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Chaotic Footloose Capital 

 
This paper examines the long-term behaviour of a discrete-time Footloose 

Capital model, where capitalists, who are themselves immobile between 

regions, move their physical capital between regions in response to 

economic incentives. The spatial location of industry can exhibit cycles of 

any periodicity or behave chaotically. Long-term behaviour is highly 

sensitive to transport costs and to the responsiveness of capitalists to profit 

differentials. The concentration of industry in one region can result from 

high transport costs or from rapid responses by capitalists. In terms of 

possible dynamical behaviours, the discrete-time model is much richer than 

the standard continuous-time Footloose Capital model. 

 

1. Introduction 

The Footloose Capital model focuses on the spatial location of industry, where capitalists, 

who are themselves immobile, move their physical capital between countries or regions in 

response to economic incentives. Introduced by Martin and Rogers (1995), the Footloose 

Capital (FC) model is a variant of the influential Core-Periphery (CP) model developed by 

Krugman (1991a, 1991b). The FC model plays a prominent role in Economic Geography 

and Public Policy by Baldwin et al. (2003). Its attractions are two-fold. First, it is more 

applicable to the case where the two regions are different nations than is the standard CP 

model in which the footloose factor is labour. Accordingly, the FC model features 
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particularly in the trade chapters of Baldwin et al. Second, it is much more tractable 

analytically than the standard CP model. This is due to the fact that capital earnings are 

repatriated and spent in the region in which the capital owners live. Since production 

changes brought about by the movements of capital are not accompanied by expenditure 

switching, the demand-linked circular causality that features in the Core-Periphery model 

does not arise. Furthermore, since costs-of-living are irrelevant to the production location 

decisions of capitalists, the cost-linked circular causality of the Core-Periphery model is 

eliminated. 

Currie and Kubin (2005) show that reformulating the standard continuous-time symmetric 

Core-Periphery (CP) model in discrete time has profound implications for its dynamical 

behaviour. In this paper, we explore the implications of specifying the much simpler FC 

model in discrete time. We consider not only the case of symmetric regions but also some 

implications of regional asymmetries. We set out the assumptions of the discrete-time FC 

model in Section 2. In Section 3, we characterize a short-run general equilibrium contingent 

on the regional allocation of capital. In Section 4, we complete the model by specifying the 

capital migration process, and we identify the fixed points of the dynamical model. In 

Section 5, we explore the complex dynamical behaviour for the case of symmetric regions, 

where each region has the same number of workers and where the owners of half the capital 

are located in each region. In Section 6, we identify some dynamical implications of 

exogenous regional asymmetries. Section 7 concludes. 

2. Assumptions 

There are two regions, each with a monopolistically competitive manufacturing sector and a 

perfectly competitive agricultural sector. Capital is used only in manufacturing. There are, 

in total, K units of physical capital. The share of physical capital that is owned by capitalists 
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located in region 1 is denoted by Ks . Capital is mobile between the regions at the transitions 

between time periods in response to economic incentives. Labour – the only other factor of 

production – is used in both sectors. There are, in total, L workers, who are immobile 

between regions but instantaneously mobile between sectors within a region. The share of 

workers located in region 1 is denoted by Ls . Each worker provides one unit of labour per 

period. 

Consumers in both regions have Cobb-Douglas preferences over the homogeneous 

agricultural good and a quantity index that is a CES function of the varieties of 

manufactured goods. The exponents of the agricultural good and of the manufacturing 

composite in the common utility function – and hence the invariant shares of income 

devoted to the agricultural good and to manufactures – are ( )1 µ− and µ, respectively. The 

constant elasticity of substitution between the manufactured varieties is denoted by 1σ > ;

the lower σ, the greater the consumers’ taste for variety. 

With labour being the sole agricultural input, one unit of labour yields one unit of the 

agricultural product. We assume that neither region has enough labour to satisfy the total 

demand of both regions for the agricultural good. Thus both regions always produce the 

agricultural commodity – the so-called non-full-specialization condition. Transportation of 

the agricultural product between regions is costless.  

Manufacturing involves increasing returns: each manufacturer requires a fixed input of 1 

unit of capital to operate and has a constant marginal labour requirement β . Transport costs 

for manufactures take an iceberg form: if 1 unit is shipped between the regions, 1 T arrives 

where 1T ≥ . ‘Trade freeness’ is defined as 1T σφ −≡ where 0 1φ< ≤ , with 1φ =

representing no trade cost and with trade cost becoming prohibitive as 0φ → . The 
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manufacturing sectors involve Dixit-Stiglitz monopolistic competition. Given the 

consumers’ preference for variety and the increasing returns, a firm would always produce a 

variety different from the varieties produced by other firms. Thus the number of varieties is 

always the same as the number of firms. Furthermore, since 1 unit of capital is required for 

each manufacturing firm, the total number of firms / varieties, n, is always equal to the total 

supply of capital: 

(1) n K=

The number of varieties produced in period t in region r, where 1, 2r = , is:  

(2) ( ) ( )1, 2, 1 1t t t t t tn n K n n Kλ λ λ λ= = = − = −

where 0 1tλ≤ ≤ denotes the share of physical capital used in region 1 in period t.

As with most economic geography models, the primary focus of the FC model is the spatial 

location of manufacturing industry, governed here by the endogenous regional allocation of 

capital. In Section 3, we characterize a short-run general equilibrium in period t contingent 

on tλ . In Section 4, we complete the dynamical model by specifying the capital migration 

process. An accepted tension in the standard CP model, where the inter-regionally mobile 

factor is labour, concerns the labour migration assumption. All workers are assumed 

identical; yet at the transition between periods some but not all workers migrate in response 

to wage differences. This issue has been addressed by Puga (1998), in terms of the arrival of 

opportunities to migrate and random migration costs, and by Baldwin et al. (2003), on the 

basis of utility maximizing households who, facing costly migration, divide their working 

time between the regions. Whereas the idea of workers dividing their time between regions 

is somewhat disconcerting, the notion of capitalists diversifying their physical capital 
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between regions is perfectly natural. Accordingly, when considering the location of 

physical capital, we adopt the device of a representative capitalist, who alters the regional 

allocation of his capital in response to economic incentives. Thus tλ is the share of the 

representative capitalist’s physical capital that is located in region 1 in period t.

3. Short-run General Equilibrium 

With the instantaneous establishment of equilibrium in the agricultural market and no 

transport costs, the agricultural price is the same in both regions. Since competition results 

in zero agricultural profits, the equilibrium nominal wage of workers in period t is equal to 

the agricultural product price and is therefore always the same in both regions. We take this 

wage / agricultural price as the numeraire. Since manufacturers in both regions face that 

same wage in every period, all set the same mill price p , using the Dixit-Stiglitz pricing 

rule. Given that the wage is 1, the local price of every variety is: 

(3) 
1

p βσ
σ

=
−

The effective price paid by consumers for a variety produced in the other region is pT .

Short-run general equilibrium in period t requires that each manufacturer meets the demand 

for its variety.1 For a variety produced in region r:

(4) , ,r t r tq d=

1 As a result of Walras’ Law, simultaneous equilibrium in all product markets implies equilibrium in the 

regional labour markets. 
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where ,r tq is the output of each manufacturer in region r and ,r td is the demand for that 

manufacturer’s variety. From  (3), the short-run equilibrium profit per variety in region r is: 

(5) ,
, , , ,1

r t
r t r t r t r t

pq
pq q qβπ β

σ σ
 = − = =  − 

This profit per variety constitutes the regional profit or rental per unit of capital. Total 

(‘world’) income, denoted by 1 2Y + , comprises wages and profits and is invariant over time. 

Since total expenditure is equal to total income, expenditure on the agricultural product is 

( ) 1 21 Yµ +− ; the non-full-specialization condition for agriculture is that the latter exceed 

( ){ }max , 1L Ls L s L− . Expenditure on manufactures is 1 2Yµ + . Since, from (5), profit equals 

the value of sales times 1 σ , the total profit received by capitalists is 1 2Yµ σ+ . Therefore, 

given the unit wage, total income is ( )1 2 1 2Y L Yµ σ+ += + , so that:  

(6) 1 2
LY σ

σ µ+ =
−

Total profit is therefore ( )Lµ σ µ− . Given that all profits are repatriated to capitalists and 

given that each capitalist receives the average profit, the regional incomes are: 

(7) 

( )

( ) ( ) ( ) ( ) ( )

1 1 2 1 2

2 1 2 1 21 1 1 1 1

L K
L K L K Y

L K L K Y

s s
Y s L s L L s s Y s Y

Y s L s L s s Y s Y

σ µ µµ σ µ µ
σ µ σ µ σ σ

µ σ µ µ
σ µ σ σ

+ +

+ +

− + − = + = = + = − −  
− = − + − = − + − = − −  

 

where rY is the nominal income in region r and where region 1’s share in total income (and 

in total expenditure) is: 

(8) Y L Ks s sσ µ µ
σ σ
−

= +  
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Whereas these nominal regional incomes are invariant over time, real regional incomes 

depend on costs-of-living and, thus, indirectly on the spatial location of industry. The 

regional manufacturing price indices facing consumers are given by:  

(9) 
( )

( )

11 1
1 1 1 11 1

1, 1, 2,

11 1
1 1 1 11 1

2, 1, 2,

1

1

t t t t t

t t t t t

G n p n p T n p

G n p T n p n p

σ σ σ σσ σ

σ σ σ σσ σ

λ λ φ

λφ λ

− − − −− −

− − − −− −

 = + = + −   

 = + = + −   

 

With less than perfectly free trade, the cost-of-living is lower in region 1 than in region 2 

[i.e., 1, 2,t tG G< ] if and only if it has a larger manufacturing sector [i.e., 1 2tλ > ]. The 

demand per variety in each region is: 

(10) 
( )
( )

1 1 1 1
1, 1 1, 2 2, 1, 2, 1 2

1 1 1 1
2, 1 1, 2 2, 1, 2, 1 2

1

1

t t t Y t Y t

t t t Y t Y t

d Y G Y G p s G s G p Y

d Y G Y G p s G s G p Y

σ σ σ σ σ σ

σ σ σ σ σ σ

µ µ φ φ µ

µ φ µ φ µ

− − − − − −
+

− − − − − −
+

   = + = + −   
   = + = + −   

 

From (4), (9) and (10): 

(11) 
( ) ( )

( ) ( )

1 2
1, 1,

1 2
2, 2,

1
1 1

1
1 1

Y Y
t t

t t t t

Y Y
t t

t t t t

s s Yq d
np

s s Yq d
np

µφ
λ λ φ λφ λ

µφ
λ λ φ λφ λ

+

+

 −
= = + + − + − 

 −
= = + + − + − 

 

From (1), (5), (6) and (11), the short-run equilibrium profits per variety / per unit of capital 

are: 

(12) 
( ) ( )

( ) ( )

1,

2,

1
1 1

1
1 1

Y Y
t

t t t t

Y Y
t

t t t t

s s

s s

π φ
λ λ φ λφ λ

π φ
λ λ φ λφ λ

 −
= + Ψ + − + − 
 −

= + Ψ + − + − 

 

where Ψ is the average profit per unit of capital: 
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(13) 
( )

L
K

µ
σ µ

Ψ =
−

Given the regional allocation of capital tλ , expression (12) determines uniquely the short-

run equilibrium regional profits.2 In a core-periphery state where 0tλ = or 1tλ = , the profit 

per unit of capital in the core is Ψ and the ‘virtual’ profit in the periphery is 

( )1 1Y Ys sφ φ− + − Ψ  . With perfectly free trade [ 1φ = ], location does not matter: 

1, 2,t tπ π= =Ψ for 0 1tλ≤ ≤ .

4. Capital Movements and the Complete Dynamical Model 

The representative capitalist alters his allocation of physical capital in response to the 

regional difference in profits. Since profit is spent in the region in which the capitalist 

concerned lives, costs-of-living do not impact on the capital allocation decision. From (12), 

the difference in (nominal) profits is determined uniquely by the allocation of capital at the 

beginning of period t:

(14) ( ) ( ) ( ) ( )1, 2,
1 1

1 1
Y Y

t t t
t t t t

s sπ π λ φ
λ λ φ λφ λ
 −

− =Π = − − Ψ + − + − 
 

For 1φ < , ( )tλΠ is monotonically declining: 

(15) ( )
( ) ( )

( )2
2 2

1 1 0
1 1

Y Y
t

t t t t

s sλ φ
λ λ φ λφ λ

 − ′Π = − + − Ψ <
 + − + −       

 

2 In contrast, for the CP model, the dependence of regional expenditures on the spatial allocation of the mobile 

factor means that closed-form solutions are not possible. 



10

As with the standard continuous-time core-periphery model and its variants, our 

specification of the migration process is essentially ad hoc. We invoke a discrete-time 

counterpart of the process assumed by Baldwin et al. (2003, p. 72) in their continuous-time 

FC model. Taking into account the constraint 10 1tλ +≤ ≤ , the piecewise smooth one-

dimensional map whereby 1tλ + is determined by tλ is: 

(16) ( )
( )

( ) ( )
( )

1

0 0
0 1

1 1

t

t t t t

t

if M
Z M if M

if M

λ
λ λ λ λ

λ
+

<
= = ≤ ≤
 >

where tλ is in [0,1] implies that 1tλ + is in [0,1] and where 

(17) ( ) ( ) ( ) ( ) ( )1, 2,1 1t t t t t t t t t tM λ λ λ λ γ π π λ λ λ γ λ= + − − = + − Π  

with 0γ > . We refer to γ as the ‘speed’ with which the representative capitalist alters his 

regional allocation of capital in response to economic incentives. The supposition that he 

does not always immediately shift all his capital to the region with the higher profit – 

however small the differential – could be justified in terms of adjustment costs. Thus, given 

static expectations, the representative capitalist’s maximand would be: 

(18) ( ) ( )
( )

2
1

1, 1 2, 11
2 1

t t
t t t t

t tc
λ λ

π λ κ π λ κ
λ λ
+

+ +

−
+ − −

−

where κ denotes the capital owned by the representative capitalist and where adjustment 

costs are quadratic with 0c > .3 Rearranging the first-order condition for an interior 

 

3 This rationale follows that applied by Baldwin et al. (2003, p. 55) to the labour allocation decisions of a 

household in the CP model where labour is the inter-regionally mobile factor. 
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maximum gives (17), where cγ κ= . However, since these adjustment costs do not involve 

the use of real resources, we would not wish to rely on this interpretation of the migration 

process. Alternatively, γ could be interpreted as a behavioural parameter that reflects the 

degree of cautiousness of the representative capitalist. 

If ( )* *Z λ λ= , then *λ is a fixed point for the dynamical system. Such fixed points 

correspond to stationary long-run equilibria. The local stability properties of a fixed point 

*λ depend on the stability coefficient:  

(19) ( ) ( ) ( ) ( ) ( ) ( )* * 1 * 1 * * 1 2 * *Z Mλ λ λ λ γ λ λ γ λ′ ′ ′= = + − Π + − Π  

i.e., the first derivative of ( )tZ λ evaluated at *λ . With perfectly free trade [i.e., 1φ = ], all 

regional capital allocations are fixed points. Therefore, we assume henceforth that 1φ < .

Since capital does not move to a region with no manufacturing sector in the previous 

period, the concentration of all manufacturing in one (either) region is necessarily a fixed 

point. That is, from (16), ( )0 0Z = and (1) 1Z = . We refer to 0λ = and 1λ = as the core-

periphery fixed points. Since capital migration does not occur when regional profits are 

equal, *λ is a fixed point if ( )* 0λΠ = . Since ( )tλΠ is monotonically declining, there 

can be at most one interior fixed point *λ . If an interior fixed point *λ exists, then, from 

(14), equality of profits implies that the long-run equilibrium share is:  

(20) 1 1 1*
2 1 2Ysφλ

φ
+  = + − −  

Using (8), *λ depends on the regional shares in factor endowments, Ls and Ks :

(21) 1 1 1 1*
2 1 2 2L Ks sφ σ µ µλ

φ σ σ
+  −     = + − + −     −      
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An interior fixed point need not exist if there is an asymmetry in regional incomes. Suppose 

that region 1 is larger, i.e., 1 2Ys > . As trade freeness increases, region 1’s long-run 

equilibrium share of capital use increases until * 1λ = . Solving (20) for * 1λ = gives the 

critical level of φ at and above which there does not exist an interior fixed point: 

(22) 1
1 Y

CP
Y

s
s

φ −
=

Analogously, if 1 2Ys < , solving (20) for * 0λ = gives the critical level of trade freeness, 

( )2 1CP Y Ys sφ = − , at and below which there does not exist an interior fixed point.  

The discrete-time map ( )tZ λ can exhibit complex dynamical behaviour. ( )tZ λ is non-

invertible, i.e., in general, tλ cannot be uniquely determined from 1tλ + . Given the initial 

condition 0λ , the orbit of the system is uniquely determined. The first iterate is ( )1 0Zλ λ= ;

the second iterate is ( ) ( )( )2 1 0Z Z Zλ λ λ= = ; and so on. Letting [ ] ( )0
nZ λ denote 

[ ] ( )( )1
0

nZ Z λ− , the system’s orbit is ( ) [ ] ( ) [ ] ( )2 3
0 0 0 0, , , ,Z Z Zλ λ λ λ … As noted above, if 

( )* *Z λ λ= , then *λ is a fixed point. If [ ] ( )kZ λ λ=� � and if k is the smallest such positive 

integer, λ� is a periodic point of period k and the orbit with initial point λ� is a period-k

orbit.4 A chaotic orbit is a bounded, non-periodic orbit that displays sensitive dependence 

on the initial condition.5 Sensitive dependence means that orbits that begin as close together 

 

4 A fixed point of ( )tZ λ is a period-1 orbit. If λ� is a periodic point of period k, it is a fixed point of [ ] ( )k
tZ λ .

Where we refer to a ‘fixed point’, we always have in mind a fixed point of ( )tZ λ .

5 See Alligood et al. (1996, Chapter 1). 
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as desired eventually move apart. The basin of attraction of an attractor is the set of initial 

conditions 0λ with orbits that approach the attractor. 

5.  Symmetric Regions  

5.1. Implications of Regional Symmetry 

Symmetry of the regions means here that they have the same factor endowments, which 

implies equal nominal regional incomes and expenditures. Given 1 2L K Ys s s= = = , the 

profit difference (14) simplifies to: 

(23) ( ) ( ) ( )
( )

1, 2,

11 1
1 1 2t t t

t t t t

φ
π π λ

λ λ φ λφ λ
  − Ψ

− =Π = − + − + − 
 

For 1φ < , regional symmetry implies: 

(24) ( ) ( ) ( ) ( ) ( )2 21 1
0 0 1 2 0 1 0

2 2
φ φ
φ φ

− Ψ − Ψ
Π = > Π = Π = − <

From (23), regional symmetry also implies: 

(25) ( ) ( )1 t tλ λΠ − = −Π  

Since the numbering of regions is irrelevant: 

(26) ( ) ( )11 1t tMλ λ+− = − ( ) ( )11 1t tZλ λ+− = −

It is easily confirmed that (25) and (26) imply the following symmetry property: 

(27) ( ) ( )1 1t tM Mλ λ= − −  ( ) ( )1 1t tZ Zλ λ= − −  
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The symmetry of ( )tZ λ has crucial implications for the system’s dynamical properties.     

Symmetry Proposition 

Given a period-k orbit, either that orbit is symmetric with respect to 1 2λ = or 

there exists a period-k orbit that is symmetric to it. In the former case, the orbit’s 

basin of attraction is symmetric with respect to 1 2λ = ; in the latter case, the 

basins of attraction of the two orbits are symmetric with respect to each other. 

With symmetric regions, the map ( )tZ λ possesses the same three fixed points for any 

1φ < . In addition to the core-periphery fixed points 0λ = and 1λ = , there is necessarily a 

symmetric fixed point 1 2λ = , i.e., ( )1 2 0Π = implies ( )1 2 1 2Z = . Thus the Symmetry 

Proposition is confirmed for 1k = : a fixed point is either symmetric, i.e., 1 2λ = , or the 

symmetric one also exists, i.e., ( )* *Z λ λ= implies ( )1 * 1 *Z λ λ− = − for the core-

periphery fixed points.  

The core-periphery fixed points 0λ = and 1λ = are unstable for 1φ < , since (19), (24) and 

(25) imply: 

(28) ( ) ( ) ( ) ( )0 1 0 1 1 1 1Z Zγ γ′ ′= + Π = − Π = >

From (15), (19) and (24), the symmetric fixed point 1 2λ = is locally stable if and only if:   

(29) ( ) ( )
2

11 2 1 1 2 1 1
4 1

Z γ φ γ
φ

 −′ ′= + Π = − Ψ ≥ − + 
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5.2. Comparative Dynamics 

With symmetric regions, the system’s dynamical behaviour depends on the migration speed 

γ , on trade freeness φ and on the average profit per unit of capital Ψ . That the migration 

speed matters in a discrete-time system is natural. Figure 1 shows the map ( )tZ λ

corresponding to two speeds, Pγ and Aγ , where A Pγ γ> . Graphically, the symmetry 

property ( ) ( )1 1t tZ Zλ λ= − −  means that rotating the diagram through 0180 results in the 

same map. An increase in the speed ‘stretches’ the map, without affecting the fixed points. 

The maps in Figure 1 are based on critical speeds.6 For Pγ γ< , the symmetric fixed point is 

an attractor. As γ increases through Pγ , where ( )1 2 1Z ′ = − , the symmetric fixed point 

becomes unstable and a period-doubling bifurcation occurs. Further increases in speed give 

rise to orbits of every periodicity and to chaotic behaviour. Long-term behaviour is hyper-

sensitive with respect both to the speed γ and to the initial point 0λ . At Aγ γ= , the iterate 

of the interior maximum of (16) is 1 and the iterate of the interior minimum is 0. For 

Aγ γ> , the responses of capitalists are sufficiently rapid (adjustment costs are sufficiently 

low) that agglomeration in one of the regions occurs for almost all initial points. At the 

resulting core-periphery fixed point, the virtual profit in the periphery exceeds the profit in 

the core. 

Instead of elaborating on the foregoing claims regarding the impact of the migration speed, 

we consider in more detail the impact of trade freeness, since the latter is the main pre-

occupation in core-periphery-type models. Figure 2 is a bifurcation diagram (or orbit 

diagram) that shows the impact of trade freeness on the qualitative nature of the system’s 

 

6 In Figure 1, which is based on 0.5φ = and 40Ψ = , the critical speeds are 0.45Pγ = and 0.874Aγ ≈ .
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orbit. For levels of trade freeness in the range 0.35 0.55φ≤ ≤ , it plots the orbit [ ] ( )0
tZ λ for 

1001 3000t≤ ≤ , where the first 1000 iterations are discarded in order to focus on long-term 

behaviour. It is based on 40Ψ = , 0.5γ = , and 0 0.499λ = , i.e., each orbit starts close to the 

symmetric fixed point. In the ensuing discussion of the impact of a ceteris paribus change 

in 1T σφ −≡ , the latter change should be interpreted as being due to a change in T, since a 

change in σ would also change Ψ . For 0.519Pφ φ> ≈ , the symmetric fixed point 1 2λ =

is an attractor for any 0λ in ( )0,1 . As φ falls through Pφ , where ( )1 2 1Z ′ = − , 1 2λ =

becomes unstable and a period-doubling (or flip) bifurcation gives rise to a period-2 orbit 

symmetric around 1 2λ = . As φ falls through Qφ , a pitchfork bifurcation of the second 

iterate implies that the period-2 orbit becomes unstable and two attracting period-2 orbits 

emerge. As φ falls further, orbits of every periodicity and chaotic behaviour occur. 

That the long-term asymmetric coexistence of manufacturing in both regions is possible is 

confirmed by Figure 3. It shows two attracting period-3 orbits, A1 and A2, for 0.39587φ = .

The existence of a period-3 orbit is particularly significant: it guarantees that there are 

periodic orbits of all (integer) periods. In accordance with the Symmetry Proposition, the 

attractors A1 and A2 are symmetric with respect to each other. That is, for A1, region 1 cycles 

between λ′ , λ′′ and λ′′′ and region 2 cycles between ( )1 λ′− , ( )1 λ′′− and ( )1 λ′′′− ,

whereas the converse applies for A2. In terms of their real incomes, workers and capitalists 

in region 1 would be significantly better-off on A2 than on A1. The basins of attraction of A1

and A2 are symmetric with respect to each other; that is, if the orbit from initial point 0λ is 

attracted to A1, the orbit from initial point ( )01 λ− must be attracted to A2. Each basin 

comprises an infinite number of intervals separated by the periodic points of the repelling 



Figure 3
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With symmetric regions, two period-3 attractors that are symmetric with 
respect to each other. 



17

period-k orbits ( 3k ≠ ) and by their preimages of any rank. There are infinitely many initial 

points which exhibit sensitive dependence on initial conditions.7

That long-term behaviour can be hyper-sensitive to small changes in trade freeness is 

confirmed by the presence of ‘windows’ in the bifurcation diagram: a miniscule change in 

φ can abruptly alter long-term behaviour from, say, an orbit of very low periodicity to an 

orbit of very high periodicity or even to chaotic behaviour. Furthermore, a small reduction 

in φ can result in an abrupt change from chaotic behaviour to agglomeration in one region. 

This occurs in Figure 2 when φ falls through 0.393Aφ ≈ , the latter being the level of φ

below which agglomeration occurs for almost all initial conditions. At Aφ φ= , for which the 

iterate of the interior maximum of (16) is 1 and the iterate of the interior minimum is 0, 

there exist periodic orbits of every period, and every point in [0,1] has sensitive dependence 

on initial conditions.8 For Aφ φ< , trade costs are sufficiently high that, for almost all initial 

points (i.e., except for an invariant Cantor set of points of zero measure9), the system sooner 

or later converges on either 0λ = or 1λ = . At such a core-periphery fixed point, the profit 

in the core is less than the virtual profit in the periphery. If such a core-periphery 

equilibrium is subjected to a small disturbance, the system may be attracted back to that 

particular fixed point or it may be attracted to the other core-periphery fixed points. Figure 

 

7 On the implications of the existence of a period-3 orbit, see Alligood et al. (1996, Chapter 1). 

8 This can be shown by applying to the FC map for Aφ φ= the same methods that Alligood et al. (1996, 

Chapter 1) use to demonstrate these properties for the logistic map ( ) ( )4 1G x x x= − .

9 Identifying the set of initial points whose orbits do not converge on a core-periphery fixed point would be 

similar to identifying the set of points whose orbits remain in ( )0,1 for the logistic ( ) ( )1G x x xµ= − where 

4µ > . On the latter, see Devaney (1989, p. 35). 
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4, based on 0.3917φ = , assumes that all manufacturing is concentrated in region 2 but that, 

for whatever reason, a ‘small’ proportion of the capital is moved to region 1 at the 

beginning of period τ . Figure 4 compares the outcome of a shift to τλ′ with the outcome of 

a shift to τλ′′ . Both orbits initially move further away from 0λ = . However, the dotted orbit 

from τλ′ snaps back to 0λ = , whereas the solid orbit starting from τλ′′ results in 1λ = .

Increases in the capital migration speed and reductions in trade freeness are broadly ‘de-

stabilizing’. The equivalence follows from the fact that higher trade barriers increase the 

importance of location and therefore enhance any incentive to move capital. For any level 

of trade freeness, there exist capital migration speeds sufficiently rapid that long-term 

behaviour exhibits periodic or chaotic coexistence or that all industry is concentrated in one 

region. Similarly, for any speed, there exist transport costs sufficiently high for long term 

behaviour to exhibit complexity or for agglomeration to occur. From (14) and (17), a ceteris 

paribus increase in the average profit per unit of capital, Ψ , has the same qualitative 

impact as an increase in γ . Thus, from (13), an increase in manufactures’ share of 

expenditure µ or in the labour-capital ratio L K are de-stabilizing. The impact of a change 

in the consumers’ preference for variety is more complex: an increase in σ reduces trade 

freeness (which is de-stabilizing) but also reduces the average profit per unit of capital 

(which is stabilizing). In Figure 5, which is based on 0.5µ = , 100L K = , 2T = and 

0.35γ = , the symmetric fixed point is an attractor for 2.5σ < and for 9.13σ > .

An important question is the robustness of the comparative dynamical propositions with 

respect to the specification of the capital migration process. An alternative specification, for 

example, could involve capitalists responding to the ratio of regional profits. Since Ψ does 

not affect the profit ratio, µ and L K would have no impact on the dynamical behaviour; 
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Bifurcation diagram showing the impact of the elasticity of substitution σ
on the long-run behaviour of region 1’s share of capital use tλ .
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and σ would have an effect only via trade freeness. However, the impacts of γ and of φ

would be qualitatively similar and, more generally, the system would still exhibit complex 

dynamical behaviour, with multiple attractors and hyper-sensitivity to initial conditions and 

to parameters. 

5.3. Comparison of Models 

The contrast between the discrete-time and continuous-time symmetric FC models could 

not be more dramatic. For the continuous-time model, the instantaneous short-run general 

equilibrium corresponds to the short-run general equilibrium identified in Section 3. 

Baldwin et al. assume a capital migration process ( )( )1 21λ λ λ π π= − −� . In fact, provided 

only that capital migrates to the region with the higher profit, the precise specification of the 

migration process is irrelevant for the long-term behaviour of the continuous-time system. 

Indeed, for 1φ < , the only stable long-run equilibrium for the continuous-time symmetric 

FC model is the symmetric equilibrium 1 2λ = , since the core-periphery equilibria are 

necessarily unstable. For this reason, Baldwin et al. (2003, p. 80) describe the continuous-

time symmetric FC model as “rather uninteresting”. In contrast, the dynamical behaviour of 

the discrete-time model is extremely interesting. 

As noted above, the analytical tractability of the FC model derives from the fact that the 

repatriation of the earnings from capital eliminates both the demand-linked and cost-linked 

circularities that feature in the CP model. Whereas the symmetric FC model possesses three 

fixed points, the CP model has parameter ranges for which there are five fixed points. 

Nevertheless, the discrete-time symmetric FC model retains much of the dynamical 

complexity of the discrete-time symmetric CP model examined by Currie and Kubin 

(2005). In both models, long-term behaviour can involve periodic or chaotic coexistence of 
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manufacturing in both regions; multiple attractors, sensitive dependence on parameters and 

sensitive dependence on initial conditions are pervasive. Moreover, whereas discussions of 

the continuous-time CP model portray high transport costs as stabilizing, high transport 

costs are de-stabilizing in both the discrete-time FC and CP models.  

6.  Asymmetric Regions 

6.1. Comparative Dynamics 

Exogenous regional asymmetries imply, in general, that ( ) ( )1 1t tZ Zλ λ− ≠ − ; in other 

words, rotating ( )tZ λ through 0180 does not result in the same map. In particular, from 

(20), 1 2Ys ≠ implies ( )1 2 1 2Z ≠ . Figure 6, for which 40Ψ = , 0.5γ = , 0.5φ = and 

0.6L K Ys s s= = = , shows that a relatively modest difference simply in the size of regions 

can result in a highly asymmetric map. In accordance with (20), at the interior fixed point 

* 0.8λ = , the larger region’s share in capital use exceeds its share in income (and in capital 

ownership). Although the interior fixed point *λ is locally stable, many initial points result 

in agglomeration in the larger region. Indeed, with an initial allocation equal to the 

ownership share [i.e., 0 0.6Ksλ = = ], the profit difference would be sufficient to induce 

capitalists to move immediately all their capital to the larger region.  

Figure 7, for which 40Ψ = , 0.5φ = and 0.65γ = , focuses on the significance of region 1’s 

share of income, assuming that it is the larger region. For 0.5 Y Ys s′′≤ ≤ , ( )* Ysλ represents 

the linear relationship (20): it shows the share of capital use at which regional profits are 

equal. The profit in region 1 (the core) equals the virtual profit in region 2 (the periphery) at 

( )1 1 2 3Ys φ′′ = + = , which is equivalent to ( )1 Y Ys sφ = − . The capital migration speed is 
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1

Map ( )1t tZλ λ+ = with asymmetric regions, where *λ is the locally stable 
interior fixed point, Ys is region 1’s share in total expenditure and Ks is its 
share in capital ownership. 
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sufficiently high (or trade freeness is sufficiently low) that the interior fixed point *λ is 

repelling for an income share below Ys′′ . For Y Ys s′≤ , region 1’s capital use exhibits periodic 

or chaotic behaviour but, on average, it is systematically higher than *λ (and a fortiori 

greater than the income share). Above income share Ys′ , all manufacturing is concentrated 

in region 1. Compared to the virtual profit in region 2, profit per unit of capital in region 1 

is lower for Y Y Ys s s′ ′′< < but higher for Y Ys s′′> .

Figure 8 illustrates the possible impact of the level of trade freeness where relative factor 

endowments differ. Both regions have the same labour endowments but all the capitalists 

live in region 1 [i.e., 1Ks = ]. The simulations are based on 40Ψ = , 0.5γ = , 4σ = and 

0.5µ = ; 0λ is set close to the relevant fixed point; and the level of φ ranges from just 

above 0 to just below 1. The values of σ and µ imply 0.563Ys ≈ , so that, even with 

1Ks = , income shares are not very different. For Aφ φ< , the volatility that results from the 

relatively high trade costs leads to the concentration of all industry in region 1. For 

A Pφ φ φ≤ < , the interior fixed point is repelling and the system exhibits periodic or chaotic 

long-term behaviour, with region 1 exporting capital. For 1P CPφ φ φ≤ < , the system is 

attracted to the interior fixed point, where, as implied by (20), *λ increases as φ rises. 

That is, region 1’s exports of capital fall as trade in manufactures becomes less costly. For 

( )1 1CP Y Ys sφ φ≥ = − , trade is sufficiently free that region 1 does not export any capital. 

From (14), ( )1 Y Ys sφ > − implies ( )1 0Π > , i.e., the profit in region 1 exceeds the virtual 

profit in region 2. 
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6.2. Comparison with Continuous-time FC model 

With asymmetric regions, the discrete-time FC model is again dynamically much richer 

than its continuous-time counterpart. For the latter, if, say, 1 2Ys > , the only stable long-

term behaviour involves *λ λ= for ( )1Y Ys sφ ≤ −  and 1λ = otherwise. The divergence 

between *λ and Ys is attributed to the so-called ‘home market effect’, whereby the region 

with the larger home market has a more than proportionately larger manufacturing sector, 

and therefore exports manufactures.10 In Figure 7, the impact of the home market effect is 

on average greater in the discrete-time model than in the continuous-time model. The abrupt 

agglomeration that occurs in the discrete-time model as Ys increases through Ys′ does not 

occur in the continuous-time model. 

The sole dynamical feature that Baldwin et al. highlight in the continuous-time model is the 

possibility of a very ‘rapid’ rate of relocation – which they call ‘near-catastrophic 

agglomeration’ (2003, p. 88)11 – when the regions are only slightly different in size and φ

approaches 1CPφ . In the discrete-time FC model, sensitive dependence on parameters is 

much more pervasive. Moreover, in contrast to the continuous-time FC model, the system 

displays sensitive dependence on initial conditions.  

7. Some Final Comments 

Reformulating the Footloose Capital model in terms of a discrete-time framework has 

astonishing implications for its possible long-run dynamical behaviours. Whereas the long-

 

10 For a detailed examination of the home-market effect in the continuous-time FC model, see Baldwin et al.

(2003, ch. 3).   
11 On the notion of near-catastrophic agglomeration, see also Baldwin (1999). 
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run behaviour of the continuous-time FC model is confined to a unique stationary 

equilibrium, long-run behaviour in the discrete-time model can involve the asymmetric 

coexistence of manufacturing in both regions, even with symmetric regions possessing the 

same factor endowments. The system possesses multiple attractors, exhibits chaotic 

behaviour, and displays sensitive dependence both on initial conditions and on parameters. 

The discrete-time model is much richer in terms of its potential for explaining and 

understanding economic phenomena relating to capital movements between regions and 

countries. But it also cautions against relying on simple comparative static propositions.  
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