corresponding definitions apply for E’. The MA coefficient matrices in (11) are block

diagonal, of the form

el o 0
0o oV 0
e = ! N i=12
0 0 o

and
E[E’E'|=2®1,.
The long-run covariance matrix between the m x4 random walk processes in X _ is then given

by (see also Boswijk & Franses, 1995, p.440)

Q=Y E[AXAX. ]

= > E[O;E! ~O;E OE., ~O[E, ] (12)

=[0, —671EZ®1,)[0; -]

In the absence of cointegration between the x(f) j=1,2,---,m, cointegration applies

N

only across the seasons separately within each xg) j=1,2,---,m and we have
C'1)=0,-0; =a'd™ (13)

where the (4m)xm matrices a*, b* are defined by (in an obvious notation)

11



a® 0 0 pW 0o --- 0

(2) (2)
S R S B ) (14)

0 0 cee g™ 0 o ... pm

and all sub-matrices in (14) are 4x1. In this case, C*(1) is of rank m.

However, if cointegration exists across processes, then C*(1) is of rank & < m and hence
a" and b" do not have the block diagonal form of (14). Specifically, a* and b" are then matrices
of rank k, with dimension 4m x k.

Returning to the case of no cointegration, Lemma 3 establishes the asymptotic
distribution of the scaled vector X =[X"', Z ']" relevant for the regression (7). The result is

obtained by accounting for the contemporaneous correlation between the disturbances through

the decomposition X = PP' where P is upper triangular.

LEMMA 3. Consider the vector of m PI(1) processes defined in (6), (8) and (9), with no

cointegration applying across the m processes. Also define the 4m x 1 vector Brownian motion
W*(r) with covariance matrix Ly, whereW*(r) =[W V), W*(r)']" in which W) is 4 x 1,

Wi (r)isd4nx 1 andn=m- 1. Then, as N=T/4 — oo:
X(}) BW

LX[rN] :L - :>B(r)=[ z(r)

\/ﬁ \/ﬁ Z[rN] B*(r)

— O-lll/za(l)b(l)'( 1_Iolz'plz W(l)(r)+(plz'®14)Wz(r))
@b (P ®I,)W ()

(15)

where [rN] is the integer part of rN, p,. = o;"*P.'c,. , the upper triangular matrix P., satisfies

P.P..'=%.., and a’, b" are the lower right-hand 4n x n blocks of a*, b", respectively, in (14).

Here and throughout the paper = indicates convergence in distribution.

Note that we can define standard Brownian motions underlying (15) as

12



0@ = 00 )b (1= o o WO + (o ® L)W (1)

(16)
W) (7”) — (b(j)vb(j)p(j)p(j)')fl/zb(j)'(p(j) ® 14)W2 (7”) j= 2,3,..,m
where p¥ is the (j-1)" row of P.... Using (16),
, 12 (1)~
BO(r) = 0111/2(17(1) b(”) a0 (2) 0

BY () = (p(j)p(j)vb(J)vb(j) )”Zau)w(j)(z) i=2,3,..m
provides an alternate representation to (15). Therefore, the scalar standard Brownian motions

W () in (16) can be thought of as the stochastic trends underlying the m individual PJ

processes, which in turn derive from the vector Brownian motion processes W"(r) and W?(r) .

It is clear from (15) or (16) that, in general, Brownian motions processes relating to x'"

and z are correlated. That is, when the contemporaneous covariance 6, in (9) is nonzero,

W*(r) influences w" (r). This effect disappears in the special case of 6. =0, since p;. = 0

)

when x{! @ (M).

is uncorrelated with x'“/, ..., x

3.3 Asymptotic Distribution of the Test Statistic

We now turn to the properties of the residuals resulting from OLS estimation of (7), which are

summarized in Lemma 4.

LEMMA 4. Consider the vector of PI(1) processes defined in (6), (8) and (9), with no
cointegration applying across the m processes. The 4x1 vector V. =[V_,v, v, ,v,.] of

residuals from (7) for year t then satisfy, as N = T/4 — oo:

1 .
7V[VN] :1110_111/2(b(l)'b(l))oja(l)wm(’”) (18)

N

where [rN] is the integer part of rN and the univarite Brownian motion w_m(r) is defined by

w, (1) =w" () - | W(r)ﬁ(r)'dr[[wz Eeyar Wiy (19)

13



in which W(r):[W(r), W(r)’]' is m x 1 standard Brownian motion with covariance

matrix I, the 4 x 1 vectors a', b"" are defined in (14) and 1, is a scalar.

Lemma 4 implies that the residuals from (7) asymptotically retain the same

nonstationary periodic coefficients as the univariante process for xf,lr) in (6). This is easily seen

by comparing (18) with the first equation of (17).

Building on the implication of Lemma 4 that the residuals of (7) retain the P/ properties

(1)

ST

of x./ in (6), the strategy of testing for periodic integration in the residuals of (7) is clear. More
specifically, following Franses (1996, pp. 181-182), we propose testing the null hypothesis
¢, 0,0,¢, =1 against the alternative ¢ @,¢, ¢, <1 in the unrestricted dummy variable

regression’
4
Vsr: Z¢SDSTVS71,T + 8sr (20)

where Dy, is the usual binary seasonal dummy variable for season s. Under the null hypothesis

the residuals V.

N

.~ PI(1), so that there is no cointegration between the two P/ processes. Under
the alternative hypothesis, the residuals are stationary, implying that either full periodic
cointegration or full nonperiodic cointegration exists between the processes.

We employ the test of periodic integration proposed by Boswijk and Franses (1996),

which uses the Likelihood Ratio statistic
LR =N1n(5?/5?) 1)

2

where &~ is the unrestricted maximum likelihood estimator of the disturbance variance in (7)

and G, is the corresponding estimator when the restriction ¢ ¢ @@ = 1 is imposed. The usual

3 Note that, although (18) implies the PI coefficients for the residuals are identical to those of the univariate

process for xs(lr) in (6), we do not propose that equality between these should be imposed.

14



practice is to impose the restriction by setting ¢y = 1/(d ¢ s), with (20) then estimated by
nonlinear least squares.
Theorem 1 establishes the asymptotic distribution of this periodic cointegration test

statistic.

THEOREM 1. Under the null hypothesis of no cointegration between the PI processes of (6),
(8) and (9), the likelihood ratio test statistic of (21) applied to the residuals from (7) has

asymptotic distribution:

r= [y ] (] v ) dm () )

where w, (r) is defined in (19).

The distribution of the test statistic in (22) is the square of the Dickey-Fuller test for
cointegration using the residuals of a (nonperiodic) regression, as derived by Phillips and
Ouliaris (1990). It is clear from (19) that this asymptotic distribution depends on the number of
regressors in (7), namely n = m - 1. Consequently, the distribution of the LR test statistic in (22)
also depends on m. However, the distribution is invariant to the values of the P/ coefficients for
the processes in (6) and nonzero disturbance covariances in (9).

Also in common with Phillips and Ouliaris (1990), this asymptotic distribution will
continue to hold in the presence of stationary autocorrelation in the processes of (6), provided
that the test regression for the residuals in (20) is sufficiently augmented to take account of this

autocorrelation.

4. The Boswijk and Franses Test
Boswijk and Franses (1995) propose Wald tests for periodic cointegration relating to a specific

season s and over all seasons with an error-correction mechanism (ECM) framework. This test

15



is built on the cointegration test of Boswijk (1994), which was developed in a nonperiodic
context. To avoid issues Boswijk and Franses encounter concerned with the possible
dependence of some asymptotic distributions on correlation between the disturbances of the
processes considered, we confine our attention to the “spurious regression” case where the
variables are mutually uncorrelated. Also for simplicity, we continue to assume that all
variables have zero means, with no deterministic terms included in the estimated ECM model.
Although a special case, this is sufficient to establish that, contrary to the statement of Boswijk
and Franses (1995), the asymptotic distribution of this test when applied to P/ processes differs
from the result they obtain for S/ processes.

Therefore, using the notation of the previous section, and arbitrarily assuming that the

first variable of x;; is the dependent variable, our periodic ECM model is

(O]

) _ _
A4x§r - j/s (xs,r—l - Ks st,r—l )+ u §= 19 27 37 4

ST

where x; is an n X 1 vector. Employing seasonal dummy variables, this can be written

A xY 224:(50SD x" +8,'D,.z )+u

st7vs,r—1 st<s,7-1

(23)

ST
s=1

where dys = 5 and ;5 = -ys;,. We also continue to assume that the variables are generated by

the PI(1) processes of (6), (8) and (9), with the additional assumption 6. = 0 and X _ being a

diagonal matrix. In comparison with Boswijk and Franses (1995), no conditioning on the n x 1
vector Az, is included in (23), due to our simplifying assumption of zero covariance between

(

'V and z.

Using a similar notation to Boswijk and Franses (1995), the Wald statistic to test the

null of no cointegration in season s, or equivalently to test do; = 0, d1;, = 0 in (23), is

wald, =8, (varl5.]]'5, (24)

16



A A

where o, = (§OS,$1S')' is the ordinary least squares estimator of the relevant coefficients and

N

V&r[&l] is the corresponding estimated OLS covariance matrix. When all seasons are

considered, the joint cointegration test statistic for the null hypothesis 6 = 0, where
5=[5",8,,8,,6,'1, is given by (in an obvious notation)

Wald = & (varld |6 = 6. var(3.1)' 3, (25)

4
p
Note that Wald statistic in (25) is the sum of the individual Wald; of (24) due to the block
orthogonality of the regressors in (23) that is a consequence of the seasonal dummy variables.
As noted by Ghysels and Osborn (2001, pp.176-179), the null distribution obtained by
Boswijk and Franses (1995) assumes x;, is a vector of S/ processes. More specifically,
Assumption 1 of Boswijk and Franses (1995, p.440) does not require the longrun variance-

covariance matrix Q of the vector Brownian motion process corresponding to (X1, X2z, X3z, X47)'

to be positive definite, which allows the possibility of one or more components being P/

processes. However, the proof of their Theorem 2 assumes that GS'QGS is strictly positive®.

Consequently, the asymptotic distributions derived by Boswijk and Franses require Q2 to have
full rank, ruling out the possibility that any element of x,; is periodically integrated.

Under the null hypothesis of no periodic cointegration, and assuming S/ processes,
Boswijk and Franses (1995) establish that the distribution of the Wald; statistic used to test for
cointegration relating to an individual season s is identical to that obtained by Boswijk (1994)
for the nonperiodic case. Theorem 2 below shows that this result does not carry over to the case
of PI(1) processes. Indeed, for such processes, the theorem shows that the distribution of

Boswijk (1994) emerges in relation to the test statistic for full periodic cointegration.

* See the paragraph between expressions (A.11) and (A.12) of Boswijk and Franses (1995, p.451).

17



THEOREM 2. Under the null hypothesis of no cointegration between the PI processes of (6),

(8) and (9) with 61, = 0 and X _being a diagonal matrix, the asymptotic distributions of the

Wald test statistics proposed by Boswijk and Franses are:

(i) for the Wald, test of oyg = 015 = 0 for an individual s

waid, = 4L (0 ey o [ e erar) ([ o). eo)

(ii) for the joint Wald test of 6y, =013, =0,5=1,2,3,4,

Wald = 4([ WX(r)dW(r))' Wx(r)Wx(r)'drr ([ W(r)dW(r)) 27)
where W(r)':[m(r), W(r)']’ is m-vector standard Browmian motion and

=1, ¢“), 2“) 3(1), ¢2(1) 3“) jl)]' which has s" element ai”

There are two important differences between the distributional results given (26) and
(27) and those of Boswijk and Franses (1995) for S/ processes. Firstly, the statistic in (26) does

not follow the distribution of Boswijk (1994), due to the multiplicative factor
A, = 4(a§1) )2 /a®'a . Since, these A average unity over s = 1, 2, 3, 4, the scaling will inflate
or deflate values relative to the Boswijk (1994) distribution, depending on the specific P/
coefficients and the season s.

Secondly, the distribution defined by (27) is four times the distribution obtained by
Boswijk (1994). Intuitively, this arises because there is only one underlying stochastic trend for
each vector process X" and hence, as discussed in Section 2, there can be only one linearly
independent cointegrating relationship over the four quarters of the year. Consequently, when
the Wald test is applied to the PI(1) variables, effectively a single cointegration relationship is
being tested four times (once for each quarter).

The asymptotic distribution of (27) is not that derived by Boswijk and Franses (1995)

for SI processes. To be specific, because an SI process for a quarterly series involves four
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distinct unit root processes, these are reflected in the asymptotic distribution. For uncorrelated
SI processes, the asymptotic Boswijk-Franses distribution is (Ghysels and Osborn, 2001,

p.178)
Wald = i([ W (r)dw® (r))'([ wr (r)W;‘(r)')'l(j Wf(r)dwi“(r)) (28)

where W (r) =[w" (r), W7 (r)']' is formed by selecting elements of the 4m x 1 vector standard

Brownian motion W *(r) corresponding to season s. It is obvious that (27) and (28) differ, with

the former being four times the Boswijk (1994) distribution whereas the latter is the sum of
four independent distributions of this type. Indeed, this comparison also clarifies the role
played by the four distinct unit roots underlying an S7 process and which therefore appear in

(28) as against the single unit root underlying a P/ process.

5. Monte Carlo Analysis

In this section we present Monte Carlo results relating to the empirical size and power of the
residual-based test for periodic cointegration analysed in Section 3. Subsection 5.1 considers
zero-mean processes, with the analysis of Subsection 5.2 allowing the possibility of nonzero

trends.

5.1 Zero Mean Processes

We first investigate empirical size’ for zero-mean processes generated through the bivariate

model, where x;; = (ys, Zsr)', such that

> All results presented are based on the 5 percent critical value of 7.3 obtained through a Monte Carlo simulation
for T = 200 observations. However, use of the asymptotic critical value of (-2.76)* from Phillips and Ouliaris
(1990, Table IIa) does not alter the substantive conclusions.
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4
y”: ¢syys71,r+u;vf’ H¢sy = 1’ usyz' = ]/MS)LIT + e;vf
> (29)

4

gz z z _ z z z

ZST_ ¢s Zs—l,r+usz" | I ¢s - 1’ usr - yusflr + esr
s=1

for y={0.0, 0.5} and
ei)r y z 1 O-yz
E| % e e]|= Loy, ={00.0408) (30)
As show in Lemma 4, the DGP of (29) implies that the residuals follow a PI(1) process when
the regression of (7) is estimated.

Note that (30) permits three levels of contemporaneous correlation between the
innovations e, and e . Further, the processes of (29) are PAR(1) processes when y =0, and

in this case the residuals also follow PAR(1) processes. However, a second-order model is

required when y =0.5, so that we also test the P/ restriction using PAR(2) models for the

residuals.
The empirical power is obtained from the DGP

e’

v (1_71L)(1_72L)

oz z I I z _
Zsr_ ¢s Zs—l,r+ esr’ ¢s _1

ysr: kszs,r+ usr’ u

(€1)

71 = {0.0, 0.5}, y» = {0.0, 0.8} and the periodic cointegrating relationship has coefficients k4 =
04, k,_, =04¢ /¢’ fors=3,2,1, with ¢ (s =1, 2, 3, 4) being the PI coefficients for y,..

The innovation covariance matrix is again given by (30). When y;, y, are both zero in (31), the
residuals from (7) follow a white noise process. On the other hand, the residuals are an AR(1)
when one of these coefficients is zero, so that a PAR(1) model is sufficient to account for this
autocorrelation. However, y; = 0.5, y, = 0.8 leads to an AR(2) process for the residuals, which
is accommodated by estimating a PAR(2) model. Thus, (31) allows the same levels of serial

dependence as considered in (29).
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Table 1 shows the combinations of coefficients used in (29) and (31) to compute the
empirical size and power respectively. The size and power results are collected in Table 2, for a
sample size of 50 years (200 observations), and based on 5,000 replications.

The results of Table 2 verify that, even in finite samples, the residual-based test for
periodic cointegration has good size properties, provided that the appropriate order of periodic
autoregressive model is selected. This is true across all sets of PI coefficients considered and
irrespective of the extent of correlation between the disturbances. However, the test is badly
undersized when the PAR order is underspecified.

Further, again provided that an appropriate order of periodic process is fitted, the test
has power approaching unity, especially when y; = 0.5, y, = 0.8. The relatively low power
obtained for a PAR(1) specification in this case is a reflection of the undersizing that results

when a model of too low order is employed.

5.2 Deterministic Terms

In order to facilitate the theoretical analysis above, we omit deterministic terms and assume the
initial value x4 = 0, thereby implying E[x;;] = 0. Here we relax these restrictions by
considering the addition of deterministic terms to the cointegrating test regression.

In the case of standard (nonperiodic) cointegration, the appropriate form of the
cointegration test regression depends on the properties of the time series under study; see
Phillips and Ouliaris (1990) and Hansen (1992). The inclusion of an intercept allows for
possibly nonzero starting values, with means constant over time, by demeaning the variables
used in the longrun regression. The null distribution of the LR test for (nonperiodic)

cointegration then satisfies (22), with Wm(r) as defined in (19), where it is understood that

W(r) = [W(r), W(r)’]‘ is a vector of demeaned standard Brownian motions. The addition

21



of a trend allows for a nonzero drift, and the vector of Brownian motions is then demeaned and
detrended.

Turning to the case of PI(1) processes, a nonzero starting value in (1), with no
deterministic terms, implies a seasonally varying mean E[x,] that is, however, constant over
years 7= 1, 2, ... However, as shown by Paap and Franses (1999), the addition of an intercept
to (1) leads to a seasonally-varying trend in E[x,], and hence an annual growth rate A4x,, that
varies over s = 1, 2, 3, 4. Further, excluding the special case of an /(1) process, they show that
a PI(1) process with an intercept cannot have a trend that is common over s = 1, 2, 3, 4,
irrespective of whether the intercept is constant over seasons or is seasonally-varying. On the

other hand, the univariate first-order process

N

xsr = lus + ‘9sT + ¢sxs—l,r + esr’ H¢s = 1 (32)

i=1
with e, white noise and trend coefficients that satisfy
g, = (1 -9, I/U4 + Pty + PP, + 90 p 1 s=1,2,3,4 (33)

has a common linear trend shared by all quarters (Paap and Franses, 1999). However, with
unrestricted trend coefficients, (32) implies seasonally-varying quadratic trends in E[xy,].
In the context of testing for periodic cointegration, the above discussion implies that the

relevant cointegrating regressions that may be considered in place of (7) are

=3 B0, +3 3 A0 v, (34)
s=1 i=2 s=1
and
4 4 m_ 4 )
‘xglr) = ZﬂOSDST + Z ﬁlstrT +Z Z ﬁi.vDsrxAglr) + vsz‘ (35)
s=1 s=1 =2 s=1
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More specifically, (34) is appropriate when the variables in the regression are known to have
constant (possibly periodically-varying) mean over time, while the use of (35) permits the
possibility that the variables may trend linearly over time®.

In addition to the case with unrestricted trends in (35), we also investigate cointegrating

regressions using restricted trend coefficients such that fi; = i, = fi3 = [ia. This last case is

considered when 4, satisfies the restrictions of (33), and hence the linear trend in each PI(1)

process is constant over seasons.

The results of Panel a of Table 3 verify that, for the three bivariate PI(1) DGPs
considered there, the inclusion of deterministic terms has the anticipated effect on the residual-
based test for periodic cointegration. That is, for zero-mean processes, the inclusion of
periodically-varying intercepts or periodically-varying intercepts and trends, as in (34) or (35)
respectively, causes the distribution of the LR test for periodic cointegration to shift, with the
percentiles of the test statistic under the null hypothesis being effectively the same as the
corresponding values obtained by Phillips and Ouliaris (1990) for the nonperiodic case (with
the latter values squared).

Since the inclusion of unrestricted intercepts leads to seasonally-varying trends in a
PI(1) process, a cointegrating test regression of the form of (35), with unrestricted intercepts
and trends, takes account of these deterministic effects. Panel b of Table 3 verifies that, in this
case, the (squared) Phillips-Ouliaris (1990) critical values for nonperiodic random walks with
drifts continue to apply in this periodic case. As seen in Panel c, these critical values also apply
if the individual processes within the DGP have trends restricted to be identical across seasons,
provided that no restrictions are imposed when (35) is estimated. However, imposition of the
restriction of nonperiodic trends in the cointegrating test regression of (35) causes the Phillips-

Ouliaris critical values to be inappropriate for these DGPs.

% In common with much of the unit root literature, the possibility of quadratic trends over time is excluded on a
priori grounds.
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In contrast to the effects of restricted trends in Panel ¢, Panel d shows that, whether the
trend coefficients of the cointegrating test regression are restricted to be identical over seasons

or not, the Phillips-Ouliaris (1990) critical values can be used when testing cointegration
between two PI(1) processes which have identical periodic coefficients, ¢\ =g ,j=y, z
However, the case of identical coefficients across PI separate processes is a special one, for
which Lemma 1 shows that any cointegration must be nonperiodic.

To investigate this further, consider the PI(1) vector x,, where all elements have
constant trends over seasons. Separating the deterministic and stochastic components of each
element, we can write

xf,’r) = cé’f + cl(’)z' + S(?, s=1,2,3,4i=12,...m (36)

where &Y is a zero-mean PI(1) process and E[x]=c\” +c”z, which has a periodically-

varying intercept but nonperiodic trend. The regression relevant for testing periodic

cointegration between the zero-mean stochastic unit root processes & is

1 1 1
(x( ) C(()Y) ( )Z) E Ist ()C(l) C(()ls) (l)l) + M
that iS,

m m
W L SRICIED WAL W AR
i=2 i=2
(37)
( )
- ﬂOs + ﬂlvr + Zﬂzs 911

which is identical in form to (35). Notice, however, that although (37) has periodically varying

intercepts and periodic trend coefficients, the trend coefficients in the latter satisfy

B =c - Z e s=1,2,3,4. (38)

S
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If the PI(1) coefficients are identical across processes, and hence any cointegrating relationship
is nonperiodic, then S = fo = fi3 = fu (i = 2, ..., m) and (38) implies nonperiodic trends in
the cointegrating regression of (35) or (37).

The Monte Carlo results of Panels ¢ and d support this analysis. In particular, the PI(1)
processes in Panel d with identical coefficients and individual nonperiodic trends imply that
any trend in (35) is also nonperiodic. Therefore, the restriction of identical trends derives from
the nonperiodic nature of any cointegration in this case, with the imposition of this restriction
effectively having no impact on the distribution of the residual-based test statistic.

On the other hand, when the PI(1) coefficients differ over processes, (38) implies that
the imposition of the nonperiodic trend restriction is inappropriate when the S are not
correspondingly restricted. However, from Lemma 1, nonperiodic cointegration can apply only
when the separate processes have identical PI coefficients. Therefore, the trend coefficients in
(35) should not be restricted to be nonperiodic when testing for cointegration between periodic

processes, except for the special case analysed in Panel d.

6. Concluding Remarks

This paper has provided an analysis of cointegration for periodically integrated processes. We
first establish that the only cointegration possibilities are so-called full periodic or full
nonperiodic cointegration. Due to the cointegration between seasons that exists for a univariate
periodically integrated variable, if no cointegration between variables applies for a specific
individual season, then no cointegration applies at all. Further, if the periodically integrated
processes have identical coefficients over processes, then any cointegration that exists is

nonperiodic, with identical cointegrating relationships over seasons.
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Two tests of cointegration have been proposed as appropriate in previous literature for
periodically integrated processes. However, this paper is the first to obtain analytical results for
the asymptotic distributions of these tests.

The analytical results previously available for cointegration related to seasonal
processes have focussed on the case of seasonally integrated processes, including Boswijk and
Franses (1995), Hylleberg et al. (1990), Johansen and Schaumburg (1999). However, the
greater economic plausibility of periodic processes in some contexts suggests that attention
should also be devoted to this case. The present paper provides results that contribute to our
understanding of cointegration for seasonal processes, while also emphasising that periodic and
seasonal integration have distinct longrun implications. In particular, although the Boswijk-
Franses (1995) periodic cointegration test can be applied for both types of seasonal
nonstationarity, the test statistic follows different distributions in the two cases. Therefore, a
careful prior univariate analysis should be undertaken before considering cointegration for
seasonal processes.

Our analysis also formally establishes the asymptotic distribution of a residual-based
test of cointegration for periodically integrated processes, showing this distribution to be the
same as for the nonperiodic case. Moreover, our Monte Carlo analysis verifies that the critical
values of Phillips and Ouliaris (1990) can be used in the context of periodic processes,
provided that potentially relevant trend terms included in the cointegration test regression are
not restricted to be constant over the quarters of the year when the potential cointegration is
periodic. Therefore, the test can be employed by applied workers in realistic contexts where the
periodic series under analysis exhibit nonzero means and possible trends.

As in the case of univariate periodically integrated processes analysed by Paap and
Franses (1999), the use of trend terms in testing for periodic cointegration tests requires some
care. Specifically, when testing for cointegration in periodic processes which contain

nonperiodic trends, we show that the trend coefficients in the cointegration test regression
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should be restricted to be identical over seasons only when the individual processes have
identical periodic coefficients. Since the situation where identical coefficients apply over the
different univariate processes may not occur widely in practice, we recommend that the trend
(as well as intercept) coefficients should be unrestricted over seasons when using the residual-

based test for cointegration between periodically integrated processes.
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Table 1. DGPs used for size and power calculations of Table 2

4

DGP | 4 4 H o b b
1 1.200 0.700 1.000 1.190 | 0.800 0.900 1.200 1.157
2 1.200 1.000 0.800 1.042 | 0.800 1.000 1.200 1.042
3 0.800 0.800 1.200 1.302 | 1.200 0.700 1.000 1.190
4 1.200 0.700 1.000 1.190 | 1.200 0.700 1.000 1.190
5 0.800 1.000 1.200 1.042 | 0.800 1.000 1.200 1.042
6 0.800 0.900 1.200 1.157 | 0.800 0.900 1.200 1.157

Table 2. Size and power of residual-based test for periodic cointegration

Size Power Size Power

y=0 71=0 y1=0 y=0.5 71= 0.5

72 =0 7, =0.8 7, =0.8

sz DGP | PAR(1) | PAR(1) PAR(1) | PAR(1) PAR(2) | PAR(1) PAR(2)

0 1 0.050 1.000 0.989 0.006 0.056 0.365 0.998
0 2 0.047 1.000 0.985 0.007 0.057 0.364 0.997
0 3 0.050 1.000 0.991 0.006 0.061 0.352 0.999
0 4 0.055 1.000 0.991 0.005 0.055 0.376 0.998
0 5 0.053 1.000 0.988 0.007 0.062 0.347 0.998
0 6 0.052 1.000 0.989 0.004 0.057 0.336 0.998
0.4 1 0.050 1.000 0.982 0.007 0.053 0.352 0.998
0.4 2 0.049 1.000 0.979 0.005 0.054 0.368 0.998
0.4 3 0.053 1.000 0.986 0.006 0.052 0.345 0.998
0.4 4 0.048 1.000 0.984 0.005 0.054 0.350 0.998
0.4 5 0.053 1.000 0.984 0.006 0.050 0.346 0.998
0.4 6 0.054 1.000 0.985 0.007 0.055 0.342 0.998
0.8 1 0.046 1.000 0.972 0.004 0.051 0.321 0.998
0.8 2 0.052 1.000 0.965 0.006 0.049 0.338 0.998
0.8 3 0.051 1.000 0.983 0.005 0.050 0.320 0.999
0.8 4 0.059 1.000 0.978 0.006 0.061 0.321 0.998
0.8 5 0.050 1.000 0.979 0.007 0.054 0.308 0.999
0.8 6 0.048 1.000 0.979 0.007 0.065 0.298 0.998

Note: The residual-based test is applied to (7). Results are based 5,000 replications, for a sample of
200 observations (N=50). The DGPs used for size and power are given in (29) and (31)
respectively, using the coefficients of Table 1. PAR(1) and PAR(2) indicate that periodic
autoregressive models of order 1 or 2, respectively, are fitted to the residuals in order to obtain the
LR statistic used to test periodic cointegration at a nominal significance level of 5 percent. The
critical value used is 7.3, which has been obtained from a Monte Carlo based on 15,000 replications
of two uncorrelated PI(1) processes with a sample size of 200 observations (N = 50).
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Table 3. Effect of deterministic terms on the empirical distribution of
the residual-based cointegration test

Deterministic Percentile
DGP |terms in regression | 0.85] 0.875] 0.9] 0.925] 0.95] 0.975] 0.99

Panel a. Zero-mean DGPs

1 None 5.024| 5.447| 5.958| 6.626| 7.503| 8.994|10.922
Intercepts 8.062| 8.565| 9.154| 9.943|10.981|12.709|14.970
Intercepts & trends | 10.824 [ 11.386(12.113/12.992|14.149]16.047 | 18.484

2 None 5.001| 5.402| 5904| 6.572| 7.438| 8.908|10.748
Intercepts 7.939| 8.443| 9.066| 9.840|10.825|12.635|14.934
Intercepts & trends | 10.768 | 11.361[12.036|12.882|14.080]15.990 | 18.524

3 None 5.036| 5.456| 5.980| 6.658| 7.517| 9.037|11.042
Intercepts 8.034| 8.553| 9.158| 9.884|10.949|12.767|15.014

Intercepts & trends | 10.840|11.382]12.067 [12.910]14.110|16.026 | 18.492
Panel b. Periodic-trend DGPs

1 Intercepts & trends | 10.844 [ 11.421[12.108 |12.948|14.158|16.062 | 18.505
2 Intercepts & trends | 10.828 [ 11.417]12.097 [ 12.968 | 14.139|16.091 | 18.428
3 Intercepts & trends | 10.78911.389[12.073[12.930]14.089|16.023 | 18.488
Panel c. Nonperiodic trend DGPs
1 Intercepts & trends |10.724|11.292|11.996|12.838|13.962|16.015|18.635
Inter./restr. trend 26.281|28.984 |32.485|37.367 |44.460 | 56.823 | 75.590
2 Intercepts & trends | 10.826|11.404|12.087 [ 12.938|14.133|16.123 | 18.638
Inter./restr. trend 16.689(18.021|19.562]21.827|25.219|31.502[40.791
3 Intercepts & trends | 10.796|11.400|12.106 | 12.955|14.095|16.012 | 18.508
Inter./restr. trend 17.053]18.49820.27222.663 |26.285|32.921 |1 43.194
Panel d. Identical Pl processes with nonperiodic trends

1* Intercepts & trends |10.85411.419|12.187|13.014|14.132|16.061 | 18.761
Inter./restr. trend 10.887[11.470|12.230]13.058 | 14.205 | 16.095 | 18.833
2% Intercepts & trends | 10.900 | 11.466|12.167 | 13.052|14.262|16.261 | 18.477
Inter./restr. trend 10.937[11.505|12.223]13.110|14.285]16.351|18.613
3% Intercepts & trends |10.787 [ 11.440(12.163 |13.051|14.230|16.020 | 18.523
Inter./restr. trend 10.882 | 11.515]12.238|13.128|14.342|16.077 | 18.668
Phillips-Ouliaris critical values

None 5.100| 5.538| 6.005| 6.668| 7.628| 9.331|11.468
Intercept 8.202| 8.744| 9.399(10.228 [11.326|13.264|15.696
Intercept & trend 11.07811.70112.379]13.298|14.440 | 16.583 | 19.034

Notes: The residual-based test is applied to (7) when no deterministic terms are included, and to
(34) or (35) as appropriate when intercepts or intercepts and trends are included in the regression.
Intercepts and relevant trend coefficients in (34) or (35) are unrestricted, unless otherwise stated;
restricted trends impose fi; = fi» = P13 = Pis. All DGPs are uncorrelated (both serially and
contemporaneously) bivariate PI(1) processes. The coefficients for the processes of Panels a, b, and
c are:

g =0.8,¢) =0.9,4) =12, =1.157; 7 =1.2,4; =0.7,47 =1,¢; =1.190;
2: ¢ =125,¢) =0.8,4) =09, =1.111; ¢/ =1,¢] =0.8,¢7 =12, =1.042;
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3¢90 =12,¢) =0.7,¢) =1,¢; =1.190; ¢ =0.8,¢; =0.8,¢; =1.2,¢4, =1.302;

The identical PI DGPs 1*, 2* and 3* of Panel d have periodic integration coefficients for both
processes that are identical to the coefficients for y,, for the DGPs 1, 2 and 3 respectively. The
DGPs of Panels b, ¢ and d use

W=y =12, 45 =05 1) =02y =02, 45 =05, 45 =12, 1, =1

in the notation of (32). These intercept values are also used in the nonperiodic-trend DGPs of
Panels ¢ and d, with the trend coefficients restricted through (33). Results are based on 25,000
replications for a sample of size 2,000 observations (N = 500 years). The Phillips and Ouliaris
(1990) percentiles are the squares of critical values given in their Tables Ila, IIb and Ilc
corresponding to no deterministic terms, intercept and intercept and trend, respectively, for n = 1
explanatory variable.
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Appendix: Proofs

Lemmal

To prove (i), and without loss of generality, assume that the linear combination «; x;; is
stationary, with a; of rank ». Also, for ease of exposition, assume two seasons per year 7, s =
1, 2.

The PI process of (6) then implies

X0 = @ X201 + E; (A.1)

where @] is a diagonal m x m matrix with jth diagonal element ¢’ and the m x 1 vector E,

has jth element e'” . Premultiplying (A.1) by a; " yields

+ 1
a'x,=a/'0/x, +a'E,
o ' (A.2)
=a,'x,,  ta E

1z

where the m x r matrix a, = @, a; defined by (A.2) has rank r, since @, is nonsingular and

a; is of rank r. Further, the columns of a, must contain » cointegrating vectors for x» ., as
otherwise the right-hand side of (A.2) would be nonstationary.

However, we need to establish that there are no additional linearly independent
cointegrating vectors for x,,, beyond those in the columns of a,. Say one such cointegrating

vector exists, and append this as an additional column of a, to form the m x (r +1) matrix o,

of rank r +1. Then, analogously to (A.2), and where @, is a diagonal m x m matrix with jth

diagonal element ¢, we have

Q' Xy, =0, Dyx, + ' E,y,

_ % *)
=a,'x,+a,'E,. .

By the same argument as above, ¢, = ®}a, must be a matrix of  + 1 cointegrating vectors

for x»,. This, however, contradicts the assumption that there are exactly » cointegrating
vectors for x;,.. Consequently, there can be only r cointegrating linearly independent
cointegrating vectors for x,.

Recognizing that o, on the right-hand side of (A.2) relates to season s-1 for s = 1, the
generalization to four seasons, s = 1, 2, 3, 4 is straightforward, with the » cointegrating
vectors for each quarter satisfying

a5 = D o s=1,2,3,4. (A.3)

Note that for s = 4, it is understood that s+1 = 1. By repeated substitution in (A.3), it is clear
that given any a, and the periodic coefficients, the cointegrating vectors for all other quarters
can be determined. Also note that the P/ property of (6) implies that

OIDIDID] = L.

In order to establish (ii), first note that, for this first-order case, each of the m
processes having identical P/ coefficients implies @) =@ [, , for s = 1, 2, 3, 4. Therefore,

sTm?
from (A.3), as.1 = ¢sa,, and since the scaling is irrelevant, the cointegrating relationships are
identical over s = 1, 2, 3, 4. Conversely, since @ is nonsingular, a, = c0,.; for some scalar
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constant ¢; only if @ =c¢;1,, s =1, 2, 3, 4. In turn, ®; = ¢, I, implies that the m PI(1)

processes have identical periodic coefficients.
¢

Lemma 2

Define the vector of observations for process j of x,, in year r as X =[x/, x{/, {7, x{/7'.
As all elements of x,, are S/, then the series for the quarters of the year are not cointegrated,
so that no 4xr matrix of cointegrating vectors f; exists such that S,"X ) is stationary for any

j =1, ..., m. Since no cointegration connects the /(1) processes xs and x, (¢ # s), the
existence of cointegration between the elements of x;, has no implications for cointegration
between the elements of x;.

¢

Lemma 3

For the process of (6), (8) and (9), and as in Boswijk (1994) or Oulariaris and Phillips (1990),
we use the decomposition £ = PP' where the upper triangular matrix P is

P:|:O-111/2V1_plz'plz O-lll/zplz' (A4)

0 P

zzZ

in which the nx1 (with n = m -1) vector p;. is defined from the elements of £ in (9) as
-1/2

Pi: =0y Pz;lo-lz- (A.5)

For a 4m x 1 vector white noise sequence {U,} with mean zero and variance matrix
14y, the multivariate invariance principle (see Phillips and Durlauf, 1986) implies that

&gq = w(r) (A.6)

where W(r) is a 4m % 1 vector standard Brownian motion process. For later use, define
W)= (), w2 (), W () 1= " () 2 () T

where W/ (r),j =1, ..., m, are 4x1 vectors whose elements we associate with the seasons,

while W(r) is 4nx1. From these, define the 4m x 1 vector Brownian motion with covariance
matrix 2 ® [, as

2y [ ) ' z
Ex(l"):(P®I4)W(V):[O-” VI-p. Z;ZV;I(;;;((I:;ZQDA)W ()} (A7)

As in Lemma 1 of Boswijk and Franses (1996),
1 1 rN]

— X1 =0, —0F —EEX.+0 1)

JN (V] ( 0 1)\/ﬁj_1 j P (A.8)
= B (1) =(0; -0 )E*(r)=a'b" E" ().

so that, from (A.7) and (A.8), we have
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Bm(”) = O-lll/za(l)b(l)v('\ll_plz'plz wO(r)+ (plz '®I4)WZ(V))

(A.9)
B (r)=a’b*'(P. ®1,)W*(r)

as in (15) of the text, where a” and b” are defined as the lower right-hand 4n x n blocks of a*
and b" in (14).
L4

Lemma4

Consider, first the OLS estimates of the coefficients of (7), for each season denoted
B, =[5, B> B ], Where

. N - N
B, = {NZZZ”ZST} |:sz)€;122”:|.
=1

Then
B, = [ B ()5 (ar] ' [B: (B () (A.10)

where Bs(r):[B(l)(r),Bsz (7)1 is mx1 vector Brownian motion, with 7nx1

B:(r)=[B2(r),....B™(r)].
From (17), we can write

B(r)= myalw"(r)
B‘f”(r) - a)jaf,j)%(")(r) j=2,3,,m
in which
o, =% (b(‘)' b(l))oﬁ’ o, :(pm pUpl)e b(/))O-S, j=2,3,m
and each W (r),j=1,2, ..., m is univariate standard Brownian motion.
Therefore, defining the n x 1 vector W (r)=[w? (), w® (r),...,®" (r)]', we have
J.Bsz (r)B: () dr=A [I W+ (r)VIN/Z (r) drl 4,

~ A.ll
[ Bi(r)BO(r) dr = A7 ()i (rlir] @ 0 .

where A, is as n x n diagonal matrix such that 4 = diag {a)zaﬁz),a&a@,. ces @ a(’")}.
Then, from (A.10) and (A.11) it is easy to see that:

B, = wa a4 7 7 | [ () () (A.12)

The appropriately scaled residuals from (7) can be expressed as:
1 . | ~ 1

_ (1) '
TN =y e B, TN Z

—T+® (3 (m)
where z vy = [X x5 Xgvys s Xspy] @nd, from (17),
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: (A.14)
Wxgl[lzv] = BY(r)= w,a" " (r)
Hence, from (A.12), (A.13) and (A.14),
1 ~ ~ ~ Trz ] Trz Trz ] 1 Trz
ﬁvs[w] = a)lagl){w(l)(r)—Iw(l)(r)W (r) dr“W (rMW=(r) dr} w (r)}
= w,a"'y'W*(r)
(A.15)

where 77'= [1,—I W(l)(r)Wz(r)'dr[sz(r)Wz (r)'drr}. Each element of the m x 1 vector of

Brownian motions Wx(r)=[v71(‘)(r),l/l72(r)']' has unit variance, while the m x m long-run
covariance matrix I1 of W *(r) can be expressed as

1 @'l
1=
o, II_|n

zz

with elements on the principal diagonal of I1_ equal to one.

Defining the m x m matrix L such that IT = LL', and where the first column of L is
given by (/11, 0) then, using part (a) of Lemma 2.2 by Phillips and Ouliaris (1990), we have
that

w*(r)= L%(r)

where W(r)= [W(r),W(r),...,W(r) '= [W(V),W(r)']' i1s an m x 1 vector of standard
Brownian motions with covariance matrix 7,. Finally from part (b) of Lemma 2.2 of Phillips
and Ouliaris (1990), it is possible to write:

()=, W (r)

K'= [1,—! W(V)WZ (r)'dr|\ W=(ryW=(r)' di’}l :I

Recalling that o, = o’ (b“)'b(”)o's, the result in (18)/(19) is obtained by substituting
these last two expressions into (A.15) and stacking the residuals for s = 1, 2, 3, 4 to define the
vector ¥, = [‘A’l[rzv]a ﬁZ[rN]’ ‘,}3[rN]’ ‘;4[rN]] "
¢

Theorem 1

It follows from Lemma 4 that, in the absence of cointegration, we can write

4

‘;sr = ¢s(1)vAs—l,r + 857’ H¢s(l) = 1 ' (A16)

s=1

Hence, as in Lemma 1 of Boswijk and Franses (1996) or Lemma 3 of the text, we have that:
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1 R 1 [rN]
—— V=0V -0V )—NE"+0 (1
JN (@ -o] )\/N,Z;; i +o, () (A.17)

= 600 —0M)E" (1) = cab" E" (r).

rN
EE;" = o E"(r) and E"(r) is 4x1 vector Brownian

1
=

motion that is a function of the elements of W(r). Comparing (18) and (A.17) it follows that

where £ =[¢,,,¢,,,&;,,&,,] with

0.5
o a"pV EY (r) :011{2(b“)'b“)) a®w (r)

and hence

w, (F)=—2— (" b [ b0 E" () (A.18)

1110-11

provides an alternative definition of w_(r) For notational convenience in what follows, we
omit the superscripts referring to the parameters relating to process x'.

Now, turning to the test statistic of (21) for the null hypothesis ¢, ¢,4,4, =1 in (20),
note that we can write

LR = { qnano_lGo }’ {Go'Qno_lGo }_1 {Go 'QnO_lan }+ 0, ¢y (A.19)

where ¢qo and Qy are the gradient and Hessian matrices, respectively, for the log-likelihood
function under the null hypothesis and G, 1s a 4x1 vector with elements

6(¢1¢2¢3¢4 = 1)/ o0¢, fors =1, 2, 3, 4. It is straightforward to see that:

Q(‘) = 0_2 [Z ‘;4,1—18115 z ‘911821’ z ‘921831, > z ‘;31'841]
v, 0 0 0

0 v 0 0

0 0 v 0

0 0 0 v
G, =[p.0.8,, $8:8,, $6:0,. 68,

From (18) of Lemma 4, together with (A.18) and the continuous mapping theorem, it
is possible to write:

Q,=0" (A.20)

N_IZVS 1€ ST:>1110”2 a, 1J-w dE'”
NS0 = e, ('), jw ) dr

where the elements of a are given by a =[1, ¢,, 9,4, , §, 4,4, ]'. Substituting these expressions
in (A.20), we obtain
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N—lq(') 1110-11 (b'b) ' [ dE’" al IW dEm azj‘w dEm , a, J‘Wim(r)dE;” (r)]
—(a4)2j.wm r dr 0 0 0 7

N‘ZQ0 - M 0 (a, )2_"@(7’)2617‘ i 2 0

o 0 0 (@) [wa () dr 0

0 0 0 (a, )ZJ'me(r)z dr
and, therefore,
NGonoilqo g
111 111/2 b b OSJW
[, (r)(@ b.0, dE]'(r )+ B4 D.AEL () | 4 0,0,dET () 4, 6,9, dE] (r)j
9,99, 1 b, b, 4,

Using (A.18) and the definition b =[1, @ ¢, 9, , @ @, , 4, |' it follows that

0 20220 )

NG,'Q,"q, = & = (A21)

) [w,(Yr [, () ar

since o —o,,’l,,.
Using similar arguments,

N? {GOVQO_IGO}

N 1 {(¢2¢3¢4)z +(¢1¢3¢4)Z +(¢1 ¢2¢4)Z +(¢1 ¢2¢3)Z}
Eo)fw,0Var ) 1 0] ()

B | N NP (A.22)

T (r)zdr{l YYARTARI NS

b'b

B _ 1
)Y (Y ar

The required result is easily obtained by substituting (A.21) and (A.22) into (A.19).
¢

Theorem 2

For (i), note, first, that the Wald statistic (24) to test the null for no cointegration in season s
is
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wald, =& Varls.]' B,

_Z(ZA xs(i') srlj(ZN: srl'xsrlj (ZA xs(i') srl

Then, from Lemma 3,

j (A.23)

N
NP AXDx, = [ B (r)dB" (r)

-2
N Zx” X

5,71

= [ B! (r)B; (r)dr

where B (r)=[B",B”, ..., B"]'. Using (17) and the fact that in the spurious regression

case T = diag{o,,,0,,,...,0,, |, it is possible to see that,
BY () =c2a” B s ) WD () j=1,2,..m
Substituting into (A.23) it then follows that
Wald, =3, (var[s,]")3.,
= o7 ([ B (0B ) ([ B: (B (v ar) ([ B2 (B ()
- auzall(a;”)zb“)'b“)(j W(r)dW(r))'([ W"(r)Wx(r)'dr)_l WX(r)dW(r))

(A.24)
where, as in Boswijk and Franses (1996),
A2 2 1 % 1 1 1 1 1 1
o, >0, = ZZVar(xi))z Zallb( "paM g, (A.25)
s=1
Substituting (A.25) in (A.24) yields the result in (26).
For the joint test statistic, due to the seasonal dummy variables, then
4
Wald = ZWaldS
s=1
4
z (a(l)) o o . o
=4 = o0 ([ w*(rydw" (r))'(j Wx(r)Wx(r)'dr) w*(rydw" (r))
a

=4([ W«*(r)dF(r))' W}‘(r)W"(r)'dr)f1 W"(r)dW(r))

as given in (27).
¢
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