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ABSTRACT 

 

 

When seasonal time series are periodically integrated, we show that the any cointegration is 

either full periodic cointegration or full nonperiodic cointegration, with no possibility of 

cointegration applying for only some seasons. In contrast, seasonally integrated series can be 

seasonally, periodically or nonperiodically cointegrated, with the possibility of cointegration 

applying for a subset of seasons. Cointegration tests are analysed for periodically integrated 

series. A residual-based test is examined and its asymptotic distribution is derived under the 

null hypothesis of no cointegration. A Monte Carlo analysis confirms the size properties of the 

test and shows it to have good power. The role of deterministic terms in the cointegrating test 

regression are also investigated. Further, we show that the asymptotic distribution of the error-

correction test for periodic cointegration derived by Boswijk and Franses (1995) does not apply 

for periodically integrated processes, and we derive this distribution for the case of 

uncorrelated periodically integrated processes.  
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1. Introduction 

To date, cointegration analyses of long run relationships in seasonal time series have been 

conducted primarily in terms of the separate (zero and seasonal frequency) unit roots implied 

by the seasonal differencing filter, which leads to the concept known as seasonal cointegration; 

see Hylleberg, Engle, Granger and Yoo (1990) (HEGY), Engle, Granger, Hylleberg, Lee 

(1993), Lee (1992), Johansen and Schuamberg (1999), Cubadda (2001) among others. 

However, cointegration may also be considered season by season, and this route leads to so-

called periodic cointegration, which is examined by Birchenhall, Bladen-Hovell, Chui, Osborn 

and Smith (1989), Franses and Kloek (1995), Franses and Boswijk (1995), and others. 

Seasonal cointegration can apply only for seasonally integrated (SI) processes, which 

are nonstationary processes which are made stationary by the application of annual 

differencing. In an analogous way, periodic cointegration can apply for periodically integrated 

(PI) processes, which are nonstationary but rendered stationary by application of a seasonally 

varying quasi-difference filter. In an SI process, nonstationary unit root behaviour exists not 

only at the longrun (or zero) frequency, but also at all the seasonal frequencies. Although not 

always discussed, the implication of these seasonal unit roots is that the seasons of the year are 

not cointegrated with each other, and hence “summer may become winter”; see, for example, 

Osborn (1991) or Ghysels and Osborn (2001). From an economic perspective, this implication 

may be unattractive. On the other hand periodically integrated processes may be more plausible 

than seasonally integrated ones, because they allow for nonstationarity in conjunction with 

cointegration applying between the separate seasons of the year (Osborn, 1991, Franses, 1996).  

Although there has been little analysis of seasonal versus periodic cointegration, 

Franses (1993, 1995) shows that these imply different parameter restrictions on the 

cointegrating relationships when SI processes are considered. In other words, periodic 

cointegration can apply between seasonally integrated, as well as between periodically 

integrated, processes. Boswijk and Franses (1995) propose a Wald test for periodic 
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cointegration in SI processes and derive its asymptotic distribution, which they assert also 

applies when the individual series are PI. However, the present paper shows that this test has a 

different asymptotic distribution under the null hypothesis when applied to PI, rather than SI, 

processes. Indeed, since quarterly PI and SI processes differ in that the former implies one 

underlying unit root process across the four seasons whereas the latter implies four distinct unit 

root processes, we might anticipate that these cases will give rise to different asymptotic 

distributions. 

From a theoretical perspective, the distribution of tests for periodic integration in PI 

processes is unresolved. A system approach, in which an equation is estimated for observations 

relating to each season for each variable, can theoretically be applied (see, for example, 

Ghysels and Osborn, 2001, pp.171-176). However, this is likely to be feasible in practice only 

where data are a relatively high frequency are available, as in the application of Haldrup et al. 

(2005). Although a two-step approach of the Engle-Granger (1987) type can be adopted (as in 

Birchenhall et al., 1989, or Franses and Kloek, 1995), unless testing is undertaken separately 

for each season, which is likely to be inefficient, the asymptotic distribution of the test statistic 

is again unknown. Franses (1996, p.182) proposes testing for periodic cointegration through 

the application of the Boswijk-Franses (1996) PI test to the first-stage residuals over all 

seasons and speculates as to its asymptotic distribution. The present paper contributes to this 

strand of literature by establishing that this test statistic follows the Phillips and Ouliaris (1990) 

distribution, which enables asymptotically valid inference to be undertaken.  

Prior to deriving the distributions of the test statistics for PI processes, Section 2 

discusses the cointegration possibilities for these processes, which formalises the discussion in 

Ghysels and Osborn (2001, pp.168-171). When the series are PI, we show that the only 

cointegration possibilities are periodic cointegration or nonperiodic cointegration, with 

cointegration for any one season implying cointegration for all seasons. The section also 

compares this to the wider set of possibilities for SI processes. Section 3 then derives the 
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asymptotic distribution of the residual-based cointegration test for PI processes, which is 

followed (Section 4) by an analysis of the asymptotic distribution of the Boswijk-Franses 

(1995) cointegration test when applied to uncorrelated PI processes. A Monte Carlo analysis in 

Section 5 examines the finite sample distribution of the residual-based test, including an 

analysis of the role of deterministic terms in the regression, with a concluding section 

completing the paper. 

 

 

2. Periodic Integration and Cointegration 

2.1 Properties of Periodically Integrated Processes 

Consider a univariate time series xsτ, where the first subscript refers to the season (s) and the 

second subscript to the year (τ). For simplicity of exposition, we assume that the data are 

quarterly and that observations are available for precisely N years, so that the total sample size 

is T = 4N, with initial values x40 = 0. The annual difference operator is ∆4 = 1 – L4, where L is 

the usual lag operator that works on the seasons (Lkxsτ  = xs-k,τ). Note that, through out the 

paper, it is understood that xs-k,τ = x4-k+s,τ-1 for s – k ≤ 0.  

We assume, for simplicity of exposition, a first-order periodic process  

    xsτ = φs xs-1,τ + esτ       (1) 

where esτ is white noise, then xsτ is a periodically integrated process, if φ1φ2φ3φ4 = 1. In such a 

PI(1) process, nonstationarity arises from a single common trend shared by the four quarterly 

observations of the time series; equivalently; there are three cointegration relationships 

between the quarters. It is convenient to explore this through the representation referred to as 

the vector of quarters (VQ) representation by Franses (1994), which is based on the vector Xτ = 

(x1τ, x2τ, x3τ, x4τ)´ and disturbance process Eτ = (e1τ, e2τ, e3τ, e4τ)´.  The VQ representation is 

τττ EXX +Φ=Φ −110       (2) 
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To reduce the VQ system for the PI(1) process in (1) to stationarity, consider the vector 

MA [VMA] in the annual difference ∆4Xτ = Xτ - Xτ-1, given by 

   ∆4Xτ = (Θ0 – Θ1L4)Eτ = C(L4)Eτ.     (4) 

This VMA process is noninvertible, because the matrix C(L4) has three unit roots. Therefore, 

C(1) is of rank one and it is possible to write 

   C(1) = Θ0 – Θ1 = ab´        (5) 

where a = (1, φ2, φ2φ3, φ2φ3φ4)', b = (1, φ1φ3φ4, φ1φ4, φ1)'. Further details of the above can be 

found in Boswijk and Franses (1996), Franses (1994), Ghysels and Osborn (2001), among 

others.  

  An implication of (4) and (5) is that the four elements of Xτ share a single common 

stochastic trend, given by ∑'b which they adjust with periodic adjustment coefficients 

given by the elements of a; see Boswijk and Franses (1996) for further discussion. 
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Now consider the m×1 vector process xsτ = , for which we assume that each  

is a PI(1) process, satisfying  

]'...,,[ )()1( m
ss xx ττ

)( j
sx τ

  , j = 1, …, m   (6) 1
4

1

)()()(
,1

)()( =+= ∏
=

−
s

j
s

j
s

j
s

j
s

j
s withexx φφ τττ

 6



where  is vector white noise with E[E)'..,,.( )()1( m
sss eeE τττ = sτEsτ'] = ∑ positive definite1. 

Therefore, we can define the VQ representation as in (2)/(3) for each 

, j = 1, …, m.  )',,,( )(
4

)(
3

)(
2

)(
1

)( jjjjj xxxxX τττττ =

Cointegration can then be defined as follows: 

 
DEFINITION 1. The m×1 vector xsτ of PI processes satisfying (6) is periodically cointegrated 

if there exist m×r matrices αs such that the linear combinations αs´xsτ are stationary for each 

s = 1, …, 4. 

 
Although not formally defined in this way, the idea of periodic cointegration appears to have 

been applied first by Birchenhall et al. (1989). 

In their discussion of periodic cointegration, Boswijk and Franses (1995) distinguish 

full and partial periodic cointegration, where the former corresponds to Definition 1 and the 

latter to the situation where stationary linear combinations αs´xsτ exist for only some s = 1, …, 

4. However, Ghysels and Osborn (2001) show that partial periodic cointegration cannot apply 

between two PI(1) processes; such processes are either (fully) periodically cointegrated or no 

cointegrating relationship exists for any s = 1, …, 4. This result is generalized in Lemma 1 for 

the case of m PI(1) processes. 

 
LEMMA 1. Consider the m×1 vector xsτ of PI processes of (6), such that the m×r matrix αs of 

rank r defines all linearly independent stationary linear combinations αs´xsτ for some s = 1, …, 

4.  Then: 

(i) αs, together with the coefficients (s = 1, 2, 3, 4; j = 1, …, m) of (6), determine the 

m×r matrix α

)( j
sφ

q of rank r, which must exist for each q = 1, 2, 3, 4, q ≠ s such that αq´xqτ is 

stationary; 

                                                 
1 Although periodic variation in Σ can be permitted, the purpose of our analysis is to analyse the implications of 
periodically varying coefficients.  
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(ii) Nonperiodic cointegration with αs = α (s = 1, 2, 3, 4) applies if and only if , j = 

1, …, m in (6).  

s
j

s φφ =)(

 
The first part of Lemma 1 implies that there must be the same number of cointegrating 

relationships between PI(1) processes for all seasons s = 1, 2, 3, 4. Hence, as in the bivariate 

case considered by Ghysels and Osborn (2001), partial periodic contegration cannot apply 

between PI(1) processes. Further, given the cointegrating vectors that apply for one season and 

the univariate PI coefficients of (1), then all four sets of cointegrating relations can be 

determined. Part (ii) further establishes that the same (nonperiodic) cointegrating relations can 

apply over seasons if and only if all processes have identical univariate PI coefficients. The 

proof of this Lemma2, rests on the fact that the VQ process corresponding to a PI(1) variable is 

driven by a single unit root process. The stationary relationships between observations for the 

seasons that exist for each ') ]  then imply that cointegrating relations 

for the vector x

 ,,,[ (
4

)(
3

)(
2

)(
1

)( = jjjjj xxxxX τττττ

n. sτ can be mapped from season to seaso

Conventional cointegration between I(1) processes provides a special case of Lemma 1, 

where the same cointegrating relations apply for all seasons (quarters) of the year and all 

of (6) are unity. )( j
sφ

 

2.3 Cointegration for SI Processes 

Unlike the quasi-differencing xsτ - φsxs-1,τ of (1) with φ1φ2φ3φ4 = 1 that renders the PI(1) 

process stationary, first order seasonally integrated, or SI(1), processes are made stationary and 

invertible by annual differencing. As is now well know, such processes contain four unit roots, 

implying that the quarters of the year are not cointegrated with each other; Osborn (1993) and 

Franses (1994) provide discussions of some of the implications.  In the context of cointegration 

between elements of an m×1 vector xsτ, if each element is SI(1) then the lack of cointegration 
                                                 
2 All proofs can be found in the Appendix. 

 8



across the seasons implies that distinct contegrating relations can apply for each of the vectors  

xsτ for s = 1, 2, 3, 4. This is the essence of Lemma 2.  

 
LEMMA 2. Consider the m×1 vector of SI processes. Then the existence of 

an m×r matrix α

]'...,,[ )()1( m
sss xxx τττ =

s of rank r such that αs´xsτ is stationary for some s = 1, …, 4 has no 

implications for the existence or nature of cointegration across the elements of  xqτ for q ≠ s. 

 
An immediate consequence of Lemma 2 is that full and partial periodic cointegration are 

possibilities for SI(1) processes.  

 So-called seasonal cointegration, which corresponds to cointegration at the distinct 

seasonal spectral frequencies, is another possibility for SI processes and is analysed by Engle, 

Granger, Hylleberg and Lee (1993), Cubadda (2001), Johansen and Schaumberg (1999) and 

Lee (1992). However, our analysis focuses on testing for periodic cointegration. More 

specifically, we are particularly interested in testing for cointegration for PI processes. 

However, the case of SI processes is relevant, since Boswijk and Franses (1995) claim that the 

same asymptotic distribution applies for their test for SI and PI processes.  

 

 

3. Residual-Based Test for Periodic Cointegration 

This section analyses the periodic analogue of the Engle-Granger (1987) test, which applies a 

test for PI to the residuals from a first-stage regression. We first set out the test regression and 

then, before obtaining the distribution of the test statistic in subsection 3.3, subsection 3.2 

examines the properties of the processes in (6) in the absence of cointegration.  

 

3.1 The Test Regression 

As usual, a residual-based test requires that the potential cointegrating relationship being 

examined is unique. That is, either there exists at most one cointegrating vector or, if there 
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potentially exist 1< mk <  cointegrating vectors between the separate series, then (exclusion) 

restrictions are imposed to ensure uniqueness. From the analysis of the previous section, we 

know that cointegration applying for one season between PI processes implies cointegration for 

all seasons. Therefore, it is anticipated that efficiency gains will result by considering all 

seasons jointly. 

 To keep notation simple, our analysis in Section 3.3 below assumes only one 

cointegrating relationship may exist across the m variables. Arbitrarily normalising on the first 

element of x, we propose fitting the regression 

         (7) ( ) ( )
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i
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)1( ˆˆ τττ βν . The intuition is that, in the absence of cointegration, the residuals τν sˆ  

follow a nonstationary PI process (see Franses, 1996, pp.181-182).  

Now, partition xsτ as 

   ( ) ( )'...,,','', )()2()1( m
ssssss xxzzxx ττττττ ==     (8) 

so that zsτ comprises the vector of right-hand side variables in (7). We assume that all j = 1, …, 

m variables are PI(1) processes, as in (6), with variance-covariance disturbance matrix 

corresponding to the system being 
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where Σ in (9) partitioned conformably with xsτ in (8).  

 

3.2 Properties of the PI System  

As discussed in Section 2.1 above, the matrix C(j)(L4) in the VMA representation for each 

process j = 1, …, m has three unit roots, and hence 
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The long-run covariance matrix between the 4×m  random walk processes in  is then given 

by (see also Boswijk & Franses, 1995, p.440) 
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 In the absence of cointegration between the ( ) mjx j
s ,,2,1 L=τ , cointegration applies 

only across the seasons separately within each ( ) mjx j
s ,,2,1 L=τ  and we have  
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xxxxx baC =Θ−Θ=

where the (4m)×m matrices ax, bx are defined by (in an obvious notation) 
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and all sub-matrices in (14) are 4×1. In this case, Cx(1) is of rank m.  

However, if cointegration exists across processes, then Cx(1) is of rank k < m and hence 

ax and bx do not have the block diagonal form of (14). Specifically, ax and bx are then matrices 

of rank k, with dimension 4m × k. 

Returning to the case of no cointegration, Lemma 3 establishes the asymptotic 

distribution of the scaled vector  relevant for the regression (7). The result is 

obtained by accounting for the contemporaneous correlation between the disturbances through 

the decomposition Σ = PP' where P is upper triangular.  

]'','[ )1(
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LEMMA 3. Consider the vector of m PI(1) processes defined in (6), (8) and (9), with no 

cointegration applying across the m processes. Also define the 4m × 1 vector Brownian motion  
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where [rN] is the integer part of rN, , the upper triangular matrix Pzzzz P 1
12/1

111 σσρ −−= zz satisfies  

PzzPzz′ = Σzz, and az, bz are the lower right-hand 4n × n blocks of ax, bx, respectively, in (14). 

 
 Here and throughout the paper ⇒ indicates convergence in distribution. 

Note that we can define standard Brownian motions underlying (15) as 
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where p(j) is the (j-1)th row of Pzz. Using (16),  
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provides an alternate representation to (15). Therefore, the scalar standard Brownian motions 

)(~ )( rw j  in (16) can be thought of as the stochastic trends underlying the m individual PI 

processes, which in turn derive from the vector Brownian motion processes W(1)(r) and . )(rW z

 It is clear from (15) or (16) that, in general, Brownian motions processes relating to x(1) 

and z are correlated. That is, when the contemporaneous covariance σ1z in (9) is nonzero, 

 influences )(rW z )(~ )1( rw . This effect disappears in the special case of σ1z = 0, since ρ1z = 0 

when x(1) is uncorrelated with x(2), …, x(m)
.

 

3.3 Asymptotic Distribution of the Test Statistic 

We now turn to the properties of the residuals resulting from OLS estimation of (7), which are 

summarized in Lemma 4. 

 
LEMMA 4. Consider the vector of PI(1) processes defined in (6), (8) and (9), with no 

cointegration applying across the m processes. The 4×1 vector '  of 

residuals from (7) for year τ then satisfy, as N = T/4 → ∞: 

ˆ,ˆ,ˆ,ˆ[ˆ
4321 ]= τττττ ννννV
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where [rN] is the integer part of rN and the univarite Brownian motion ( )rwm  is defined by  
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m

−

∫∫−=  (19) 
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in which ]')'(),([)( )1( rWrwrW zx =  is m × 1 standard Brownian motion with covariance 

matrix Im, the 4 × 1 vectors a(1), b(1) are defined in (14) and  is a scalar.  11l

 
Lemma 4 implies that the residuals from (7) asymptotically retain the same 

nonstationary periodic coefficients as the univariante process for ( )1
τsx  in (6). This is easily seen 

by comparing (18) with the first equation of (17). 

Building on the implication of Lemma 4 that the residuals of (7) retain the PI properties 

of  in (6), the strategy of testing for periodic integration in the residuals of (7) is clear. More 

specifically, following Franses (1996, pp. 181-182), we propose testing the null hypothesis 

 against the alternative  in the unrestricted dummy variable 

regression

( )1
τsx

14321 =φφφφ 14321 <φφφφ

3

        (20) ττττ ενφν s
s

ssss D += ∑
=

−

4

1
,1ˆˆ

where Dsτ is the usual binary seasonal dummy variable for season s. Under the null hypothesis 

the residuals τν ŝ ∼ PI(1), so that there is no cointegration between the two PI processes. Under 

the alternative hypothesis, the residuals are stationary, implying that either full periodic 

cointegration or full nonperiodic cointegration exists between the processes. 

We employ the test of periodic integration proposed by Boswijk and Franses (1996), 

which uses the Likelihood Ratio statistic  

    ( )22
0

~/~ln σσNLR =       (21) 

where  is the unrestricted maximum likelihood estimator of the disturbance variance in (7) 

and 

2~σ

2
0

~σ  is the corresponding estimator when the restriction φ1φ2φ3φ4 = 1 is imposed. The usual 

                                                 
3 Note that, although (18) implies the PI coefficients for the residuals are identical to those of the univariate 
process for  in (6), we do not propose that equality between these should be imposed.  )1(

τsx
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practice is to impose the restriction by setting φ4 = 1/(φ1φ2φ3), with (20) then estimated by 

nonlinear least squares. 

 Theorem 1 establishes the asymptotic distribution of this periodic cointegration test 

statistic. 

 
THEOREM 1. Under the null hypothesis of no cointegration between the PI processes of (6), 

(8) and (9), the likelihood ratio test statistic of (21) applied to the residuals from (7) has 

asymptotic distribution:  

   ( ){ } ( ) ( ){ }212

∫∫
−

⇒ rwdrwdrrwLR mmm     (22) 

where ( )rwm  is defined in (19). 

 
The distribution of the test statistic in (22) is the square of the Dickey-Fuller test for 

cointegration using the residuals of a (nonperiodic) regression, as derived by Phillips and 

Ouliaris (1990). It is clear from (19) that this asymptotic distribution depends on the number of 

regressors in (7), namely n = m - 1. Consequently, the distribution of the LR test statistic in (22) 

also depends on m. However, the distribution is invariant to the values of the PI coefficients for 

the processes in (6) and nonzero disturbance covariances in (9).  

Also in common with Phillips and Ouliaris (1990), this asymptotic distribution will 

continue to hold in the presence of stationary autocorrelation in the processes of (6), provided 

that the test regression for the residuals in (20) is sufficiently augmented to take account of this 

autocorrelation. 

 

 

4. The Boswijk and Franses Test 

Boswijk and Franses (1995) propose Wald tests for periodic cointegration relating to a specific 

season s and over all seasons with an error-correction mechanism (ECM) framework. This test 
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is built on the cointegration test of Boswijk (1994), which was developed in a nonperiodic 

context. To avoid issues Boswijk and Franses encounter concerned with the possible 

dependence of some asymptotic distributions on correlation between the disturbances of the 

processes considered, we confine our attention to the “spurious regression” case where the 

variables are mutually uncorrelated. Also for simplicity, we continue to assume that all 

variables have zero means, with no deterministic terms included in the estimated ECM model. 

Although a special case, this is sufficient to establish that, contrary to the statement of Boswijk 

and Franses (1995), the asymptotic distribution of this test when applied to PI processes differs 

from the result they obtain for SI processes.  

Therefore, using the notation of the previous section, and arbitrarily assuming that the 

first variable of xsτ is the dependent variable, our periodic ECM model is  

   ( ) 4,3,2,1,' 1,
)1(

1,
)1(

4 =+−=∆ −− suzxx ssssss ττττ κγ   

where κs is an  n × 1 vector. Employing seasonal dummy variables, this can be written 

       (23) ( ττττττ δδ s
s

sssssss uzDxDx ++=∆ ∑
=

−−

4

1
1,1

)1(
1,0

)1(
4 ' )

where δ0s = γs and δ1s = -γsκs. We also continue to assume that the variables are generated by 

the PI(1) processes of (6), (8) and (9), with the additional assumption σ1z = 0 and  being a 

diagonal matrix. In comparison with Boswijk and Franses (1995), no conditioning on the n × 1 

vector ∆z

zzΣ

sτ is included in (23), due to our simplifying assumption of zero covariance between 

x(1) and z.  

Using a similar notation to Boswijk and Franses (1995), the Wald statistic to test the 

null of no cointegration in season s, or equivalently to test δ0s = 0, δ1s = 0 in (23), is 

    [ ]( ) ssss raVWald δδδ ˆˆˆ'ˆ 1−
=      (24) 
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where  is the ordinary least squares estimator of the relevant coefficients and 

 is the corresponding estimated OLS covariance matrix. When all seasons are 

considered, the joint cointegration test statistic for the null hypothesis δ = 0, where 

)''ˆ,ˆ(ˆ
10 sss δδδ =

]ˆ[ˆ sraV δ

']',',','[ 4321 δδδδδ = ́, is given by (in an obvious notation) 

  [ ]( ) ( )∑
=

−−
==

4

1

11 ˆ]ˆ[ˆ'ˆˆˆˆ'ˆ
s

sss raVraVWald δδδδδδ .     (25) 

Note that Wald statistic in (25) is the sum of the individual Walds of (24) due to the block 

orthogonality of the regressors in (23) that is a consequence of the seasonal dummy variables. 

As noted by Ghysels and Osborn (2001, pp.176-179), the null distribution obtained by 

Boswijk and Franses (1995) assumes xsτ is a vector of SI processes. More specifically, 

Assumption 1 of Boswijk and Franses (1995, p.440) does not require the longrun variance-

covariance matrix Ω of the vector Brownian motion process corresponding to (x1τ, x2τ, x3τ, x4τ)' 

to be positive definite, which allows the possibility of one or more components being PI 

processes. However, the proof of their Theorem 2 assumes that ss CC ~'~
Ω  is strictly positive4. 

Consequently, the asymptotic distributions derived by Boswijk and Franses require Ω to have 

full rank, ruling out the possibility that any element of xsτ is periodically integrated. 

 Under the null hypothesis of no periodic cointegration, and assuming SI processes,  

Boswijk and Franses (1995) establish that the distribution of the Walds statistic used to test for 

cointegration relating to an individual season s is identical to that obtained by Boswijk (1994) 

for the nonperiodic case. Theorem 2 below shows that this result does not carry over to the case 

of PI(1) processes. Indeed, for such processes, the theorem shows that the distribution of 

Boswijk (1994) emerges in relation to the test statistic for full periodic cointegration.  

 

                                                 
4 See the paragraph between expressions (A.11) and (A.12) of Boswijk and Franses (1995, p.451). 
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THEOREM 2. Under the null hypothesis of no cointegration between the PI processes of (6), 

(8) and (9) with σ1z = 0 and being a diagonal matrix, the asymptotic distributions of the 

Wald test statistics proposed by Boswijk and Franses are: 

zzΣ

(i) for the Walds test of 010 == ss δδ for an individual s 

     ( ) ( ) ( )∫∫∫
−

⇒ )()()'()(')()(
'

)(4 )1(1)1(
)1()1(

2)1(

rwdrWdrrWrWrwdrW
aa

aWald xxxxs
s ,     (26) 

(ii) for the joint Wald test of  010 == ss δδ , s = 1, 2, 3, 4, 

( ) ( ) ( )∫∫∫
−

⇒ )()()'()(')()(4 )1(1)1( rwdrWdrrWrWrwdrWWald xxxx       (27) 

where ]')'(),([)'( )1( rWrwrW zx =  is m-vector standard Brownian motion and 

 which has s]',,,1[ )1(
4

)1(
3

)1(
2

)1(
3

)1(
2

)1(
2

)1( φφφφφφ=a th element . )1(
sa

  
There are two important differences between the distributional results given (26) and 

(27) and those of Boswijk and Franses (1995) for SI processes. Firstly, the statistic in (26) does 

not follow the distribution of Boswijk (1994), due to the multiplicative factor 

.  Since, these λ( ) )1()1(2)1( '/4 aaass =λ s average unity over s = 1, 2, 3, 4, the scaling will inflate 

or deflate values relative to the Boswijk (1994) distribution, depending on the specific PI 

coefficients and the season s.  

Secondly, the distribution defined by (27) is four times the distribution obtained by 

Boswijk (1994). Intuitively, this arises because there is only one underlying stochastic trend for 

each vector process  and hence, as discussed in Section 2, there can be only one linearly 

independent cointegrating relationship over the four quarters of the year. Consequently, when 

the Wald test is applied to the PI(1) variables, effectively a single cointegration relationship is 

being tested four times (once for each quarter).  

)( jXτ

 The asymptotic distribution of (27) is not that derived by Boswijk and Franses (1995) 

for SI processes. To be specific, because an SI process for a quarterly series involves four 
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distinct unit root processes, these are reflected in the asymptotic distribution. For uncorrelated 

SI processes, the asymptotic Boswijk-Franses distribution is (Ghysels and Osborn, 2001, 

p.178)  

( ) ( ) ( )∑ ∫∫∫
=

−
⇒

4

1

)1(1)1( )()()'()(')()(
s

s
x

s
x

s
x

ss
x

s rdwrWrWrWrdwrWWald   (28) 

where  is formed by selecting elements of the 4m × 1 vector standard 

Brownian motion  corresponding to season s. It is obvious that (27) and (28) differ, with 

the former being four times the Boswijk (1994) distribution whereas the latter is the sum of 

four independent distributions of this type. Indeed, this comparison also clarifies the role 

played by the four distinct unit roots underlying an SI process and which therefore appear in 

(28) as against the single unit root underlying a PI process. 

]')'(),([)( )1( rWrwrW z
ss

x
s =

)(rW x

 

 

5. Monte Carlo Analysis 

In this section we present Monte Carlo results relating to the empirical size and power of the 

residual-based test for periodic cointegration analysed in Section 3. Subsection 5.1 considers 

zero-mean processes, with the analysis of Subsection 5.2 allowing the possibility of nonzero 

trends. 

 

5.1 Zero Mean Processes 

We first investigate empirical size5 for zero-mean processes generated through the bivariate 

model, where xsτ = (ysτ, zsτ)′, such that  

                                                 
5 All results presented are based on the 5 percent critical value of 7.3 obtained through a Monte Carlo simulation 
for T = 200 observations. However, use of the asymptotic critical value of (-2.76)2 from Phillips and Ouliaris 
(1990, Table IIa) does not alter the substantive conclusions. 
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As show in Lemma 4, the DGP of (29) implies that the residuals follow a PI(1) process when 

the regression of (7) is estimated.  

Note that (30) permits three levels of contemporaneous correlation between the 

innovations  and . Further, the processes of (29) are PAR(1) processes when y
se τ

z
se τ 0=γ , and 

in this case the residuals also follow PAR(1) processes. However, a second-order model is 

required when 5.0=γ , so that we also test the PI restriction using PAR(2) models for the 

residuals. 

The empirical power is obtained from the DGP 

( )( )
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    (31) 

γ1 = {0.0, 0.5}, γ2 = {0.0, 0.8} and the periodic cointegrating relationship has coefficients k4 = 

0.4,  for s = 3, 2, 1, with  (s = 1, 2, 3, 4) being the PI coefficients for yy
s

z
ssk φφ /4.01 =−

y
sφ sτ. 

The innovation covariance matrix is again given by (30). When γ1, γ2 are both zero in (31), the 

residuals from (7) follow a white noise process. On the other hand, the residuals are an AR(1) 

when one of these coefficients is zero, so that a PAR(1) model is sufficient to account for this 

autocorrelation. However, γ1 = 0.5, γ2 = 0.8 leads to an AR(2) process for the residuals, which 

is accommodated by estimating a PAR(2) model. Thus, (31) allows the same levels of serial 

dependence as considered in (29). 
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Table 1 shows the combinations of coefficients used in (29) and (31) to compute the 

empirical size and power respectively. The size and power results are collected in Table 2, for a 

sample size of 50 years (200 observations), and based on 5,000 replications. 

The results of Table 2 verify that, even in finite samples, the residual-based test for 

periodic cointegration has good size properties, provided that the appropriate order of periodic 

autoregressive model is selected. This is true across all sets of PI coefficients considered and 

irrespective of the extent of correlation between the disturbances. However, the test is badly 

undersized when the PAR order is underspecified. 

Further, again provided that an appropriate order of periodic process is fitted, the test 

has power approaching unity, especially when γ1 = 0.5, γ2 = 0.8.  The relatively low power 

obtained for a PAR(1) specification in this case is a reflection of the undersizing that results 

when a model of too low order is employed. 

 

5.2 Deterministic Terms 

In order to facilitate the theoretical analysis above, we omit deterministic terms and assume the 

initial value x40 = 0, thereby implying E[xsτ] = 0. Here we relax these restrictions by 

considering the addition of deterministic terms to the cointegrating test regression. 

 In the case of standard (nonperiodic) cointegration, the appropriate form of the 

cointegration test regression depends on the properties of the time series under study; see 

Phillips and Ouliaris (1990) and Hansen (1992). The inclusion of an intercept allows for 

possibly nonzero starting values, with means constant over time, by demeaning the variables 

used in the longrun regression. The null distribution of the LR test for (nonperiodic) 

cointegration then satisfies (22), with ( )rwm  as defined in (19), where it is understood that 

]')'(),([)( )1( rWrwrW zx =  is a vector of demeaned standard Brownian motions. The addition 
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of a trend allows for a nonzero drift, and the vector of Brownian motions is then demeaned and 

detrended.  

Turning to the case of PI(1) processes, a nonzero starting value in (1), with no 

deterministic terms, implies a seasonally varying mean E[xsτ] that is, however, constant over 

years τ = 1, 2, … However, as shown by Paap and Franses (1999), the addition of an intercept 

to (1) leads to a seasonally-varying trend in E[xsτ], and hence an annual growth rate ∆4xsτ that 

varies over s = 1, 2, 3, 4. Further, excluding the special case of an I(1) process, they show that 

a PI(1) process with an intercept cannot have a trend that is common over s = 1, 2, 3, 4, 

irrespective of whether the intercept is constant over seasons or is seasonally-varying. On the 

other hand, the univariate first-order process 

       (32) ∏
=

− =+++=
s

i
sssssss exx

1
,1 1, φφτϑµ τττ

with esτ white noise and trend coefficients that satisfy 

   ( ) 4,3,2,1][1 1432243344 =+++−= sss µφφφµφφµφµφϑ   (33) 

has a common linear trend shared by all quarters (Paap and Franses, 1999). However, with 

unrestricted trend coefficients, (32) implies seasonally-varying quadratic trends in E[xsτ]. 

In the context of testing for periodic cointegration, the above discussion implies that the 

relevant cointegrating regressions that may be considered in place of (7) are 
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More specifically, (34) is appropriate when the variables in the regression are known to have 

constant (possibly periodically-varying) mean over time, while the use of (35) permits the 

possibility that the variables may trend linearly over time6.  

 In addition to the case with unrestricted trends in (35), we also investigate cointegrating 

regressions using restricted trend coefficients such that β11 = β12 = β13 = β14. This last case is 

considered when sϑ  satisfies the restrictions of (33), and hence the linear trend in each PI(1) 

process is constant over seasons. 

 The results of Panel a of Table 3 verify that, for the three bivariate PI(1) DGPs 

considered there, the inclusion of deterministic terms has the anticipated effect on the residual-

based test for periodic cointegration. That is, for zero-mean processes, the inclusion of 

periodically-varying intercepts or periodically-varying intercepts and trends, as in (34) or (35) 

respectively, causes the distribution of the LR test for periodic cointegration to shift, with the 

percentiles of the test statistic under the null hypothesis being effectively the same as the 

corresponding values obtained by Phillips and Ouliaris (1990) for the nonperiodic case (with 

the latter values squared). 

 Since the inclusion of unrestricted intercepts leads to seasonally-varying trends in a 

PI(1) process, a cointegrating test regression of the form of (35), with unrestricted intercepts 

and trends, takes account of these deterministic effects. Panel b of Table 3 verifies that, in this 

case, the (squared) Phillips-Ouliaris (1990) critical values for nonperiodic random walks with 

drifts continue to apply in this periodic case. As seen in Panel c, these critical values also apply 

if the individual processes within the DGP have trends restricted to be identical across seasons, 

provided that no restrictions are imposed when (35) is estimated. However, imposition of the 

restriction of nonperiodic trends in the cointegrating test regression of (35) causes the Phillips-

Ouliaris critical values to be inappropriate for these DGPs. 

                                                 
6 In common with much of the unit root literature, the possibility of quadratic trends over time is excluded on a 
priori grounds. 
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In contrast to the effects of restricted trends in Panel c, Panel d shows that, whether the 

trend coefficients of the cointegrating test regression are restricted to be identical over seasons 

or not, the Phillips-Ouliaris (1990) critical values can be used when testing cointegration 

between two PI(1) processes which have identical periodic coefficients, . 

However, the case of identical coefficients across PI separate processes is a special one, for 

which Lemma 1 shows that any cointegration must be nonperiodic. 

zyjs
j

s ,,)( == φφ

 To investigate this further, consider the PI(1) vector xsτ, where all elements have 

constant trends over seasons. Separating the deterministic and stochastic components of each 

element, we can write 
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which is identical in form to (35). Notice, however, that although (37) has periodically varying 

intercepts and periodic trend coefficients, the trend coefficients in the latter satisfy 
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If the PI(1) coefficients are identical across processes, and hence any cointegrating relationship 

is nonperiodic, then  βi1 = βi2 = βi3 = βi4 (i = 2, …, m) and (38) implies nonperiodic trends in 

the cointegrating regression of (35) or (37).  

 The Monte Carlo results of Panels c and d support this analysis. In particular, the PI(1) 

processes in Panel d with identical coefficients and individual nonperiodic trends imply that 

any trend in (35) is also nonperiodic. Therefore, the restriction of identical trends derives from 

the nonperiodic nature of any cointegration in this case, with the imposition of this restriction 

effectively having no impact on the distribution of the residual-based test statistic.  

On the other hand, when the PI(1) coefficients differ over processes, (38) implies that 

the imposition of the nonperiodic trend restriction is inappropriate when the βis are not 

correspondingly restricted. However, from Lemma 1, nonperiodic cointegration can apply only 

when the separate processes have identical PI coefficients. Therefore, the trend coefficients in 

(35) should not be restricted to be nonperiodic when testing for cointegration between periodic 

processes, except for the special case analysed in Panel d.  

 

 

6. Concluding Remarks 

This paper has provided an analysis of cointegration for periodically integrated processes. We 

first establish that the only cointegration possibilities are so-called full periodic or full 

nonperiodic cointegration. Due to the cointegration between seasons that exists for a univariate 

periodically integrated variable, if no cointegration between variables applies for a specific 

individual season, then no cointegration applies at all. Further, if the periodically integrated 

processes have identical coefficients over processes, then any cointegration that exists is 

nonperiodic, with identical cointegrating relationships over seasons. 
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 Two tests of cointegration have been proposed as appropriate in previous literature for 

periodically integrated processes. However, this paper is the first to obtain analytical results for 

the asymptotic distributions of these tests.  

 The analytical results previously available for cointegration related to seasonal 

processes have focussed on the case of seasonally integrated processes, including Boswijk and 

Franses (1995), Hylleberg et al. (1990), Johansen and Schaumburg (1999). However, the 

greater economic plausibility of periodic processes in some contexts suggests that attention 

should also be devoted to this case. The present paper provides results that contribute to our 

understanding of cointegration for seasonal processes, while also emphasising that periodic and 

seasonal integration have distinct longrun implications. In particular, although the Boswijk-

Franses (1995) periodic cointegration test can be applied for both types of seasonal 

nonstationarity, the test statistic follows different distributions in the two cases. Therefore, a 

careful prior univariate analysis should be undertaken before considering cointegration for 

seasonal processes. 

 Our analysis also formally establishes the asymptotic distribution of a residual-based 

test of cointegration for periodically integrated processes, showing this distribution to be the 

same as for the nonperiodic case.  Moreover, our Monte Carlo analysis verifies that the critical 

values of Phillips and Ouliaris (1990) can be used in the context of periodic processes, 

provided that potentially relevant trend terms included in the cointegration test regression are 

not restricted to be constant over the quarters of the year when the potential cointegration is 

periodic. Therefore, the test can be employed by applied workers in realistic contexts where the 

periodic series under analysis exhibit nonzero means and possible trends.  

As in the case of univariate periodically integrated processes analysed by Paap and 

Franses (1999), the use of trend terms in testing for periodic cointegration tests requires some 

care. Specifically, when testing for cointegration in periodic processes which contain 

nonperiodic trends, we show that the trend coefficients in the cointegration test regression 
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should be restricted to be identical over seasons only when the individual processes have 

identical periodic coefficients. Since the situation where identical coefficients apply over the 

different univariate processes may not occur widely in practice, we recommend that the trend 

(as well as intercept) coefficients should be unrestricted over seasons when using the residual-

based test for cointegration between periodically integrated processes. 
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Table 1. DGPs used for size and power calculations of Table 2 
. 

DGP y
1φ  y

2φ  y
3φ  y

4φ  z
1φ  z

2φ  z
3φ  z

1φ  

1 1.200 0.700 1.000 1.190 0.800 0.900 1.200 1.157 
2 1.200 1.000 0.800 1.042 0.800 1.000 1.200 1.042 
3 0.800 0.800 1.200 1.302 1.200 0.700 1.000 1.190 
4 1.200 0.700 1.000 1.190 1.200 0.700 1.000 1.190 
5 0.800 1.000 1.200 1.042 0.800 1.000 1.200 1.042 
6 0.800 0.900 1.200 1.157 0.800 0.900 1.200 1.157 

 
 

Table 2. Size and power of residual-based test for periodic cointegration 
 

  Size Power Size Power

  
γ = 0 

 
γ1= 0 
γ2 = 0 

γ1= 0 
γ2 = 0.8 

γ = 0.5 
 

γ1= 0.5 
γ2 = 0.8 

2
yzσ  DGP PAR(1) PAR(1) PAR(1) PAR(1) PAR(2) PAR(1) PAR(2) 

0 1 0.050 1.000 0.989 0.006 0.056 0.365 0.998 
0 2 0.047 1.000 0.985 0.007 0.057 0.364 0.997 
0 3 0.050 1.000 0.991 0.006 0.061 0.352 0.999 
0 4 0.055 1.000 0.991 0.005 0.055 0.376 0.998 
0 5 0.053 1.000 0.988 0.007 0.062 0.347 0.998 
0 6 0.052 1.000 0.989 0.004 0.057 0.336 0.998 

0.4 1 0.050 1.000 0.982 0.007 0.053 0.352 0.998 
0.4 2 0.049 1.000 0.979 0.005 0.054 0.368 0.998 
0.4 3 0.053 1.000 0.986 0.006 0.052 0.345 0.998 
0.4 4 0.048 1.000 0.984 0.005 0.054 0.350 0.998 
0.4 5 0.053 1.000 0.984 0.006 0.050 0.346 0.998 
0.4 6 0.054 1.000 0.985 0.007 0.055 0.342 0.998 
0.8 1 0.046 1.000 0.972 0.004 0.051 0.321 0.998 
0.8 2 0.052 1.000 0.965 0.006 0.049 0.338 0.998 
0.8 3 0.051 1.000 0.983 0.005 0.050 0.320 0.999 
0.8 4 0.059 1.000 0.978 0.006 0.061 0.321 0.998 
0.8 5 0.050 1.000 0.979 0.007 0.054 0.308 0.999 
0.8 6 0.048 1.000 0.979 0.007 0.065 0.298 0.998 
Note: The residual-based test is applied to (7). Results are based 5,000 replications, for a sample of 
200 observations (N=50). The DGPs used for size and power are given in (29) and (31) 
respectively, using the coefficients of Table 1. PAR(1) and PAR(2) indicate that periodic 
autoregressive models of order 1 or 2, respectively, are fitted to the residuals in order to obtain the 
LR statistic used to test periodic cointegration at a nominal significance level of 5 percent. The 
critical value used is 7.3, which has been obtained from a Monte Carlo based on 15,000 replications 
of two uncorrelated PI(1) processes with a sample size of 200 observations (N = 50). 
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Table 3. Effect of deterministic terms on the empirical distribution of 
the residual-based cointegration test 

 Percentile 
DGP 

Deterministic 
terms in regression 0.85 0.875 0.9 0.925 0.95 0.975 0.99

Panel a. Zero-mean DGPs 
1 None 5.024 5.447 5.958 6.626 7.503 8.994 10.922
 Intercepts 8.062 8.565 9.154 9.943 10.981 12.709 14.970
 Intercepts & trends 10.824 11.386 12.113 12.992 14.149 16.047 18.484
2 None 5.001 5.402 5.904 6.572 7.438 8.908 10.748
 Intercepts 7.939 8.443 9.066 9.840 10.825 12.635 14.934
 Intercepts & trends 10.768 11.361 12.036 12.882 14.080 15.990 18.524
3 None 5.036 5.456 5.980 6.658 7.517 9.037 11.042
 Intercepts 8.034 8.553 9.158 9.884 10.949 12.767 15.014
 Intercepts & trends 10.840 11.382 12.067 12.910 14.110 16.026 18.492

Panel b. Periodic-trend DGPs 
1 Intercepts & trends 10.844 11.421 12.108 12.948 14.158 16.062 18.505
2 Intercepts & trends 10.828 11.417 12.097 12.968 14.139 16.091 18.428
3 Intercepts & trends 10.789 11.389 12.073 12.930 14.089 16.023 18.488

Panel c. Nonperiodic trend DGPs 
1 Intercepts & trends 10.724 11.292 11.996 12.838 13.962 16.015 18.635
 Inter./restr. trend 26.281 28.984 32.485 37.367 44.460 56.823 75.590
2 Intercepts & trends 10.826 11.404 12.087 12.938 14.133 16.123 18.638
 Inter./restr. trend 16.689 18.021 19.562 21.827 25.219 31.502 40.791
3 Intercepts & trends 10.796 11.400 12.106 12.955 14.095 16.012 18.508
 Inter./restr. trend 17.053 18.498 20.272 22.663 26.285 32.921 43.194

Panel d. Identical PI processes with nonperiodic trends 
1* Intercepts & trends 10.854 11.419 12.187 13.014 14.132 16.061 18.761
 Inter./restr. trend 10.887 11.470 12.230 13.058 14.205 16.095 18.833

2* Intercepts & trends 10.900 11.466 12.167 13.052 14.262 16.261 18.477
 Inter./restr. trend 10.937 11.505 12.223 13.110 14.285 16.351 18.613

3* Intercepts & trends 10.787 11.440 12.163 13.051 14.230 16.020 18.523
 Inter./restr. trend 10.882 11.515 12.238 13.128 14.342 16.077 18.668

Phillips-Ouliaris critical values 
 None 5.100 5.538 6.005 6.668 7.628 9.331 11.468
 Intercept 8.202 8.744 9.399 10.228 11.326 13.264 15.696
  Intercept & trend 11.078 11.701 12.379 13.298 14.440 16.583 19.034

Notes: The residual-based test is applied to (7) when no deterministic terms are included, and to 
(34) or (35) as appropriate when intercepts or intercepts and trends are included in the regression. 
Intercepts and relevant trend coefficients in (34) or (35) are unrestricted, unless otherwise stated; 
restricted trends impose β11 = β12 = β13 = β14. All DGPs are uncorrelated (both serially and 
contemporaneously) bivariate PI(1) processes. The coefficients for the processes of Panels a, b, and 
c are: 
1:  ;190.1,1,7.0,2.1;157.1,2.1,9.0,8.0 43214321 ======== zzzzyyyy φφφφφφφφ
2:  ;042.1,2.1,8.0,1;111.1,9.0,8.0,25.1 43214321 ======== zzzzyyyy φφφφφφφφ
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3:  ;302.1,2.1,8.0,8.0;190.1,1,7.0,2.1 43214321 ======== zzzzyyyy φφφφφφφφ
The identical PI DGPs 1*, 2* and 3* of Panel d have periodic integration coefficients for both 
processes that are identical to the coefficients for ysτ for the DGPs 1, 2 and 3 respectively. The 
DGPs of Panels b, c and d use 

1,2.1,5.0,2.0;2.0,5.0,2.1,1 43214321 ======== zzzzyyyy µµµµµµµµ  
in the notation of (32). These intercept values are also used in the nonperiodic-trend DGPs of 
Panels c and d, with the trend coefficients restricted through (33). Results are based on 25,000 
replications for a sample of size 2,000 observations (N = 500 years). The Phillips and Ouliaris 
(1990) percentiles are the squares of critical values given in their Tables IIa, IIb and IIc 
corresponding to no deterministic terms, intercept and intercept and trend, respectively, for n = 1 
explanatory variable.  
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Appendix: Proofs 
 

 
Lemma 1 
To prove (i), and without loss of generality, assume that the linear combination α1´x1τ is 
stationary, with α1 of rank r. Also, for ease of exposition, assume two seasons per year τ, s = 
1, 2. 
 The PI process of (6) then implies 

  x1τ = x+Φ1 2,τ-1 + E1τ       (A.1) 

where  is a diagonal m × m matrix with jth diagonal element  and the m × 1 vector E+Φ1
)(

1
jφ sτ 

has jth element . Premultiplying (A.1) by α)( j
se τ 1´ yields 

        (A.2) 
ττ

τττ
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111,22

111,21111
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Exx
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where the m × r matrix α2 = α+Φ1 1 defined by (A.2) has rank r, since  is nonsingular and 
α

+Φ1

1 is of rank r. Further, the columns of α2 must contain r cointegrating vectors for x2,τ-1, as 
otherwise the right-hand side of (A.2) would be nonstationary. 
 However, we need to establish that there are no additional linearly independent 
cointegrating vectors for x2τ, beyond those in the columns of α2. Say one such cointegrating 
vector exists, and append this as an additional column of α2 to form the m × (r +1) matrix  
of rank r +1. Then, analogously to (A.2), and where  is a diagonal m × m matrix with jth 
diagonal element , we have 
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+Φ2
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By the same argument as above,  must be a matrix of r + 1 cointegrating vectors 
for x

*
22

*
1 αα +Φ=

2τ. This, however, contradicts the assumption that there are exactly r cointegrating 
vectors for x1τ. Consequently, there can be only r cointegrating linearly independent 
cointegrating vectors for x2τ. 
 Recognizing that α2 on the right-hand side of (A.2) relates to season s-1 for s = 1, the 
generalization to four seasons, s = 1, 2, 3, 4 is straightforward, with the r cointegrating 
vectors for each quarter satisfying 

   αs-1 = α+Φ s s  s = 1, 2, 3, 4.    (A.3) 

Note that for s = 4, it is understood that s+1 = 1. By repeated substitution in (A.3), it is clear 
that given any αs and the periodic coefficients, the cointegrating vectors for all other quarters 
can be determined. Also note that the PI property of (6) implies that 

    = I++++ ΦΦΦΦ 4321 4. 

 In order to establish (ii), first note that, for this first-order case, each of the m 
processes having identical PI coefficients implies , for s = 1, 2, 3, 4. Therefore, 
from (A.3), α

mss Iφ=Φ+

s-1 = φsαs, and since the scaling is irrelevant, the cointegrating relationships are 
identical over s = 1, 2, 3, 4. Conversely, since  is nonsingular, α+Φ s s = csαs-1 for some scalar 
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constant cs only if  = c+Φ s s Im, s = 1, 2, 3, 4. In turn,  = c+Φ s s Im implies that the m PI(1) 
processes have identical periodic coefficients. 
♦ 
 
Lemma 2 

Define the vector of observations for process j of xsτ in year τ as . 
As all elements of x

]',,,[ )(
4

)(
3

)(
2

)(
1

)( jjjjj xxxxX τττττ =

sτ are SI, then the series for the quarters of the year are not cointegrated, 
so that no 4×r matrix of cointegrating vectors βj exists such that  is stationary for any 
j = 1, …, m. Since no cointegration connects the I(1) processes x

)(' j
j Xτβ

sτ and xqτ (q ≠ s), the 
existence of cointegration between the elements of xsτ has no implications for cointegration 
between the elements of xqτ.  
♦ 
 
Lemma 3 
For the process of (6), (8) and (9), and as in Boswijk (1994) or Oulariaris and Phillips (1990), 
we use the decomposition Σ = PP' where the upper triangular matrix P is 

⎥
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⎡ −
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1111

2/1
11 ρσρρσ     (A.4) 

in which the n×1 (with n = m -1) vector ρ1z is defined from the elements of Σ in (9) as 

   .      (A.5) zzzz P 1
12/1

111 σσρ −−=

For a 4m × 1 vector white noise sequence {Uτ} with mean zero and variance matrix 
I4m, the multivariate invariance principle (see Phillips and Durlauf, 1986) implies that 
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where W(r) is a 4m × 1 vector standard Brownian motion process. For later use, define 

( ) ( ) ( ) ( ) ]')'(,)'(['',,','[ 121 rWrWrWrWrWrW zm =]= L ,  

where , j = 1, …, m, are 4×1 vectors whose elements we associate with the seasons, 
while W

)(rW j

z(r) is 4n×1. From these, define the 4m × 1 vector Brownian motion with covariance 
matrix  as 4I⊗Σ
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  As in Lemma 1 of Boswijk and Franses (1996),  
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so that, from (A.7) and (A.8), we have 
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as in (15) of the text, where az and bz are defined as the lower right-hand 4n × n blocks of ax 
and bx in (14).  
♦ 

 
Lemma 4 
Consider, first the OLS estimates of the coefficients of (7), for each season denoted 

' , where ]ˆ,,ˆ,ˆ[B̂ 32 mssss βββ L=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=Β ∑∑

=

−
−

=

−
N

ss

N

sss zxNzzN
1

)1(2
1

1

2 'ˆ
τ

ττ
τ

ττ . 

 
Then  

( ) ( )[ ] ( ) ( ) ( )∫∫
−

⇒ drrBrBdrrBrB s
z
s

z
s

z
ss

11
'B̂    (A.10) 

where ( ) ( ) ( ) ( ) '',[ 1 ]= rBrBrB z
sss  is m × 1 vector Brownian motion, with n × 1 
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ss

z
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and each )(~ )( rw j , j = 1, 2, …, m is univariate standard Brownian motion. 
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where  is as n × n diagonal matrix such that sA ( ) ( ) ( ){ }m
smsss aaadiagA ωωω ,,, 3

3
2

2 K= . 
Then, from (A.10) and (A.11) it is easy to see that: 
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The appropriately scaled residuals from (7) can be expressed as: 
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Hence, from (A.12), (A.13) and (A.14),  
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with elements on the principal diagonal of zzΠ  equal to one.  
Defining the m × m matrix L such that 'LL=Π , and where the first column of L is 

given by (l11, 0) then, using part (a) of Lemma 2.2 by Phillips and Ouliaris (1990), we have 
that 

( ) ( )rWLrW xx =~  

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) '',[',,,[ 121 ]=]= rWrwrwrwrwrW zmx K  is an m × 1 vector of standard 
Brownian motions with covariance matrix Im. Finally from part (b) of Lemma 2.2 of Phillips 
and Ouliaris (1990), it is possible to write: 
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 Recalling that , the result in (18)/(19) is obtained by substituting 
these last two expressions into (A.15) and stacking the residuals for s = 1, 2, 3, 4 to define the 
vector . 

( 5.0)1()1(5.0
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Theorem 1 
It follows from Lemma 4 that, in the absence of cointegration, we can write  
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Hence, as in Lemma 1 of Boswijk and Franses (1996) or Lemma 3 of the text, we have that: 
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motion that is a function of the elements of W(r). Comparing (18) and (A.17) it follows that 
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provides an alternative definition of ( )rwm . For notational convenience in what follows, we 
omit the superscripts referring to the parameters relating to process .  )1(

τsx
 Now, turning to the test statistic of (21) for the null hypothesis  in (20), 
note that we can write 
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where  q0 and Q0 are the gradient and Hessian matrices, respectively, for the log-likelihood 
function under the null hypothesis and  is a 4×1 vector with elements 0G
( ) sφφφφφ ∂=∂ 14321 for s = 1, 2, 3, 4. It is straightforward to see that: 
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From (18) of Lemma 4, together with (A.18) and the continuous mapping theorem, it 
is possible to write: 
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where the elements of a are given by . Substituting these expressions 
in (A.20), we obtain 

]',,,1[ 432322 φφφφφφ=a
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and, therefore, 
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Using (A.18) and the definition  it follows that ]',,,1[ 141431 φφφφφφ=b
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since  . 11
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11 lσσ →

Using similar arguments,  
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The required result is easily obtained by substituting (A.21) and (A.22) into (A.19).  
♦ 

 
Theorem 2 

For (i), note, first, that the Wald statistic (24) to test the null for no cointegration in season s 
is  
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Then, from Lemma 3, 
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where ' . Using (17) and the fact that in the spurious regression 
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Substituting into (A.23) it then follows that 
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(A.24)  
where, as in Boswijk and Franses (1996),  
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Substituting (A.25) in (A.24) yields the result in (26). 

 For the joint test statistic, due to the seasonal dummy variables, then 
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as given in (27). 
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